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Abstract

In the last decade, newly developed experimental methods have made it pos-
sible to highlight that macromolecules in the cell milieu physically interact
to support physiology. This has shifted the problem of protein–protein in-
teraction from a microscopic, electron-density scale to a mesoscopic one.
Further, nowadays there is increasing evidence that proteins in the nucleus
and in the cytoplasm can aggregate in membraneless organelles for differ-
ent physiological reasons. In this scenario, it is urgent to face the problem
of biomolecule functional annotation with efficient computational meth-
ods, suited to extract knowledge from reliable data and transfer information
across different domains of investigation. Here, we revise the present state
of the art of our knowledge of protein–protein interaction and the compu-
tational methods that differently implement it. Furthermore, we explore ex-
perimental and computational features of a set of proteins involved in phase
separation.
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1. INTRODUCTION

In cells, biochemical processes take place in heterogeneous and crowded environments that influ-
ence the efficiency of the reactivity and density distribution of participating macromolecules in
biological processes and metabolic pathways—the ensemble of billions of reactions in a living or-
ganism. In eukaryotes, dozens of canonical membrane-enclosed compartments increase the com-
plexity of the cell-internal structure by sequestering molecules and confining specific processes
within the subvolumes of specialized organelles, whose roles are fundamental for the overall cell
physiology (1). Some other organelles are present in the cell milieu and interestingly they are not
membrane delimited. They can be regarded as open macromolecular assemblies, held together by
weak macromolecular interactions, and whose structures and functions are presently under close
investigation. Examples in the nuclear environment include the nucleolus, the subnuclear Cajal
inclusion bodies, and the nuclear speckles, while the cytoplasmic environment includes the stress
granules, the P-bodies, and the germ granules (2).

Recently, with the development of advanced tools of molecular biology, microscopy, and liq-
uid phase separation (3, 4), it has become possible to highlight some dynamical aspects of the
open macromolecular assemblies and discover that membraneless organelles are common to sev-
eral types of cells working under physiological conditions (5, 6). Open organelles concentrate
bio-macromolecules such as RNAs, DNAs, proteins, and other small molecules. In mammalian
neurons, the subnuclear Cajal inclusion bodies contain protein and RNA components that as-
sociate in a cell cycle–dependent fashion or under specific metabolic and stress conditions (see
Reference 7 and references therein).

Although the characterization of themembraneless compartments and themechanisms of their
formation has just begun, exciting results support the notion that condensation mechanisms are
driven by collective protein–protein interactions (PPIs) and protein–nucleic acid interactions, in
dynamic equilibria with the surroundings (2, 4) (Figure 1).

According to these findings, the microsized intracellular structures seem to play fundamental
roles in controlling and regulating different biological and metabolic processes in different cell
types. Increasing evidence supports the notion that PPI is one of the key mechanisms giving rise
to membraneless organelles. Growing interest is mounting in a new field in cell biology named
protein phase separation (8–10), which may indeed link microscopic characteristics to mesoscopic
structural and functional characteristics of the cell milieu by tuning the spatiotemporal fine reg-
ulation of the functional encounters that lead to biological processes and metabolic pathways
(9–12).

Unsolved problems still deserve attention:What drives phase transition and ultimately specific
PPIs? If phase transition can be described as a nucleation phenomenon, what triggers nucleation?

Phase separation

Figure 1

Simplified graphical representation of the dynamics of protein phase separation.
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Do membraneless organelles dynamically associate for efficient metabolic activities? Or do they
aggregate only under pathological conditions?

For decades, we have tried to uncover patterns or properties at the basis of PPI, with the ulti-
mate goal of understanding functional mechanisms of protein homo- and heterocomplexes, and
later of complex interactomes. Nowadays, in the likelihood that liquid phase condensation is an
important mechanism of cell physiology and disease, it is even more urgent to understand which
proteins can undergo the single to droplet phase transition for describing and modeling the emer-
gent properties of the complex cell interior (Figure 1).

In the following we review our present sources of information for PPIs and briefly describe
the never-ending process of generating algorithms capable of extracting information from valu-
able data with the aim of transferring knowledge by computing properties of never-seen-before
examples (13). We also try to disclose, with computational approaches, properties common to
proteins known to take part in granule assembly.

2. PROTEIN PHASE SEPARATION

Undoubtedly, what we know about PPIs and nucleic acid–protein interactions derives so far from
in vitro experiments and less frequently from in vivo experiments. This is due to the technical
difficulty in monitoring molecular dynamics in situ, which is to say in the specific cell environ-
ments, whose composition and complexity may vary in different cell types. Recent papers indeed
deal with the problem of extrapolating in vitro data on macromolecular interactions to in vivo
environments, where each protein can be regarded as one of the several partners taking part in
functional interactions (4, 14). Thermodynamics and kinetics describe some typical conforma-
tional equilibria in which the environment effect can be taken into account. The real problem
here is how to model environmental effects (the solvent effect, but also more specific effects due
to other macromolecules in the specific environment). We are very familiar with pairwise inter-
actions: Two molecules can attract each other either in a nonspecific or in a site-specific manner,
originating transient and stable complexes, respectively. In both cases, the interaction derives from
one or more elementary physical forces, including electrostatic attraction and hydrogen-bonding
and solvent-mediated interactions. This classification relies on the detection in vitro of the Gibbs
free energy change of complex stability, which is collected for a fraction of putative complexes
in specific databases, like SKEMPI (Structural Kinetic and Energetic Database of Mutant Pro-
tein Interactions) (15) (https://life.bsc.es/pid/skempi2/database/summary) and PDBbind (16)
(http://www.pdbbind.org.cn/).

