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Abstract

Cardiovascular diseases (CVDs) are responsible for more deaths than any
other cause, with coronary heart disease and stroke accounting for two-
thirds of those deaths. Morbidity and mortality due to CVD are largely
preventable, through either primary prevention of disease or secondary pre-
vention of cardiac events. Monitoring cardiac status in healthy and diseased
cardiovascular systems has the potential to dramatically reduce cardiac ill-
ness and injury. Smart technology in concert with mobile health platforms is
creating an environment where timely prevention of and response to cardiac
events are becoming a reality.
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INTRODUCTION

Cardiovascular diseases (CVDs) account for the largest percent of preventable morbidity and
mortality worldwide (1). Primary prevention of CVD includes lifestyle change and risk reduc-
tion whereas secondary prevention of CVD includes these measures and regular clinical visits
to monitor therapy. At the population level, prevention includes placement of emergency equip-
ment such as automated external defibrillators (AEDs) in population centers (e.g., arenas, airports)
and reducing environmental risk factors. In patients with known CVD and risk of sudden cardiac
death, implanted devices such as internal cardiac defibrillators and pacemakers serve a secondary
preventive and life-preserving role.All of these strategies are dependent onmonitoring individuals
to prevent cardiovascular events before they happen. Advances in monitoring and data handling
have increased our ability to monitor lifestyle behavior and physiology and respond quickly to
irregularities in physiological biomarkers to reduce morbidity and mortality. This review summa-
rizes current strategies for mobile cardiac health monitoring of individuals with and without CVD
and emphasizes novel strategies that have the potential to improve the monitoring and handling
of data on cardiac status collected using mobile devices.

Preventing onset of disease through lifestyle management and responding quickly to cardiac
events are paramount to public health efforts. Finding ways to promote lifestyle behavior changes
for primary prevention of CVD has been a focus of cardiovascular medicine for some time. As-
sessing cardiorespiratory fitness (CRF) and physical activity level (PAL) as vital signs has become
common in clinical practice; increasing CRF and PAL has been shown to have a significant im-
pact on the prevention of CVD (2, 3). Companies have been successful in monitoring PAL, giving
individuals a tool for tracking and estimating CRF. A quick response to cardiac events, e.g., to sud-
den cardiac arrest (SCA), has been shown to dramatically improve outcome (4). For every minute
that passes after onset of SCAwithout CPR (cardiopulmonary resuscitation) and defibrillation, the
chances of survival decrease by 7–10% (5). The placement of AEDs in public places (e.g., airports)
has been observed to increase the rate of survival after an SCA event due to the speed with which
bystanders may provide AED therapy compared to an emergency response team (6). Similarly,
an implantable cardioverter-defibrillator (ICD) serves the same purpose for patients with known
risk for SCA, with the added ability to monitor rhythm ahead of an event and transmit the data to
a medical provider. An ever-increasing number of devices, including wearables, are passively col-
lecting health data to monitor cardiac status, especially heart rate (HR) but also electrocardiogram
(ECG) data and other related biomarkers.

TRADITIONAL METHODS FOR MONITORING CARDIAC STATUS

Accurate assessment of CRF and PAL has been traditionally done with expensive medical equip-
ment and trained expert analysts. The standard for assessing CRF is the cardiopulmonary exercise
test (CPET), in which individuals exercise from resting conditions to peak intensity while their
respiratory gases (carbon dioxide and oxygen) are monitored. CPET is very time consuming and
the metabolic cart that is used for respiratory gas measurement is very expensive and requires
specialized training to operate and interpret the results. However, the results of CPET give the
individual a precise assessment of his or her maximum ability to consume oxygen, which is the
strongest predictor of CRF.

Other assessments of CRF have been developed, including timed walking and running tests,
step tests, and algorithms that include several of these and other biological metrics. An individual’s
PAL is strongly correlated to CRF, and several methods have been developed for the assessment
of PAL to estimate CRF. Pedometers and accelerometers are devices that may be worn on the
body to track steps and acceleration, respectively. These methods have been used for some time
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and offer less expensive and time consuming, albeit limited, insights into PAL and CRF. Hickey
& Freedson (7) have reviewed these types of devices and their utility in CVD prevention and
treatment. It is extremely challenging to convey health information and counsel and motivate
individuals to engage in CVD risk–lowering behaviors through traditional methods (e.g., face-to-
face counseling) (8).

The development and popularity of wearable monitors with integrated accelerometers and
other sensors have led to an environment in which metrics of cardiac function can be monitored
almost constantly from personal smart devices. For example, studies combining step measure-
ment and text messaging to cell phones have observed that using wearable monitors as a feedback
mechanism between clinicians and patients has the potential to induce health behavior changes
while avoiding common barriers related to transportation and scheduling (9–12). In American
Heart Association and European Society of Cardiology statements, Burke et al. (13) and Frederix
et al. (14) noted that mobile health (mHealth) and mobile technologies can overcome these lim-
itations in targeting behavior change by improving communication of patient self-management
with healthcare providers in real time and in a natural setting.

Many of these data have led to the creation of risk scores that may be calculated based on
some user-generated input data. Cardiovascular risk calculators such as the Stroke RiskometerTM

(15), MARS (mobile application rating scale) (16), and atherosclerotic cardiovascular disease risk
assessment tool (17) have been digitized and are available as applications (apps) from the Ameri-
can College of Cardiology (https://www.cardiosmart.org/Tools), among others. Fitness-based
scores such as PAI (personal activity intelligence) have also been developed and are available as
apps that offer users a fitness score calculated from metrics such as age, sex, and resting and max-
imum HR (17, 18). These risk and fitness assessment tools are easily integrated into mHealth
platforms with wearable monitors as the interface, allowing data to be communicated to and be-
tween patients and clinicians.

