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Abstract

Large-scale genomics demands computational methods that scale sublin-
early with the growth of data. We review several data structures and sketch-
ing techniques that have been used in genomic analysis methods. Specifically,
we focus on four key ideas that take different approaches to achieve sublinear
space usage and processing time: compressed full-text indices, approximate
membership query data structures, locality-sensitive hashing, and minimiz-
ers schemes. We describe these techniques at a high level and give several
representative applications of each.
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1. INTRODUCTION

Genomics sequencing capacity and throughput have been growing rapidly (1). Short read se-
quencers such as Illumina or long read sequencers such as Pacific Biosciences’ SMRT (single-
molecule real-time) sequencing or Oxford Nanopore Technologies’” MinION and PromethION
can sequence tens to hundreds of billions of nucleotides per day, at an ever-decreasing cost per
base. Driven by falling costs and increasing availability, the number of applications using sequenc-
ing data has been increasing rapidly. We have not only a human reference genome but also the
genomes of thousands of individuals from across the world (2, 3). Large sequencing projects have
also been undertaken to profile the genomes and expression profiles of many cancerous cells (often
paired with sequencing from healthy cells of the same individual) (4). In the realm of gene expres-
sion profiling, RNA sequencing (RNA-seq) (5) has replaced microarrays in many cases, with twice
as many RNA-seq submissions to GEO (Gene Expression Omnibus) in 2018 (6), and the amount
of RNA-seq data produced is also growing rapidly.

Public repositories of genomics data (7-9) have seen an exponential growth for over two
decades: The National Insitutes of Health’s Sequence Read Archive and the European Nucleotide
Archive contain close to ten quadrillion bases and are expected to double in less than two years (7,
9). As we enter the age of personalized medicine, hospitals and insurance companies will also begin
to routinely sequence patients, and they will therefore face the challenges of processing and stor-
ing vast amounts of sensitive genomics data. In addition to storage, the data must be efficiently
computationally manipulatable for further analysis to achieve the promised benefit of personal
medicine. In the medical setting, the timely processing and querying of data are even more crucial
than in a research lab environment.

The resulting large amount of sequencing data has raised new computational challenges. Cru-
cially, the approaches used to store, index, and search the data must scale sublinearly. Even a few
thousand experimental samples could quickly exceed the memory and disk capacities of modern
servers. To be practical, the runtimes and space used by algorithms for processing the data must
grow more slowly than the raw data being processed (10, 11).

Many computational techniques have been developed to meet this challenge. These techniques
enable faster and more space-efficient processing of large collections of sequence data by repre-
senting the data’s essential features, which depend on the application, using space-efficient data
structures. Some of these data structures were developed for general string data and have been
adapted and applied to biological applications. Others were specifically developed for genomics
challenges.

Four broad classes of ideas have been crucial to these efforts. The first consists of com-
pact, compressed indices that allow for efficient exact string matching within a large collection
of sequences. Techniques such as the FM-index (12) can index strings using space close to the
information-theoretic minimum, while still supporting exact search. The second class of ideas
comprises dimensionality reduction techniques, most relevantly locality-sensitive hashing (LSH)
schemes. These methods allow distances between data points to be computed efficiently but with
some error by representing each datum by a probabilistic sketch that can be compared with the
sketches of other data or queries. Such sketches, for example, support efficient nearest-neighbor
queries. The third is the broad class of data structures that support approximate membership
queries (AMQs). In many cases, sequencing data can be usefully represented as a set (e.g., of sub-
strings), and AMQ data structures allow that set to be stored in small space, at the cost usually of
both some errors and some limits on the types of operations that can be performed. A fourth class
of ideas, minimizers and local schemes, is more specific to sequence analysis and is also used to
provide reduced representations of strings for various applications.
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Although the jargon “sketch” is usually applied in the literature to only ideas of the second
class, each of these classes of ideas represents a way of sketching sequence collections, either with
or without error, using small space. The techniques support different operations with different
trade-offs, so each is suited to its own set of applications. This is a theme of much research in
bioinformatics: to find or design the appropriate, optimally sized representation that will support
a particular application.

We review these four classes of ideas and some of the specific data structures that employ
them. We give high-level descriptions of the various computational techniques and discuss exam-
ple applications that use them to make biological sequence analysis more practical (see Table 1).

Table 1  Software and related applications

Software (references) | Application(s) | Section(s)
Suffix trees and arrays software
MUMmer (13, 14) | Genome-to-genome alignment | 3.3.1
BWT and FM-index software
Bowtie (15, 16) Short read alignment 3.3.1
BWA (17, 18) Short and long read alignment 331
BLASR (19) Long read alignment 331
HISAT (20) Gapped read alignment using a hierarchy of FM-indices 33.1
SOAP2 (21) Short read alignment 3.3.1
SGA (22) Genome assembly with an FM-index 3.3.2
DBGFM (23, 24) De Bruijn graph as an FM-index 332,634
Compressive genomics software
CaBLAST (25, 26) Sequence alignment with reference compression 3.3.1
CORA (27) Alignment acceleration with query compression 331
Approximate membership query software
Jellyfish (28) k-mer counting; BF filters singleton k-mers 5.6.1
BFCounter (29) k-mer counting; BF filters singleton k-mers 5.6.1
SBT (30,31) Hierarchy of BFs for sequence search 54,562
SBT-ALSO (32) Hierarchy of BFs for sequence search 5.6.2
Mantis (33) Counting quotient filter for sequence search 5.6.2
Counting sketch software
khmer (34) minCount sketch for £-mer distribution 441
ntCard (35) ntHash sketch for £-mer distribution 4.3,44.1
LSH software
LSH-ALL-PAIRS (36) All-versus-all alignment using Hamming distance 44.2
MHAP (37) Read overlap using Jaccard index 442
MashMap (38) Long read alignment using Jaccard index and minimizers method 44.2,63.5
LSH-Div (39) Metagenomics abundance estimation using Hamming distance 443
Mash (40) Metagenomics abundance estimation using Jaccard index 4.1,443
sourmash (41) Metagenomics abundance estimation using Jaccard index 4.1,4.4.3
Minimizers methods software
minimap (42, 43) Long read alignment 6.3.2
MSPKmerCounter (44) k-mer counter using super k-mers 6.3.3
KMC (45) k-mer counter using super k-mers 6.3.3
SparseAssembler (46) Sparse de Bruijn graph for genome assembly 6.3.5
SamSAMi (47) Sparse suffix array 6.3.5
Abbreviations: BE, Bloom filter; BWT, Burrows—Wheeler transform; LSH, locality-sensitive hashing.
www.annualreviews.org o Sketching and Sublinear Data Structures in Genomics 95



96

Naturally, we are forced to omit some techniques and applications due to space constraints—most
obviously pure sequence compression techniques that aim only at reduced storage, and techniques
relating specifically to other kinds of data such as imaging or molecular interaction networks.
Many of the techniques we discuss here can be used in both streaming algorithms, where the data
can be read only once, and off-line settings. The off-line setting is currently the common one in
genomics and is the focus of this review. We have selected the techniques we cover with an eye
to their importance and their representativeness. Most of the techniques have applications (often
their original ones) beyond genomics, attesting to the general applicability of these methods.

Our aims are to broaden the appreciation of these sketching and data structuring techniques
and to provide a starting point for those interested in applying or improving on them. Each of the
four classes of ideas is the basis for multiple lines of active research: to develop new techniques,
to improve the efficiency of existing ones, and to find ways of formulating new sequence analysis
applications so that they can be profitably exploited.