However, in phase behavior, like in protein phase separation, besides pairwise interactions,
three and higher multibody interactions can occur to mediate membraneless organelle formation.
For example, in dilute to moderate particle volume fractions, when the pair interaction potentials
are embedded within a thermodynamic perturbation theory approach, it is possible to simulate the
phase behavior of nanoparticles suspended in a solution of oppositely charged polyelectrolytes.
Results suggest that the fluid-like phase is metastable in such systems and that the aggregation
and cluster morphologies are mediated by particle charge (17, 18). The model was later expanded
to describe the interaction of protein-charged patches with polyelectrolyte complexes (19), sup-
porting the notion that aggregates depend on the extent of charged patches.Moreover, it has been
recently suggested thatmultivalence of adhesive domains or their inherent flexibility/disordermay
lead to protein phase separation in cells, with many different properties ranging from solid-like
to liquid-like assemblies (10). The basic idea is that proteins promoting phase transitions should
in principle be endowed with different and flexible interaction patches to be able to interact in a
multibody manner with the environment.
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It is therefore urgent to revise our knowledge of PPI, keeping in mind that our modeling can
also help the annotation of proteins involved in phase transition.

3. STATISTICAL ANALYSIS OF PROTEIN–PROTEIN INTERFACES

3.1. A Dataset of Functional Protein–Protein Complexes
from Protein Data Bank

The Protein Data Bank (PDB) represents the main source of data concerning atomic-level in-
formation about protein–protein complexes. As of July 2019, the PDB contains about 67,000
protein–protein complexes (excluding monomeric entries and protein–DNA and protein–RNA
complexes).

From the PDB, we selected a set of functional protein–protein complexes whose structures
were determined by X-ray crystallography with a resolution <3.0 Å. Membrane proteins were
excluded from this dataset. Moreover, we filtered out some PDB entries that our scripts could
not automatically process because of inconsistencies or errors in the corresponding bio-assembly
file. When multiple PDB entries reported the same protein–protein complex, we retained only a
representative structure, selecting the one with the highest X-ray resolution (R-factor).

We ended up with a dataset comprising 19,360 functional complexes, 15,393 and 3,967 out
of which are homomeric and heteromeric complexes, respectively. Overall, the dataset includes
60,347 PDB chains, which reduce to 24,294 when collapsing identical chains into a single entity.
We used this dataset for characterizing the main features of protein–protein interfaces.

Figure 2a,b shows the distributions of quaternary structures for homomeric (Figure 2a) and
heteromeric (Figure 2b) complexes in our dataset. As the pie chart in Figure 2a shows, 65% of all
homocomplexes are dimers, followed by tetramers (17%), trimers (7%), and hexamers (6%). For
heterocomplexes (Figure 2b), heterodimers with global stoichiometry AB account for 52% of the
entire dataset, followed by heterotetramers of the type A2B2 (15%) and heterotrimers of the ABC
(11%) and A2B (5%) types. Taxonomic classification of all PDB entries in the dataset is reported
in Figure 2c. Half of the entries are from bacterial organisms (52%), while eukaryotic proteins
account for the 37% of the dataset. Only small fractions are from viruses and Archaea (6% and
5%, respectively).Figure 2d,e shows the distribution of theGeneOntology first-level annotations
of the biological processes (Figure 2d) and molecular functions (Figure 2e) of the proteins in the
dataset. Most protein complexes in the database are involved in metabolic processes or cellular
processes (Figure 2d) and about 58% are enzymes (Figure 2e).

3.2. Definition of Protein–Protein Interfaces

Residues involved in protein–protein interfaces are all located on the surface of monomers partici-
pating in the formation of a protein complex. As a preliminary step for extracting protein–protein
interface residues, monomer surfaces are identified by retaining residues with a relative solvent
accessibility higher than 20% (20).

Once themonomer surface has been computed, two alternative definitions of interface residues
can be applied. The first is based on the different solvent accessibility between the complex and
the monomer: Interface residues are identified as the surface residues undergoing a reduction of
accessible area upon complex formation. A second definition is based on the computation of inter-
residue distances: Interface residues for a given monomer are those having at least one residue in
another subunit at a distance below a predefined threshold.Themost common distance thresholds
are between 5 and 8 Å (21).Many studies have shown that the choice of the definition only slightly
affects the interface composition as well as the performance of interface predictors (22, 23).
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Figure 2 (Figure appears on preceding page)

Statistics of a selected dataset of 15,393 homomeric and 3,967 heteromeric high-resolution representative complexes extracted from the
Protein Data Bank. Panels a and b show the distribution of quaternary structures for homomeric (a) and heteromeric (b) complexes.
Panel c shows the taxonomic distribution of the 19,360 functional protein–protein complexes in the dataset. Panels d and e show the
distribution of first-level Gene Ontology biological process (d) and molecular function (e) annotations of the 19,360 protein–protein
complexes included in the dataset.

For the dataset described here we adopted the first definition based on accessibility difference.
Identified interfaces were classified into two separate classes: homointerfaces participating in ho-
momeric interactions and heterointerfaces participating in heteromeric interactions. Overall, the
dataset comprises 5,796,600 residues, 3,242,166 of which are located in the monomer surfaces.
There are 1,041,790 interface residues in total: 928,650 are part of homointerfaces while 113,140
are in heterointerfaces.

Figure 3 shows statistics on the surface area overall involved in homo- and heterointerfaces
per monomer. The areas were computed at the protein level, summing the values of absolute ac-
cessibility derived from the software DSSP (Define Secondary Structure of Proteins) (24) for each
of the 24,294 nonredundant monomeric chains in the dataset. Figure 3 shows that areas involved
in homomeric interactions are in general slightly larger than those of heteromeric ones: Aver-
age areas of homo- and heterointerfaces are about 3,946 Å2 and 3,551 Å2, respectively. Previous
studies described similar findings (see Reference 25, and references therein).

3.3. Main Features of Interaction Sites

Computational methods developed in past years for the prediction of protein–protein interfaces
have adopted a large spectrum of features in an attempt to capture key characteristics of interface
residues with respect to other residues in the protein surface.

