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Abstract

Spatial metabolomics is an emerging field of omics research that has en-
abled localizing metabolites, lipids, and drugs in tissue sections, a feat
considered impossible just two decades ago. Spatial metabolomics and its
enabling technology—imaging mass spectrometry—generate big hyper-
spectral imaging data that have motivated the development of tailored com-
putational methods at the intersection of computational metabolomics and
image analysis. Experimental and computational developments have re-
cently opened doors to applications of spatial metabolomics in life sciences
and biomedicine. At the same time, these advances have coincided with a
rapid evolution in machine learning, deep learning, and artificial intelli-
gence,which are transforming our everyday life and promise to revolutionize
biology and healthcare. Here, we introduce spatial metabolomics through
the eyes of a computational scientist, review the outstanding challenges, pro-
vide a look into the future, and discuss opportunities granted by the ongoing
convergence of human and artificial intelligence.
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INTRODUCTION

Spatial metabolomics is a field of omics research focused on the detection and interpretation of
metabolites, lipids, drugs, and other small molecules in the spatial context of cells, tissues, organs,
and organisms (1). Spatial metabolomics is a rapidly emerging field, fueled by the strong and ever-
growing need in biology and medicine to characterize biological phenomena in situ, as well as by
the recently revealed key roles of metabolism in health and disease. This field is concerned with
a variety of biomedical questions, including the tumor molecular microenvironment (2), func-
tions of immune cells during homeostasis and immunotherapy (3), interactions between host and
microbiota (4) and their contribution to inflammation (5), regulation of early development (6),
metabolic regulation of epigenetics (7), and metabolic dysregulations during infection (8) and in-
flammation (9, 10). Over the past decade, this growing interest has stimulated rapid progress in
the development of enabling technologies—in particular, imaging mass spectrometry (MS)—that
have achieved unprecedented sensitivity, coverage, and robustness as they have become accessible
to biologists (11–20).

This article provides a review of the challenges in spatial metabolomics and imaging MS,
the dominant technology for spatial metabolomics, through the eyes of a computational scien-
tist. In particular, we discuss how artificial intelligence (AI), machine learning, and deep learning
are used in spatial metabolomics and what potential they have to transform this field. Our con-
siderations contribute to a broader discussion of an issue recently raised in Nature Metabolism:
why the metabolism field risks missing out on the AI revolution (21). Using publication numbers
in PubMed, the most comprehensive database of publications in life sciences and biomedicine
(Figure 1), one can divide the evolution of technologies for spatial metabolomics in the twenty-
first century into three periods: prior to 2009, from 2009 until 2015, and since 2015. Prior
to 2009, metabolomics and imaging MS were developing with an over-exponential speed and
reached levels comparable to machine learning and deep learning, respectively. From 2009 un-
til 2015, metabolomics and machine learning showed similar exponential growth in the num-
ber of publications in the life sciences. Correspondingly, both imaging MS and deep learning
were growing at the same pace. However, in 2015 the situation changed, with deep learning
exhibiting an over-exponential explosion of popularity, whereas the growth of metabolomics
and imaging MS slightly slowed down, despite still growing exponentially. These numbers sug-
gest that, indeed, metabolomics and in particular spatial metabolomics could benefit more from
the rise of deep learning. Although this observation is also true for other omics fields such
as genomics, proteomics, and transcriptomics that show trends similar to metabolomics (not
shown in Figure 1), in this review we focus on challenges and opportunities specific to spatial
metabolomics.

We review the principles and unique advantages of spatial metabolomics and outline the state
of the art as well as challenges in data analysis in this field.Then,we focus on the outstanding chal-
lenges that have received attention but still need solutions and provide an outlook on how novel
computational approaches such as machine learning and AI can open up new avenues in spatial
metabolomics. We discuss in detail the use of machine learning, big data, and AI approaches in
this field, as well as current bottlenecks, in particular, the lack of so-called ground truth data,
and how they can be addressed. We provide a list of benchmark datasets and software tools that
can serve as entry points for newcomers. Overall, we hope that this review will help beginners
in the field of spatial metabolomics orient themselves to the variety of existing computational
methods and problems and help experimentalists establish stronger collaborations with computa-
tional scientists, in particular by explaining the benefits and prerequisites ofmodern computational
methods.
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Figure 1

The popularity of different technologies in the life sciences and biomedicine and their evolution over time. The plot shows the
numbers of PubMed-indexed publications in a given year containing the keywords shown in the figure key. We highlight three time
periods, before 2009, from 2009 until 2015, and after 2015, which we discuss in the main text. The inset shows the popularity of several
technologies for metabolomics applications from 1995 until 2018. Abbreviations: FTIR, Fourier-transform infrared spectroscopy;
NIR, near-infrared spectroscopy.

BULK METABOLOMICS AND THE NEED FOR IN SITU ANALYSES

Bulk metabolomics is performed by extracting metabolites from samples such as in vitro cultured
cells, tissues, or biofluids and then subjecting them to further detection and quantification of en-
dogenous and exogenous metabolites, often using MS (22–24). Although this approach is widely
accepted and can successfully detect remodeling of metabolism in an organism or its parts, even
in bodily fluids (25–27), it cannot pinpoint the localization of metabolites in specific organelles,
cells, anatomically or histologically defined parts of tissues, or organs. This makes biological in-
terpretation of metabolomics data challenging and hinders the association of overall metabolic
changes with a particular tissue, organ, or spatially localized aberration such as a tumor. This
problem can be partially overcome by dissecting tissues (28, 29) or organs (30) before performing
bulk metabolomics on individual dissected parts. However, such experiments are hardly scalable,
are time consuming, and require expertise and the development of tailored methods for sam-
ple handling, normalization, data analysis, and visualization, making them out of reach for most
scientists.
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IMAGING MASS SPECTROMETRY AS ENABLING TECHNOLOGY

Addressing the need for in situ metabolomics, researchers have developed a variety of spatial
metabolomics approaches over the past two decades, enabling the detection of metabolites, lipids,
and other small molecules in a broad range of biological samples, with two-dimensional (2D) or
3D spatial resolution on the scales of organisms, organs, tissues, or cells (1). In this review,we focus
on spatial metabolomics based on imaging MS (12–20, 31). MS is the most widespread technique
for bulk metabolomics (32) and provides an unsurpassed combination of molecular coverage, sen-
sitivity, and specificity. Imaging MS combines the spatially resolved sampling of molecules with
their detection in a mass spectrometer. The sampling is systematically performed by dividing the
surface of a sample, usually a tissue section, into a virtual grid of pixels. For every pixel in the grid,
molecules are desorbed from the area of the pixel using a laser or another ablation method, fol-
lowed by the generation of a mass spectrum representing relative intensities of molecules within
the pixel.

