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Abstract

Organismal aging exhibits wide-ranging hallmarks in divergent cell types
across tissues, organs, and systems. The advancement of single-cell technolo-
gies and generation of rich datasets have afforded the scientific community
the opportunity to decode these hallmarks of aging at an unprecedented
scope and resolution. In this review, we describe the technological advance-
ments and bioinformatic methodologies enabling data interpretation at the
cellular level. Then, we outline the application of such technologies for de-
coding aging hallmarks and potential intervention targets and summarize
common themes and context-specific molecular features in representative
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organ systems across the body. Finally, we provide a brief summary of available databases relevant
for aging research and present an outlook on the opportunities in this emerging field.

1. INTRODUCTION
1.1. Aging Hallmarks

Aging is associated with progressive degeneration in multiple systems across the body. At an in-
dividual level, aging occurs at a variable pace, as characterized by substantial molecular changes
in cells, tissues, organs, organ systems, and the whole organism (1-5). By benchmarking aging-
associated physiological changes and pathological progression, we stand to generate foundational
knowledge that can help unravel mediators of the mechanisms underlying aging, and hopefully
identify potential intervention targets to delay or even reverse aging. Such aging-associated molec-
ular changes include shared features, such as genome and epigenome instability and cellular
senescence (1, 5, 6), whereas others are context specific and occur at different levels, such as drivers
or events specific to cell types in different tissue-specific microenvironments or systemic factors
that project long-range effects across systems (2). Combined, these hallmarks reflect organismal
aging and its unique features across systems.

1.2. The Benefit of Decoding Aging at Single-Cell Resolution

The complex and heterogeneous biological processes that drive the aging process across tissues
and organs require investigations with a broad scope and with precision beyond that provided by
conventional molecular biology approaches. For example, initiating events occurring in rare cell
populations may remain undetected until downstream effects have rippled through the tissue and
caused a more generic change that becomes detectable at the bulk level, obscuring the genuine
triggering mechanism.

Over the past several years, substantial efforts have been dedicated to the development of
single-cell omics technologies in all dimensions, including genomics, epigenomics, transcrip-
tomics, proteomics, metabolomics, and their combinations with spatial and temporal information.
Equipped with these dissection scopes at single-cell resolution, we are able to identify initial
changes in a small subset of cells in a complex and heterogeneous tissue microenvironment (7,
8). Furthermore, very recently, with decreasing cost and increasing throughput, single-cell studies
spanning multiple tissues and organs, or even the whole organism, have started to emerge, gen-
erating so-called atlases. In particular, recent pan-tissue studies have provided both an eagle-eye
view from far above and a microscopic view for a deeper dive. Such atlases, when applied in ag-
ing, allow researchers to dissect one cell type distributed in multiple tissues, as well as to profile a
broad spectrum of cell types, extending the current paradigm of aging research to a systemic level
(9-13).

1.3. Current State and Opportunities

Since its first emergence in 2009 (14), single-cell omics has revolutionized many fields within
the life sciences. Aging research is no exception, as summarized by a timeline of representative
studies (Figure 1). With the tremendous expansion of single-cell omics and even multiomics,
analysis tools capable of integrating multidimensional datasets are needed to uncover the under-
lying hallmarks of and potential targets in aging. Here, we review recent advances in technologies
for analyzing the quickly expanding biomedical data, as well as generating new datasets, focusing
on their application for understanding the hallmarks of and mechanisms underlying aging. We
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Figure 1

A timeline of the development of single-cell sequencing technologies and their applications in aging research.

further discuss outstanding questions in the field and highlight techniques that will advance our
understanding of organismal aging.

2. DECODING AGING HALLMARKS THROUGH THE LENS
OF SINGLE-CELL OMICS: TECHNOLOGIES AND RELATED
COMPUTATIONAL METHODS

2.1. Technologies in Relation to Aging Studies

In this section, we review the breakthroughs and advancements in single-cell sequencing technolo-
gies, including single-cell transcriptomics [single-cell RNA sequencing (scRINA-seq)], genomics,
epigenomics, proteomics, metabolomics, and their multimodal combinations, as well as those with
spatial context. Specifically, we focus on their applications in aging studies.

2.1.1. Single-cell transcriptomics. Because aging is a gradual degeneration process composed
of multiple cellular state transitions and functional changes, single-cell transcriptomics, which
generates the full spectrum of gene expression levels of individual cells, has become the most
widely used tool for investigating aging-associated cellular changes. The detailed nature of this
technology, along with other technologies listed in Section 2.1 that create single-cell omics, has
been reviewed elsewhere (15, 16). Here, we focus on its application in aging studies to identify
infrequent cellular state transitions, such as adult stem cells becoming senescent, a state transition
known to disrupt homeostasis and initiate degeneration in the whole tissue and across multiple
systems. Among the many organ systems described in Section 3, typical examples can be found
in the hematopoietic and immune system, where senescent hematopoietic stem cells (HSCs) lead
to impaired adaptive immunity (17, 18). Given the power of analyzing thousands or even higher
numbers of cells in parallel, scientists can now study aging via single-cell transcriptomics in almost
every organ in mammals (to name a few, see 19-28), and even at the organismal level in rodents
(10-13, 29), generating valuable single-cell atlases, as described in Section 4.1.
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2.1.2. Single-cell genetic heterogeneity. Accumulation of DNA mutations is a hallmark of ag-
ing (1), but the heterogeneous nature of somatic mutations hinders their identification at the bulk
level—they are difficult to distinguish from sequencing errors if present only in a small proportion
of cells. In contrast, single-cell DNA sequencing identifies genomic changes, such as single-
nucleotide variants, copy number variations, and chromosomal aneuploidy (30), enabling studies
of genomic mosaicism and cell lineage tracking during physiological and pathological processes
in development and aging (31). Together with other advanced methods, including whole-genome
sequencing (WGS) of laser-capture microdissections (32) or single-cell-derived organoids (33),
researchers can identify aging-related genomic variations in specific cells or clones in a variety of
tissues. For example, a recent study reported that the accumulation of somatic mutations in hu-
man neurons is associated with aging and neurodegeneration (34). At a more general level, adult
stem cells in the human small intestine, colon, and liver (33) and circulating B lymphocytes ac-
cumulate mutations steadily over time, albeit at rates that vary by tissue (35). Interestingly, and
supporting the notion that the somatic mutation rate contributes to aging, single-cell WGS anal-
ysis of somatic mutation rates has shown variations across 16 mammalian species and an inverse
relationship with species lifespan (36).