A widespread feature adopted by many approaches is the residue interface propensity (26–30),
defined as the ratio between the frequencies of a given residue type R in the interface and the
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Figure 3

Statistics of surface areas (Å2) involved in homomeric and heteromeric interactions for the 24,294 monomers included in our dataset.
Areas were obtained by summing, for each monomer, accessibility values of interacting residues as computed with the software DSSP.
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Residue interface propensity for homo- and heterointerfaces. Propensities were computed as the ratios of frequencies of residues in the
interface and the surface (Equation 1).

surface. The most general equation is

P(R) = fI(R)
fS(R)

, 1.

where fI(R) and fS(R) are the frequencies of residue R in the interface and the surface, respectively.
A value of P(R) > 1means that there is a propensity of residue R to be part of the protein interface.
In Figure 4 we show the distributions of residue interface propensity scores for each residue type
computed separately for homo- and heterointerfaces in our PDB-derived dataset.

As a general trend, no major differences are observed between homo- and heterointerfaces. In
both cases, residues D, E, and K are rarely found as part of protein interfaces, while residues L, I,
M, F,W, Y, C, and R show a marked propensity to mediate PPIs. Cysteine and, to a lesser extent,
tryptophan are more prone to form interfaces in heterocomplexes. Phenylalanine and leucine are
conversely more abundant in homointerfaces.

Evolutionary conservation is another important feature that can be exploited in general to
identify functionally important residues (31) and that was adopted to recognize PPI sites (26, 29,
30, 32–36). Conservation can be estimated by means of many different algorithms, including mul-
tiple sequence alignment (MSA) computed for a target protein using programs like PSI-BLAST
(Position-Specific Iterative Basic Local Alignment Search Tool) (37) or HHBlits (38). Shannon’s
entropy and its variants (31, 39) are routinely adopted to score positional conservation for each
column of the MSA.

Figure 5 shows the distribution of the conservation scores for interface and surface residues
in our PDB-derived dataset. In this analysis, we only used a selection of chains from our dataset
obtained by reducing internal redundancy to 30% pairwise sequence identity. MSAs were gener-
ated by running PSI-BLAST for each sequence (three iterations with the e-value threshold set to
0.001) against the UniRef90 sequence database (40). Normalized Shannon’s entropy was used to
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Distribution of evolutionary conservation scores, 1 − normalized Shannon’s entropy, of interface and surface residues. Conservation
scores were computed on a redundancy-reduced dataset at 30% pairwise sequence identity comprising 9,301 chains from our dataset.

score conservation for each position i in the MSA as follows:

NS(i) = −1
log20

20∑

j=1

Pi, j × logPi, j , 2.

where Pi, j is the frequency of residue type j in the i-th column of the MSA. The final conservation
score is computed as

S(i) = 1 −NS(i). 3.

Results shown in Figure 5 indicate that the interface residues tend to be slightly more conserved
than the other surface residues, as already reported by other studies (41). In general, conservation
alone is not sufficient to accurately discriminate interface residues from the remaining surface
residues (32, 41).

4. PREDICTORS OF PPI SITES

Given the importance of understanding principles of PPIs for unraveling biological complexity,
the past two decades have seen a rapid increase inmethods and tools for the analysis and prediction
of PPI sites.

The computational problem of PPI site prediction can be defined as follows: Given an in-
put protein, one wishes to identify residues that are involved in interactions with other proteins.
Different settings are possible. Firstly, prediction can be performed starting either from three-
dimensional (3D) protein structure or directly from the protein covalent structure (primary se-
quence). Secondly, the identification of PPI sites can be done either in a partner-unspecific or
in a partner-specific way. Partner-unspecific methods take as input the protein in its monomeric
form and identify PPI sites without prior knowledge of the specific interaction partner. As an
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alternative, partner-specific methods predict paired PPI sites on two input proteins known (or
assumed) to physically interact (42, 43).

As in many other areas of computational biology, machine learning plays a major role in the
prediction of PPI sites. About two-thirds of the tools available in the literature are completely or
partially based on some machine learning algorithm leveraging the vast amount of information
available in public databases, such as the PDB. However, other approaches have been described,
including methods based on simple statistical inference from features (28, 29, 32, 44), scoring
functions (27), and homology transfer from templates (45–48).

In the next sections we review the available tools in literature. For the sake of clarity, methods
are separated into two main categories according to the required input: methods performing pre-
dictions on unbound monomeric structures and methods attempting to predict interaction sites
directly on protein sequences.

4.1. Predictors of PPI Sites on Protein Structures

The development of tools to perform prediction of PPI sites starting from protein structure dates
back to the pioneering work in the field by Jones & Thornton (49). In the last two decades, many
tools have been released based on many different techniques. A nonexhaustive list of structure-
based tools is reported in Table 1. The general workflow of machine learning–based approaches
for predicting PPI sites on protein structures is outlined in Figure 6.

The success of structure-based prediction builds on top of the fact that structural features have
a significant discriminative power for PPI site prediction. Features adopted by structure-based
methods include different metrics for evaluating residue solvent exposure, e.g., relative solvent
accessibility or geometrical features like protrusion and depth indexes, computation of surface
curvature, residue electrostatic potentials, atomic B factors, and secondary structure (26, 30, 33,
36, 49–55).

Many structure-based methods are not limited to structural features but also incorpo-
rate sequence-based descriptors like residue composition, physical-chemical attributes, interface
propensities, and evolutionary information in the form of sequence profiles or position-specific
scoring matrices (26, 30, 36, 52–54, 56). However, in contrast to pure sequence-based approaches,
protein structural information allows researchers to fully exploit the structural neighborhood of
a given residue. In this way, all features (either structure-based or sequence-based) can be aggre-
gated by averaging over spatial nearest neighbors, and this improves prediction performance in
many cases (26, 27, 30, 32, 33, 48, 50, 51, 55).