DEVICES AND SYSTEMS FOR MOBILE CARDIAC
HEALTH MONITORING

Development of Wearable Monitors

Wearable monitors for the recording of physiological metrics have been used for some time in
sports science and medicine. Step counting has been performed since Roman times (19), but the
first mention of counting steps as a health behavior occurred in the 1960s, when the Yamasa com-
pany developed theManpo-kei (“10,000 steps meter”) device for the monitoring of PAL (19).This
was believed at the time to be the number of steps necessary to prevent coronary artery disease.
Accelerometers were first investigated in the 1950s to measure gait velocity and acceleration, and
in the 1970s technological advances allowed for the measurement of humanmotion in more detail
(20).Chest straps forHRmonitoring have been used for exercise testing and prescription in health
and disease since the early 1980s (21, 22), and motion-detecting monitors (i.e., pedometers and
accelerometers) have been in use since the 1970s for monitoring human movement (23–25). Ex-
cellent historical reviews of these earlier-generation PAL recording devices in sports andmedicine
have been conducted by Freedson et al. (26) in 2012 and Bassett et al. (19) in 2017. Cardiovas-
cular implantable electronic devices include ICDs, pacemakers (PMs), cardiac resynchronization
therapy (CRT) devices, implantable loop recorders, and implantable hemodynamic monitors (27).
These devices, which monitor cardiac function remotely and can provide therapy to a malfunc-
tioning heart, are exemplary in their abilities to monitor pathology and directly influence cardiac
health. Mirowski and Mower developed ICD technology in the 1960s using dogs as experimental
subjects, and the first implantation in a human was in Johns Hopkins Hospital in 1980. Currently
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in the United States, more than 100,000 people are implanted with an ICD every year. Remote
monitoring of implanted cardiac devices allows the data stored in the device to be transferred re-
motely from the home to a central database. The implanted device is equipped with an antenna
that uses radiofrequency signals to communicate with the home monitor. The data are then sent
from the home monitor to a secure data server using a telephone line or wirelessly (28). This type
of remote monitoring of ICDs, CRT devices, and PMs, along with clinic visits, has been observed
to improve outcomes compared to clinic visits alone (28).

Current wearable monitors have great potential for collecting data and interactions between
the device, the wearer, and the healthcare system. Currently there are devices that can measure
behavioral metrics such as movement and physiological parameters such as HR, ECG, oxygen
saturation, blood pressure, skin temperature, and respiration rate (29, 30). Commonly found as a
wrist-based product,mostHRmonitors use an optical technique known as photoplethysmography
(PPG) to assess HR (31). Although there are some known issues with PPG signals, especially
due to the location and the properties of the subject’s skin at measurement (including individual
skin structure, blood oxygen saturation, blood flow rate, skin temperatures, and the measuring
environment), advances in preprocessing have greatly improved quality, althoughmay not be at the
level of chest straps (32, 33). Passive and continuous monitoring of HR has become very popular
by an ever-expanding consumer-based market that includes devices such as Apple Watch, Fitbit
Charge 2, Microsoft Band 2, and Garmin Forerunner 235, among many others (34). Recently,
studies have shown that commercially available products have acceptable accuracy in estimating
HR but fail to deliver accurate energy expenditure (EE) and CRF estimates (35). It seems that
several algorithms for EE may not be incorporating HR and that there is large interindividual
variability in activity-specific EE (35). A recent study of wearable smart HR and activity monitors
found that tracking with these devices was well tolerated in a cardiovascular patient population,
with high adherence (90%) and low attrition (0.09%decrease per day) over a period of 90 days (36).

Data Storage and Connectivity/Networking of Cardiac Monitors

Technological advances and a consumer-driven market have spurred the use of wearable monitors
for a variety of purposes (37). In response to the increased adoption of these monitors by both
physicians and consumers, an unprecedented volume and variety of patient-generated health data
(PGHD) consisting of physiological and behavioral information are now available (38). These
include more traditional cardiovascular biomarkers (e.g., HR and EE) and advanced biomarker
tracking (e.g., detection of arrhythmia) but also include novel markers, including mobile body
temperature monitoring (TempTraq), crowdsourcing air quality (Air Louisville), and guiding the
blind through mobile devices (Aria). Advances in data storage and connectivity have allowed phys-
iological and other data to be transferred from wearable monitors to platforms, e.g., for sharing
exercise data within online running communities (e.g., Strava; https://www.strava.com) or shar-
ing data with clinical professionals for monitoring HR and rhythm.