2.1.3. Single-cell epigenomics and chromatin organization. Single-cell epigenomics defines
the epigenetic states and identities of individual cells, revealing regulators of the transcriptome
and heritable changes within genotypically identical cells. With barcoding or indexing preserving
information about cellular identity, various methods have transitioned from the bulk level to
the single-cell level to analyze each layer that constitutes the epigenome. During aging, and
unlike the relatively rare genetic mutations, the epigenetic landscape undergoes a hierarchy of
large-scale organizational alterations: from nuclear deformation to compromised chromatin
compartmentalization and to loss of local epigenetic identity, along with enhanced cellular het-
erogeneity (1, 37-39). Among aging-associated epigenetic alterations, shifts in DNA methylation
and histone modifications have been most widely studied. In particular, the epigenetic clock, a
method to measure chronological age with remarkable precision, was developed based on DNA
methylation levels (40). Again, aided by single-cell DNA methylomes, researchers developed
the epigenetic clock framework scAge to provide a more accurate chronological age of a tissue
while uncovering heterogeneity in epigenetic aging among the different cell types (41). Similar
to variation in DNA methylation, a recent study using EpiTOF (epigenetic time-of-flight), which
can measure a broad array of chromatin marks in single immune cells, reported that variability
in histone modifications also accumulates with age (42). Accordingly, heterochromatin loss and
consequent activation of LINE1 elements during aging were identified specifically in excitatory
neurons in the old mouse brain via single-nucleus ATAC-seq (assay for transposase-accessible
chromatin using sequencing) and Paired-Tag (assay for joint profiling of histone modifications
and gene expression in single nuclei) (43).

2.1.4. Spatial omics. To overcome the biases caused by digestion steps of single-cell omics,
researchers developed spatial omics to extract intra- and intercellular information about DNA,
RINA, the epigenome, and proteins within their native spatial context. When applied in aging
research, fine-grained transcriptomes with spatial organization (i.e., spatial transcriptomes) al-
low for the identification of cell types with respect to tissue architecture, cell-specific molecular
hallmarks, and cell-cell interactions in situ (44). In particular, and given that juxtracrine and
paracrine signals operate from 0 to 200 pm (45), such spatial information is vital for understanding
the interplay between aging-sensitive cell types and the aged microenvironment. Indeed, spatial
transcriptomics has revealed cell state changes in specific brain regions and increased neuroin-
flammation and immune cell activation in old mouse brain (46, 47). However, the sequencing
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depth of spatial transcriptomics is still limited compared to single-cell transcriptomics, making it
less powerful in identifying the relatively confined changes in transcriptomes from young and old
organisms. Therefore, the combination of spatial transcriptomics and single-cell transcriptomics
is a trend in current analysis, such as in a recent preprint study of human ovarian aging (48). Nev-
ertheless, technological advancements in spatial transcriptomics for higher resolution and more
accurate incorporation of multimodal data with imaging will undoubtedly provide more insight
into aging-associated molecular remodeling with the anatomical organization of cells.

2.1.5. Other single-cell omics and summary. Although nucleic acid-based analyses domi-
nate single-cell omics, large-scale profilings of other types of molecules at the single-cell level
are emerging. Instead of using RNA levels as a proxy for protein levels, single-cell proteomics
can directly detect and quantify a large number [recently pushed to 1,000-3,000 (49)] of pro-
teins from individual cells, giving a snapshot of the cellular machinery for (in principle) any given
cell type and cell state. Similarly, single-cell metabolomics analyzes metabolites, products of cell
metabolism that serve as systemic and microenvironmental signaling molecules in all organisms
(50). Recent technical advances now even allow for the simultaneous interrogation of different
modalities at the single-cell level, such as genomic mutations, gene expression, epigenetic modifi-
cations, chromatin accessibility, and higher-order organization (51). However, there are challenges
and opportunities in integrating different layers of single-cell information into cellular regulatory
frameworks, by either computational merging or experimental combinatorial analyses. In addi-
tion, by harnessing the long reads from third-generation sequencing (i.e., Pacific Biosciences and
Oxford Nanopore sequencing platforms), researchers can now identify larger structural varia-
tions and more splicing isoforms at the single-cell level, along with epigenomic information such
as that provided by scNanoATAC-seq, a long-read single-cell ATAC-seq (scATAC-seq) method
based on the Nanopore platform (52). Taken together, multimodal approaches stand to generate
deeper molecular insights into different cell types and dynamics; hence, we are expecting such
applications to increase in aging research.

Collectively, for the majority of single-cell technologies, and even for the most developed
single-cell transcriptomics, it remains challenging to scale techniques to an even larger number
of cells and more molecular features per cell while maintaining or increasing accuracy for each
modality and maintaining affordability. Looking to the future, in situ cell barcoding and various
spatial approaches hold significant promise for further increasing throughput and multimodality.
Meanwhile, approaches for the simultaneous measurement of multidimensional data or for inte-
grated analysis after acquisition are increasingly in demand. Big data analysis is discussed below
in Section 4.2.