Individual features are not sufficient to unambiguously identify PPI sites on protein structures.
For this reason, tools adopt different techniques, routinely based on machine learning, to perform
feature combination and improve discrimination power.

Machine learning frameworks adopted for PPI site prediction from structure include binary
classifiers such as support vector machines (SVMs) (26, 30, 46, 50, 53, 57), neural networks (NNs)
(33, 56), random forests (RFs) (36, 42, 54), and probabilistic graphical models like conditional
random fields (CRFs) (30, 51, 52, 55). CRFs are the discriminative counterpart of hidden Markov
models and they are well suited for modeling sequential data like protein sequences, as they can
capture the potential relationships among adjacent residues. In the context of PPI site prediction,
CRFs have been used to explicitly model the relationships along the sequence of residues in the
protein surface (30, 51, 52, 55). In some cases, differentmachine learning approaches are combined
together to exploit the complementary advantages of each technique (30, 53).

Proper selection of training data is crucial for the definition of accurate and unbiased ma-
chine learning–based approaches. Datasets for training and testing PPI site predictors are mainly
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Table 1 List of structure-based methods for PPI site prediction

Name Year
Partner

specificity Method details URL Reference(s)
BIPSPI

(structure)
2018 Yes XGBoost, tree boosting http://bipspi.cnb.csic.es/

xgbPredApp/
42

SVM plus 3D
Zernike
descriptors

2018 No SVM plus 3D Zernike
descriptors

Web server not available 57

ISPRED4 2017 No SVM plus CRF https://ispred4.biocomp.
unibo.it

30, 56

INSPiRE 2017 No Information transfer from
knowledge base of amino acid
structural neighborhoods

Web server not available 48

Dong et al. 2014 No Pairwise CRF Web server not available 55
PAIRpred 2014 Yes SVM Source code available at

http://combi.cs.
colostate.edu/
supplements/pairpred/

43

Li et al. 2012 No RF plus feature selection
(mRMR plus IFS)

Web server not available 36

PrISE 2012 No Information transfer using local
surface structural similarity

http://ailab-projects2.ist.
psu.edu/prise/index.py

47

PresCont 2012 No Residue properties https://bioinf.ur.de/
prescont.php

29

PredUS 2011 No Information transfer by
structure similarity plus SVM
refinement

https://honiglab.c2b2.
columbia.edu/PredUs/
index_omega.html

46

Liu et al. 2009 No HMSVM Web server not available 52
Sikić et al. 2009 No RF Web server not available 54
CRFSite 2007 No CRF Web server not available 51
SPPIDER 2007 No SVM, NN http://sppider.cchmc.org/ 53
PINUP 2006 No Empirical scoring function http://sysbio.unl.edu/

services/PINUP/
27

WHISCY 2006 No Conservation scores and
structural features

http://milou.science.uu.
nl/services/WHISCY/

28

cons-PPISP 2005 No Consensus NN http://pipe.scs.fsu.edu/
ppisp.html

33

PredPPI 2005 No SVM Web server not available 26
Koike &

Takagi
2004 No SVM Web server not available 50

ProMate 2004 No Interface score computed from
combination of structural
and conservation features

Web server not available 32

Jones &
Thornton

1997 No Patch analysis Web server not available 49

Abbreviations: CRF, conditional random field; HMSVM, hidden Markov support vector machine; IFS, incremental feature selection; mRMR, maximum
relevance minimum redundancy; NN, neural network; RF, random forest; SVM, support vector machine; XGBoost, extreme gradient boosting.

98 Savojardo • Martelli • Casadio

http://bipspi.cnb.csic.es/xgbPredApp/
https://ispred4.biocomp.unibo.it
http://combi.cs.colostate.edu/supplements/pairpred/
http://ailab-projects2.ist.psu.edu/prise/index.py
https://bioinf.ur.de/prescont.php
https://honiglab.c2b2.columbia.edu/PredUs/index_omega.html
http://sppider.cchmc.org/
http://sysbio.unl.edu/services/PINUP/
http://milou.science.uu.nl/services/WHISCY/
http://pipe.scs.fsu.edu/ppisp.html


BD03CH05_Casadio ARjats.cls June 25, 2020 16:46

3D monomer
structure

RESIDUE FEATURES

CLASSIFIER

Exposed residues
(RSA ≥ 20%)

Predicted
PPI sites

DSSP
software

LOCAL STRUCTURAL
CONTEXT

Close Far

Distance scale

Sequence descriptors

Stucture descriptors

Sequence profile
conservation

Secondary structure B factor Depth, protrusion

Residue properties

KD
 h

yd
ro

ph
ob

ic
ity

Sequence position Interface
propensity

0

1

Figure 6

The general workflow of machine learning–based classifiers for predicting PPI sites from protein structure. Abbreviation: KD,
Kyte–Doolittle; RSA, relative solvent accessibility.

derived from protein–protein complexes that are deposited in the PDB. In order to improve data
quality, researchers often rely on derived datasets specifically designed to score methods in the
context of PPIs such as the Docking Benchmark dataset (58) and data derived from the Critical
Assessment of Predicted Interactions (CAPRI) (59). Raw data extracted from the PDB need to
be properly filtered to exclude nonfunctional complexes and enforce constraints on experimental
method, resolution, sequence redundancy, and overall quality of the structure (e.g., filtering out
short chains or structures with missing residues).

One key issue when dealing with structural features is the availability of the structures of both
the complex and the monomeric conformations of each subunit. Indeed, complex formation al-
ways determines a conformational change at the level of protein–protein interfaces. If features are
computed on atomic coordinates of subunits extracted from the complex structure, this may eas-
ily lead to biases in the prediction, since conformational changes may introduce fingerprints for
PPI sites. In order to train unbiased predictors, researchers should use monomeric structures for
structural feature extraction, and the complex should be used only to identify experimental PPI
sites (30). Many benchmark datasets such as the Docking Benchmark (58) explicitly also report,
for each complex, the PDB entries of unbound subunits involved in the interactions.