Imaging MS was proposed at the end of the twentieth century, in particular for localizing
proteins in cryosections (33, 34); readers are referred to Reference 35 for a historical perspec-
tive. Since then, the application’s focus has shifted toward the detection of metabolites, lipids, and
small molecules, in particular with the introduction of so-called high-resolving MS (36). Over the
past two decades, imaging MS created one of the fastest-growing fields in MS, with most vendors
providing commercial solutions. Acknowledging other approaches to spatial metabolomics such
as Fourier-transform infrared spectroscopy (37), Raman spectroscopy (38), near-infrared spec-
troscopy, and molecular cartography (39), here we focus on imaging MS as the enabling and most
popular technology for spatial metabolomics (Figure 1).

The various flavors of imaging MS can be categorized by their so-called source, that is, the
apparatus by which molecules are ablated from a sample in a spatial manner, and by the analyzer,
that is, the mass spectrometer used for detecting and characterizing molecules desorbed from ev-
ery pixel (35, 40). The most common source type is matrix-assisted laser desorption/ionization
(MALDI), where molecules are ablated and simultaneously ionized by a laser (36). Other promi-
nent source types include liquid-based desorption electrospray ionization (DESI) (41); secondary
ion mass spectrometry (SIMS), which uses an ion beam (42, 43); infrared matrix-assisted laser de-
sorption electrospray ionization (IR-MALDESI), which combines infrared laser and electrospray
ionization (44), and the similar laser ablation electrospray ionization (LAESI) (45); nanostructure-
initiator mass spectrometry (NIMS) (46); and nanospray desorption electrospray ionization
(nanoDESI) (47).

Machine Learning, Deep Learning, and Artificial Intelligence

Machine learning, deep learning, and AI are pushing the boundaries of our understanding of the
tasks that can be solved by a computer in everyday life. Examples include autonomous driving,
AlphaGo, and IBM Watson. The fields of life sciences and biomedicine are presently embracing
these approaches with big hopes that they will transform healthcare and science, in particular when
using rich omics or imaging data. In this section,we provide definitions and references introducing
and reviewing key concepts and achievements.

Machine learning is an approach to solving a problem that learns from the data rather than
encodes decisions based on expert knowledge (48). Deep learning is a subfield of machine learn-
ing that uses deep artificial neural networks, a method that has transformed machine learning by
outperforming other methods, first for computer vision and later for other problems (49). AI is the
broadest field of these three and is concerned with making computers perform intelligent tasks
as well as or better than humans (50). In Figure 1, which shows the number of publications in
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PubMed in various fields, one can clearly see the over-exponential rise of deep learning applica-
tions in the life sciences and medicine since 2015 and its impact on the adoption of AI in these
fields.

For a comprehensive introduction tomachine learning from themedical perspective, including
its areas of greatest promise and its challenges, in particular the central challenge of the availability
of high-quality data for training (so-called ground truth), readers are referred to Reference 51. To
dive deeper into the computational principles of deep learning with applications in biology, see
Reference 52, and for applications in biomedicine, see References 53 and 54. Reference 55 reviews
the use of machine learning and deep learning in healthcare with a focus on types of machine
learning. For a comprehensive review of AI in medicine and its potential to transform the business
model in healthcare by capitalizing on massive quantities of data generated in modern medicine,
see Reference 56.With the onset of AI in healthcare, there is a hope for positive transformations
not only in high-income countries but also in resource-poor healthcare settings (57).

Imaging Mass Spectrometry Data

An imagingMS dataset represents a collection ofmass spectra, eachwith its associated x-y pixel po-
sition. It can also be viewed as a hyperspectral image consisting of multiple ion images or channels,
with every ion channel corresponding to a particular mass-to-charge (m/z) value and represent-
ing relative intensities of ions with this m/z value (58). The number of pixels is usually between
10,000 and 100,000 and is often limited by the MS throughput operating at 1–50 Hz (1 Hz rep-
resenting 1 spectrum/s). The recent progress in high-speed imaging MS, as well as technological
solutions supporting the stability of laser focusing (59), enables collecting even bigger datasets.1

This progress will likely enable routine collection of datasets with over one million pixels in the
next year or two. The dimensionality of an individual spectrum depends on the analyzer and is
usually on the order of 103 for time-of-flight (TOF) analyzers, 104 for quadrupole time-of-flight
(QTOF) analyzers, and over 104 for Fourier transformation (FT) analyzers. High-resolution data
collected using FT analyzers, such as Fourier transformation ion cyclotron resonance (FTICR)
or Orbitrap, are often reduced in the spectral dimension by applying so-called centroiding. Cen-
troiding is a procedure applied to every spectrum that, for every spectral peak, selects one central
m/z value (the so-called centroid), and its associated intensity is often calculated as the area under
the peak (see Figure 2). Centroiding is essential for FT data as it reduces the dimension and size
of multigigabyte data by an order of magnitude.

Key Parameters of Imaging Mass Spectrometry and How They Affect the Data

In Table 1, we summarize key parameters of imaging MS that have the most profound impact
on the data. The sample preparation (60), source type, and analyzer polarity predetermine which
molecular classes will be desorbed and ionized and thus highly affect the molecular content of the
data.These parameters do not directly affect the spectral properties of the data, which makes most
of the data analysis methods agnostic to them. The analyzer type, however, has a strong impact
on the spectral properties and size of the data and thus affects signal processing, data analysis, and
molecular analysis. The mass-resolving power predetermines how detailed the spectra are and
whether two molecules with similar m/z values can be resolved from each other; it is a critical
parameter affecting data size and molecular ambiguity. Finally, mass accuracy, or how accurately

1For example, see this public METASPACE dataset from a mouse brain tissue provided by Dhaka Bhandari
(University of Giessen), which contains over 500,000 pixels: https://metaspace2020.eu/annotations?db=
SwissLipids-2018-02-02&ds=2019-08-19_11h28m42s&offs=0.
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Figure 2

An imaging mass spectrometry (MS) dataset represents a collection of spectra acquired from a raster of pixels representing the surface
of a tissue section. Peaks are often reduced to centroids, especially for Fourier transform ion cyclotron resonance and Orbitrap
high-resolving power analyzers. An ion image represents relative intensities of the ion across all pixels. An imaging MS dataset can
represent spatial localization of up to 103 molecules at a false discovery rate (FDR) of 10%.

the measured centroids of the spectral peaks for a molecule represent its theoretical m/z value, is
a critical property of imaging MS data, as it substantially affects data quality, molecular ambiguity,
and overall interpretability. The mass accuracy is different from other parameters, as it cannot
be set during the experiment but can be affected by multiple factors, including the calibration
and stability of the mass spectrometer and even the thickness of the analyzed sample (for TOF
analyzers). Only a few imaging MS software packages (including open-source MSiReader as well
as some vendor-provided packages) provide an easy way to estimate mass accuracy for already
collected data.

