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Abstract

For centuries, humans have sought to classify diseases based on phenotypic
presentation and available treatments. Today, a wide landscape of strate-
gies, resources, and tools exist to classify patients and diseases. Ontologies
can provide a robust foundation of logic for precise stratification and clas-
sification along diverse axes such as etiology, development, treatment, and
genetics. Disease and phenotype ontologies are used in four primary ways:
(a) search, retrieval, and annotation of knowledge; (b) data integration and
analysis; (c) clinical decision support; and (d ) knowledge discovery. Compu-
tational inference can connect existing knowledge and generate new insights
and hypotheses about drug targets, prognosis prediction, or diagnosis. In this
review, we examine the rise of disease and phenotype ontologies and the di-
verse ways they are represented and applied in biomedicine.
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INTRODUCTION

Ontologies are knowledge classifications and have arisen from the need for tools to represent,
query, and analyze data and knowledge. Ontology as a discipline goes back at least as far as
Aristotle (384–322 BC), who developed conceptual taxonomies that are in some ways similar
to modern bio-ontologies (1). More recently, computer scientists adopted the word “ontology”
to denote a computational representation describing specific domains of knowledge (2). The
distinction and evolution of taxonomies versus ontologies are summarized in Reference 3. Briefly,
ontology complexity ranges from a simple controlled list of terms (Figure 1a) to a hierarchical
taxonomy (Figure 1b), to asserted multiple-parentage hierarchies (Figure 1c), and to logically
defined multiproperty graphs (Figure 1d). For most taxonomies, the relationship between levels
of the hierarchy are rarely specified by logical formalisms but rather are typically broader-than
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Ontology complexity ranges from (a) a simple controlled list of terms (e.g., OMIM) to (b) a hierarchical taxonomy (e.g., ICD-10), to
(c) asserted multiple-parentage hierarchies (e.g., MeSH), and to (d ) logically defined multiproperty graphs (e.g., NCIt). Panel e is an
example of a domain-specific complex knowledge graph. In such a knowledge graph, each node is formally identified (identifiers are
omitted from the figure for simplicity), and each relationship between nodes is also formally described in support of logical inference.
Subpanel i represents Fanconi anemia (MONDO:0019391), an inherited disease with environmental modifiers. Subpanel ii represents
rare acquired aplastic anemia (MONDO:0015610), a disease caused by environmental exposure. These two diseases share some but not
all of the same phenotypes and similar, but not identical, environmental factors. A reasoner can utilize these disparate but linked
attributes for precision classification of patients, for example, for assisting disease diagnosis. Abbreviations: FA, Fanconi anemia;
ICD-10, International Classification of Diseases, Tenth Revision; MeSH, Medical Subject Headings; NCIt, National Cancer Institute
Thesaurus; OMIM, Online Mendelian Inheritance in Man.
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or narrower-than assertions, which can be expressed using the Simple Knowledge Organization
System (SKOS; http://www.w3.org/TR/skos-reference). For our purposes, we use an inclusive
definition of ontology—one that encompasses any taxonomy that utilizes description logic (DL),
a computable subset of first-order predicate logic, to assert logical relationships between terms.
This working definition would exclude simple controlled lists and simple taxonomies (Figure 1a,b)
but covers logically defined taxonomies and more complex graphs (Figures 1b–d).

Early classification systems of disease and mental illnesses were developed in the eighteenth
century by Linnaeus, de Sauvages, Vogel, and Cullen (4, 5). Carl Linnaeus developed the first
modern medical classification that can be considered a true ontology of diseases (nosology). It
divided diseases into 11 classes, 37 orders, and 325 species. Linnaeus’ classification laid the foun-
dation for what led to the first International Classification of Diseases (ICD; http://www.who.int/
classifications/icd) in 1893 (6). Some current ontological definitions of “disease” include:

“Any abnormal condition of the body or mind that causes discomfort, dysfunction, or distress to the
person affected or those in contact with the person. The term is often used broadly to include injuries,
disabilities, syndromes, symptoms, deviant behaviors, and atypical variations of structure and function.”
[National Cancer Institute Thesaurus (NCIt); 7]

“A definite pathologic process with a characteristic set of signs and symptoms. It may affect the whole
body or any of its parts, and its etiology, pathology, and prognosis may be known or unknown.” [Medical
Subject Headings (MeSH); 8]

As is clear from these definitions, a disease classification must utilize the relationship between
a disease entity and individual phenotypic features (phenotypes, signs, symptoms, or endotypes)
that commonly occur among those affected by the disease. An example of such discrete features, or
so-called deep phenotyping (9), would be macular degeneration in the context of Gaucher disease
(a disease entity). This example also highlights the fact that an individual phenotypic feature can
be conceptualized as a disease (e.g., age-related macular degeneration) or as a feature of another
disease, such as Gaucher disease. Note that clinical researchers often refer to a phenotype as a
search/filter algorithm to define a study cohort or patient population, usually within the context
of querying electronic health records (EHRs) (10–12).