To communicate and visualize data remotely, monitors must link to external devices such as
smartphones for the collection and visualization of data. This has allowed for prompt two-way
communication (e.g., for coaches and clinicians), empowering users through a data-driven ap-
proach. The World Health Organization defines mHealth as “medical and public health practice
supported by mobile devices, such as mobile phones, patient monitoring devices, personal digital
assistants (PDAs), and other wireless devices” (39, p. 14). mHealth consists of apps in which
wearable monitors connect to a clinical network to increase connectivity for patients, especially
to their healthcare providers. The interoperability of mHealth data has been enabled on iOS
and Android devices by the HealthKit and Google Fit interfaces, respectively. These application
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programming interfaces (APIs) provide a central health data repository where the user can specify
exactly which apps can read and write health fields such as steps, systolic blood pressure, or even
electronic medical records (EMRs). In 2015, Epic Systems Corporation, which houses over half
of all US medical records, announced an integration with HealthKit whereby their personal
health record app MyChart could read HealthKit data from a patient’s phone and record the
data in the patient’s EMR (40). This system was used to collect data from virtual weigh-ins in
a study about the influence of social incentives on weight loss (41), as well as to track blood
glucose in pediatric diabetes patients at Stanford Children’s Hospital (42). Oschner Health has
implemented a HeathKit-to-Epic system to provide digital tracking of hypertension, doubling
the percentage of usual-care patients that achieve target blood pressure control (43). In the case
of heart failure, Oschner has reduced readmissions by 44% by following patients with wireless
scales and reacting clinically by adjusting oral diuretics or scheduling same-day appointments
(44). Oschner’s solutions not only transmit PGHD but also include sites where patients can get
help setting up their devices, automated reminders when readings are not made, and teams that
are constantly looking at the PGHD and reacting clinically (45).

Toolkits for Mobile Health Applications

Simply transferring health data is not sufficient for apps; some medical conditions also require
apps that can administer surveys to collect patient-reported outcomes, present educational mate-
rials, and provide reminders, such as for medications. In the mid-2010s, corporate and academic
efforts spurred the creation of the software libraries ResearchKit, ResearchStack, ResearchSuite,
and SageResearch, which provide key functionalities needed to make mHealth studies as native
apps on devices running iOS and Android and findable via Apple’s App Store and Google’s Play
Store. These studies typically begin with self-directed eligibility questions, followed by an elec-
tronic consent typically using a patient-centered consent framework, which couples animations to
titles, short descriptions, optional videos, and a “learn more” feature (46). The core app sections
seen in these studies include (a) an activity list that triggers surveys and active tasks, in which data
are collected from phone sensors; (b) a dashboard, which presents information back to partici-
pants; (c) a learn section, with educational content and links; and (d) a profile screen, with options
such as data export and withdraw. In the background, these apps can passively collect data from
motion APIs (such as CoreMotion to get a seven-day activity assessment) and health data stores
such as HealthKit and Google Fit, which may be populated by a variety of wearable monitors,
apps, and medical record sources in fields such as steps, HR, blood pressure, and health record.
Some manufacturers, like Fitbit, do not support these common health data platforms and require
either specific code in order to integrate with their APIs or a third-party app in order to sync the
data. In 2016, Apple released the CareKit framework for mHealth apps that can start with clinical
encounters. Patients can track their care plans (with activities such as taking a medication, chang-
ing a wound dressing, or meditating) with the Care Card module, monitor their progress through
surveys and device data with the Symptoms and Measurement Tracker, see the relationship be-
tween treatment and progress with the Insight Dashboard, and share their data with care teams
with the Connect module.

With government, academic, and commercial groups creating platforms to enable nontechnical
investigators to build cross-platform study apps, the number of mHealth trials is expected to pro-
liferate (47).These platforms rely on web forms that allow the surveys in the app to be customized.
They also enable data to be collected from wearable monitors, although this is typically restricted
to devices that can write to HealthKit. One such platform,MyCap (https://www.projectmycap.
org), offers customized web-based interfaces that interact with REDCap to capture research
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outcomes on mobile devices. Another platform, Thread (https://www.threadresearch.com), of-
fers multiple remote patient research approaches, integrating traditional research tools into mo-
bile platformswith the goal of performing clinical research whileminimizing the burden of clinical
visits. Medable (https://www.medable.com) offers a HIPAA (Health Insurance Portability and
Accountability Act)-compliant backend as a service and has created no-code-required solutions
to create ResearchKit (Axon) and CareKit (Synapse) apps. Similar platforms are offered by Over-
lap Health (https://www.overlaphealth.com/) and Zendra Health (https://www.zendrahealth.
com). The US Food and Drug Administration’s (FDA) Sentinel Initiative has sponsored the de-
velopment of the similarly featured MyStudies App (https://www.fda.gov/drugs/science-and-
research-drugs/fdas-mystudies-application-app), which is capable of being fully compliant
with Title 21 21 of the Code of Federal Regulations, Part 11, and is being used to collect data
in several live clinical trials. Pattern Health (https://pattern.health/) offers a platform that has
dashboards not only for researchers to design their studies but also for clinical and care team
members to track participants.

TRANSLATION: MONITORING CARDIAC STATUS IN PRACTICE

Monitoring Cardiac Status for Prevention

Monitoring patients to prevent future injury and/or illness has many different applications. Tradi-
tional monitoring for secondary prevention includes themonitoring of anyone with cardiovascular
disease with the aim of preventing further events.These efforts are typically as part of cardiac reha-
bilitation (CR) and cardiac maintenance programs.Other efforts are related to monitoring special
populations, including those who may not be able to travel; passive monitoring for population-
sized studies on heart rhythm; real-time monitoring of patients on continuous left ventricular
assist device (LVAD) therapy; and integrating monitors in population-scale mHealth preventive
health programs.