Common Data Analysis Steps

The steps of a typical data analysis workflow in imaging MS–based spatial metabolomics include
signal processing, visualization, statistical analysis, molecular identification, molecular validation,

Table 1 Imaging MS parameters and how they affect data properties

Parameters of imaging MS Affected aspects and data properties
Sample

preparation
MALDI matrix (e.g., DHB,
DAN)

Desorption and ionization (and hence detectable molecular classes), spatial
resolution (but not critically), sensitivity

Solvent (e.g., acetonitrile) Desorption and ionization, sensitivity
Source Source type (e.g., MALDI,

DESI, SIMS,
IR-MALDESI)

Desorption and ionization, sensitivity (and thus the number of ion channels),
potentially spatial resolution (and thus the number of pixels)

Analyzer Analyzer type (FTICR,
Orbitrap, TOF, QTOF)

Strongly affects spectral properties (dimensionality, noise, background, and, in
particular, TOF) and molecular ambiguity; affects spatial properties (noise,
resolution) to a lesser degree

Polarity (positive, negative) Which ions are detected (and hence molecular classes)
Mass-resolving power (e.g.,
50,000 or 120,000 at
200 m/z)

Critically affects molecular ambiguity (inversely proportional) and data size
(proportional)

Mass accuracy Critically affects data quality, molecular ambiguity, and interpretability

Abbreviations: DAN, 1,5-diaminonapthalene; DESI, desorption electrospray ionization; DHB, 2,5-dihydroxybenzoic acid; FTICR, Fourier transformation
ion cyclotron resonance; IR-MALDESI, infrared matrix-assisted laser desorption electrospray ionization; MALDI, matrix-assisted laser desorption/
ionization; MS, mass spectrometry; QTOF, quadrupole time-of-flight; SIMS, secondary ion mass spectrometry; TOF, time-of-flight.
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Figure 3

Steps of a typical data analysis workflow in imaging mass spectrometry. Abbreviations: LC-MS/MS, liquid chromatography with
tandem mass spectrometry; MS/MS, tandem mass spectrometry.

and interpretation (Figure 3). Presently, the focus of computational methods development has
shifted toward molecular identification as well as molecular validation and interpretation, with
low-level signal processing increasingly performed by the vendor software.

Challenges Compared to Bulk Metabolomics

As discussed above, in situ analysis is often desired and necessary in order to interpret
metabolomics data and link them to particular aspects of metabolism compartmentalized within
particular organelles, cells, tissues, or organs. Spatial metabolomics using imaging MS provides
unique opportunities to investigate tissue sections and overlay metabolite localization with mi-
croscopy images. However, these advantages of spatial metabolomics come with some limitations
compared to bulk MS-based metabolomics. Here, we discuss two aspects that are critical for the
understanding of imaging MS data and that often drive tailored computational developments in
this field.

First, in imaging MS the molecular material from a pixel is represented in one spectrum. In
contrast, in bulk metabolomics, the molecular material is often separated by another molecular
property prior to MS analysis, e.g., by the time of retention through a chromatographic column,
as in liquid chromatography–mass spectrometry (LC-MS). This leads to the high complexity of
imaging mass spectra and, more specifically, to a high number of peaks in a spectrum, potential
overlap of molecular signals, and high noise and variability of spectral intensities. The emerging
use of ionmobility separation (IMS) for imagingMS,where themolecules are first separated based
on their collisional cross section by flying through a buffer gas, has the potential to overcome
this limitation. Computational developments are urgently needed to make use of this additional
dimension (61).

Second, imagingMS predominantly exploits the so-calledMS1 type ofMSwherem/z values of
ionized analytes are measured in a mass spectrometer. On the contrary, bulk metabolomics largely
relies on tandem MS (abbreviated as MS/MS or MS2) where analytes are first fragmented into
their structural parts whosem/z values are measured in a mass spectrometer (22, 32, 62). Although
MS/MS cannot reconstruct the molecular structure completely, it reduces potential ambiguity, as
an MS/MS spectrum encodes additional structural information that is missed in MS1. This leads
to a general inability of imaging MS to discern structural isomers, namely, molecules with the
same molecular formula. Examples of isomeric molecules include d-glucose, d-galactose, and l-
galactose, which all have the molecular formula C6H12O6, or diglycerides DG(16:0_16:0) and
DG(18:0/14:0), which all have the molecular formula C35H68O5. In imaging MS, MS/MS spec-
tra can be collected for selected ions only, normally not in a true imaging mode but for a few
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pixels only, and are generally of low quality due to the overall low amount of molecular material
contained in one pixel. Currently, all commercial types of mass spectrometers suffer from this
limitation and imaging MS/MS analysis is not supported in vendor-provided software. Below we
discuss emerging solutions to this problem.

RECENT COMPUTATIONAL ADVANCES

The field of spatial metabolomics in its current evolution is enabled by imaging MS technology
developed over the past two decades. In particular, in the past decade, the field consolidated a
noticeable community of computational methods developers, both in academia and industry, who
together addressed several challenges. In this section, we review recent computational advances.

Data Handling and Signal Processing

Data handling was a considerable challenge in imagingMS just a decade ago, particularly when us-
ing FTICR or Orbitrap analyzers that can generate millions ofm/z bins. Since then,most vendors
introduced efficient data formats, often including centroiding or other types of data compression,
which reduced data size and facilitated data storage and handling. The crucial success on the way
to data interoperability was the development of the imaging MS data format imzML (63). imzML
is an open format and is supported by themajority of vendors by allowing users to export their data
into this format, and by leading open-source packages where imzML files can be loaded and pro-
cessed. Thus, imzML is the main means of data exchange between software packages. However,
for computational analysis, it is recommended that data be stored in some internal format. imzML
is not efficient for data access, particularly when dealing with large data with a large number of
pixels, because in imzML every spectrum is stored with its metadata. Similarly, imzML is poorly
suited for the emerging use of IMS in imaging MS where the number of spectra is increased by a
factor of 102–104. Discussions about a new version of imzML are ongoing but no concrete plans
are announced yet. Independently of their support of the imzML format, several vendors have an-
nounced that they will either provide access to their data through open interfaces or create APIs
for interacting with their software, which should provide computational methods developers fast
direct access to data and would help vendors integrate open-source developments.

Signal processing is a foundational step and is essential for any data analysis. Substantial meth-
ods development efforts were devoted to this topic in the early years of imaging MS, in particular,
to address the problems of spectral normalization and spectral centroiding (58, 64, 65). Various
methods of spectral normalization were demonstrated to improve data yet are known to produce
artifacts (13). The problem of the choice of normalization is still open, as there are no ground
truth data that would contain known distributions of molecules and could be used for objective
comparison of existing normalization methods. Currently, every scientist or lab decides based on
their own empirical experiences whether to apply spectral normalization at all and which type of
normalization to use. This hinders the comparison of the data between labs and can potentially
lead to artifacts, particularly when analyzing new types of samples. This problem is an example
of how the lack of ground truth data can hamper computational developments; below we discuss
this aspect in detail.