Comparative evaluation of different structural tools for PPI site prediction is challenging
since different methods use different datasets for training and testing. To date, state-of-the-art
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structural PPI site predictors report Matthews correlation coefficients (MCCs) in the range of
0.4–0.5 (60, 61).

4.2. Predictors of PPI Sites from Protein Sequence

Despite their efficacy, structure-based methods have the limitation of being applicable only when
the protein structure is available. To date, the vast majority of proteins, even those involved in
several disease-related pathways, are known only at the level of primary sequences. In this re-
spect, the ability to accurately identify PPI sites directly on protein sequences is of prominent
importance since it opens the possibility of screening any translation product. Nevertheless, the
prediction of PPI sites from sequence alone is much more challenging and difficult. In machine
learning, the efficacy of the method strongly depends on the amount of input information and
by definition a protein sequence contains less information than a protein structure. For this rea-
son, the field of sequence-based PPI prediction has observed a relatively low rate of expansion
compared to structure-based methods. Table 2 reports an updated list of sequence-based tools
available.

Besides the unavailability of highly informative structural features, another issue that ham-
pers the performance of sequence-based predictors is related to the unbalanced nature of the
underlying classification problem: Proteins contain few PPI sites compared to the total number
of residues in the sequence. When protein structure is available, this problem can be mitigated
(but not completely eliminated) by restricting the search of PPI sites to residues on the protein
surface. When only the sequence is known, this filtering procedure cannot be applied, resulting
in very unbalanced datasets that are difficult to process using standard classification techniques
(62).

Sequence features adopted so far to develop prediction methods include evolutionary infor-
mation, conservation scores, and physical-chemical properties of residues (e.g., hydrophobicity
or conformational propensities). Some methods include structural features computed from the
protein sequence with specific classifiers, such as predicted solvent accessibility and secondary
structure, in an attempt to fill the gap with structure-based approaches (63–65). Several sequence-
based PPI predictors have been developed in the past years that leverage these features and use
different machine learning algorithms, including NNs (34, 64), SVMs (43, 63, 66–68), RFs (42,
64), naïve Bayes (35), and logistic regression (65, 69).

A subcategory of sequence-based methods comprises approaches based on analysis of protein
coevolution. These approaches are all partner specific and identify pairs of interacting residues
between two input partners.The assumption at the basis of these tools is that residue positions that
are detected as covarying across protein–protein interfaces are in physical contact in the protein
complex (70–73). Recent comparative benchmarks performed on state-of-the-art sequence-based
predictors reportMCC scores in the range of 0.13–0.23,much lower than achieved with structure-
based methods (65, 74, 75).

5. DATABASES OF BINDING AFFINITIES AND THEIR PREDICTION

PPI thermodynamics is determined by measuring binding affinities and other thermodynamic pa-
rameters (76). Two updated databases are freely available: PDBbind (16; http://www.pdbbind-
cn.org/) and SKEMPI (15; https://life.bsc.es/pid/skempi2). PDBbind is a collection of experi-
mentally measured binding affinity data for different types of biomolecular complexes deposited
in PDB; SKEMPI version 2.0 lists, for each PDB protein–protein complex, binding affinities in
case of variations, the associated kinetic rate constants, and the entropy and enthalpy change
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Table 2 List of sequence-based methods for PPI site prediction

Name Year
Partner

specificity Method details URL Reference(s)
SCRIBER 2019 No Multilevel logistic regression http://biomine.cs.vcu.edu/

servers/SCRIBER/
65

SeRenDIP 2019 No RF http://www.ibi.vu.nl/
programs/serendipwww/

64, 75

BIPSPI
(sequence)

2018 Yes XGBoost, tree boosting http://bipspi.cnb.csic.es/
xgbPredApp/

42

SSWRF 2016 No RF plus SVM http://202.119.84.36:3079/
SSWRF-PPI/SSWRF-
PPI.html

63

EVComplex 2014 Yes Direct coupling analysis based
on mean field approximation

https://evcouplings.org/
complex

73

GREMLIN 2014 Yes Direct coupling analysis based
on maximization of
pseudo-likelihoods

http://gremlin.bakerlab.org/
cplx_submit.php

71

LORIS 2014 No L1 logistic regression Web server not available 69
PAIRpred 2014 Yes SVM Source code available at

http://combi.cs.colostate.
edu/supplements/
pairpred/

43

NPS-
HomPPI

2011 No Transfer by sequence similarity
(partner-unspecific)

http://ailab-projects2.ist.
psu.edu/NPSHOMPPI/

45

PS-HomPPI 2011 Yes Transfer by sequence similarity
(partner-specific)

http://ailab-projects2.ist.
psu.edu/PSHOMPPIv1.3/

45

Chen & Li 2010 No SOM plus SVM Web server not available 66
PSIVER 2010 No Naïve Bayes classifier with

kernel density estimation
https://mizuguchilab.org/

PSIVER/
35

Weigt et al. 2009 Yes Residue coevolution in MSAs
by direct-coupling analysis
based on message-passing
algorithms

Web server not available 72

ISIS 2007 No NN Web server not available 34
Res et al. 2005 No SVM Web server not available 68
Yan et al. 2004 No SVM plus Bayesian classifier Web server not available 67
Gallet et al. 2000 No Hydrophobicity distribution

along the sequence
Web server not available 44

Pazos et al. 1997 Yes Correlated mutations Web server not available 70

Abbreviations: MSA, multiple sequence alignment; NN, neural network; RF, random forest; SOM, self-organizing map; SVM, support vector machine;
XGBoost, extreme gradient boosting.

values, when available. Thermodynamic data are adopted as training sets for several computa-
tional methods, which predict binding affinities with different strategies based on 3D structures
of complexes or amino acid sequences or based on changes in binding affinities of the complexes
upon variations. These methods, which include docking methods, have been recently reviewed
(77) and are benchmarked during CAPRI (59) experiments.
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6. DETECTION OF PPIs AT THE PROTEOME SCALE

Data on PPIs can be collected at a mesoscopic level, which allows all the putative direct and undi-
rect interactions occurring in the cell milieu to be represented at large.