Cardiac rehabilitation and cardiac maintenance programs.CR and cardiac maintenance pro-
grams have led the way in implementing mHealth to increase healthcare utilization and improve
outcomes. These programs are effective but underutilized in the secondary prevention of CVD,
and increasing utilization is an important goal in healthcare (48–51). The Million Hearts® ini-
tiative (https://www.millionhearts.hhs.gov) from the CDC (Centers for Disease Control and
Prevention) is an educational initiative designed to prevent at least one million heart attacks and
strokes over five years (2017–2021) by increasing participation in CR from 20% to 70%, which
is projected to save around 25,000 lives (48). The main barriers to participation in CR and car-
diac maintenance programs are transportation and scheduling problems (9, 10, 12, 52). Wearable
monitors integrated with mHealth platforms could increase utilization and improve monitoring,
making CR available to more patients by alleviating these barriers (53). One of the strategies to
achieve these goals is to use text messaging and feedback fromwearablemonitors,which are simple
interventions that have been shown in a study by Lounsbury et al. (54) to increase CR attendance
by 10%. In this study, researchers offered patients entering CR the opportunity to receive three
to five text messages per week containing information about their heart health and asking patients
about their body weight, minutes of exercise, blood pressure, and adherence to medication. The
study showed 10% higher participation in the text message group than in the group receiving
traditional CR (61.5% versus 50%, p = 0.01), and among those who completed the study, the text
message group completed significantly more sessions (31.4 versus 25.3, p= 0.01). Considering the
simplicity of the trial, these data convincingly support the potential of mHealth communications
to change health behaviors.
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Remote monitoring for home-based prevention of cardiovascular disease.Dansky et al. (55)
observed that remote monitoring of 284 heart failure patients led to improvements in rehospi-
talization, symptoms related to sodium and fluid intake, and medication effectiveness, but not in
PAL status at 60 days after discharge. The observed improvements did not persist after 120 days.
The authors suggested that the observed nonsignificant trend at 120 days may be significant given
a larger sample size. The authors concluded that timely feedback through the monitors supported
appropriate behaviors and timelymedical intervention tomanage heart failure; however, in-person
physical therapy may be needed to improve PAL. Using a similar methodology, Green et al. (56)
applied remote monitoring to 778 patients with hypertension with the goal of improving blood
pressure. Interestingly, although the group receiving monitoring and web training only had im-
proved blood pressure at 12months, adding web-based pharmacist care led to significant improve-
ments in blood pressure compared to both usual care and the group receiving monitoring and web
training without web-based pharmacist care.

In 2015, 51 studies of remote monitoring in primary and secondary CVD prevention (9 with
analyzable CVD outcome data) were subject to a systematic review and meta-analysis (57). Stud-
ies with follow-ups at 2–24 months showed a net benefit of remote monitoring of overall CVD
outcomes compared to usual care. The authors suggested that these observations were especially
linked to improvements among higher-risk populations or those targeting secondary CVD pre-
vention.There were also improvements in weight loss, body mass index, blood pressure, and LDL
(low-density lipoprotein) cholesterol for CVD in studies on primary prevention. Taken together,
initiatives that led to improvements in risk factors for CVD seen in primary prevention stud-
ies did not translate to secondary prevention, and initiatives resulting in significant reductions in
CVD events in secondary prevention studies did not translate to primary prevention. Consider-
ing that CVD events are more likely to occur in secondary prevention than in primary preven-
tion, these findings support further investigation of specific remote monitoring for different CVD
populations.

The Better Effectiveness After Transition–Heart Failure (BEAT-HF) randomized clinical trial
remotelymonitored for readmission at 180 days and 30 days, all-causemortality at 30 and 180 days,
and quality of life at 30 and 180 days in more than 715 patients with heart failure over two years.
As with other large trials on remote monitoring, the BEAT-HF trial did not find any significant
effect on all-cause hospital readmission within the first 30 or 180 days (58). However, there was a
significant effect on quality of life at 180 days.

Other novel remote monitors in cardiovascular disease prevention in special populations.
Older populations with CVD have special challenges in successfully performing in-clinic therapy
programs and visits. Pedone et al. (59) evaluated a simple combinedmonitoring/telephone support
model on 50 patients whose average age was 80 years. The mobile devices included a sphygmo-
manometer (A&D Engineering, San Jose, CA), a scale (A&D Engineering), and a pulse oximeter
(Nonin Medical, Inc., Plymouth, MN), and patients were able to use an office hour telephone-
based clinical support system. Compared to controls, patients participating in the program were
half as likely to experience all-cause mortality and hospital readmission at 180 days. The authors
attributed the success of the trial to (a) having a geriatrician leading the intervention and (b) im-
mediate ambulatory response to abnormalities in remotely monitored data. These were also im-
portant factors that have limited other studies in which remote monitoring alone supplementing
usual care has not been effective (60, 61).

In contrast to the abovementioned observations, Cakmak et al. (62) conducted a pilot fea-
sibility study aimed at creating personalized models from passive smartphone data to identify
changes in heart failure severity. The authors followed 10 patients with heart failure over one year,
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producing over 680 million samples of physical movement data, 9,000 geographic location up-
dates, and 11,000 individual social networking events. From this passive data algorithms could
predict an established measure of quality of life with 83% accuracy. Passively monitoring the clin-
ical status of patients with heart failure accurately would give clinicians a useful tool for rapid
response to deteriorating health of heart failure patients.