Spectral centroiding (previously often called peak picking) is a process of converting a spectral
peak corresponding to an ion to a centroid m/z value with an associated intensity (Figure 2). An
ion species generates a spectral peak representing a random distribution of m/z measurements of
the ions of that species. The shape of a peak is close to a Gaussian function but varies depending
on the analyzer type and resolving power. Peaks in FTICR and Orbitrap data have a clean smooth
shape whereas peaks in TOF and QTOF data are noisier. Using a higher-resolving power leads
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to narrower peaks. Working with centroided data is often easier since it simplifies the data and
compresses it at approximately a 10× rate. Substantial efforts devoted to spectral centroiding over
the past two decades have led to the development of robust methods, and currently, most vendors
support the export of centroided data, often into the centroided imzML format.

TOF baseline correction is a process of detecting and removing background baseline in a TOF
mass spectrum,which was a considerable challenge in the early days of imagingMS; see Reference
58 for more details. With the introduction of high-resolving power analyzers (FTICR, Orbitrap,
QTOF), usingTOF in imagingMSbecame less popular (36),which shifted the interest ofmethods
developers away from TOF-specific signal processing.

Visualization

Visualization of imaging MS data in its spatial coordinates can provide an intuitive and easily
interpreted view into which metabolites are detected, where they are localized, and what spatial
associations exist between molecules. Even more informative can be a visual overlay of ion im-
ages with a microscopy image from the same or a consecutive section that can aid in associating
metabolites with histopathologically defined regions (e.g., tumor or stroma), cells of a particular
type or phenotype (e.g., stem cells, cells exhibiting macrovesicular steatosis or a particular cell cy-
cle phase), or expression of a particular protein or transcript (e.g., a metastasis marker or cell-type
marker) imaged using an orthogonal technique such as immunohistochemistry, immunofluores-
cence, or fluorescence in situ hybridization.

Numerous methods have been developed and implemented in vendor-provided and academic
software packages for visualizing ion images, overlaying them with microscopy images and en-
hancing the contrast (13, 40). Since working with imaging MS data involves visual examination
and comparison of numerous ion images, the choice of a colormap for visualization has been a
matter of debate at various conferences. Presently, as in many other fields (66), rainbow and jet
colormaps are highly discouraged while perceptually uniform colormaps like viridis are recom-
mended. Interestingly, this topic in imagingMS is so important that it stimulated the development
of a novel colormap, cividis,which is perceptually uniform and adapted for people with color vision
deficiency (67).

Unsupervised Data Analysis

Although visual examination of individual ion images corresponding to specific metabolites is es-
sential and part of everyday work for any imaging mass spectrometrist, this can hardly be done for
all 103–105 ion channels contained in a regular imaging MS dataset. Moreover, some compressed
visual representation of a whole imaging MS dataset is desired for quality control, expert assess-
ment, and hypothesis generation. This has stimulated the development of unsupervised methods
that can represent the molecular and spatial content of an imaging MS dataset with one or a few
images. Here, we briefly discuss this topic; for a comprehensive review, see Reference 68, where
40 methods are reviewed and discussed in detail. For an experimental viewpoint and how unsu-
pervised analysis fits into a complete data analysis pipeline, see Reference 13.

Most unsupervised data analysis methods in imaging MS can be categorized into dimension-
ality reduction (component analysis methods), spatial segmentation (or clustering of pixels), and
clustering of ion images. Since the early days, dimensionality reduction has predominantly been
performed by using component analysis or factorization methods such as principal component
analysis (PCA) and non-negative matrix factorization (NMF). PCA and NMF have obtained sub-
stantial popularity, as they can visualize both distinct spatial regions and associated spectral pat-
terns. Other methods have been evaluated and developed; see Reference 68 for a comprehensive
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list. Spatial segmentation aims at partitioning a sample into distinct regions of molecularly similar
pixels and is one of the most popular approaches for data representation in imaging MS. Besides
naïve clustering of spectra, segmentation methods tailored for imaging MS have been developed,
in particular with the aim of reducing strong pixel-to-pixel variability by employing image pro-
cessing (69), spatially aware clustering (70), post hoc smoothing of obtained segmentation maps
(71), or spatially shrunken centroids (72). Clustering of ion images was proposed to investigate
spatial similarities between ion images (73, 74), and its usefulness for supervised analysis was re-
cently demonstrated (75). Among other methods for data representation, self-organizing maps
were shown to visualize chemically similar regions of interest (76–78).Manifold learning methods
such as t-SNE (t-distributed stochastic neighbor embedding; 79) and UMAP (uniform manifold
approximation and projection; 80, 81) are gaining popularity for visualizing spectra or ion images
in 2D space, for aiding data interpretation, and for finding clusters of similar pixels or images.

Quantifying the Quality of Ion Images

Even in a high-quality imaging MS dataset, a considerable proportion of ion images either are
prohibitively noisy or contain a large number of pixels with zero intensities. This can be due to
the images representing molecular concentrations close to the limit of detection. Since they are
noisy, such images need special treatment or otherwise can pollute downstream analysis. Expert-
performed visual examination of ion images to assess their informativeness is still a part of many
workflows in imagingMS.Recently, several methods were developed that can automatically quan-
tify the quality or informativeness of an ion image, including the spatial measure of spatial chaos,
gray-level co-occurrence matrices, or the drug homogeneity index (82–85). The developed meth-
ods have been evaluated using either a small set of preselected 250 ion images (82) or 634 pairs
of crowdsourced expert-ranked images (83). Open-source implementations of these methods are
available that have stimulated their integration into academic and commercial software packages.
Looking into the future, despite the fact that these methods already provide acceptable perfor-
mance, they may be further improved by modern computer vision methods such as deep learning,
especially if bigger training sets were provided.

Filtering Out Off-Sample Ion Images

Any imaging MS dataset contains ion images corresponding to either solvent (in DESI and nan-
oDESI) or MALDI matrices, as well as other background contaminants. These ion images exhibit
the so-called off-sample localization with high-intensity pixels outside of the sample area. Repre-
senting technical artifacts rather than biological content yet exhibiting high intensities, these im-
ages may confound statistical analysis and lead to false positives in molecular identification. Until
recently, no automated solutions for filtering off-sample ion images were provided. MSiReader
software provides a semisupervised way for filtering off-sample ion images that requires select-
ing the off-sample area manually (86). We have recently created a high-quality ground truth set
of 23,238 ion images where every image has been annotated by an expert as either on-sample,
off-sample, or unknown (87). Then, we trained a deep learning model and were able to automati-
cally reproduce expert judgments with high accuracy. Furthermore, we have shared the model and
integrated it into the METASPACE cloud software (87), thus making it widely available.