In the last three decades, different techniques have been developed for high-throughput ex-
perimental assays of PPIs taking place in cells or in cell compartments at a given moment of the
cell’s life (78, 79). These techniques have allowed the collection of different sets of species-specific
interactions, routinely represented as networks, where nodes and links represent proteins and
detected interactions, respectively. No single technique is nowadays sufficient to capture all the
possible interactions between the proteins expressed in a cell. This is mainly due to the wide range
of affinities characterizing the interactions of different protein pairs and to the dynamic nature of
protein–protein networks that exhibit a large adaptability to environmental conditions and exter-
nal signals (80, 81). Available experimental techniques for high-throughput detection of PPIs can
be divided into two major classes: methods for detecting binary interactions between proteins and
methods for detecting proteins that are part of the same complex (82).

Methods in the first class implement different strategies for assaying the interaction between
two specific proteins, routinely indicated as bait and prey. The prototypical technique is the yeast
two-hybrid screening (Y2H), originally developed by Fields & Song in 1989 (83). Y2H is per-
formed in vivo, mainly in yeast cells, but similar procedures have been also set in mammalian
cells (84). Bait and prey proteins (or protein fragments) are fused to two different domains of the
same transcription factor. The interaction between bait and prey in the nucleus of the yeast cell
reconstitutes the transcription factor and therefore promotes the expression of a reporter gene.
The procedure can be automatized by building large libraries of baits and preys and it allows for
proteome-scale assays for binary interactions (85). However, several problems limit the sensitiv-
ity of Y2H. Among them are (a) the necessity that both bait and prey localize in the nucleus,
(b) the possibility that fused domains hide interaction sites, and (c) the differences in protein con-
formation or states induced by the expression system, including posttranslational modifications
and binding to cofactors (78). Moreover, false-positive detection can arise from nonspecific inter-
actions of overexpressed proteins.

As alternatives to binary interaction assays, methods in the second class are suited to detect
the proteins that are part of a complex captured and purified from a cell lysate. The most effective
capture techniques include affinity purification (AP) and cofractionation (Co-frac). Independently
of the capture technique, proteins of the complex are routinely recognized withmass spectrometry
(MS) assays.

AP techniques capture complexes by means of an immobilized antibody directed toward a
specific bait, recognized from a specific native epitope or a tag fused to its N terminus (86). Alter-
natively, cofractionation techniques capture complexes by means of different chemico-physical
separation procedures that are fully independent of the definition of baits (87). Sensitivity of these
methods is mainly limited by the amount of the complex in the sample. Moreover, experimental
settings (e.g., elution buffer) can have a strong effect in selecting interactions on the basis of their
strength.

6.1. Experimental Human Interactome

Triggered by advances in high-throughput techniques, large efforts have been made to define
species-specific interactomes, comprising all the possible interactions between proteins expressed
by an organism, to be used as a reference for understanding genotype–phenotype relationships.
Recently, the updated versions of two human experimental interactomes have been released: (a) the
binary interactome map HuRI (human reference interactome), obtained with three Y2H assays
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Table 3 Size of two experimental human interactomes recently released

HuRIa BioPlex2.0b

Number of proteinsc 8,470 10,844
Number of interactions 51,907 55,498

aDatabase downloaded from http://interactome.baderlab.org (88) in August 2019.
bDatabase downloaded from https://bioplex.hms.harvard.edu (89) in August 2019.
cSplicing isoforms have been collapsed.

on a library spanning 17,408 human protein–coding genes (88), and (b) BioPlex 2.0 [biophysical
interactions of ORF(open reading frame)eome-derived complexes], deriving from the analysis of
AP-MS experiments after the capture of complexes nucleated on 6,251 different protein baits (89).

Table 3 reports the dimensions of the two networks, after collapsing splicing variants and delet-
ing interactions with proteins marked as UNKNOWN.The size of the HuRI and BioPlex2.0 net-
works are comparable, covering respectively 36% and 46% of the 23,413 protein-coding genes of
the GRCh38.p12 human genome assembly (primary and alternative assembly). Also, the numbers
of detected interactions are similar.

However, when compared, the two networks show a very small overlap (Table 4). The two
databases share 4,827 proteins, accounting for 56.9% and 44.5% of HuRI and BioPlex2.0, re-
spectively. Restricting the dataset to the links between shared proteins, the interaction numbers
decrease to 16,133 for HuRI and 12,610 for BioPlex2.0. Noticeably, the number of shared inter-
actions is very low: The overlap between the two large networks reduces to 829 links involving
some 1,123 proteins.

These results confirm similar analyses performed on previous versions of the human inter-
actomes (82) and agree with trends already observed when analyzing interactomes of different
species (80, 90). Several causes contribute to the poor overlap among different interactomes.These
may include (a) the different approaches taken by Y2H and AP-MS experiments, which aim to de-
tect binary interactions and associations in the same complex, respectively; (b) error rates of the
experimental procedures, which are only partially mitigated by the control experiments; (c) the
techniques’ biases in preferentially detecting interactions of a particular type (e.g., interactions
of a particular strength or taking place in a particular compartment); (d) levels of protein expres-
sion in the different expression systems; and (e) different posttranslational processing in different
expression systems.