2. BACKGROUND
2.1. Sequencing

Any genomics analysis considered here starts with either DNA sequencing or RNA-seq. In DNA
sequencing, the actual genomic material of the cell (chromosomes or plasmids) is sequenced (i.e.,
read by a machine) to obtain sequencing fragments sometimes called reads. Because RNA cannot
be sequenced directly with some technologies, in RNA-seq (5) the messenger RNA (mRNA) of
a cell is captured and used for complementary DNA (cDNA) synthesis, which is then sequenced.
Two main categories of sequencing technologies dominate currently: short read sequencing and
long read sequencing:

m Short read sequencing, also called next-generation sequencing (NGS) or second-generation
sequencing, generates relatively short reads (between 30 and 400 bp) with a low error rate
(fewer than 1% of the bases are erroneous, and most errors are substitutions). Common
NGS technologies include Ion Torrent™ semiconductor sequencing (48), SOLiD sequenc-
ing (49), and Illumina sequencing (50). These technologies are used for both DNA sequenc-
ing and RNA-seq. Illumina sequencing is by far the most commonly used technology in this
class.

m In contrast to short read data, long read sequencing (also called third-generation sequenc-
ing) is designed to produce long, continuous strands of sequence information at the expense
of both throughput and accuracy. The read length varies greatly from 1,000 to 100,000 bp,
with an average read length around 30,000 bp for the most recent chemistry, but with a per
base error rate of 10-15% (51, 52). The two primary technologies in this class are Nanopore
sequencing (53), which uses electric density across a nucleotide-sized gap to measure the
composition of the DNA being passed through it, and SMRT sequencing (54), which uses
fluorescent signals during the incorporation of a nucleotide to map the composition. Long
read sequencing has been used for DNA sequencing and more recently has been adapted
to RINA-seq.

For this review, we can view each technology as providing a large set of strings over a small
alphabet (typically {A, C, G, T}), where each string is sampled randomly (according to some dis-
tribution) from some unknown (set of) longer strings. Since each sequenced fragment is short,
in most applications many copies of the underlying molecule are sequenced at the same time,
providing overlapping and partially redundant views of the molecule. In a genome sequencing
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project, 30x to 100x coverage may be expected, meaning that each base is expected to be se-
quenced 30 to 100 times. This leads to even larger data sizes that motivate the development of
the techniques we discuss below. An effort to sequence a new species with approximately the same
genome size as a human may lead to a collection of 400 million fragments with a total of 90 giga-
bytes or more of raw sequence data. This is for one individual. When many individuals of a species
are sequenced, the raw data can grow proportionally.

2.2. Biological Applications

We highlight below some motivating problems that have driven the development of the new com-
putational techniques reviewed here. More in-depth discussion of these applications appears after
we introduce each technique.

2.2.1. Genome assembly. The genome assembly task is to reconstruct a species’ genome from
the sequenced fragments of its genome. The idea is to find overlaps between fragments sampled
from nearby places in the true, unknown genome. The genome assembly problem is usually broken
down into multiple subproblems that are interesting in their own right. Example subproblems
include contaminant removal (filtering out sequencing reads that belong to contaminating bacteria
rather than the target genome), error correction (flagging or fixing the errors introduced by the
sequencing technology), overlap computation (constructing the overlap graph used for assembly),
and construction of the de Bruijn graph (55) to represent the sequenced fragments. Transcript
assembly is the related task of reconstructing the sequence of the transcripts from RNA-seq reads.

2.2.2. Variant calling. The aim of variant calling is to identify the genomic differences between
a reference sequence and a sequenced individual, based on a collection of sequence fragments.
Variant calling often requires a lower depth of sequencing than de novo genome assembly.

2.2.3. Read mapping. Thisisa first step in most variant calling pipelines. We are given a collec-
tion of fragments {#1, . .., #,,} and a reference string 7", and our goal is to identify the best matching
(typically under the edit distance or some appropriately defined alignment score) substring of T
for each of the #;. This problem arises when sequencing a new individual of a species for which a
reference genome (7') is already known. Because of algorithmic decisions optimized to particular
types of sequencing data, most sequence mappers only tackle one data type, although some tools
are well suited to multiple tasks.

2.2.4. Sequence alignment. The goal of the sequence alignment problem is to find similar
sequences, generally to determine if they are related in some way. A system such as BLAST (basic
local alignment search tool) (56) or its compressive version CaBLAST (compressively accelerated
BLAST) (25, 26) solves the problem: Given a set of sequences {t1, .. .,#,} and a query ¢, find the
t; and their substrings that are significantly similar to a substring of 4. The software additionally
reports the list of differences between the similar substrings of the #; and of 4. Variations require
the entirety of ¢ to be matched. When there is only one sequence in the set (i.e., 7 = 1) and #
and ¢ both represent entire genomes, this is the genome-to-genome alignment problem.

2.2.5. Experiment search. Let R = {Ry,...,R,} be a set of experiments, where each R; is a set
of short read fragments. The experiment search problem aims to find the subset of experiments
from R for which it is likely that a query sequence ¢ was among the sequences sampled. This
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problem has become more important recently, as larger collections of unassembled short read
experiments have been deposited in public databases.

2.2.6. Metagenomic abundance estimation. In metagenomics, a large number of species from
a common environment are sequenced together. The goal is to identify from this mixture which
species or genes are present in what relative quantities in the environment.

3. COMPRESSED STRING INDEXES

The fundamental string processing problem in genomics is exact string search: Given strings T
and P, with |T| > |P|, find the locations in T that match P exactly. This problem forms the basis of
many approaches for sequence comparison and sequence mapping. To achieve speed, one typically
indexes 7" by creating some data structure that allows various queries P to be processed quickly.

The suffix tree (57, 58), suffix array (59), enhanced suffix array (60), compressed suffix array (61),
and FM-index (12) are all examples of full-text indices supporting exact string search. Although
there are considerable differences in the manner in which these data structures work, they are
all driven by the same underlying concept of allowing substring search by organizing all of the
suffixes of the text. Since every substring of the textis a prefix of some suffix of the text, organizing
and indexing the suffixes is sufficient to allow efficient (in the case of most of these structures,
asymptotically optimal) pattern search.

This line of work also illustrates the need for sublinear algorithms: Earlier work on suffix
trees uses O(|T'| + |P|) time for queries, but for modern data sizes this is too large. Suffix arrays,
compressed suffix arrays, and the FM-index represent a line of work to reduce the space usage to
the information-theoretic lower bound.

In the following, as is customary, when indexing 7 elements, we assume that manipulating
pointers (memory words) of 1g(n) bits takes constant time and constant space. In that sense, the
suffix tree and suffix array are linear data structures, as they require O(z) memory words for a text
of  characters.

3.1. Suffix Trees and Suffix Arrays

The discovery of suffix trees is considered one of the defining discoveries in string algorithms. A
suffix tree stores a text 7" using O(|T'|) space, it is constructed using O(|T'|) time [“The algorithm
of the year,” according to Knuth (58)], and it can answer a myriad (62) of text search queries in
optimal asymptotic time. Once built, a suffix tree can determine if 7" contains P in time O(|P|). If a
pattern occurs k times in the text, then the suffix tree can enumerate all occurrences in O(|P| + k)
time, which is asymptotically optimal considering that the input must be read and the output
must be written. Combined with the linear-time construction of the suffix tree, this proves that
linear-time exact matching, O(|T'| + |P|), is possible.