2.2. Computational Methods and Tools for Aging Features

Advances in single-cell omics technologies have led to the generation of vast amounts of mul-
timodal datasets, but at present, scRNA-seq analysis tools are the most developed, while tools
capable of integrating multidimensional datasets are emerging quickly but still primitive. Cur-
rently, multiple protocols for single-cell sequencing analysis are available, each with its own
advantages and trade-offs. While most follow similar workflows, optimization tools at each step
vary, as do benchmarking studies used to make informed decisions on which tool to use. The
initial workflow of scRINA-seq includes quality control, normalization, batch effect correction,
data downscaling, and cell annotation. In addition to these common tools, unique features of ag-
ing require specialized implantations of downstream analysis tools to characterize systemic and
multilevel hallmarks of aging, such as increased genomic instability, epigenetic heterogeneity, tran-
scriptional noise, cell fate shift, and intercellular communication alterations. Computational tools
for this purpose are described below and summarized in Supplemental Table 1.
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For example, increased genomic copy number variation, resulting from increased genomic in-
stability in senescent cells, can be calculated by specific tools such as inferCNV (53), Ginkgo (54),
and CopyKAT (55). Likewise, researchers have developed scT&R-seq (single-cell telomere length
analysis and RINA sequencing) to simultaneously observe heterogeneity in telomere length and
measure the transcriptome in a cell, which can be applied to quantify telomere shortening, a typi-
cal feature of cellular senescence (5, 56). In addition to the nucleus, mitochondrial DNA (mtDNA)
also carries genomic information that impacts cell function in aging; mtDNA mutations impair
mitochondrial function, which in turn leads to dysregulation of energy metabolism (57). Recently,
a dedicated computational tool kit, mgatk, for mtscATAC-seq (mitochondrial single-cell assay for
transposase-accessible chromatin with sequencing) was developed to call with high-confidence
rare-clonal mtDNA mutations concomitant with a chromatin accessibility profile (58). These ap-
proaches make it possible to infer mtDNA heterogeneity, clonal relationships, cellular state, and
accessible chromatin variation in healthy, diseased, or senescent cells.

Meanwhile, epigenetic alterations and heterogeneity serve as both a cause and consequence of
the aging process. To evaluate chromatin accessibility in individual cells, researchers have widely
used ArchR (59) to process and analyze scATAC-seq data with minimum memory or compu-
tational requirements. For single-cell DNA methylation, which suffers from incomplete CpG
coverage, DeepCpG (60) uses a deep neural network to overcome this limit and to predict meth-
ylation states in single cells. For a comprehensive tool kit for analyzing single-cell epigenomic
data, Stuart et al. developed Signac (61). In addition, through seamless compatibility with the
Seurat software package for scRNA-seq (62), Signac allows for multimodal analysis, integrat-
ing DNA accessibility with gene expression, protein abundance, and mitochondrial genotype
data.

Genomic/epigenomic instability contributes to transcriptional noise such that larger transcrip-
tional variations and entropy increases were observed in single-cell transcriptomes during aging.
Although noise is rarely observed in studies of early development, where single-cell omics studies
have emerged and thrived, it is a common feature in the aging field and is evaluated by special-
ized algorithms, as listed in Supplemental Table 1. Specifically, within the same tissue, higher
transcriptional noise is present in certain cell types, such as immune cells in aged mouse lungs,
oocytes from primordial follicles, and natural killer T cells of aged ovaries, as well as in stromal
cells, and even higher noise was noted in fibroblasts, endothelial cells (ECs), and pericytes of the
aged skin (19, 26, 63). Underlying the elevated transcription noise, the transcriptional regula-
tory network becomes further impaired in aging. At present, several studies have used scRINA-seq
or scATAC-seq data to analyze and compare changes in the transcriptional regulatory network
and key regulators associated with aging, among which the most mainstream analysis software is
SCENIC (64).

Among pathways impacted in aging, metabolic pathways have attracted attention. Accordingly,
dedicated tools (65-68) have been developed to predict changes in metabolites or metabolic path-
ways based on single-cell metabolomic or transcriptomic data and to evaluate metabolic disorders
in different cell types, tissues, and organs intertwined with the aging process. Yet another key path-
way with dedicated analysis tools is the regulation of cell cycle progression. Indeed, cell cycle arrest
is a hallmark event of cellular senescence. Current methods for cell cycle prediction and gene set
scoring in single-cell sequencing have important applications for this aspect of aging research.
To this end, the cyclone function in the Scran software (http://bioconductor.org/packages/
release/bioc/html/scran.html) can predict the cell cycle of each cell based on single-cell tran-
scriptomes. Similar tools include the CellCycleScoring function of the software Seurat (62), while
the software peco (69) implements machine learning methods to predict continuous cell cycle
phases with scRNA-seq data.
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Besides the aforementioned common pathways, cell type—specific alterations underlie key fea-
tures of aging, including stem cell exhaustion and a shift or impairment of lineage differentiation
capacity, which can be assessed using pseudotime analysis. Monocle (70, 71) is a well-known pseu-
dotemporal analysis software that uses advanced machine learning (reverse graph embedding) to
acquire explicit master graphs from single-cell data to rank cells, thus alleviating confounding im-
pacts resulting from asynchrony, and accurately solving complex development processes. Another
algorithm, RNA velocity (72), is based on transcriptional dynamics—on the pseudotime axis, the
appearance of unspliced mRNA always precedes that of spliced mRNA, indicating the direction
of differentiation of cellular gene expression. Thus, it can be used to define the start branch and
endpoint of the differentiation trajectory and to predict the direction of lineages without prior
knowledge.

Finally, single-cell omics aids in the analysis of the aging microenvironment. In addition to
cell cycle arrest, senescent cells also secrete a large number of inflammatory factors that further
promote the senescence of surrounding cells, generally referred to as the senescence-associated
secretory phenotype (SASP). Various gene set scoring algorithms, such as AUCell (64), Ucell (73),
and singscore (74), can calculate the expression level of gene sets in each cell, including those
related to the SASP in aging. On the other hand, the SASP, along with other aging drivers, rewires
intercellular communication through ligands and receptors on neighboring cells. Algorithms for
predicting the probability of ligand-receptor interaction occurrence based on gene expression
levels have been used in aging research, including CellphoneDB (75), SingleCellSignalR (76),
CellChat (77), and NicheNet (78). Moreover, both in the tissue microenvironment and at the
systemic level, the reduction of the T cell receptor (TCR) and B cell receptor (BCR) library,
the imbalance of original memory cells, and the loss of effector cell plasticity are characteristic
of immune aging. With the advent of single-cell TCR and BCR sequencing techniques, a series
of analytical tools, such as TraCeR (79), scTCRseq (80), BASIC (81), and VDJPuzzle (82), have
been developed to detect and analyze the changes in immune functions, especially key receptors
of T cells and B cells during aging.