Owing to the complexity of PPIs networks and the complementarity of experimental methods,
it is not possible to rely on a single technique for compiling a comprehensive interactome, and
integrative approaches must be adopted.

6.2. Comprehensive Databases of PPIs

Different databases have been implemented over the years for collecting PPIs from different
sources, including high- and low-throughput experiments and literature-curated mining (91, 92).

Table 4 Overlap between two experimental human interactomes recently released

HuRIa BioPlex2.0b

Number of shared proteins 4,827 (56.9%) 4,827 (44.5%)
Number of interactions among shared proteins 16,133 (31.1%) 12,610 (22.7%)
Number of shared interactions 829 (5.1%) 829 (6.6%)

aDatabase downloaded from http://interactome.baderlab.org (88) on July 27, 2019.
bDatabase downloaded from https://bioplex.hms.harvard.edu (89) on July 27, 2019.
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Table 5 Comprehensive databases of PPIs

Species Proteins Interactions Human proteinsa Interactions in human

IntActb 1,529 113,357 593,007 21,795 288,419

BioGRIDc 69 71,266 677,442 21,624 384,954

aSplicing isoforms have been collapsed.
bDatabase downloaded from https://www.ebi.ac.uk/intact/ on July 27, 2019.
cDatabase downloaded from https://downloads.thebiogrid.org on July 27, 2019. Only physical interactions have been considered (version 3.5.175).

A complete review of available databases is beyond the scope of this review, and here we consider
only two widely adopted resources (Table 5). IntAct (93) is the centralized database, located at
EMBL-EBI (European Bioinformatics Institute of the European Molecular Biology Laboratory),
collecting data from all the resources of the IMEx (International Molecular Exchange) consor-
tium, an international collaboration of curation efforts for PPIs. It collects data for more than
1,500 different organisms. BioGRID (Biological General Repository for Interaction Datasets; 94)
is a public database that archives genetic and protein interaction data from 69 model organisms,
including humans.Table 5 compares the content of the two databases, considering in the case of
BioGRID only physical interactions. When restricting to humans, it is evident that the number
of proteins reported in databases largely surpasses the coverage achieved by single experimental
procedures. However, merging information from different sources is not a trivial process, and cu-
rators have to devise criteria optimizing the trade-off between comprehensiveness and accuracy
of detected interactions.

While the ratio between the number of represented proteins and the number of coding genes
can be used to estimate the completeness in the proteome space, it is very hard to assess the
completeness in the interaction space, since the total number of interactions taking place in a
cell is still unknown. For humans this number is estimated to range between 650,000 (95) and
1,000,000when interactionsmediating posttranslationalmodifications are taken into account (96).
It is therefore evident that a part of the interactome still sits in the shade. Different computational
procedures are available for inferring new putative PPIs.

7. COMPUTATIONAL METHODS FOR INFERRING
NETWORKS OF PPIs

Several strategies have been adopted to complement the available experimental interactomes by
leveraging the available databases of PPIs to infer novel interacting protein pairs. The problem
can be generally posed as the prediction of the edges connecting a set of proteins known at the
sequence or structure levels.When structures are known or can be derived with modeling proce-
dures, or at least when their structural domains can be mapped onto the sequence, a prediction
can be performed by searching for similar structures or domains in the set of complexes reported
in the PDB. On this basis, structurally annotated interactomes have been implemented (97, 98).
Although leading to highly reliable predictions, 3D knowledge can be exploited only for a lim-
ited subset of proteins. In the absence of structural information, different data can be integrated
to perform the prediction. Among them are (a) phylogenetic profiles, which infer the interaction
from the concomitant presence (or absence) of orthologous protein pairs in different genomes
(99); (b) the detection in different genomes of rearrangement events that lead to two or more pro-
teins fusing into a unique multidomain protein (100); (c) the detection of correlated expression
levels of different proteins in different conditions (101); and (d) the transfer of information from
orthologous sequences (102). Versions of these methods are incorporated in the pipeline at the ba-
sis of the comprehensive STRING (Search Tool for the Retrieval of Interacting Genes/Proteins)
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Figure 7

The human TP53 interaction network extracted from the human interactome included in the STRING
(Search Tool for the Retrieval of Interacting Genes/Proteins) database (https://string-db.org/). Only the
first shell of interactors of TP53 is considered. Edges represent protein–protein associations and the
meanings of their colors are indicated in the figure key. The availability of the protein 3D structure is
marked by filling nodes with 3D representations.

database of physical and functional interactions to complement data deriving from low- and high-
throughput experiments and from automatic literature mining (103). Figure 7 shows an example
of a PPI network available in STRING: the TP53 interaction network.

Prediction of interacting protein pairs recently took advantage of the development of com-
putational frameworks for efficiently extracting partial correlation coefficients from covariance
matrices deriving from large multiple sequence alignments. This technique has been applied to
the refinement of existing interactomes (104) and to the de novo prediction of bacterial interac-
tomes (105). These procedures exploit the idea of correlated mutations [i.e., possible interaction
sites can be revealed by the high correlation among mutations in a species-matched multiple se-
quence alignment of protein pairs (70)] and can be reliably applied only when large and diverse
multiple sequence alignments can be derived from available sequence databases.