While the suffix tree is still a conceptually important tool when thinking about string problems,
it is rarely used in practice. The constant hidden in O(|T'|) is often too large in practice [around
20 bytes per node in the tree are typically required during construction for DNA alphabets (60)].
In contrast, the suffix array (59) can be constructed and stored in linear space, but with a more
practical constant factor. However, it provides for asymptotically slower search than the suffix
tree—pattern search is O(|P|log|T), or O(|P| +log|T) if one makes use of external longest
common prefix (LCP) arrays. However, as demonstrated by Abouelhoda et al. (60), the enhanced
suffix array, which consists of the suffix array augmented with external tables representing various
components of the suffix tree topology, can answer all of the same queries as the suffix tree with

Margais et al.



text T: MISSISSIPPI$

IPPISMISSISS 5
ISSIPPISMISS 8
ISSISSIPPISM 11
ISMISSISSIPP 2
MISSISSIPPIS 0
PISMISSISSIP 3
PPISMISSISSI 4
SIPPISMISSIS 6
SISSIPPISMIS 9
SSIPPISMISSI 7
SSISSIPPISMI 1
$MISSISSIPPI 1

0

BWT(T): SSMP$PISSIII

Figure 1

Array A of Equation 1 for the classical example, “MISSISSIPPL.” The suffix array is the right column of
indices in blue. The Burrows-Wheeler transform (BWT) is the sequence of the red letters in the last column
of the sorted rotations of the text.

the same asymptotic complexity. In such cases, the enhanced suffix array is preferred to the suffix
tree, as it can be constructed and stored in less space and tends to provide memory access patterns
that are practically more cache friendly.

The suffix array of T' can be defined as follows. We assume that 7" ends with a special charac-
ter “$” not present elsewhere. Define the right rotation operation as R(T) = T'[n]T[l...n — 1],
where 7 is the length of T'. Construct the array (see Figure 1)

A= [RUT)1)]oips L
consisting of all the pairs with right rotations of 7" and the amount of the rotation. Sort the array
A using the lexicographic order of the first element of the pairs, the rotations of 7". The suffix
array SA(T') (59) is the list of the second element of the pairs in A4, i.e., the list indices of the
suffixes of 7" in lexicographic order. Thatis, if i < j, the suffix T[SA(T)[7] ...n — 1] compares less
lexicographically than the suffix T[SA(T)[/] . . .# — 1]. The size of SA(T') is O(n) words. Searching
for a substring in 7" using only the suffix array can be done in O(|P|log(|7’|)) time using a binary
search on SA(T'). It can be improved to search in time O(|P| + log(| T'|)) by the use of an additional
data structure (LCP arrays).

3.2. The FM-Index and the Burrows—Wheeler Transform

Even suffix arrays are often too large to be practical for genomic scales, and they do not grow
sublinearly. The FM-index (63) was called opportunistic by its creators, as it takes advantage of the
redundancy of the input data to compress the data to store it, while retaining the ability to query
the data structure with similar time guarantees as the uncompressed equivalent data structure.
That is, the space requirement is O(nH(T')) + o(n), where H(T') is the kth-order entropy of the
text T" (for any k). The kth entropy is a measure of the information-theoretical minimum amount
of space needed to encode each base of the sequence. In that sense, and up to a lower-order term,
the space efficiency of the FM-index, as well as the compressed suffix array (61), is optimal.

Even though it is called “the” FM-index, it is rather a family of implementations with slightly
different space and time guarantees, all starting from the Burrows—Wheeler transform (BW'T)
(64; see below) and space requirement bounded by the entropy of the text (whether Hy or H; for
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some range of k). See Reference 65 for a review of possible implementations. The efficiency of
the FM-index and the compressed suffix array relies in part on the BW'T.

Using the same array 4 defined in Equation 1, BWT(T') is the string of the last characters of
the strings in A in the order they appear in A4 (see Figure 1). The size of BWT(T) is O(|T'|). The
BWT(T') has many interesting properties. In particular, the transform is reversible—it is possible
to recreate 7" from only BWT(T). Counting the number of occurrences of the pattern Pin T can
be performed in O(|P|) time using only the BWT(T) and some small auxiliary information. The
BWT has a few advantages compared to the suffix array: The BWT or associated information is
usually smaller than the suffix array, and exact matches can be found without keeping the original
text 7. However, the BWT cannot determine locations of matches without, for example, a sampled
suffix array (12, 65).

The string BWT(T') is amenable to further compression with standard compression tech-
niques. The original FM-index implementation (63) uses a sequence of move-to-front coder (66),
run-length coding, and variable-length prefix coding to compress BWT(T') to obtain a string of
size O(nH(T)). In addition, the FM-index saves extra information, using only o(z) space, so that
for each query, it only needs to decode a small length of the compressed BWT. In some sense,
the BWT encodes the same information as the suffix array, but in a pointerless manner (67) that
can be more easily compressed while preserving the ability to recover the original string and run
queries against it.

Transformations similar to BW'T exist for objects besides strings. For example, the XBW trans-
form (67) encodes trees, and encodings exist for directed acyclic graphs (68), planar graphs (69),
and subgraphs of the de Bruijn graph (70).

3.3. Applications

The compressed text indices were originally developed for the problem of pattern searching in
a text. The problem of sequence alignment is a more complicated version of pattern searching,
and therefore these indices are naturally used in this context. Other applications such as genome
assembly also make good use of these data structures.

3.3.1. Sequence alignment and read mapping. Sequence alignment and read mapping are the
most natural problems in which to apply compressed string indexes. The most common heuristic
in sequence alignment is seed-and-extend, where first the aligner finds stretches of exact matches
between the text and the queries, called seeds, then nearby seeds are clustered together, and the
alignment is extended between the seeds. Many aligners follow this heuristic, with many variations
on which seeds to use, how to cluster them, and how to extend the matches. Variant calling and
transcript assembly rely on these aligners as the first step of their work.

For example, the MUMmer3 (13) package, which is mostly used for aligning genome-to-genome,
uses a suffix tree to find the seeds. Groups of closely spaced seeds are extended with dynamic
programming. The newer and backward-compatible MUMmer4 (14) uses a suffix array to find the
seeds.

Many read mappers use ideas related to the FM-index, although in practice many of them only
take advantage of linear space variants (rather than sublinear variants). Even this provides a smaller
constant factor overhead than suffix arrays. To align short reads to genomes, Bowtie (15) uses an
FM-index to minimize the memory footprint and speed up ungapped search. It combines the
FM-index with a heuristic to permit a small number of mismatches. Bowtie 2 (16) includes both
an FM-index and a dynamic programming element to handle longer inexact alignments without
compromising speed. Other popular short read aligners that use the BWT and FM-index include
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SOAP2 (21) and BWA (17). BWA-MEM (18) and BLASR (19) also employ the FM-index for
aligning long reads.

Although the FM-index is relatively small and theoretically fast for exact searches, it suffers
from poor cache locality: Every extension by a base looks at a different—and possibly distant—
location of the BWT, typically incurring an expensive cache miss. To speed up search, the splice-
aware aligner HISAT (20) uses a hierarchy of FM-indices. One large FM-index indexes the entire
genome, while many small FM-indices (approximately 48,000 for the human genome) contain a
small part of the genome. Each small FM-index is small enough to fit in the cache of a modern
CPU. HISAT aligns small chunks of a read using the large (and slow) FM-index to find candidate
matching locations. It then selects the appropriate small FM-indices to quickly extend the matches.

The “compressive genomics” framework (25, 26) exploits redundancies in the biological data
to reduce the space required to store and the work required to analyze the data. In this framework,
the time to perform a similarity search is bounded by the entropy and the fractal dimension of the
high-dimensional data.

The CaBLAST suite of tools (25, 26) is functionally equivalent to the sequence aligner BLAST
tools (71) but is faster and more memory efficient. As many sequences stored in a database are
similar, CaBLAST splits the data into two databases. The coarse database contains the unique
elements from the original database, while the remaining redundant elements are stored as point-
ers to a unique element and a list of differences.