3. APPLICATIONS OF SINGLE-CELL OMICS IN AGING STUDIES: CELL
TYPE-SPECIFIC HALLMARKS AND TARGETS FOR INTERVENTIONS

As summarized above, recent developments in single-cell omics technologies have paved the
way toward identifying and characterizing aging hallmarks shared across organs and tissues, as
well as those that are unique in organs and tissues. In this section, we summarize the current
knowledge of aging hallmarks identified by applying single-cell omics technologies, ranging from
aging-sensitive cell types to the intrinsic and external driving forces of aging. Specifically, aging
hallmarks are described in representative organ systems, with emphasis on themes of aging-
sensitive cells shared across systems and having organismal-level effects. Meanwhile, we elaborate
on unique features specific to individual systems with respect to their own environments. Among
these, the aberrant exit of the reversible quiescent state into senescence or exhaustion of tissue-
resident stem cells is a main culprit of biased lineage differentiation, disturbed homeostasis, and
impaired function, thus impacting the entire organism. Other aging-sensitive cell types include
cells critical for tissue functions and microenvironmental support cells, such as ECs, fibroblasts,
and resident or infiltrated immune cells. Thus, rather than a comprehensive review of all or-
gan systems, here we aim for a summary of unique and shared hallmarks in selected systems to
synthesize aging features with generality and precision. We also discuss the limitations of cur-
rent studies, emerging directions, and how accumulating aging datasets open up new research
opportunities.
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3.1. The Hematopoietic and Immune System

The hematopoietic system is a typical example where stem cells play a pivotal role in the aging of
the whole system. During aging, HSCs increase in number. In aged mice, the fraction of long-term
reconstituting HSCs expands approximately sixfold (>22 months old versus 2—3 months old) (83).
However, aged HSCs are less capable of maintaining a balance between quiescence, self-renewal,
and differentiation into the full spectrum of lineages required to maintain homeostasis, instead
demonstrating myeloid-skewed differentiation potential and megakaryocyte-platelet bias (18, 83—
86). Thus, as aged HSC:s fail to maintain organ homeostasis and regeneration, the aging process in
the hematopoietic and immune system is promoted, altering susceptibility to autoimmune diseases
(87), and even reshaping the physiological and immune landscapes of the whole organism, thus
increasing vulnerability to aging-related diseases, frailty, and multimorbidity (88, 89).

Single-cell omics studies that categorize these aging-sensitive cell types, including HSCs and
bone marrow niche cells, seek to dissect the underlying causes intrinsic to aged HSCs and those
induced by remodeling the aging microenvironment (17, 90). Here we list three: (#) Intrinsically,
HSCs suffer from genome instability (91) and epigenetic drift (42, 92). This may lead to clonal
hematopoiesis when a substantial proportion of blood cells are derived from a single mutated
HSC, which is observed in 10-20% of the elderly population (93). Recent research on clonal
hematopoiesis using single-cell multiomics revealed that DNMT3A R882 mutation led to the
lineage bias of myeloid cells over lymphoid cells by preferential hypomethylation of PRC2 (poly-
comb repressive complex 2) target genes and a specific CpG flanking motif (94). Other somatic
mutations [i.e., mutations in TET?2 (95), ASXL1 (96), TP53 (97),and PPM1D (98)] also frequently
accompany clonal hematopoiesis. (§) Extrinsically, such alterations in HSCs are also induced by
cross talk with aging-sensitive cell types in the bone marrow niche that send proinflammatory
and unfavorable signals for HSC maintenance with aberrant metabolic programs. These age-
associated hallmarks include an increased population of activated macrophages but with decreased
phagocytic function (99, 100), decreased expression of surface molecules responsible for homing,
egress, and differentiation of human mesenchymal stem/stromal cells in the marrow (101), and re-
duced levels of systemic factors received from distant systems or even diet (102). These extrinsic
cues induce aging in stem cells and their differentiated derivatives, affecting not only fate deci-
sions (quiescence, self-renewal, or differentiation) but also cell maturation. Meanwhile, single-cell
imaging and transcriptome analysis have revealed that the most quiescent HSC subpopulation
is protected by sinusoidal niches (marked with Nestin-dim perisinusoidal cells), which preserve
their shape and number during aging (103). In a recent study on rejuvenation, researchers iden-
tified several potential targets and pathways that could reduce inflammation and restore cellular
communication. Moreover, in parabiosis models, aged hematopoietic stem and progenitor cells
in mice were sensitive to exposure of young blood, as reflected by a switch to a transcriptional
regulatory network resembling that of a younger state (10, 29). (¢) Since aged HSCs give rise to
immune cells that circulate in the whole organism and reside in nearly all tissues (104, 105-108),
single-cell studies revealed that the populations of derived immune cells present in the microenvi-
ronment are altered in various tissues across systems (11, 29). These interdependent relationships
contribute to increased chronic inflammation, or inflammaging, an aging cue also discussed in the
context of other systems and systemic aging.

3.2. The Nervous System

The nervous system decodes and integrates incoming sensory information and coordinates
outgoing signals to and from different tissues and organs across the whole body. Given the hetero-
geneity among different brain regions and the rich diversity of neuronal subtypes, the dissection of

Ma et al.



aging-associated changes at single-cell resolution is absolutely needed. Thus far, single-cell omics
has helped to identify aging-sensitive cell types, including neural stem cells (NSCs) and specific
types of neurons and non-neuronal cells, providing a wealth of resources for revealing aging
hallmarks and potential therapeutic targets for nervous system aging and related diseases.