Recently, advances in machine learning procedures facilitated the building of computational
frameworks that can extract complex information from protein sequences and profiles of inter-
acting and noninteracting proteins. In this context, it is fundamental to collect pairs of proteins
that are unlikely to interact, and a dedicated dataset (Negatome 2.0) has been released to this aim
(106). On this basis, inference systems are available for the prediction of interacting protein pairs
(107–109).
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Table 6 Predicting PPI sites and flexible regions of proteins of the Cajal body

UniProt code Gene Length PPIs
Flexible
sitesa

Flexible
PPIs

IntAct
interactors

BioGRID
interactors

P38432 COIL 576 149 244 14 123 110
Q9BUR4 WRAP53 548 166 165 24 41 54
Q16637 SMN1 294 90 145 44 268 213
P55199 ELL 621 64 194 3 36 54
Q06787 FMR1 632 106 243 49 294 84
Q14331 FRG1 258 44 90 13 14 19
Q15020 SART3 963 115 199 4 125 211
Q5JVS0 HABP4 413 112 313 87 25 105
Q5W0Q7 USPL1 1,092 136 169 4 24 25
Q6NT76 HMBOX1 420 42 151 12 130 70
Q7L014 DDX46 1,031 170 228 55 27 65
Q7Z6G8 ANKS1B 1,248 184 304 22 21 10
Q8WWY3 PRPF31 499 75 256 46 220 193
Q96JC9 EAF1 268 33 164 15 105 76
Q96RS0 TGS1 853 100 263 3 43 45
Q9BPY3 FAM118B 351 33 66 8 48 51
Q9H089 LSG1 658 106 173 5 22 31
Q9H814 PHAX 394 61 91 20 44 64
Q9NPE3 NOP10 64 21 34 11 31 37
Q9UBY9 HSPB7 170 41 39 14 24 14
Q9Y2F5 ICE1 2,266 131 547 7 23 25
Q9Y4X5 ARIH1 557 147 126 53 81 198
P14678 SNRPB 240 74 146 27 144 171
Q14978 NOLC1 699 77 573 15 90 152
P54253 ATXN1 815 394 242 130 351 266

aNumber of predicted flexible sites with MobiDB (112).

Finally, from the current knowledge of partially solved interactomes, it is possible to extract
rules of interaction patterns. New possible interaction pairs can be then inferred from the appli-
cation of these rules, for example, (a) “proteins similar to interacting proteins are likely to interact
as well” (110) and (b) “proteins interact if one of them is similar to the other’s partners” (111).

8. PREDICTING INTERACTING SITES IN PROTEINS INVOLVED
IN PHASE TRANSITIONS

In the following, we test some of the PPI predictors to investigate their efficacy in exploring
features of proteins known to undergo a phase transition. We consider a set of proteins known
to be involved in Cajal bodies in human cell. In Table 6, we list 25 proteins whose sequence was
deposited in the September 2019 Uniprot Knowledgebase release and that contain a Cajal body

cellular component annotation. Most of the proteins have only a known sequence. For this
reason, we predicted PPI sites with a predictor that was developed in house to take sequence as
input and that was based on a deep learning procedure [an adaptation of our ISPRED4 (30)]. We
are perfectly aware of all the limitations of sequence-based PPI predictors, as explained above.
According to several papers (see Reference 10 and references therein), proteins involved in phase
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Table 7 Correlation between the number of interactors, PPIs, and flexible sites of the Cajal
granule proteins

PPIsa Flexible sites Flexible PPIsb

IntAct 0.4 0.05 0.59
BioGRID 0.41 0.12 0.59

aSignificant at 5%.
bSignificant at 1%.

transitions are endowed with intrinsically disordered regions (IDRs) and we adopted MobiDB
(112) as a source of annotation.We also searched the human interactomes for possible interactors
and listed in Table 6 the number of interacting proteins (interactors) reported for each protein
in IntAct and BioGRID. Interestingly, all of the Cajal body human proteins have a much larger
number of interactors than average (13 and 18 per human protein in IntAct and in BioGRID,
respectively). The number of interactors per protein moderately correlates with the number of
residues in IDRs (flexible sites); correlation increases if the number of PPIs is considered and
reaches a satisfactory value when considering the number of residues that can be annotated both
as PPIs and as IDRs (Table 7).

This suggests that eventually the inherent flexibility of the residues makes it possible to adjust
the interacting surface protein to multiple partners. Previously we clarified that, on average, for
proteins involved in the human cell cycle, the number of interacting partners correlates with the
number of predicted interaction patches (113), a result that is different from the one here reported.
It appears that in granules the inherent flexibility of residues in interaction patches matters. This
result is partial and preliminary in order to show what we can do for the annotation of proteins
involved in phase separation. In our opinion, this is sufficient for the time being and, with the
present amount of knowledge, to stir further experiments with the aim of solving the electronic
structure of proteins involved in phase transition phenomena.

9. FINAL REMARKS

From our brief overview, we can presently conclude that our knowledge of PPIs is limited, given
the relatively few complexes solved with atomic resolution and the results of large-scale proteomic
experiments, which are affected by the adopted experimental approach.

Apparently, computational biology can offer a wide spectrum of computational methods to
address the problem of interface annotation with good performance when trained on 3D com-
plexes. Methods predicting interactions from protein sequences perform less well.We have listed
presently available state-of-the-art methods that can help in functionally annotating new protein
sequences and in steering new experiments for increasing our knowledge of the cell’s interior com-
plexity. However, it is important to highlight that international benchmarking experiments, like
CAPRI, indicate that predictive methods are far from perfect and that there is always room for
improvement. All of the methods are based on the assumption that input takes into consideration
previous and possibly highly curated knowledge, and in doing so, they are heuristic and not theo-
retically based. Their efficacy is therefore dependent on their ability to extract general principles
of association between input knowledge and expected output. Along this line, it is evident that
more structural data of protein complexes will largely improve the capability of computational
methods by increasing their performance.

Presently, we also face the problem of protein phase separation, and this may also affect pro-
teomic and interactomic results. For these proteins, poorly exploited from the experimental point
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of view, here we have described how in the case of proteins of the Cajal body the number of possi-
ble interactors, as derived from two independent interactomic databases, correlates well with the
number of protein residues predicted to be at the interface, which are also predicted in flexible
regions. This requirement is not exclusive. Even in the case of proteins involved in phase separa-
tion, the acquisition of more experimental data will help in developing computational tools suited
to their functional annotation.
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