Quantifying Colocalization Between Metabolites

Various applications require calculating the colocalization of molecules in an imaging MS dataset.
This is often needed for untargeted spatial metabolomics in order to discover metabolites that are
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accumulated in particular regions or spatially associated with each other. The most common sce-
narios include finding metabolites that are spatially associated with another molecule (e.g., either
a known oncometabolite or an unknown ion found through statistical analysis) or that exhibit a
particular spatial localization (e.g., localized within a region found through spatial segmentation
or within a particular histopathological region visible in microscopy).

Various measures for quantifying colocalization between ion images have been proposed, in-
cluding the Pearson correlation, cosine score, and Euclidean L2-measures (58, 69, 88, 89), applied
to either intact or transformed images, e.g., after hotspot removal or log transformation (40).
Novel measures adopted from other fields have been proposed, including the structural similar-
ity index and the hypergeometric similarity measure (90–92). For finding molecules colocalized
with a region of interest, researchers have developed a non-negative least squares approach (93).
We have recently created a gold standard set based on judgments of 42 experts, evaluated several
existing measures, and proposed new measures that can reproduce expert judgments, including
those based on deep learning (81). This gold standard set is publicly available and can be used for
training machine learning and deep learning models to achieve even higher performance.

Spatial Quantitation of Metabolites

Absolute quantitation or estimation of the concentration of a molecule in sampled pixels or a
spatial region of interest is essential for modeling in quantitative biology, as well as for pharma-
cokinetics/pharmacodynamics studies during drug development. Recently, several protocols for
quantitative imaging MS were developed (94–96); see Reference 13 for a review. Until recently,
imaging MS was called a semiquantitative technology, meaning that it can be used to compare
intensities between pixels but does not provide absolute quantitation of molecular concentrations.
However, several studies have demonstrated that imagingMS can achieve quantitation with a high
agreement of 70–90% with LC-MS, a gold standard for quantitative bulk metabolomics (97, 98).
Similar to quantitative LC-MS, this can be achieved for targeted analysis of a predetermined set
of metabolites and requires a careful experimental design, including authentic internal standards.
Developing computational methods supporting spatial quantitation is an active area of research
and development. The only open-source software that supports quantitation is MSiReader (86),
with non-open-source packages also available (99).

Spatial Metabolomics in Three Dimensions

The advance and increasing popularity of 2D spatial metabolomics has led to a growing interest
in performing spatial metabolomics in 3D. This would not only provide a richer representation
of metabolite localization but would also allow metabolite data to be overlaid with other estab-
lished and emerging 3D imaging data from magnetic resonance imaging (MRI), microcomputed
tomography, or block-face and light-sheet microscopy. Such multimodal imaging would be par-
ticularly useful for biological and medical applications involving animal models, e.g., creating a
molecular-anatomical atlas or finding metabolites spatially colocalized with xenograft or cancer
metastases.

This growing interest has led to the development of methods for 3D spatial metabolomics of
tissue specimens, which is normally performed by serial sectioning followed by the 2D analysis
of obtained sections and 3D reconstruction; see Reference 100 for a review. Other approaches
include SIMS, where an ion beam ablates layers of molecules (101), which can be applied only
to small samples such as individual cells. 3D molecular cartography has been proposed for the
analysis of not only biological surfaces but also organs like the lung (28, 39). Early reports of serial
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3D imaging MS (102–107) revealed associated challenges: long acquisition times, the need for
special software for registering serial sections, and the need for special protocols and software
for simultaneously coregistering 3D images with other 3D imaging modalities so that hundreds
to thousands of ion images can be explored in 3D. Since then, commercial software has been
developed that helps create a 3D imaging MS dataset and visualize the localization of ions in 3D;
see, e.g., Reference 107. Despite the availability of such software, presently 3D imaging MS is not
widespread because it requires substantial manual work for sample sectioning and preparation,
takes extensive instrument time, and reduces laser lifetime when used in MALDI imaging MS. In
2015, we argued that 3D imaging MS was at its tipping point (100). Since then, a niche for this
technology is still to be found, potentially in clinical applications where 3D imaging methods such
as MRI are already in place (108, 109).

OUTSTANDING COMPUTATIONAL CHALLENGES

As reviewed in the previous section, over the past two decadesmany computational challenges have
been addressed that have removed barriers for applications of imaging MS in various biomedical
areas. However, several challenges are still outstanding and require computational developments.
In this section, we review such challenges, what have been the key bottlenecks, and how they can
be addressed in the future. This section can be of interest for computational scientists who are
interested in contributing to cutting-edge developments. It can also serve as a note of caution
for imaging MS practitioners and experimentalists informing them about gaps of knowledge and
about areas of active ongoing computational research.

Molecular Identification

Molecular identification is the process of finding molecules represented in imaging MS data and
is probably the biggest challenge in imaging MS–based spatial metabolomics. Molecular iden-
tification is a key challenge even in bulk metabolomics, where chemical separation (e.g., liquid
chromatography, gas chromatography, and, increasingly, IMS) and MS/MS aid finding signals
corresponding to known molecules and help de novo reconstruction of the putative structures of
unknown molecules (110–112). This challenge was so prominent that several competitions were
organized in 2012–2017 to motivate computational developments and aid methods comparison
(113). In imaging MS, as discussed above, the problem is exacerbated by both the general inability
of collecting spatially resolved MS/MS spectra in an untargeted fashion and the complexity of
spectra due to the lack of separation. Since imaging MS cannot resolve isomeric molecules (see
discussion above), the problem of metabolite identification in this field is often termed metabolite
annotation.

Until recently, a common approach for metabolite annotation in imaging MS was to match
spectral signals or peaks of interest against a molecular database by their m/z values (e.g., using
the Human Metabolome Database or SwissLipids database), a process often called m/zmatching.
However, we have shown that m/z matching is unreliable and cannot provide results with a false
discovery rate (FDR) lower than 25% even when using a stringent m/z tolerance of ±2.5 ppm
(114). This means that among the reported molecules, 25% or more would be false-positive hits.
This leads to high ambiguity and increased experimental and data analysis time for follow-up
experiments and overall slows down molecular data interpretation.

To provide a reliable solution to this challenge, we have recently developed an FDR-controlled
metabolite annotation (114). This approach uses a novel metabolite–signal match score that ex-
ploits both spectral and spatial information from imaging MS data and matches it to theoretically
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predicted properties of a metabolite such as its fine isotopic pattern. Our approach substantially
outperforms m/z matching and can annotate 102–103 ions at 10% FDR (115). We have imple-
mented it as the free and open-source cloud software METASPACE, which is currently being
used by over 200 users from over 100 imaging MS labs and has already helped annotate more
than 5,000 datasets (115).