The CORA software (27) is an accelerator for read alignment programs, such as BWA (17,
18) and Bowtie 2 (16). Instead of only using the redundancy in the database, CORA also uses the
redundancy in the input query data. For example, in the problem of aligning sequencing reads to
a genome, many of the input reads are very similar, as they are sequenced from the sequence part
of the genome. CORA extracts common features of the input sequences, uses an external aligner
like BWA or Bowtie 2 to align these features, and deduces the alignment of all the reads.

3.3.2. Genome assembly. SGA (string graph assembler) (22, 72), an assembler for short reads,
uses an FM-index at every step of the assembly pipeline. The first FM-index is constructed from
the raw sequencing reads. The reads are partitioned in multiple groups and the FM-indexes
are computed in parallel on each group to speed up construction. The FM-indexes are then
merged (73). Directly using this FM-index, the SGA error corrector replaces a base in a read
that is part of a low-coverage k-mer if replacing that base unambiguously improves the coverage
of that #-mer. Then, using another FM-index, the contained reads are filtered out and the reads
are merged to generate the string graph (74).

The DBGFM data structure (23) represents a de Bruijn graph used in genome assembly as an
FM-index. This data structure was tested with the ABySS genome assembler (75).

4. SKETCHING AND LOCALITY-SENSITIVE HASHING
4.1. Locality-Sensitive Hashing

LSH was first introduced in the context of the nearest neighbor problem (76). In this problem, the
goal is to efficiently search a set S of points in a high-dimensional metric space. A query consists of
a point p in the same metric space, and the algorithm must return the point from S that is closest
to the query point p. The approximate version of this problem relaxes this requirement and allows
the algorithm to return a point not too far from the closest point. When the dimension of the
metric space is high, this search is very expensive. LSH methods are probabilistic methods that
quickly solve the approximate nearest neighbor problem.
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It is possible to frame many bioinformatics problems as approximate nearest neighbor prob-
lems. For example, given a set of sequencing reads, it is beneficial to remove the reads coming
from common bacterial contaminants. Aligning all the sequencing reads against the sequences
of all the known contaminants is prohibitively costly. The contigs of the contaminant bacterial
genomes can be seen as points in a high-dimensional space, and the approximate nearest neighbor
algorithm finds the reads that are close to contaminant reads (40, 41). More precise alignment
algorithms are then used on a much reduced set of reads to weed out the contaminating reads.

4.1.1. Definitions. Given the universe of interest I/ (e.g., sequences, k-mers), a similarity mea-
sure S on U is a function with values in [0, 1], where higher values denote more similar elements.
The Jaccard index is an example of a similarity measure. It measures how similar two sets are
and is defined by J(4, B) = |AN B|/|A U B|. A metric (or semimetric) can define a similarity as
well. For example, the Hamming distance H between two equal-length strings is the number of
positions that differ between the two strings. For strings of length #, this defines the similarity
Su,B)=1—-H(A,B)/n.

A family of hash functions is locality sensitive if it approximates a particular similarity, i.e., the
hash functions are more likely to associate the same value to elements that are similar. Precisely,
given a similarity measure S on the universe I, a set 7 of hash functions defined on ¥ is locality
sensitive for S if

Pr [b() = h(y)] = S(x, ), 2.

where the probability is taken over the distribution of hash functions. Then S is said to have or
admit an LSH.

A different and more general definition is the gapped LSH (76). A distribution on H is
(51,52, p1, p2)-sensitive if S(x,y) > s; implies that Pr[h(x) = b(y)] > p; and S(x,y) < 5, implies that
Pr[h(x) = h(y)] < p2, where the probability is computed over the choice of hash function in H.
The interesting case is when we have s; > s; and p; > p,. That is, elements that are very simi-
lar [S(x,y) > 51] have a probability of at least p; of getting the same value, while elements that
are not similar have a probability less than p; of getting the same value. The first definition of
LSH is equivalent to a distribution that is (s,$2,51,52)-sensitive for all s; and 5,. While a par-
ticular similarity measure may have multiple gapped LSHs, not all similarity measures have an
LSH.

The Jaccard index admits an LSH. Consider the following functions: 7 is a permutation of
the elements of {—it is a function that associates a different integer in [1, [U/|] to each element of
U—and b, (A) = min,c4 7 (x) is the smallest value of an element in the set A according to the per-
mutation 7. The family of functions H, = {b, | m a permutation of I/} is an LSH for the Jaccard
index (76).

The Hamming similarity also has an LSH. Consider the family of projection functions P, that
select one character out of a string: P(s;s; .. .s,) = s;. The set of all the projections Hy = {P, | i €
[1, 7]} is an LSH for the Hamming similarity H.

This projection-based LSH can be extended to projections that select £-mers instead of bases:
P i(s152...8,) =i ... Siyp—1. Then, the family Hyp = {P; | i € [1,m— k+ 1]} is

( kl=—s51) ss—(k—=1)/n
y1’342’1

- 1 - (k — 1)/71’ 1-— (k _ 1)/n>‘sen5itive
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for the Hamming similarity whenever we have &(1 —5;) < 1 — 5. A review of LSH functions can
be found in Reference 77.

4.1.2. Sketches. Using only one hash function gives a high-variance estimator of the mea-
sure. Instead, we typically create a sketch: For an element x, a sketch for the LSH is a vector
(b1(x), ..., b, (x)) of hash values, where the hash functions are selected from H according to the
LSH probability distribution. To compare two elements and get an estimation of their similarity, it
suffices to look at the proportion of equal entries in their sketches as an estimate of the probability
in Equation 2.

The LSH sketch formed in this way for the Jaccard index is called a MinHash sketch. In prac-
tice, finding » independent hash functions for the MinHash sketch is not easy. Instead, one can
select a single hash function, and the sketch of set A consists of the 7 smallest values of {h(x) | x € A}
or the 7 smallest values of the hash function in each of the partitions of the space of hash values
(78).

4.2. Estimating Set Sizes

It is useful to be able to estimate the size of a set quickly and using little memory, in particular in
cases where the set s too large to be stored in memory. The following probabilistic algorithms give
an approximation of the number of distinct elements in a set (or, in a streaming setting, seen so
far) while storing minimal information about the set itself. Most such algorithms are refinements
on the following simple observation. First, define a hash function, » : i/ — [0,s — 1], that maps
uniformly the universe of elements of interest into an interval, and keep track of either the smallest
hash value 7 or the largest number # of leading zeroes in the binary representations of the hash
values. Then, the number of distinct elements in the set can be estimated as (s — 1)/ or 2”.

Again, using only one hash function leaves a high variance in the size estimation. By using
r independent hashes, the standard deviation is divided by /7. However, finding » independent
hash functions is not always practical. Practical algorithms avoid using 7 hash functions and provide
better analysis of their performance. Many algorithms have been proposed for this problem; below
we explain only a few of them.

An algorithm gives a (¢, §)-approximation of the true size z of a set if the value returned ' sat-
isfies Pr[|n’ — n| < en] > 1 — §, where the probability is taken over the random choices internal to
the algorithm. That s, it returns, with high probability, a good approximation of the size of the set.

The first of Bar-Yossef et al’s (79) three proposed algorithms keeps track of the &
lowest values found, where %= O(1/€?). This algorithm is an (e,8)-approximation using
O(log(|U|) log(1/8)/€?) bits. They also proposed improvements that use only O(1/€* + log(|U1))
bits. This last algorithm has a memory usage that is asymptotically optimal (80, 81). The Min-
Count algorithm (82) uses the kth minimum and combines it with a sublinear function (e.g., a
logarithm) to obtain better precision (e parameter) for a given amount of memory.