Although whether adult neurogenesis exists in certain species continues to be debated, par-
ticularly in humans (109-111), NSCs undoubtedly play essential roles during aging in multiple
species. First, a dramatic decline in NSC number is a hallmark of the aged murine brain (112, 113).
In addition, aging-associated cognitive decline has been linked with dampened NSC/neural pro-
genitor cell (NPC) function, as manifested by increased quiescence, decreased proliferation, and
differentiation bias toward astrocytes at the expense of neurons. Interestingly, changes in cell pro-
liferation capacity are not influenced by inflammatory cytokines but likely caused by cell-intrinsic
mechanisms (112,113). Among these, the ERK/MAPK pathway appears to be critically involved in
regulating age-dependent clonal expansion capacity (112). In-depth dissection of single-cell gene
expression dynamics in the nonhuman primate (NHP) hippocampus also revealed age-related
impairment in the division of transiently amplifying progenitor cells and compromised neuronal
function along the neurogenesis trajectory (20).

In addition to mitotic NSCs/NPCs, numerous studies have demonstrated that the functional
decline of postmitotic neurons also contributes to neurogenerative diseases. Conversely, indi-
viduals with cognitive resilience can retain normal cognition even when carrying pathological
hallmarks of neurodegenerative diseases (114). In such individuals, single-nucleus RNA sequenc-
ing (snRINNA-seq) of cortical tissues identified upregulation of MEF2C in a subpopulation of
excitatory neurons, indicating a previously unrecognized role for MEF2 transcription factors in
promoting cognitive resilience (114). In another snRNA-seq study, adaptive changes to hypocre-
tin/orexin neuronal loss in the aged brain were found to drive age-associated sleep fragmentation
(115). Intriguingly, age-accumulated DNA damage and epigenetic changes are observed in vul-
nerable neurons, impairing physiological functions (20, 116). For example, a single-cell WGS
study investigated genome-wide somatic single-nucleotide variants (sSNVs) in single neurons
from the prefrontal cortex and hippocampus of normal individuals (aged 4 months to 82 years),
as well as individuals affected by early-onset neurodegeneration due to genetic disorders of DNA
repair (e.g., patients with Cockayne syndrome and xeroderma pigmentosum) (34). The authors
found that sSSNVs increased approximately linearly with age in both brain regions (with a higher
rate in the hippocampus) and were more frequent in samples with early-onset neurodegenerative
diseases (34). A recent single-cell epigenome analysis also revealed age-associated decay of hetero-
chromatin domains in excitatory neurons in the mouse brain, as evidenced by gain of chromatin
accessibility at these genomic loci accompanied by the cell type-specific loss of heterochromatin
and activation of LINE1 elements (43).

Single-cell omics has also helped identify age-related alterations in non-neuronal and rel-
atively rare cell types that likely contribute to a hostile microenvironment for tissue-resident
stem/progenitor cells and neurons, including glial cells, immune cells, ECs, and other niche cells.
Change in the aging microenvironment is a recurrent theme in and out of the nervous system.

For instance, glial cells, such as clusters of active astrocytes and microglia exhibiting proin-
flammatory responses, were enriched in the aged primate hippocampus and aged mouse brain (20,
109, 117). Interestingly, an accumulation of p16ig" senescent microglia was also observed in the
brains of aged humans (118). In addition, the abundance of a phagocytic/activated AD1-microglia
population in patients with Alzheimer’s disease was found to be closely correlated with tissue
amyloid-p load, and these microglia localized to amyloid-p plaques. Meanwhile, the abundance
of AD2-microglia strongly correlated with tissue phospho-tau load and was more pronounced in
patients with overt tau pathology (119).
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Immune cells, such as T cells, infiltrate into old neurogenic niches and thus contribute to the
inflammatory microenvironment (27). In particular, T cells in aged brains are clonally expanded
and are generally different from those in aged blood, suggesting that they may experience specific
antigens. They also express interferon-y, which may impair the proliferation of a subset of NSCs
that have a high interferon response (27). Likewise, an accumulation of natural killer cells of the
innate immune system, residing in the dentate gyrus neurogenic niche of aged brains, has been
reported to impair neurogenesis in humans and mice (120).

Additionally, ECs serve as another crucial type of niche cells, whose dysfunction may lead
to dysregulation of cerebral blood flow and disruption of the blood-brain barrier and promote
the pathogenesis of vascular cognitive impairment (121). scRNA-seq of enriched cerebromi-
crovascular ECs demonstrated that there is an increased ratio of senescent ECs (~10%) in
the mouse cerebral microcirculation with advanced aging (121). Another brain endothelial cell
(BEC)-focused study in the hippocampus discovered that capillary BECs underwent the greatest
transcriptional changes in physiological aging in comparison with arterial and venous BECs, as
manifested by upregulated innate immunity and oxidative stress response pathways (122). Finally,
analysis of a single-cell and spatial atlas of the choroid plexus in the aged mouse brain revealed
that epithelial cells upregulate host defense programs in response to resident macrophages, which
in turn upregulate interleukin-1p signaling genes (123).

In the retina, an extension of the central nervous system (CNS), scRNA-seq identified retinal
pigment epithelium cells as the cell type most susceptible to aging in NHP samples, as evidenced
by decreased cell density, the highest numbers of differentially expressed genes overlapping with
genes underlying aging and aging-related retinal diseases, and aberrant cell—cell interactions with
its two adjacent layers: the neural retina layer and the choroid layer (21). Another scRNA-seq study
showed that aging of the human retina occurred earlier in the fovea than in the peripheral retina,
and that MYO9A™ rods and a horizontal cell subtype showed greater vulnerability to aging (124).
In the mouse cochlea, the entry point of the auditory system into the CNS, a recent study depicted
a dynamic single-cell transcriptomic landscape of cochlear aging. In this study, aging-related tran-
scriptomic changes pinpointed a higher age-related transcriptional fluctuation in a stria vascularis
cell population, underscoring its high susceptibility to aging. Specifically, the cochlea suffers from
loss of proteostasis during aging, and upregulation of the endoplasmic reticulum (ER) chaperone
protein HSP90AAL1 was identified as the hallmark of cochlear aging (125).