Despite the fact that METASPACE provides a viable solution to metabolite annotation in
imaging MS, several challenges remain. First, currently we can annotate approximately 1% of
imaging MS data (102 molecules out of a dataset with 104 m/z channels). The overwhelming
majority of the data is left unannotated, sometimes called dark matter. This gap exists due to
our limited understanding of ionization pathways or principles of how an analyte forms a signal in
imagingMS.Only empiric and fragmentary knowledge is available about in-source fragmentation,
adduct formation,neutral losses, and clusters formation.Second, the lack ofMS/MS and additional
chemical separation (see discussion of IMS below) does not allow structural isomers or isobars to
be resolved. The state-of-the-art approach is to perform MS1-based annotation of imaging MS
data, complement it with a bulk LC-MS/MS-based metabolomics, and perform m/z matching
between the molecules annotated by imagingMS and identified with LC-MS/MS.This, however,
does not necessarily fully resolve the ambiguity. Previously we published an example (114) where
two isomeric lipids (a galactosylceramide and a glucosylceramide, both with themolecular formula
C48H91NO8) annotated in MALDI imaging MS data of a mouse brain tissue section were both
identified by LC-MS/MS. This leaves open the possibilities of both lipids having either the same
spatial distribution or different distributions, with the ion image corresponding to C48H91NO8

being a composite of them. Third, our preliminary results (unpublished) show that most of the
imagingMSmethods are prone to in-source fragmentation. InMS, in-source fragmentation is the
process of fragmenting off a structural part of amolecule during ionization or desorption, reported
both for metabolites (116) and for lipids (117). An example of in-source fragmentation is the loss
of one or two phosphate groups from endogenous ATP, a key energetic metabolite, leading to false
detection of ADP or AMP even if they are not present in the sample.The in-source fragmentation
is particularly dangerous since it happens in the MS source and no improvements of the analyzer
(using MS/MS or additional separation) can help understand whether a detected molecule (e.g.,
ADP) is an endogenous one or is an in-source fragment of another molecule (e.g., ATP).

Machine learning was successfully employed to perform automated metabolite identification
in bulk metabolomics (118, 119) but is yet to be applied to metabolite identification in imaging
MS. Using machine learning attracts substantial interest because another approach, developing
a comprehensive theoretical model of ionization, is likely unfeasible due to lack of knowledge
as well as dependence of ionization on various parameters. The current bottleneck of develop-
ing such methods is the lack of a library of authentic molecular standards, similar to MS/MS
spectral libraries in LC-MS/MS metabolomics, which should be sufficiently big to represent the
complexity of imaging mass spectra. However, once such libraries in imaging MS are created,
this should stimulate developments in this field, with some machine learning methods from bulk
metabolomics possibly adaptable. This will not only enable detection of currently unannotated—
and thus invisible—molecules but also provide more accurate quantitative information by resolv-
ing ionization pathways and integrating all signals corresponding to a particular metabolite.

Molecular Digital Pathology

Digital pathology, or using advanced computationalmethods to assist pathologists in assessing dig-
italized pathological slides, is an emerging field of medicine facilitated in particular by progress in
machine learning and AI (120). In addition to morphometric information captured by microscopy,
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Figure 4

Ground truth is needed for methods development (training machine learning and deep learning models) and
methods evaluation at the same time, which requires considerable effort.

there is continuing interest in exploiting imaging MS to provide additional molecular layers of
spatio-molecular information with the aim of elucidating hidden morphological features, helping
precision medicine by visualizing localization of disease- or patient-specific biomarkers, assist-
ing early assessment of treatment, and improving prognosis (14, 20, 121, 122). Developing imag-
ing MS–based molecular digital pathology attracts substantial efforts, in particular, developments
aimed at reducing acquisition times (123, 124), protocol developments (125), and computational
developments. Presently, imaging MS is not yet employed for digital pathology due to the com-
petitiveness of microscopy-based digital pathology methods and the complexity and high price
of imaging mass spectrometers and associated sample preparation. However, the search is open
for pathological scenarios and questions where imaging MS would outperform microscopy-based
digital pathology. This direction certainly requires the development of advanced and tailored AI-
based methods to successfully exploit highly multiplex yet noisy spatial information provided by
imaging MS to achieve greater performance than using morphometric information provided by
microscopy.

Lack of Ground Truth Data

Development of advanced computational methods requires ground truth data or high-quality data
with desired labels or outputs (51) (Figure 4). For example, for molecular identification this can
be data from knownmolecules, and for spatial segmentation this can be a dataset comprehensively
and manually segmented by experts. Such data are required not only for training machine learning
methods but also for evaluating and comparing other computational methods. However, creating
such ground truth data is a key challenge since the data should be representative, diverse, big, and
either generated in a special manner so that they contain only known outputs (e.g., a mixture of
authentic molecular standards) or annotated by experts (51).

Progress in addressing many outstanding computational challenges in imaging MS has been
hindered by the lack of ground truth data. For example, numerous spatial segmentation methods
have been developed (68), but without ground truth data, comparing them is highly subjective
because it is not known which spatial regions in a tissue section have distinct molecular compo-
sitions. The lack of ground truth for molecular identification is even more critical since it is not
known a priori which molecules are contained in the tissue section, which of them are detected by
imaging MS, and what are their true localizations, in particular due to various ionization effects
affecting the detection and intensities in individual pixels (suppression, in-source fragmentation,
and chemical overlap with other isomers, particularly matrix clusters). Overall, this situation leads
to arbitrary and empiric choices of methods, slows down computational developments, makes it
impossible to train and evaluate machine learning and deep learning models, and leads to over-
all inertia in adopting novel methods since it is hard to prove objectively that a novel method
constitutes an improvement.
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Several approaches have been proposed to tackle this formidable challenge, which can be
broadly categorized into four classes: data simulation, depositing spots of authentic standards on
a glass slide, creating mimetic tissue with authentic standards, and crowdsourcing by engaging
experts. Simulating data by composing spectra generated using physical-probabilistic models into
an imaging MS dataset with prespecified spatial regions and molecular composition has not re-
ceived broad recognition. In particular, this approach replicated the complexity of real data only to
a limited extent. Depositing spots of authentic standards in a solution onto a glass slide with sub-
sequent drying seems to be the most straightforward approach to obtaining ground truth data that
can be used for molecular identification and other problems, similar to spiking authentic standards
in bulk metabolomics. However, this approach only works well for a few standards (e.g., drugs in
pharmaceutical applications) since the spot formation process depends on the molecular compo-
sition and concentration.When not optimized, drying creates inhomogeneous spots with either a
so-called coffee ring effect (wheremost crystals are localized at the perimeter of the spot) or one or
a few big crystals forming in the center of the spot. Using mimetic tissue, or a tissue homogenate
with authentic standards implanted at different locations or layers (97, 126), was proposed initially
for quantitative imaging MS. This approach became the primary approach to estimating the re-
sponse curve, the relationship between concentration and intensity measured in imagingMS.This
method did not become popular in evaluating computational methods, possibly due to a limited
number of authentic standards that can be spiked in. However, with considerable experimental
effort this can be improved, and hopefully in the future it will provide computer scientists with
experimentally obtained ground truth data with sufficiently rich and known molecular composi-
tion. Crowdsourcing, an approach successfully used in other areas, was recently exploited by us in
three studies (81, 83, 87). In each of these studies, we engaged experts, collected their judgments,
curated them, evaluated the agreement between them, and integrated high-quality judgments into
high-quality gold standard data. Crowdsourcing has proven useful for problems that are solved by
experts during their routine analysis of imaging MS data. We applied it to estimate the quality of
ion images (83), recognize off-sample images (87), and quantify colocalization between ion images
(81).