The HyperLogLog algorithm (83) splits the input stream into 2? substreams, with the first
p bits removed from the hash value and used for identifying which substream an element goes
into. The max of these individual substreams is then determined and the cardinality is estimated
as o, - m’ - o3 27MUY), where a,, equals [m ;" (log,($5%))" du] ™!, m = 2 is the number of
substreams, and M[/] is the largest number of leading zeroes observed in substream ;. The
actual implementations of this method have undergone additional improvements such as the
HyperLogLog++ algorithm (84), which adds a bias correction model and a heuristic for small
cardinalities by implementing an alternative linear counting algorithm when HyperLogLog
underperforms, both of which result in improved overall accuracy.
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4.3. Estimating Distributions

The Count-Min Sketch algorithm (85) answers this query: How many times does element x occur
in multiset S? It is an (¢, §)-approximation algorithm that returns the number of occurrences of
an element x € S with relative error less than € with probability at least 1 — 6.

Count-Min Sketch selects » = [lg(1/8)] independent hash functions and stores a two-
dimensional array with 7 rows and w = O(1/€) columns, with each cell initially set to 0. Adding an
element to the data structure is performed by adding 1 to one cell in each of the 7 rows. The index
of the cell is given by the value of the hash functions for that element. Because of the one-sided
error a hash collision can introduce, each cell is an overestimate of the number of occurrences
of the elements hashing to that cell. The most accurate value for the element’s frequency can be
found by taking the minimum value in the cells identified by each of the 7 hash locations. This
heuristic of taking the minimum value is similar to the recurring minimum heuristic in Spectral
Bloom Filters (SBFs) (Section 5.2), and it is built on the idea that a minimum value has fewer hash
collisions and is therefore more likely to be correct.

The ntCard algorithm (35) computes global frequency statistics. It answers the query: How
many elements in S occur z times? (That is, it computes a frequency histogram.) ntCard uses
only one hash function that gives p bits for each element in the input stream, using the ntHash
algorithm. The input is sampled at some rate 1/27 by keeping from the input stream only k-mers
where the ¢ largest bits in their hash values are 0. Each sampled element is identified with the r
lowest bits in its hash value where 7 < p — ¢. ntCard stores an array of 2” counters, all initialized
to 0. If an element is sampled, the counter given by its hash value is incremented.

The ith counter in the array contains an overestimate of the number of occurrences of all ele-
ments hashing to 7. Ideally, if 7 is very large (so large that 2 is greater than the number of elements
in the universe), then the ith counter would contain an exact value. As shown by Mohamadi et al.
(35), by using independence properties between the various counters, the fraction f; of elements

occurring i times can be estimated by f; = p(;lg ;}0 -1 };11 (jpi-j 1)/ po, where p; is counter 7 di-

vided by the sum of all the 2" counters.

More generally, given a set S of k-mers, let f; be the number of k-mers occurring i times in
S. The kth frequency moment is defined as F, = Y, f;. Fy is the number of distinct k-mers in
S and F, equals |S|. The problem of approximating the moments F; with a single-pass algorithm
and with good accuracy has been heavily studied (82-87).

4.4. Applications

Dimensionality reduction methods can be applied to a large variety of problems in computational
biology, as most data are high dimensional. The trade-off between loss of some amount of accuracy
and gains in computation speed is beneficial in many applications.

4.4.1. Estimating k-mer distributions. In applications such as genome assembly (88) and se-
quence search (30), an estimation of the distribution of the 4-mers, for varying values of &, is
desirable for setting many parameters of the genome assembler.

LSH techniques are often used for this. For example, khmer (34) uses a Count-Min Sketch data
structure to get an approximate number of occurrences for each 4-mer. KmerStream (89) quickly
estimates the number of distinct 4-mers in a data set as well as the number of singleton %-mers,
i.e., the k-mers occurring only once, which are likely to be due to sequencing errors. It combines
subsampling the input #-mers and the size estimation algorithm described in Section 4.2 to obtain
an accurate estimate. The ntCard (35) program uses the ntHash algorithm (which was developed
for this purpose) to estimate the entire distribution of #-mer frequencies.
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4.4.2. Read alignment. Read alignment using the seed-and-extend strategy involves two steps:
First, find approximate candidate locations for alignment, and then refine the alignment if possible.
LSH is very appropriate to implement the first step of this strategy.

The LSH-ALL-PAIRS (36) aligner does an all-versus-all alignment of a set C of sequences. To
avoid the quadratic complexity of comparing every pair, it filters the likely candidate pairs using
LSH for the Hamming distance. For every k-mer 7 in every sequence of C, tuples of the form
(b(m), 7w (m)) are added to a list, where h(m) is the hash value and 7 () stores the information
about the position of the k-mer in C. Then the list is sorted based on the hash values and reads
with identical hash values are marked to be aligned more precisely. This procedure is repeated
several times to avoid false negatives.

Although MHAP (37) is an overlapper and not a general read aligner, the overlap problem is
really a special case of the all-versus-all alignment problem. MHAP also filters reads with a likely
overlap using LSH for the Jaccard index. MHAP splits a read into k-mers, computes a hash value
(giving a fingerprint), and keeps the smallest 7 fingerprints. It creates 7 hash tables such that the ith
hash table maps a fingerprint to a list of reads where that fingerprint was the th smallest. Finally,
the reads that co-occur in the same lists in a large enough percentage of the » hash tables are
compared more precisely. The ideas of MHAP have been applied specifically to read alignment
in MashMap (38).

4.4.3. Metagenomics abundance estimation. The problem of metagenomics abundance es-
timation is to determine the number of species in a sample from a mixture of sequences. One
approach is to group together similar sequences, which presumably come from related species.

LSH-Div (39) uses an LSH approximating the Hamming distance to do this. Effectively, all
pairs of sequences are compared, and sequences that are significantly different are put in different
bins. The procedure is repeated multiple times with different random hash functions to minimize
the false negative rate. At each iteration, bins that are found to be similar according to the new
hash function are merged.

The program Mash (40) and the utility sourmash (41) proceed in a similar fashion, but using
MinHash sketches. Sketches are created for the sequences, which creates signatures thousands of
times smaller than the original sequences (just a few kilobytes per sketch, regardless of the original
sequence size). For the clustering itself, every pair of sequences is compared using the Jaccard
index LSH approximation. Even though this pairwise comparison is quadratic in the number of
sequences, given that each comparison is very fast and requires little input/output, it is possible to
cluster thousands of sequences in this way.

5. APPROXIMATE MEMBERSHIP QUERIES

The compressed indices of Section 3 give the same answer as the uncompressed versions of the
same queries. If the application can tolerate some errors introduced by the data structure, then
much more memory-frugal, and potentially faster, data structures exist.

AMQ structures comprise one class of data structures that have proven particularly useful for
this. These data structures store a set S and support at least the following operations: Insert(S, x),
which adds item x from a universe U/, and Contains(S, x), which determines whether the current
S contains x € U.

AMQ)s are allowed to produce errors on the Contains operation. Typically, only one-sided
error is allowed: If x is in S, Contains(S,«x) must return true. If x is not in S, Contains(S,x)
may incorrectly return true with some probability. For this data structure to be useful, the false
positive rate, defined as the probability of Contains returning true for a random element that is
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not in the set, must be bounded. Some AMQs allow an additional Delete operation or are able to
store multisets by storing an approximate count for each item.

AMQ data structures are typically applied in genomics by taking the set S that they encode
to be the set of k-mers that are present in the strings of interest. A query string si5; ..., can
be tested for membership in the indexed strings by Contains(S,s[i...i + & — 1]) for each 7. If
a sufficient number of these operations return true, then it is likely that a string similar to s is
present.