3.3. The Vascular System

The vascular system, composed of vessels that circulate blood and lymph throughout the body,
differs from other organ systems in that its regeneration depends on EC behavior and assembly
(126) and not on tissue stem cells. Due to the broad distribution of vessels, the aging of the vascu-
lar system could affect multiple tissues/organs and impair their functions, while aging hallmarks
of vessels can be unique or shared between different tissues. For example, for blood vessels in the
heart, a single-cell transcriptomic landscape of aortas and coronary arteries from young (46 years)
and old (18-21 years) cynomolgus monkeys demonstrated decreased expression of FOXO3A in
six vessel cell types, especially in ECs (127). Additionally, scRNA-seq analysis of cell-cell com-
munications revealed that interactions between ECs and immunocytes were increased in the aged
vasculature of both monkey coronary arteries and aortic arches and mouse hearts (128). BACH1
was identified as a master regulator of aging-related genes by transcriptional regulatory network
analysis in monkeys and mice, suggesting an important role of BACH1 in endothelial senescence
and vascular aging (128, 129). Interestingly, in mouse brains from young (3-month-old) and aged
(28-month-old) C57BL/6 mice, a subpopulation of cerebromicrovascular ECs was also identified
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with high expression of cellular senescence genes (121). Their senescence also induces multi-
faceted influences, including impairment of the blood—brain barrier and dysregulation of cerebral
blood flow (121).

3.4. The Digestive System

Within the digestive system, the liver is a metabolic hub that plays an important role in the detox-
ification of xenobiotics, which makes this organ the prime target of genotoxicity in the body (130).
Utilizing single-cell multiple displacement amplification to analyze somatic mutations in single
primary hepatocytes from human donors (varying in age between 5 months and 77 years), in-
creased frequencies of spontaneous mutation were observed at advanced age, which may causally
contribute to the age-related functional decline and increased incidence of human liver diseases
(130). Such increased genome instability is consistent with observations in other systems during
aging.

In a study of aging in the human pancreatic tissue, sScRINA-seq analysis demonstrated that
levels of transcriptional noise and potential fate drift were elevated in islet endocrine cells from
older donors (28). Consistent with observations in the aged liver (130), a novel mutational signa-
ture was also discovered in healthy aging endocrine cells (28). These findings suggest that genetic
errors that accumulate in physiological aging can be benign, but can also lead to organ dysfunc-
tion or catastrophic transformation, as in cancer. Additionally, scRINA-seq of pancreatic islet cells
from young and aged cynomolgus monkeys demonstrated an increased unfolded protein response,
along with the accumulation of protein aggregates in aged beta cells (131). Further investigation
found that aging-related beta cell-specific upregulation of HSP90B1, an ER-localized chaper-
one, impeded high-glucose-induced insulin secretion, a mechanism that may cause age-associated
impairment of glucose tolerance and facilitate the development of diabetes (131).

In the intestine, age-associated changes may contribute to malnutrition in elderly individuals
(132). Among the cell types in the intestine, an age-related decline in the regenerative capabil-
ity of intestinal stem cells (ISCs), which regenerate the gastrointestinal epithelium, significantly
perturbs intestinal homeostasis (133). Using the Drosophila intestine as a model to explore stem
cell-intrinsic changes during aging, Tauc et al. (134) employed bulk genome-wide chromatin
accessibility and transcriptome analysis combined with scRNA-seq to find that promoters of Poly-
comb target genes become differentially accessible in aged ISCs, resulting in increased expression
of enteroendocrine cell specification genes and biased differentiation. In a related study, which
reported the construction of an enteric neuronal atlas using RAISIN (ribosomes and intact sin-
gle nucleus) RNA-seq for profiling intact nuclei with ribosome-bound mRINA and MIRACL-seq
(mining rare cells sequencing) for label-free enrichment of rare cell types by droplet-based profil-
ing, dysregulation of circadian genes and genes involved in age-related CNS diseases segregated
with chronological age in enteric neurons, suggesting its tight correlation with intestinal and ex-
traintestinal diseases (135). Taken together, these studies suggest that in addition to ISCs, enteric
neurons play critical roles in intestinal homeostasis.

3.5. The Reproductive and Urinary System

In the reproductive organs, the biology of germ cells and somatic cells largely resembles that of
stem/progenitor cells and niche-supporting cells in other systems. For germ cells (i.e., oocytes in
females and spermatogenic cells in males), age-associated changes often cause attrition of germ cell
pools in both sexes and dampen folliculogenesis or spermatogenesis, respectively. For the female
reproductive system, scRINA-seq and single-cell whole-genome DNA methylation sequencing in
both young and aged germinal vesicles of mouse oocytes uncovered mitochondrial dysfunction
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and ER stress; significant changes in the expression of some metabolism-related genes, such as
mitochondria-associated genes; and reduced antioxidant capability, all of which might be involved
in the progression of oocyte aging (136, 137). Similar to findings in rodents, the single-cell tran-
scriptomic landscape of ovaries from young and aged NHPs revealed aging-associated disturbance
of antioxidant signaling in early-stage oocytes, indicative of oxidative damage as a crucial factor
in ovarian functional decline with age (26). Interestingly, scRINA-seq in human young and aged
metaphase IT oocytes, obtained from patients undergoing in vitro fertilization or intracytoplasmic
sperm injection, also revealed that upregulated genes were enriched for functional annotations
related to oxidative stress and immune function, while downregulated genes were enriched for
catalytic activity acting on DNA and glycoproteins (138, 139). For male germ cells, scRNA-seq
analysis showed that age-related changes in spermatogonial stem cells (SSCs) appeared modest
in aged men (>60 years old) (140, 141), whereas another study in aged NHPs found that a high
susceptibility of SSCs to aging leads to their overactivated proliferation and subsequent exhaus-
tion in the testis, a mechanism likely to contribute to age-related compromise in spermatogenesis
(142). The discrepancy may result from the heterogeneity of the selected samples or the species
differences between humans and NHPs, which await further investigation. Collectively, although
less consistent on the male side, for female germ cells, several single-cell omics studies in mice
and primates converged on mitochondrial functions as primary aging hallmarks in oocytes.