Lastly, in another study (63), a passive remote device with a piezoelectric sensor under a mat-
tress was used to monitor breathing, heart pumping, and body movements of patients who had
been hospitalized for heart failure. In total, 29 patients were passively recorded for 640 nights,
and the devices were tolerated by 97% of the patients. Patients who were readmitted for heart
failure had a significantly different piezoelectrically assessed respiratory rate, movement rate, and
number of hours with rapid shallow breathing, as well as amount of time spent in bed.

In conclusion, several studies have assessed a variety of technologies to remotely monitor car-
diac status as primary and secondary prevention. Using a combination of passive monitoring and
quick clinical response system to abnormalities in the remotely monitored signal may be the most
effective way to improve clinical outcomes and decrease adverse cardiac events.

Monitoring of Heart Rhythm (Arrhythmias)

Newer HR wearable monitors are capable of ongoing passive measurements such as HR vari-
ability metrics, daily activity measures, and sleep analysis (34). Cardiogram is an app that collects
and analyzes such data to detect clinical events such as atrial fibrillation (AF) (64). In addition to
optically based HR methods, other methods of analyzing HR have been developed. AliveCor’s
KardiaBand (https://store.alivecor.com/products/kardiaband) is a clinical-grade ECG wear-
able monitor that is integrated into the Apple Watch band, providing access to 30-s single-lead
ECG readings. More recently, Series 4 and newer versions of the Apple Watch have ECGs built
into the watch itself. Patch-based wearable monitors have risen in popularity, especially in clini-
cal care environments. However, a physician prescription is needed for ECG monitors that focus
on latent arrhythmia detection, such as iRhythm’s Zio patch (65) and Cardiac Insight’s Cardea
SOLO (https://www.cardiacinsightinc.com/cardea-solo). Furthermore, although the accuracy
of the algorithms is improving, electrophysiologist-trained physicians are also still necessary to
read the ECG reports from these patches. Wrist-based wearable monitors are also starting to
make advances in the detection of cardiac arrhythmia, both through integrated ECG and PPG.
Especially in AF, there are devices that have shown accuracy that is comparable to analysis by
expert electrophysiologists. FibriCheck by Qompium (Hasselt, Belgium) is the first medically
certified (class IIa) smartphone arrhythmia monitoring app for diagnosing heart rhythm disor-
ders (https://fibricheck.com). It was used in two separate prospective nonrandomized studies
and showed equivalency against ECG with a positive correlation (rs = 0.993, with a root-mean-
square error of 23.04 ms and a normalized root-mean-square error of 0.012) between the peak-to-
peak intervals from FibriCheck and the R-R intervals from the wearable ECG monitor (66, 67).
AliveCor’s heart monitor device (http://www.alivecor.com) derives a single-lead (lead I) ECG
signal from two sensors and three algorithms. The approach has reported a sensitivity of 98%
and a specificity of 97% for detecting AF compared to traditional 12-lead ECG read by a trained
cardiologist (68, 69).

Efforts are currently underway to test the utility of this wearable monitor in an intervention
affecting clinical outcomes in a real-world setting; the iHEART (iPhone helping to evaluate AF
rhythm through technology) study is a randomized controlled trial that will enroll 300 participants
with AF to receive a smartphone with an ECG app andmotivational text messages or usual cardiac
care (70). The investigators will assess clinical outcomes, quality of life, quality-adjusted life-years,
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and disease-specific knowledge after six months to test the efficacy of themHealth program.Other
technologies are currently being investigated using the PPG signal of a smartphone to detect atrial
arrhythmia.

Chan et al. (71) tested the ability of the standalone smartphone Cardiio Rhythm (Cardiio, Inc.,
Cambridge, MA) PPG app to detect AF in patients with high risk of AF. Patients were assessed
with a single-lead ECG, then had three PPG waveforms measured by pressing a fingertip against
the smartphone camera and assessed by an app running on the smartphone. The Cardiio Rhythm
PPG app assessed AF in this population of 1,013 subjects (28 with AF) with a sensitivity and
specificity of 92.9% [95% confidence interval (CI) of 77–99%] and 97.7% [95% CI 97–99%],
respectively (71). Although these preliminary data are promising, real-world data (e.g., out of the
clinic, free-ranging) are still lacking, and caution must be used when assessing data from these
devices (72).

Another clinical population at high risk for cardiac arrhythmia and clinical deterioration are
patients with congenital heart disease. Patients with congenital heart disease also require frequent
follow-ups to assess clinical status and progression of disease.Koole et al. (73) investigated whether
remote monitoring could enable swift therapeutic response and detect new diagnosis in 109 pa-
tients with congenital heart disease. They monitored for recurrences and new diagnosis of ar-
rhythmia, hypertension, and heart failure and evaluated adherence and patient experience using
questionnaires. As with other studies, remote monitoring was supplemented with a clinical staff
that would contact the patients directly if necessary. After completing a median follow-up time per
patient of 12 months, the authors were able to respond quickly to the targeted symptoms, and the
program was well accepted by the patients and practitioners. In total, 77% of patients who started
with weekly assessments were able to continue with an adherence rate greater than 70%. In this
and other patient groups who are at high risk of arrhythmia and require frequent follow-ups, this
type of program may decrease disease progression and risk of adverse cardiac events.