The one-sided error of AMQ data structures often can be mitigated. If an application is esti-
mating some properties of the sequences, such as the number of distinct k-mers or the frequency
histogram of k-mers, then the space and speed benefit of an AMQ typically outweigh the small
decrease in accuracy of the estimates. In many bioinformatics applications, numerous convergent
pieces of information are needed to reach a particular conclusion. For example, if a read contains
a small £-mer in common with some bacterium, this does not immediately mean that the read is
a contaminant, as this can happen by chance. The additional errors created by the AMQ are then
incorporated in the larger error model (covering sequencing errors, random similarities, etc.) used
to distinguish real from spurious events. Other applications use an AMQ in a way that errors have
no impact on the ultimate result by using the AMQ as a prefilter to avoid costly computation, but
ultimately verifying each query done by the AMQ.

5.1. Bloom Filters

The Bloom filter (90) is a probabilistic data structure that stores an arbitrary set and supports the
two AMQ operations Insert and Contains. A Bloom filter consists of an #-bit array B, as well
as 7 hash functions b; : Y — [0,72 — 1], fori = 1,...,r. Here,» and m are tunable parameters that
affect the space usage and the false positive rate.

Insert(x) sets B[h;(x)] to 1 for each 1 < i < r.Contains(x) returns true only if B[b,(x)] equals
1 for each 7. This introduces no false negatives but may introduce false positives if all of the B[4;(x)]
bits have been set to 1 by Inserts not involving x. The variables 7 and 7 can be set to control
how often this is expected to happen (91): For 7 inserted elements, the false positive probability
is approximately (1 — e™""/”)". If m is fixed by desired memory usage, and if we expect 7 distinct
elements to be inserted, the number of hash functions that minimizes the false positive rate is
k= (m/n)In2.

5.2. Counting Bloom Filters and Spectral Bloom Filters

Counting Bloom filters (CBFs) extend the Bloom filter by encoding an approximate count value
for each element in the set. This was first introduced in the application of web cache sharing (92),
where four bits were used in place of each bit in B to encode counts of up to 15. Insert now
increases the count value at each hash position by 1, up to the maximum possible value. A new
function Delete decrements those same counts, except when the counter is at its maximum value
(to avoid undercounting and false negatives). Contains follows the same procedure as the base
Bloom filter, except it returns the smallest count value found at any hash positions.

SBFs (93) solve a similar problem as counting Bloom filters but for instances where the counts
may be significantly larger than the values allowed in a CBF. Like a CBE, the data structure is
an array where each hash position is a count starting at 0 rather than a single bit. Rather than
increment all 7 hash positions, an SBF Insert operation only increments the position(s) with
the minimum current value, a heuristic known as minimal increase. An SBF Contains operation
returns the minimum value over the positions indicated by the hash values. SBFs implement an
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additional heuristic, called recurring minimum, which identifies items that have few hash colli-
sions by the presence of a recurring minimum count among their different stored values. The
heuristic assumes that these items have a smaller than average error rate. [tems where the number
of occurrences of their minimum value is small among their hash locations are at risk of being false
positives. The recurring minimum heuristic encodes those items with only a single occurrence of
their minimum value in a secondary SBE, thereby reducing the average error.

5.3. Cascading Bloom Filters

Cascading Bloom filters (94, 95) were developed primarily as a way of improving the accuracy of
a Bloom filter by recursively storing the set of false positives present in the previous filter. Specif-
ically, let K be the set of k-mers that are to be stored, and let By be a standard Bloom filter into
which these k-mers have been inserted. A cascading Bloom filter stores an additional Bloom filter
By into which some critical elements of interest in the set {x | Contains(By,x) = true and x ¢ Ko}
have been inserted. B therefore stores the false positives of By that are important to the applica-
tion. The Contains operation of a cascading Bloom filter returns true if Contains(By, x) returns
true and Contains(By,x) returns false.

Unfortunately, B; also generates false positives (which would become false negatives of the cas-
cading Bloom filter if left unchecked), so this process continues recursively until there are no more
errors on critical elements: B, is created to contain the elements in B that are falsely identified as
false positives. B; for i > 2 are created using the same logic, terminating in an empty Bloom filter.
Contains(x) returns true if and only if there exists an odd j such that Contains(B;) returns true
for i < j and Contains(B;) returns false. As each of the successive filters B; is storing a smaller
set, they can decrease in size. As this recursive construction step identifies false positives after the
construction of the entire filter, unlike the Bloom filter, the cascading Bloom filter is not suitable
for one-pass streaming algorithms.

5.4. Hierarchical Bloom Filters

When dealing with multiple genomes or experiments, we have multiple sets Sy, ...,S,, that
we want to store. The desired SubsetThatContains({Si,...,S,},x) operation returns the set
{i | Contains(S;,x) = true}. If the sets S; have some overlap in the #-mers they contain, a hi-
erarchical Bloom filter approach may allow SubsetThatContains queries to be processed more
efficiently.

Hierarchical Bloom filters consist of a rooted tree 7 with leaves corresponding to each set S;.
A standard Bloom filter B; representing S; is stored at leaf 7. An internal node # is associated with
a Bloom filter B, storing the union of the sets stored at the children of #. B, can be constructed
by taking the bitwise OR of all of #’s children. By construction, if Contains(B,,x) is false, then
x is not present in any leaf in the subtree rooted at #. The SubsetThatContains(x) operation
begins at the root of 7 and traverses the tree, exploring only subtrees rooted at nodes z where
Contains(B,,x) is true.

Ifthe leaves in the tree are clustered by similarity, this index allows many sets that do not contain
the query to be eliminated at the same time, since the absence of a given query can be identified
in many leaves simultaneously by querying their lowest common ancestor once. Several different
schemes have been proposed to select the topology of the tree 7, including B+ trees (96, 97)
and greedily constructed binary trees (30). In addition, more efficient representations such as the
Split Sequence Bloom Tree (SSBT) (31) and All-Some Sequence Bloom Tree (SBT-ALSO) (98)
further reduce the storage cost and query times by eliminating redundancy in the Bloom filters
stored along any path from the root to a leaf.
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5.5. Quotient Filters and Counting Quotient Filters

The quotient filter (QF) (99) is another data structure for efficiently storing a set of elements.
Let E be a set of elements, 5(-) a hash function, and »(E) the set {h(e) | ¢ € E}. A QF is a lossless
encoding of #(E). Itis based on the principle of quotienting, originally introduced by Knuth (100),
which uses the location of hash entries to reduce the storage of hashed items. Let 4(-) be a p-bit
hash function so that, for all ¢, h(e) is p bits long. We define the ¢ most significant bits of (e) to
be the quotient of A(e), denoted ¢, and the » = p — ¢ remaining bits to be the remainder of 4(e),
denoted .. To store the elements, the QF uses an array of 27 slots, each of size 7 bits. Each slot
is associated with additional metadata bits that assist in resolving collisions and in querying the
filter. Like the Bloom filter, the QF supports insertion and containment queries. Additionally, it
supports removal of keys and enumeration of the set it encodes [i.e., enumeration of #(E)], which
the Bloom filter does not. These extra capabilities make the QF more flexible than the Bloom
filter.

The counting QF (CQF) (101) is a data structure for efficiently storing a multiset of elements. It
works in a similar manner to the QF, but it allows one to associate with every A(e) some multiplicity
m[h(e)]. Rather than use an auxiliary array to maintain counts, the CQF directly uses empty slots
thatare normally used to store the remainders of keys (i.e., 7). The counter for an element s stored
adjacent to the corresponding remainder in the filter and is encoded in base 2" — 1. The CQF itself
is based on a modification of the QF called the rank-and-select QF (RSQF) (101), which uses rank-
and-select operations on the metadata bits to improve the space and time efficiency of the QF. This
data structure requires (2.125 + log, 1)/ bits per element, where § is the false positive rate and
« is the load factor of the filter. The RSQF (and CQF) operates up to load factors of 0.95, making
this data structure more memory efficient than the Bloom filter when § is less than 1/64.