Creating ground truth for imaging MS–specific problems is a major effort, but one that can
transform this field by employing machine learning and deep learning methods. We expect that
the importance of these efforts will become increasingly recognized with more research efforts
focused on this topic.

THE FUTURE OF SPATIAL METABOLOMICS

Spatial metabolomics, fueled by biomedical demands and stimulated by recent successes, is at-
tracting growing attention of experimental and computational methods developers. Novel tech-
nological solutions are being introduced to address the outstanding challenges and to improve
spatial resolution, sensitivity, and specificity. Here, we review the most promising technological
directions and provide a look into the future of computational methods—in particular, machine
learning, deep learning, and AI—needed to capitalize on these developments.

Integration of Ion Mobility Separation

IMS is a technology to separate ions in gas phase by their structural properties, namely, their colli-
sional cross section (CCS), by flying through a buffer gas (127, 128). IMS can be integrated into an
imaging mass spectrometer between the source and analyzer, thus providing another molecular-
chemical dimension (61, 129). In bulk proteomics, metabolomics, and lipidomics, IMS was shown
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to increase specificity (by separating structural isomers by their CCS and by matching signals to
either measured or theoretically predicted CCSs) and sensitivity when coupled to a fast analyzer
(by analyzing every CCS peak separately, thus avoiding ion suppression) (129). Recently, several
vendors released imaging mass spectrometers with IMS. We expect that this will spur computa-
tional developments, in particular by enabling novel metabolite identification methods, but also
will require novel approaches to data handling and analysis because using IMS increases the data
size by a factor of 102–104. Already available libraries of measured CCS values and the high re-
producibility of CCS values, even between different platforms, make machine learning a perfect
choice for CCS prediction. Early success in machine learning CCS prediction has been achieved
for both metabolites (130) and lipids (131, 132).With the increasing popularity of IMS in imaging
MS one can expert machine learning to play a greater role in this field.

Using Chemical Derivatization to Detect Invisible Metabolites

Recently, it was repeatedly and convincingly demonstrated that both sensitivity and specificity of
imaging MS can be substantially improved when molecules are chemically derivatized in situ by
applying a chemical reactant onto the tissue section that modifies particular molecules through
a known chemical reaction that increases their ionization (133–136). Chemical derivatization is
successfully used in other fields of analytical chemistry (gas chromatography–MS,LC-MS), where
protocols and derivatization agents are already available (24, 137). However, using it in imaging
MS settings is far from easy. The efficiency of the derivatization can depend on the tissue com-
position, and partial derivatization can distort quantification and spatial artifacts. We expect that
with the mounting interest in applying imaging MS to biological problems focusing on metabolic
pathways and classes that are of key importance yet hardly detectable (e.g., glycolysis, tricarboxylic
acid cycle, signaling lipids such as phosphatidylinositol phosphates, microbiota-derived molecular
signals such as short-chain fatty acids), on-tissue chemical derivatization will be further explored
and will require novel computational methods addressing these outlined challenges. One can ex-
pect computational chemistry and machine learning methods to play a stronger role in predicting
the effects of chemical derivatization in MS and in imaging in particular.

Molecular Interpretation of the Detected Metabolites

Molecular annotation or identification reduces tens of thousands of signals associated with m/z
values to a list of molecules and associated ion images. Statistical analysis can help further reduce
the list to those molecules that are associated with some known or discovered spatial pattern or
that represent a difference between conditions. Molecular interpretation of the obtained molec-
ular information is currently one of the key challenges, with hardly any tools available. In other
omics fields, identification and statistical analysis are often followed by enrichment analysis to
find associated pathways or other molecular, cellular, or functional properties (138). Enrichment
analysis helps estimate the statistical significance of the representation of a metabolic pathway,
molecular class, or other property (e.g., compartmentalization with a particular organelle) in the
results. Although in conventional metabolomics and lipidomics, enrichment analysis is becom-
ing commonplace, with open-source software available (139, 140), currently there are no solu-
tions for imaging MS that take into account the imaging specifics (ambiguity, spatial localization,
and molecular coverage). We are not aware of machine learning or deep learning being used for
these purposes. However, recent advances of Semantic Web approaches such as the resource de-
scription framework (RDF) in chemoinformatics, with various SPARQL (SPARQL Protocol and
RDF Query Language) endpoints available for many chemical resources including metabolomics
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[ChEBI (Chemical Entities of Biological Interest)] and lipidomics (SwissLipids), promise auto-
mated integration of different omics fields (141–143).

The Emergence of Spatial Single-Cell Metabolomics

Single-cell metabolomics and lipidomics are experiencing a boom in growth (15, 144–151). These
advances are motivated by discoveries of the single-cell extent of biology with the help of other
single-cell omics, particularly single-cell RNA-seq, and enabled by the rapidly increasing sensi-
tivity of MS-based metabolomics and lipidomics. Along with other approaches such as microex-
traction and Raman spectroscopy, imaging MS is playing a key role in this field since it ensures
high sensitivity and requires minimal sample preparation, thus minimizing analyte loss. At the
same time, imaging MS can be used to profile cells in situ, thus not only minimizing the cell per-
turbation required in conventional metabolomics but also allowing the association of molecular
information with the spatial context, such as cell morphometric information or cell–cell interac-
tions. Various single-cell metabolomics and lipidomics imaging MS approaches have been pro-
posed and have demonstrated the potential of obtaining rich metabolic and lipidomics profiles
that can predict cell types and associated molecular changes with perturbations (152–155). We
have recently demonstrated that single-cell metabolomics can discover molecularly distinct cell
subpopulations even in cell cultures (155). Moreover, these subpopulations were associated with
nonalcoholic steatohepatitis, a critical pathological condition and a key factor in the progression
toward liver cancer (156). Computational methods for analysis and interpretation of the obtained
single-cell metabolomics data are yet to be developed, in particular for addressing batch effects,
reducing confounding factors, visualizing highly multiplex data from thousands of cells, discover-
ing molecular features and subpopulations hidden behind noise, and ultimately discovering links
between cell types, phenotypes, and states and their metabolism. AI and machine learning were
demonstrated to be indispensable in the field of single-cell transcriptomics (157).We expect this to
happen in the field of single-cell metabolomics as well where such approaches are already needed
to analyze, visualize, and interpret big and often spatial data generated from single cells.