With the ubiquity of smart watches, the ability to monitor arrhythmia using the smartwatch
PPG in these devices may offer an enormous opportunity to prevent adverse cardiac events on a
large scale. Koshy et al. (74) evaluated the rhythm of 102 hospitalized patients each for 30 minutes
with continuous ECG and simultaneous smartwatch HR monitoring. Both devices showed good
agreement to ECG in sinus rhythm and atrial flutter but underestimated HR in AF, leading to
the observation that although the devices may underestimate HR in AF at low HR (<100 bpm),
tachycardic readings on wearable devices occurring at rest may be suggestive of an underlying
atrial arrhythmia.

In patients with a history of AF, early detection after cardioversion or ablation is important
for guidance of therapy. Rozen et al. (75) investigated the diagnostic accuracy of an mHealth app
in 98 patients pre- and postcardioversion. The Cardiio Rhythm mobile app uses an iPhone cam-
era to take multiple finger pulse recordings; in the current study three 20-s measurements were
performed before and after cardioversion, and rhythms were designated as AF if two out of three
measurements were sufficiently irregular. Compared to a 12-lead ECG interpreted by two car-
diologists and one senior electrophysiologist, the app correctly identified the presenting rhythm
in 93% (89/96) and 92% (80/87) of the patients and pre- and postcardioversion, respectively. Al-
though the study was limited to a population with known AF at the time of presentation, the study
shows a high accuracy of detecting AF versus sinus rhythm in a controlled environment where the
accurate assessment of rhythm has high clinical importance (75).

In a population study on the ability of a smartwatch to passively detect AF, Tison et al. (64) en-
rolled 9,750 participants (347 with AF) to develop the detection algorithm and 51 patients with AF
undergoing cardioversion who served as an external validation cohort. Heuristic pretraining was
used to train a deep neural network based on approximations of R-R interval and validated against
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12-lead ECG. The neural network was trained on more than 139 million HR measurements and
had a sensitivity and specificity of 98% and 90%, respectively, against external validation and 68%
for both against self-report. This shows proof of concept that combining PPG and deep neural
network seems to be fairly precise compared to 12-lead ECG (64).

Recently Perez et al. (76) reported the Apple Heart Study, , which is by far the largest study
to assess arrhythmia detection using a wearable monitor and therefore adds substantially to the
literature. The study intermittently and passively collected PPG data from optical sensors of the
Apple Watch from 419,297 participants over eight months. The device classifies pulses as either
regular or irregular based on a proprietary algorithm that bases regularity on interpeak intervals
plotted on a Poincaré plot and degree of dispersion.Applying thesemethods, 0.52%of participants
received an irregular pulse notification. One of the limitations of the study was a relative inability
to detect paroxysmal and infrequent AF on a subsequent ECG patch due to its transient nature.
This is reflected in the fact that 34% of those who received notifications from the watch had AF
on subsequent ECG patch. Unfortunately, the return rate of patches from those who received
notifications for follow-up was only 450 out of 2,161 (21%). Very few participants were notified
by the watch of an irregular pulse; of those notified, about a third had AF as assessed by ECG
patch, and concordance of AF between the positive notifications and the patch was 84% (95%
CI 76–92%) (76). The low adherence to follow-up was also reflective of earlier studies on remote
monitoring; therefore, much work still needs to be done to increase participation in order for
these programs to be successful in improving health and preventing cardiac disease and injury.

Finally, there are some published cases of mHealth technology correctly detecting AF in in-
dividuals with an ICD. Doshi et al. reported the case of a 57-year-old golfer with a history of
cardiomyopathy who had an ICD placed and wore a smartwatch (77). While golfing the individ-
ual received a haptic signal meant to alert the user of AF. This episode of AF was confirmed the
next day through scheduled ICD device interrogation, during which it was confirmed that the
individual experienced AF which had spontaneously converted back to sinus rhythm. Overbeek
et al. (78) reported a case in which an upper-middle-aged female was diagnosed with complete
heart block after being continuously alerted by her Apple Watch for several hours of a low HR.
The individual presented with a baseline HR of 37 bpm and ECG displayed complete heart block,
for which a dual-chamber PMwas implanted.These real-life examples show the potential benefits
of widespread use of wearable technology in detecting life-threatening cardiac arrhythmias.

Monitoring Cardiac Status with Left Ventricular Assist Device Support

Patients with LVADs need permanent support until the device can be removed due to eventual
recovery or transplant. As well as their regularly scheduled appointments for heart failure, they
also need to closely monitor the device itself for cleanliness and function.

Although technology for remote monitoring has been available for the last decade with the
HeartAssist 5® system [MicroMed Cardiovascular, Inc., Houston, TX (79)], continual monitor-
ing of parameters from the twomost frequently implanted LVAD pump systems,HeartMate II/III
(Thoratec Corp., Pleasanton, CA) and HeartWare (Heartware Int., Framingham,MA), is not cur-
rently possible. Although the necessary interfaces are already integrated in the devices, they have
not been cleared for telemonitoring due to the prohibition of remote treatment, the detectability
of medical services, and liability issues (on the part of the treating physicians, but also on that
of the manufacturers regarding technical defects) (80–83). For these devices to be effective, the
LVAD should be interfaced, and either through mHealth tools or a patient–clinician interface,
blood pressure, heart rhythm, coagulation, and other parameters (e.g., photos of infection and
PAL) should be continually available to clinicians (83).
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The largest telemonitoring cohort of LVAD patients was recently reported by Hohmann et al.
(84). Eleven patients who had either the HeartAssist 5 or aVAD (ReliantHeart, Inc., Houston,
TX) LVAD with telemonitoring were included and followed for a median follow-up time of 2,438
patient-days. Pump performance indexes of outflow graft blood flow, pump speed, and power con-
sumption were transmitted on 15-min running average values over a cellular network to medical
personnel. Participants had remote monitoring on top of routine in-clinic office visits. Remote
transmission of system information was successful 74% of the time, illustrating a major limitation
of using cellular networks.However, the study was successful in demonstrating timely recognition
of clinically important abnormalities, which alleviated the need for complicated LVAD exchanges
and hospital admissions. Furthermore, the authors reported that they were able to interpret wave-
forms from the monitors to evaluate arrhythmias, volume depletion, suction events, and aortic
valve opening. There are still few LVADs with remote monitoring capability, but the advances
in technology and increase in number of patients living longer with heart failure and device sup-
port seem to warrant more research in the effect of LVAD monitors in improving outcomes and
reducing the cost of ongoing LVAD therapy (85).