For somatic cells, the crucial niche cells that support germ cell development undoubtedly con-
tribute to age-associated alterations (26, 143). In the ovary, an in-depth single-cell transcriptomic
analysis delineated that silencing of antioxidant genes in aged monkey and human granulosa cells
represented a conserved hallmark of primate ovarian aging (26). In the male reproductive system,
single-cell and single-nucleus transcriptomic studies revealed cell type-specific alterations in
multiple pathways, including tight junction and metabolic signaling in Sertoli cells; hedge-
hog signaling and testosterone production in Leydig cells; cell death and growth in testicular
peritubular cells; possible developmental regression and impaired cell identity in Sertoli, Leydig,
and peritubular cells; and inflammatory responses in multiple cell types (140, 142). These changes
across specific somatic cell types in response to aging compromise functional support to germ
cells and ultimately cause subfertility and even infertility with increased age.

Except for the male reproductive system, aging in the prostate of the urinary system is
considered a major risk factor for benign prostatic hyperplasia (BPH) and prostate cancer in aged
men. Mass cytometry analysis (cytometry by time-of-flight) of single-cell suspensions of total
mouse prostate with a panel of metal-tagged antibodies against cell surface markers revealed an
age-related increase in prostate-infiltrating lymphocytes, suggesting age-related changes in the
prostate microenvironment. In addition, the study also revealed that progenitor-enriched luminal
cells are expanded with aging in the mouse and human prostate, which may contribute to BPH
(144).

3.6. Profiling of Systemic Aging and Intervention of the Whole Organism

In systemic aging, a progressive loss of physiological integrity and functions across the whole
body increases the risk for early onset of chronic diseases and vulnerability to death. Recently,
high-throughput scRNA-seq/snRINA-seq studies encompassing multiple tissues and organs across
systems have facilitated a comprehensive understanding of cellular and molecular programs during
systemic aging and aging intervention (10-13, 29). In detail, Tabula Muris, a single-cell tran-
scriptome compendium of 23 tissues/organs of Mus musculus, revealed systemic aging hallmarks,
including senescence, genomic instability, and changes in the immune system (12). A similar study
of Rattus norvegicus also found increased immune cells and disturbed immune ecosystems in tissues
throughout the body during aging (11).
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Interestingly, metabolic intervention, such as caloric restriction, was found to favorably re-
verse aging-related inflammation by a comprehensive single-cell transcriptional landscape across
various rat tissues (11). In other aging interventions, such as heterochronic parabiosis (HP),
scRINA-seq analysis has helped delineate its high-resolution landscape and uncover its associated
molecular hallmarks. In the HP paradigm, young and aged mice are surgically connected such that
a shared circulatory system facilitates the exchange of systemic factors between parabionts (10, 29).
As such, a single-cell transcriptomic atlas across aged tissues/organs and their rejuvenation in HP
identified hematopoietic stem and progenitor cells as one of the most responsive cell types to HP,
probably through the restoration of youthful transcriptional regulatory programs and increased
lymphopoiesis (10, 145).

Altogether, these data provide a rich resource for the systemic and simultaneous exploration of
age-related cellular and molecular alterations specific to individual cell types at an unprecedented
resolution, with the scope of the whole organ, system, or organism (Figure 2). These aging hall-
marks described here in selected systems also demonstrate the repeating themes of tissue and or-
ganismal aging, for example, the biology between aged stem cells (or key functional cells in certain
systems) and their supportive cells, as well as cell-intrinsic drivers and extrinsic cues of aging.

Organ systems
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Figure 2

The applications of single-cell omics in aging studies. Single-cell omics in different tissues and organs facilitates the identification of
aging-sensitive cell types, along with cell type-specific alterations, all of which constitute aging hallmarks. Abbreviation: SASP,
senescence-associated secretory phenotype. Figure adapted from images created with BioRender.com.
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4. DATA RESOURCES AND BIG DATA ANALYSIS
4.1. Aging-Related Databases

Cell atlases, spanning large numbers of single-cell omics datasets, help us understand how differ-
ent sets of genes, encoded by the same genome of the same organism, orchestrate distinct gene
programs in different cell types across tissues with distinct functions. With the development of
high-throughput sequencing technology and the exponential growth of available datasets, cell at-
lases pertaining to aging have also emerged and expanded. However, such aging-related atlases
are often scattered in large databases that focus on collecting single-cell omics data, such as the
Human Cell Atlas (146), Single Cell Portal (https://singlecell.broadinstitute.org/single_cell),
scMethBank (147), Gene Expression Nebulas (148), PanglaoDB (149), and scRNASeqDB (150).
On the other hand, other databases record aging-specific gene information, such as the Human
Aging Genomic Resources (containing GenAge, AnAge, GenDR, LongevityMap, and DrugAge
databases) (151), AgeFactDB (152), the Digital Ageing Atlas (153), and AGEMAP (154). Most of
these are knowledgebases, which compile aging phenotypes, longevity records, aging-/longevity-
related genes, and factors with lifespan-extending effects, often without association with single-
cell datasets. Thus, the establishment and development of more dedicated and comprehensive
aging-related single-cell databases are an urgent need for advancing aging studies.

In recentyears, several aging-related databases or projects have embarked in this direction, low-
ering the barriers to making use of single-cell datasets and thereby accelerating aging research.
The Tabula Muris Senis project is a comprehensive analysis of single-cell and bulk RNA-seq data
in diverse organs across the mouse lifespan. This transcriptomic atlas provides molecular infor-
mation about how the most important hallmarks of aging are reflected in a broad range of cell
types across various organs in mice (12). As for cross-species databases, the Aging Atlas is the first
dedicated and comprehensive database encompassing cross-omics research on aging. It includes
five modules: transcriptomics, epigenomics, single-cell transcriptomics, proteomics, and pharma-
cogenomics, among which the single-cell transcriptomics module systematically reflects tissue-
and cell type—specific changes in gene expression with age in multiple species (155). The Cell
Landscape is another cross-species cell profiling analysis including multiple life stages for mice,
zebrafish, and Drosophila, providing a valuable resource for studying lineage development, mat-
uration, and aging (156). Altogether, aging-related databases that house single-cell multimodal
datasets along with knowledgebases will serve as a valuable resource for aging research, but they
also call for tools for data mining and data management that meet uniform standardized rules.