METASPACE AS A COMMUNITY ARTIFICIAL INTELLIGENCE
PLATFORM

AI, machine learning, and deep learning are revolutionizing the life sciences and biomedicine
(51, 52, 55, 56). Do the metabolomics and spatial metabolomics fields risk missing out on the AI
revolution (21)? On one hand, the complexity of metabolomics, with hundreds of thousands of
possible molecules in the metabolome, lipidome, and exosome (exogenous molecules that come
from the environment), poses challenges that can hardly be addressed using theoretical meth-
ods and that need AI solutions. Moreover, spatial metabolomics, combining metabolomics ques-
tions and spatial imaging data, can be a perfect field for deep learning methods, which perform
well at image analysis. On the other hand, presently machine learning and AI approaches are ap-
plied in spatial metabolomics only to a limited degree and have not yet demonstrated their full
potential.

The key bottleneck in exploiting these modern approaches is the lack of ground truth data,
as discussed above. Moreover, engaging machine learners requires clearly formulated and high-
impact but yet unsolved problems.The fast development of machine learning–based identification
approaches in LC-MS/MS-based metabolomics (158, 159), in particular fueled by competitions
on manual and automated identification (113), suggests that molecular identification in imaging
MS will be the high-priority challenge for machine learning as soon as sufficient ground truth
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METASPACE as an example of an open community platform for artificial intelligence developments in the field of spatial
metabolomics. METASPACE provides a free cloud engine for metabolite annotation and encourages users to make their data public,
thus creating an open knowledge base of spatial metabolomes. The open public data help engage experts to create ground truth
necessary for the development of machine learning methods. Implementing these methods in METASPACE improves the platform and
adds new functionality that, in turn, attracts more users, thus creating a sustainable open platform for both imaging mass spectrometry
practitioners and computational method developers.

data are provided. We recently developed several AI approaches that combined formulating a
problem, selecting data, collecting expert judgments, creating a gold standard set, and developing
deep learning methods. Our developments used public data fromMETASPACE and a knowledge
base of spatial metabolomes and led to the implementation of novel features for METASPACE
users. METASPACE already includes over 3,500 public imaging MS datasets and is continuously
populated by users from more than 100 labs across the world. Using METASPACE helped us
engage experts and select representative data from various imaging MS technologies. Hence,
METASPACE already serves as a community AI platform (Figure 5). We aim at further facil-
itating AI developments on this platform by following open-source and open-access principles,
demonstrating the benefits of making data public, providing high-quality data, connecting com-
puter scientists with experimentalists, and overall removing barriers for methods developers.

SOFTWARE

In this section, we review open-source software packages for imaging MS. Our aim is to help
experimentalists navigate existing solutions and to provide examples for methods developers. The
software packages were selected based on our subjective knowledge of their popularity among
users and the existence of training options such as regular workshops, in addition to a short survey
we conducted on Twitter.

METASPACE is a cloud software for metabolite and lipid identification as well as a pub-
lic knowledge base of spatial metabolomes (115). METASPACE requires data in the centroided
imzML format and can be used for online browsing of ion images for annotated metabolites and
lipids, sharing the results, and organizing them into projects. Since recently, METASPACE also
includes methods for visualization and data analysis.

MSiReader is a stand-alone software for visualization, signal processing, and unsupervised anal-
ysis of imagingMS data (86).MSiReader is equipped with a rich graphical user interface and since
recently supports quantitation. MSiReader supports the imzML format and can be used either in
Windows or on any operating system if the Matlab environment is provided.

Cardinal is an R package implementing statistical analysis methods including spatial segmen-
tation, classification, and class comparison (160). Using Cardinal requires basic knowledge of R as
no graphical interface is provided.
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A growing number of open-source software packages help working with imaging MS data.
imzMLConverter (https://github.com/AlanRace/imzMLConverter) helps convert data into
the imzML format. pyImzML parser (https://github.com/alexandrovteam/pyimzML) helps
with reading and writing imzML files using Python. rMSI (161) and RmsiGUI (162) are R pack-
ages with a graphical user interface for data visualization and analysis that provide alternatives to
MSiReader. OpenMSI is a cloud data hosting and visualization platform (163). Recently, a Galaxy
workflow for imaging MS was developed that represents an attractive alternative to those already
using Galaxy (164). MetaboLights is a general repository for metabolomics data deposition that
can also be used for imagingMS data (165). For a longer list of software with a focus on exploratory
analysis, see Reference 68.

DATA AVAILABILITY

In this section, we briefly overview the available data that can be used for methods development,
trainingmachine and deep learningmodels, andmethods evaluation. In 2015,we published bench-
mark datasets from different biological systems from several labs (166). These datasets included
serial 3D imaging MS data, but individual serial sections can also be used as 2D datasets. The
datasets include MALDI-TOF and DESI-Orbitrap data, and although they still can be used for
methods development, they do not represent the state of the art in terms of spatial and spectral
resolution. MetaboLights hosts several imaging MS studies where both data and metadata can
be downloaded; the data can be found by searching “imaging mass spectrometry.” METASPACE
provides the largest collection of public imagingMS datasets.Currently, it provides access to anno-
tated data only; we are planning to implement user-approved access to associated imzML data for
public datasets.We have also published ground truth data from three crowdsourcing studies aimed
at estimating the quality of ion images (https://github.com/alexandrovteam/IMS_quality), rec-
ognizing off-sample ion images (https://github.com/metaspace2020/offsample), and quantify-
ing colocalization between ion images (https://github.com/metaspace2020/coloc).

CONCLUSIONS AND OUTLOOK

Spatial metabolomics is a rapidly emerging field that promises—and has already delivered—
discoveries of how metabolism is regulated in the spatial context of tissues. At the intersection
of metabolomics, mass spectrometry, and imaging, this technology not only opens novel avenues
to understanding biology in its spatial context in situ but also creates novel challenges in the analy-
sis and interpretation of generated high-dimensional data.The revolution of AI,machine learning,
and deep learning offers a unique opportunity for addressing these challenges using these mod-
ern computational approaches. However, grasping this opportunity requires concerted efforts of
experimentalists and computer scientists to create high-quality ground truth data such as libraries
for metabolite annotation in imaging MS in order to train machine learning models and evaluate
their performance.We hope that this review will help build bridges between experimentalists and
computer scientists by introducing key concepts, reviewing outstanding challenges that need com-
putational solutions, and highlighting the need for creating ground truth data, and thus ultimately
will benefit this fascinating, challenging, and interdisciplinary field.
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