5.6. Applications

Many conventional methods of analysis in computational biology rely on heuristics for ef-
ficient but inexact results. Approximate membership testing is particularly relevant in these
contexts, as the additional loss of precision can often be amortized at scale or addressed through
postprocessing.

5.6.1. Counting k-mers. Counting, or approximately counting, the number of occurrences
of every k-mer in a set of sequences is a common step in many pipelines. The frequency of the
k-mers in input sequences can be used to find or quantify repeat regions and sequencing errors
and estimate the size of the underlying genome. When & is moderately large, counting the number
of occurrences of each k-mer in large input sets is resource intensive, and many computational
techniques have been devised for that problem. AMQ data structures have been one of those
techniques.

In many applications, there is a large number of k-mers with small counts, often due to se-
quencing errors. These single-count k-mers do not require any additional count information,
saving considerable space. Many k-mer counting tools handle these low-count &-mers using an
AMQ data structure to separate single-occurrence k-mers from multi-occurrence 4-mers whose
counts must be stored. Software like Jellyfish (28) and BFCounter (29) uses a standard Bloom filter
to that effect.

Although these approaches can introduce false positive £-mers with count 1, many downstream
analyses discard single-count k-mers as erroneous, assuming that they represent sequencing errors.
So these probabilistic methods offer significant efficiency gains at minimal cost.
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5.6.2. Experiment discovery. We say that a set R of unassembled reads contains a query se-
quence ¢ if there is some subset of the reads in R that can approximately cover ¢. Given a large
set of experiments R = {Ry, ..., R,}, we often want to identify which R; contain ¢. For example
the R; could be RNA-seq experiments and ¢ could be a novel transcript. The R; that contain ¢ are
experiments that likely express this new transcript. Hierarchical Bloom filters can be used to solve
this problem.

The first approach to this problem was the Sequence Bloom Tree (SBT) (30). An SBT encodes
each experiment R; as a compressed Bloom filter of the set of k-mers contained in R;. These
compressed Bloom filters are stored at leaves of a binary tree and internal filters are created, as
described in Section 5.4. SBTs use the RRR (Raman—Raman—Rao) (102) compression scheme on
the Bloom filters, which allows for individual bits to be queried in the compressed filters without
having to decompress each filter. During the search for ¢, subtrees are pruned if an insufficient
number of the k-mers of ¢ are present at the root filter of the subtree. This is similar to the
approach of Bloofi (96, 97) but optimized for sequencing data. The SBT was further improved
with both SSBT (31) and SBT-ALSO (98). These latter techniques store two Bloom filters at
each node #: One Bloom filter contains the #-mers that are present in all leaves under #, while
the other filter contains those k-mers that are present in some but not all experiments. These
two filters avoid needing to explore subtrees in which all leaves contain the query ¢, a significant
advantage for commonly occurring queries.

Alternative approaches to AMQ-enabled experiment search are given by SeqOthello (103) and
Mantis (33). These indexing strategies map each k-mer to a set of experiments containing it. The
query times of these approaches scale with the number of distinct #-mers in a query, rather than
the number of experiments in a data set. Mantis uses CQFs (Section 5.5) to further improve the
accuracy of its index on the single-k-mer level.

5.6.3. Genome assembly with de Bruijn graphs. The set of k-mers present in an input sam-
ple implicitly encodes a graph, called the de Bruijn graph, which has proven to be an incredibly
important combinatorial structure in genomics (55, 104, 105). Specifically, let S = {m,, ... ,m,}
be a set of k-mers present in a sample. The edge-centric de Bruijn graph is then a graph in which
each k-mer induces an edge m = (€(m), r(m)), where £(m) is the leftmost (k — 1)-mer of 7 and
r(m) is the rightmost (¢ — 1)-mer of #. When constructed from sequencing reads or a reference
genome, the de Bruijn graph has the property that each input sequence can be spelled out via
a path in the graph. These graphs have therefore formed the basis of many genome assembly
approaches (55, 104). Sequence contexts of length larger than # are not necessarily retained and
so there may be many walks in the graph that do not spell out any input sequence. Nonethe-
less, the de Bruijn graph contains considerable information about the input sequences, and it can
be constructed and represented efficiently (often using the k-mer counting techniques described
above). Nevertheless, an explicit representation of this graph is often large and unwieldy to work
with.

This has given rise to probabilistic de Bruijn graphs (106) that exploit the correspondence
between a k-mer set and the graph. Probabilistic de Bruijn graphs represent the graph using a set
of Bloom filters to record the edges (k-mers) that are present in the graph. The outgoing edges of
a (k — 1)-mer can be found by querying the Bloom filter for every possible single-base extension.
Cascading Bloom filters have also been used to exactly represent these graphs (94). A probabilistic
representation of the weighted de Bruijn graph, relevant for transcriptome assembly, has been
proposed (107). These approaches allow the de Bruijn graph to be stored and traversed much
more efficiently.
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6. MINIMIZERS

The minimizers scheme is another approach to create a small representation of a collection of
sequences. It was first introduced to help compute read overlaps when Sanger sequencing (108)
was most common. An equivalent method known as winnowing was introduced for document
fingerprinting and plagiarism detection (109). Since these original applications, the minimizer idea
has found a number of applications in speeding up sequence analysis. Like LSH, the minimizers
scheme and its generalizations called local schemes are used to capture the likely similarity of
sequences. LSH and minimizers schemes are sometimes used together.

6.1. Definition

The minimizers scheme has three parameters: #, the #-mer length; w, the length of the window;
and 7, an order (i.e., a permutation) of the 4-mers. Given a sequence S, the minimizers scheme
will select, in every overlapping window of w consecutive k-mers, the smallest £-mer according
to 7 (choosing the leftmost k-mer in case of ties). Depending on the application, the result of
the minimizers scheme is either the locations of the selected k-mers in S or the sequences of the
selected k-mers (see Figure 2).

A local scheme is a generalization of the minimizers scheme. It also has three parameters: &, w,
and a function f taking w k-mers as arguments and returning an index in [1, w]. For every window
of w consecutive k-mers, the local scheme calls the function f with the w k-mers as arguments
and selects the k-mer at the position returned by f. A minimizers scheme is therefore a local
scheme where the function f; returns the index of the leftmost, smallest #-mer according to some
permutation 7.

Local schemes (including minimizers) select k-mers such that the following two properties
hold: (#) two consecutive selected k-mers are no more than w bases apart, and (b) sequences
with an exact match at least w + % — 1 bases long will have a common selected k-mer. The
first property is true because a k-mer is selected in every w-long window. It ensures that no
part of a sequence is ignored. The second property is satisfied because the local scheme only
looks at the sequence within a window to select a 4-mer. Hence, when two sequences have an
exact match that is at least as long as a window, the same k-mer is selected in that common
subsequence.

Although the minimizers method is similar to LSH and has uses that overlap with LSH, it
is not directly an LSH. As described above, the minimizers scheme does not define a similarity

measure.
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Figure 2

Given a sequence (thick black line), in each window (gray lines), a minimizer is selected (red marks).
Consecutive windows are likely to select the same minimizers, and the selected positions constitute a
sampling of the original sequence (blue triangles).
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6.2. Parameters of Minimizers Schemes

The density of a minimizers scheme is the number of positions chosen over the length of the input
sequence. It is computed as an expectation over an infinite length sequence with bases chosen
independently at random. Depending on the application, low density implies reducing the size
of the bins or the number of minimizers positions to keep in a hash, which in turn improves the
runtime or memory usage.