4.2. Applications of Big Data Analysis in Aging Studies

With the growing body of aging-related datasets on hand, researchers are increasingly aware that
aging is a systemic change involving different kinds of hallmarks in multiple tissues throughout
the body; hence, systems biology and multimodal integration methods are needed to establish
regulatory networks and identify key factors. Multimodal data integration methods, such as Har-
mony (157), Seurat v4 (62), MEFISTO (158), GLUE (graph-linked unified embedding) (159), and
scJoint (160), will bring atlas-scale aging studies closer to a comprehensive characterization of the
biology of aging. However, due to the high heterogeneity, there is still a need to improve the over-
fitting that may exist in the integration of single-cell sequencing datasets. Deep learning—based
integration tools, such as best-fitting deep learning models driven by specific datasets, are being
developed to solve this problem. As a consequence, big data analyses are usually facilitated by
machine learning methods, such as large datasets exemplified by single-cell omics data or cohort
studies. Indeed, for single-cell studies, artificial intelligence (AI) has already been applied. For ex-
ample, GERAS, a neural network model with two hidden layers and rectified linear unit activation
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(161), was trained on zebrafish and human pancreatic scRNA-seq data to identify age-predictive
genes. Another fully connected deep learning neural network with a similar architecture has been
applied in the classification of hematopoietic stem and progenitor cells of different ages and has
provided explanations for the decline in the self-renewal ability of stem cells during aging (162).
A recent study fitted eight machine learning models for the prediction of neuronal cell ages based
on single-cell expression data plus categorical features such as neuronal cell subtypes (163). The
high accuracy of these models suggested the potential for identifying age-predictive genes from
single-cell transcriptomes, which may also serve as aging hallmarks and intervention targets.
However, the numbers of individuals in these single-cell sequencing experiments were relatively
low, raising concerns that the trained machine learning models may only suit a specific genetic
background. Since the aging process is a highly heterogeneous process for different individuals,
cohort studies are therefore more powerful for identifying common or specific aging hallmarks
and aging-delaying targets. Indeed, although still at the bulk level, Al has been widely applied
in aging cohort studies, for example, biological age prediction, biomarker discovery, and target
identification (164-167).

Although scaling of single-cell analyses will no doubt provide more accurate and meaningful
results, cost and data analysis remain prohibitive. Single-cell cohort studies are costly since they
usually involve the sequencing of hundreds of thousands (or millions) of cells, yet several such
studies have been published (168-170). For example, Zheng et al. (168) combined scRNA-seq,
mass cytometry, and scATAC-seq to analyze the immune cells in peripheral blood collected from
young and old subjects and patients with COVID-19. They found that the landscape of immune
cells was reprogrammed with age, and that the expression of COVID-19-susceptibility-related
genes was upregulated with age (168). Another study that used scRNA-seq in 20 individuals to
explore sex differences in the immune system upon aging found elevated BAFF/APRIL activ-
ity in aged females and higher expression levels of inflammatory genes in aged males (169). A
third report included a total of 37 women to investigate the transcriptomic changes in oocytes
during aging. The research group found increased levels of genes that are associated with chro-
mosome segregation and RNA splicing with age, while those with the mitochondrial activity were
dampened in expression (170). However, these cohort- and atlas-scale studies presented additional
challenges for data analysis, for which applications of Al techniques were pivotal for the identifi-
cation of aging biomarkers or targets for intervention, as well as for predicting chronological and
epigenetic ages (164, 166, 167).

For a reliable analysis of aging cohort studies, the heterogeneity of the genetic backgrounds
and enhanced variations induced by environmental effects on different individuals need to be ad-
dressed. Indeed, Lu etal. (171) developed an analysis framework to quantify cell-to-cell expression
variations (CEVs) in human immune cell populations, by which they identified the correlations
between CEVs and aging. The pivotal impacts of genetic background on gene expression have re-
cently been demonstrated by a cross-species analysis of single-cell data using deep learning models
(172). It appears to be necessary for researchers to carefully interrogate the sources and effects of
each individual’s CEVs in cohort studies to demarcate the scope of the explanatory ability of the
identified aging biomarkers. Yet another caveat of current machine learning models is the lack of
interpretability, which limits their ability to explain the sources of variations and directly interpret
the underlying mechanisms that apply in aging research. Accordingly, more advanced approaches
to interpret and extract the biological meaning of the trained models and to explain sources for
variations will help understand and expedite the applications of Al models in aforementioned
aging-related aspects (Figure 3).

In summary, decoding the aging process with unbiased and comprehensive profiling tech-
niques at single-cell resolution has deepened our understanding of the aging organism. Thus,
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existing knowledge gained from bulk-level targeted studies has largely been corroborated, but it
has also leapfrogged beyond the boundaries of specific tissues and organs to reveal the heterogene-
ity of aging and its systemic paradigms. Challenges still exist at the forefront of this fast-growing
area. At the same time, sequencing technology for single-cell data acquisition continues to evolve
in many directions, including single-cell sequencing by third-generation sequencing (52, 173),
techniques that preserve temporal and spatial contexts, and analyses using machine learning and
integrating multimodal data on atlas-scale datasets. Despite the inherent difficulties in combining
these cutting-edge technologies, single-cell studies in aging will eventually offer unprecedented
accuracy in the identification of aging hallmarks, some of which, including the senescent cells
themselves (174), can also serve as targets to facilitate the development of novel intervention
strategies. As such, these efforts hold promise for answering the three most critical questions in
aging research: How old are we biologically? Why do we get old? And how can we age slower?
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