Large-Scale Monitoring of Cardiac Status Using mHealth Strategies

Using some of these abovementioned strategies, there has been progress toward viable mHealth
systems to population-level preventive health. The goal of these strategies is to inform and mea-
sure the effect of therapy and interventions.

The MyHeart Counts Cardiovascular Health Study (https://itunes.apple.com/us/app/
myheart-counts/id972189947?mt=80) is a smartphone-based mobile cardiovascular health re-
search study that was launched alongside ResearchKit (Figure 1). The study uses mHealth ca-
pabilities of smartphones and HealthKit-enabled wearable monitors (currently watches but the
platform can accommodate any device that can transmit data wirelessly) to assess daily activity
measures (with and without heart disease), fitness, and, through questionnaires, cardiovascular
risk factors. The study has collected activity and cardiovascular health data on thousands of par-
ticipants (>58,700 have enrolled) and has providedmuchmore quantitative data on the type, dura-
tion, and intensity of daily activities based on accelerometry recorded from the phone core motion
processor. Results from phase I of the study were published in January 2017 (86). Primarily, 82%
of those enrolled uploaded data to the wearable monitors and 42% completed four of the seven
days of motion data collection. Although efforts need to be made to increase participation in such
programs, the results show that large-scale data can be gathered in real time from mobile devices,
stored securely, transferred, deidentified, and shared securely. For example, the largest dataset for
6-minute walk test (6MWT) performance was collected using the platform in a matter of weeks
by replacing a manual distance measurement with a participant-initiated test that used GPS, ac-
celerometry, and pedometers. Patients only needed to press a button on their smartphone and a
6MWT was initiated, and the user was prompted to start walking and stop after six minutes. The
data were automatically calculated, saved, and transmitted without any effort from the user, and
the data could be seen and analyzed on the smartphone or another remote device. This was able to
not only measure distance but also provide additional information such as gait. The second phase
of the study introduced a randomized controlled clinical trial (https://clinicaltrials.gov identifier
NCT03090321) of four different physical activity prompts and their effect on increasing PAL in
the study population as measured by change in step count,which was measured by the phone’s mo-
tion coprocessor or a wearable monitor like the AppleWatch that can write to HealthKit (86–88).
Data from the subset of MyHeart Counts participants who opted to share broadly are available
on a data portal to broadly defined qualified researchers (87).
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Figure 1

Anatomy of a mobile health clinical study mobile application (app) showing screens from the mobile app
used in the MyHeart Counts Cardiovascular Health Study.

Advances in the collection and interpretation of complex cardiac biomarkers have made efforts
to apply data collected on cardiac health a reality.Ongoing investigations such as Verily/Alphabet’s
Project Baseline (https://www.projectbaseline.com) and the NIH’s All of Us (https://allofus.
nih.gov) are currently collecting self-reported data, data recorded by mobile devices or other
sensors, EMRs, biospecimens, and data recorded by medical devices from a very large sample
(>1 million individuals) to discover paths toward delivering precision medicine (89, 90).

FUTURE APPLICATIONS OF WEARABLE MONITORS
IN HEALTH AND FITNESS

Over the last 20 years, wearable monitors have become ubiquitous in Western society, and devel-
opers are constantly producing novel ways to use these devices in health and fitness. Recently, the
Centers for Medicare and Medicaid Services issued guidance to enable reimbursement to health-
care providers for certain remote patient monitoring and telehealth services (91).
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Although the applications of monitoring and intervening via mHealth platforms are showing
promise and will surely change the landscape of medicine and science in sports and exercise in
the future, research in wearable monitoring is trending toward using them as tools of precision
medicine. Future studies will discover algorithms for how data from these monitors may be
predictive of a person’s molecular state. Lim et al. (92) studied 233 normal volunteers for relation-
ships between biomarkers taken from wearable monitors and CVD risk. Resting HRmeasured by
wearable monitors was shown to have strong associations to CVD risk factors and was comparable
to HR measured clinically. It was shown that several steps measured by wearable monitors were
negatively correlated to markers of cardiac disease. The upper quartile of PAL was predictive of
exercise-induced (physiological) cardiac remodeling and the identification of sphingolipid species,
which are associated with physical activity and insulin resistance, as well as other diseases (93).
Furthermore, the authors used a combination ofmetrics fromwearablemonitors to stratify the co-
hort into behavioral clusters with distinct characteristics, which could be useful in further research
into the relationships between an ever-growing number of biomarkers available from wearable
monitors and health status. These would be useful for early detection of changes in an individual’s
personal cardiovascular and metabolic disease (CVMD) risk profile, potentially resulting in more
timely detection and intervention of CVMDs. Furthermore, there is an ever-increasing amount
of biomarker data related to cardiovascular illness available to integrate into mHealth platforms,
such as data from an ankle swelling sensor to remotely monitor edema (94); a toilet seat cover that
monitors blood pressure, stroke volume, and blood oxygenation (95); and several devices for the
measurement of pulse wave velocity (96). All of these novel tools may be integrated in the future
into a smart medical home (Figure 2) that could potentially provide automated notification to
a healthcare team, including the exact location of the patient in case of a medical emergency
(97).