The parameters w and k in the minimizers or local scheme are constrained by the application.
Alarge value of k, and hence long k-mers, avoids spurious collisions, while a large value of w lowers
the density, and the length of the windows w + & — 1 is the exact match requirement. The order 7
on the k-mers (or function f for a local scheme) is mostly unconstrained: Regardless of the choice
of the order or function, the above properties # and » of minimizers are satisfied. Consequently,
improving the density of minimizers schemes by choosing the best 7 is of great interest, as any
improvement in density would benefit existing and future applications with little change to the
core algorithm of the applications.

Because at least one k-mer is chosen in every w-long window, the density is necessarily at least
1/w. A few orders on k-mers perform poorly, such as the lexicographic order on k-mers, and this
was recognized very early on (110). A random permutation of the #-mer performs reasonably well
in practice and is the usual choice. For a random permutation and for w not too large (w <« o,
where o is the size of the alphabet), the expected density is 2/(w + 1), which is almost twice the
optimal density of 1/w.

The theory behind minimizers and, even more so, local schemes is not yet fully understood.
In particular, the problem of creating orderings or functions giving the lowest possible density
is still open. It is possible (111, 112) to create orders with density lower than 2/(w + 1), but the
construction is not always practical, as it requires storing a large set of #-mers. Orderings achieving
the optimal density of 1/w do exist (113), but the construction is optimal only in the asymptotic
case where w is fixed and % becomes very large. For the more common case where w is larger
than %, minimizers schemes cannot achieve the optimal density (113). Local schemes, on the other
hand, do not have this limitation and can potentially achieve optimal density. This is an active
domain of research.

6.3. Applications

Minimizers were first introduced in 2003 for the computation of Sanger read overlaps. It took
another ten years for the method to be used in other applications. Since 2013, many methods
have used minimizers to speed up their operations.

6.3.1. Pairwise string overlaps. Pairwise string overlaps is the original genomics application
for which minimizers were invented (108, 110): Given a set of sequencing reads, the first step
of the overlap-layout-consensus method for genome assembly (114) is to find all the read pairs
where the suffix of one read aligns with the prefix of the other. For # reads, aligning every pair of
reads requires O(?) calls to the aligner, which is very expensive computationally.

To speed up this approach, one first bins together the reads using minimizers such that two
reads with a possible overlap are in at least one common bin, while reads with no overlap are
likely not to share any bin. To do this, the overlapper puts each read s in bins corresponding to all
the minimizer k-mers of 5. The more precise and time-consuming alignment step needs to be run
only between reads within each bin.

If two reads have an overlap of a minimum quality (minimum length with minimum identity),
they must have an exact match of a reasonable length £. The parameters k# and w are chosen so
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that £ equals w + & — 1; hence, property 4 of the minimizers guarantees that two reads with a long
enough overlap share at least one bin. If & is large enough, it is unlikely that two reads that do
not have an exact match have the same minimizers, and this reduces the size of the bins and the
number of unnecessary comparisons.

6.3.2. Read alignment. The aligners minimap (42) and minimap2 (43) are designed to align
very long reads that have high error rates. These aligners use minimizers to anchor the alignment.
First, all the minimizers of the reference sequence are computed and entered into a hash table,
where the key is the sequence of the minimizer, and the value is a list of all the indices in the
reference sequence where this k-mer is selected as the minimizer. In aligning a query sequence, the
minimizers of the query are searched in the hash table for locations where the query might align.

6.3.3. Counting k-mers with super k-mers. Some fast k-mer counters also use minimizers
and binning to parallelize their operation (44, 45, 115, 116), although in a very different way
than for overlap computation. These applications take a set of sequences (e.g., sequencing reads,
genomes) and count the number of occurrences of every k-mer present in the sequences. Here,
the minimizers are 7-mers, with 7 typically in the range [7, 12], and the k-mers that are to be
counted have length &, which is typically larger than 14 and up to 70. The parameter w is defined
by the relation w + 7 — 1 = k, so that a window of w consecutive 7z-mers represents one k-mer.

The k-mer counter application breaks the input sequences into so-called super k-mers. A super
k-mer is a sequence of consecutive windows that select the same 7z-mer as a minimizer. Each super
k-mer is binned according to the minimizer in it. Finally, the application tallies the number of
occurrences of each k-mer in each bin.

Property 4 of the k-mers and the choice of w guarantee that, for every k-mer x, the super k-
mers with a copy of x are binned together in one single bin. Because a #-mer cannot be present
in two different bins, it is possible to perform the counting in each bin independently, and the
problem becomes embarrassingly parallel.

6.3.4. De Bruijn graph creation. The two variants of the BCALM algorithm (23, 24) assemble
the nonbranching parts of the assembly de Bruijn graph (known variously as maximal unitigs, uni-
paths, and k-unitigs) using an idea similar to super k-mers. The k-mers in the sequence reads are
separated into bins based on their minimizers. Then the algorithm creates the maximal unitigs
in each of the bins. Finally, the algorithm glues together paths from different bins by proceed-
ing in a particular order to guarantee that all unitigs are created. The two versions of the algo-
rithm vary on some important details, but both use the properties of minimizers to efficiently split
the work of maximal unitigs creation and to efficiently find the bins with paths that need to be
glued.

6.3.5. Sparse data structures. Sparse data structures can use minimizers to sample sequences
and only store information at certain designated points, thereby reducing the amount of infor-
mation to store. The two properties of minimizers (Section 6.1) ensure that two sequences that
have a significant exact match will select the same minimizers. This guarantees that, down to some
minimum resolution, the same information is stored in the sparse data structure as in the full data
structure.

The SparseAssembler (46) for short read assembly uses a de Bruijn graph constructed only
on the minimizers of the sequencing reads, with edges representing not just a shift by one base
but also the sequence joining two consecutive minimizers. The remainder of the algorithm to
simplify the graph and generate the contigs from the de Bruijn graph is otherwise comparable
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to other de Bruijn graph—based assemblers. Although in this case sequencing errors could cause
some branches to be missed and therefore could introduce assembly errors, especially for large
window sizes, in practice, window sizes of 10 to 15 show little to no degradation and significant
memory savings.

The suffix array data structure (Section 3.1) is also amenable to downsampling with minimiz-
ers (47). Instead of keeping an index for every suffix in the text 7', only the indices starting at
minimizers are kept. In aligning a pattern, the minimizers are also extracted from the pattern and
searched for in the suffix array.

The MashMap aligner (38) aligns long reads to a genome. It combines the minimizers method
with MinHash sketches (Section 4.1.2) to further reduce the size of the index. The index created
on the genome consists of the hash value and position computed for every minimizer found in the
genome. In aligning a sequence ¢, the minimizers are also extracted from ¢, and at every location
with a shared minimizer between ¢ and the genome, the Jaccard index is estimated using the
MinHash sketch method. This provides the seeds for a seed-and-extend alignment strategy.

7. CONCLUSION

Compact, sublinear data structures have been an essential component of genomics tool building.
Research into how to employ existing structures and the design of novel techniques has propelled
more efficient solutions to problems such as read mapping and genome assembly and has spurred
the formulation of new problems such as experiment discovery. The key idea of all of these ap-
proaches is to create data structures that store the relevant aspects of the underlying sequences
in as small a space as possible while still supporting the operations necessary for the biological
application. Research continues in each of these areas, and it is likely that new approaches will be
developed for existing and new sequence analysis problems.
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