Remote monitoring systems will need to translate into programs that can show clinical im-
pacts on patient care and merit reimbursement. Leaders here include Oschner Health System, as
mentioned above, as well as Livongo and Omada Health (https://www.omadahealth.com), who,
after first having transformed the diabetes prevention program into a digital health program, now
offer solutions in weight loss and the cardiovascular space (98, 99). Importantly, these and other
mHealth programs need to be evaluated thoroughly before they can be translated and eventually
applied in a preventive or clinical population environment. However, the future of mHealth in an
environment of precision medicine may include combining a large number of biomarkers from
wearable monitors with the ability to stratify populations into risk categories. This would allow
for more precise interventions based on these biomarkers during early disease.

As with all new technologies, issues related to data quality, standardization of methods and
output, protection of personal health information, and cost will need to be addressed. Specifically,
it is very difficult to assess wearable monitors and create standards in an environment where the
technology is advancing faster than the community at large can validate them.

To address the need for standards and regulation of mHealth data, the European Union has
created the General Data Protection Regulation (GDPR), which mandates that wearable users be
made aware of what data are being accessed and of any transfer of personal data to other apps or
entities (100). GDPR implements restrictions on the amount of data collected, the accessibility
and necessity of data required, the level of processing, and the storage times. Under GDPR, a data
privacy impact assessment (DPIA) is required for enterprise adoption, which would allow for the
sharing of data via cloud computing. The DPIA is a process to help identify and minimize the data
protection risks pertaining to the use of wearables (100).

Within the United States, the FDA normally does not regulate low-risk products that pro-
mote a healthy lifestyle including fitness bands and smartwatches (101). It is important to note a
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Figure 2

A pictorial representation of wearable (a) and home-based (b) devices that can measure physiological,
behavioral, and environmental health data. Abbreviation: ECG, electrocardiogram. Figure adapted with
permission from Reference 109; copyright 2018 by the authors, some rights reserved; exclusive licensee
American Association for the Advancement of Science.
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difference in the FDA’s regulations. The most advanced regulatory status is FDA approval, which
is done only for class III products—technologies that might have higher risk but also higher ben-
efits. For example, AliveCor’s Kardia and QardioCore, both class III devices, have been granted
approval by the FDA,while AppleWatch, a class II product, has only been granted FDA clearance.
This distinction of different classes represents a move forward by the FDA to provide regulatory
oversight suitable for different tiers of devices. To address security and privacy concerns for data
collected through wearable devices, service providers partnering with wearable entities must ad-
here to HIPAA and sign business associate contracts (102).

As mHealth data interoperability becomes increasingly important for providers, developers,
and patients, attention to data output standardization has become a pressing concern. Although
organizations such as the IEEE (Institute of Electrical and Electronics Engineers) and Open
mHealth developed schema-based standards in the early 2000s, adoption has been slow (103,
104); experts agree that quality assurance approaches for data output have not yet been univer-
sally adopted by the community (105). Reasons for the absence of widespread quality assurance
guidelines may include a lack of digital health literacy, challenges of wearable accuracy, difficulty
in data interpretation, and difficulties of data integration with current EMR systems (105). The
Fast Healthcare Interoperability Resource (FHIR) is a data standard developed by Health Level
Seven International to address the difficulties of data standardization with EMRs (106). FHIR
consists of protocols for joining disparate systems together with the goal of seamless, on-demand
information exchange and interoperability for the healthcare system. Although FHIR is a rela-
tively new standard, it has enjoyed substantial early uptake, and as the complications of trans-
parency and data sharing issues are currently being standardized and addressed, the benefits of
having health information quickly and easily accessible to users and healthcare providers seem
worth the costs of establishing new methods to overcome some of these challenges. Projects are
also underway to support OpenmHealth schemas within an FHIR environment (107, 108). Lastly,
some of the challenges involved in patient-generated health related to digital health literacy, wear-
able accuracy, difficulty in data interpretation, and lack of PGHD integration with EMR sys-
tems must be considered in the development of guidelines for the collection and use of PGHD
(105).

CONCLUSION/PERSPECTIVE

The use of wearable monitors has been limited to the collection of data on a limited number of
metrics, largely by the scientific community for research purposes. As technology has improved
and the consumer market has been inundated with a multitude of monitors, a shift has occurred
in which individuals always have access to a large amount of health and health behavior data. As
with other precision medicine tools (e.g., genetic testing), the amount of data available to con-
sumers is greater than users’ ability to interpret that data. Efforts such as the device validation
datahub (https://precision.stanford.edu) that are designed to standardize the validation of wear-
able monitors are starting to create an environment in which clinicians and researchers may apply
these devices to mHealth platforms to more precisely guide individuals in their health and fitness
goals. In the future, wearable monitors of cardiovascular health will likely play a large role in the
prevention of CVD and mortality.
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