A disease classification represented as an ontology must consistently utilize clinical presenta-
tions, specific findings, responses to treatment, biomarkers, and molecular characterizations as
taxonomic features—either represented within the taxonomy itself (e.g., macular degeneration
diseases) or as sets of annotations, as in the case of the Human Phenotype Ontology (HPO;
http://www.human-phenotype-ontology.org/), which provides associations between diseases
and phenotypes (10). In other words, one can either build into a disease classification all of the
indicated disease attributes or separate them as annotations with metadata, evidence, and prove-
nance. The use of DLs, such as the Web Ontology Language (OWL) (11), has enabled machines
to reason over the ontology, which helps with detection of errors and automatic classification.
DLs allow a curator to express more of the meaning in an ontology in a way that computers
can understand. For example, without a DL, a machine may not know that when a curator cre-
ates two sibling classes (for example, acquired metabolic disease and inherited metabolic

disorder as two subtypes of metabolic disease), the intention is for these to form mutually
disjoint categories. A DL allows the curator to explicitly assert this, which may reveal some classes
accidentally classified as both deeper in the ontology. Furthermore, a DL allows one to construct
ontologies in a modular fashion, building up complex concepts from simpler ones. The concept
of “metabolic disease” may be composed using DL constructs from the simpler concepts of “dis-
ease” and “metabolic process,” with the latter coming from the Gene Ontology (GO). Similarly
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for “disease of glucose metabolism.” This, in turn, allows for the automatic classification of large
parts of the disease ontology, leveraging other ontologies. It has been shown in other ontologies
that this approach can avoid many errors of omission (13). Use of DLs allows numerous axes of
disease classification, such as etiology, developmental origin, causal environmental factors, viruses
or other insults, molecular mechanisms and genetics, primary anatomical site of the phenotypic
features, response to treatment, biomarkers, heredity, rarity, etc.

ONTOLOGIES ON THE RISE

The use of ontologies for classifying disease has steadily increased, as evidenced by the increasing
number of general and disease-specific ontologies (discussed below and listed in Table 1), as well
as citations and mentions of specific disease-related ontology resources (Figure 2). Moreover,
the rate of increase in articles about ontologies is twice the rate of all articles published (see
Supplemental Table 1).

One might ask, why are there so many different classifications of disease? The diversity of
origins and primary uses for disease ontologies is reflected by the variety of structures, strengths,
limitations, and uses of these classifications. Specific disease ontologies are often part of a larger
ontology or semantic framework, and numerous ontologies exist for specific diseases or disease
categories. A given disease entity may be a single entity in one classification but the primary
subject of another. One reason for the diversity of classifications is the diversity of applications,
and as such, many of these knowledge representations include much more than a single axis of
disease classification. For example, sickle cell disease would be represented within SNOMED-
CT (Systematized Nomenclature of Medicine–Clinical Terms; http://www.snomed.org), but
the Sickle Cell Disease Ontology (14) is a separate ontology representing treatments used in the
context of specific symptoms, as well as the genetic and environmental interactions that lead to
phenotypic diversity in presentation. Ontologies such as the Sickle Cell Disease Ontology may
include regional information as well, such as clinical assays and therapies that are relevant to
resource-poor or rural care or local environmental variables such as diet.

In this section, we describe and review a few of the major disease classifications currently in
use, and refer the reader to Table 1 for descriptions of a wide range of ontologies and disease
classifications. We aim to describe history, structural design features, and precoordinated versus
postcoordinated terms—for example, the ability to combine entities or the inclusion of a full
spectrum of possibilities (for example, skin cancer in every skin location).

International Classification of Diseases

One of the most widely utilized disease classifications, ICD, is maintained by the World Health
Organization (WHO), is used by over 100 countries, and has been translated into 43 languages.
The Tenth Revision (ICD-10) is organized anatomically by organ system (an outcome of the mid-
nineteenth-century debate over organization by anatomical versus constitutional or syndromic
nature) (15) and was intended since its inception for the tabulation of statistics on mortality and,
later, morbidity. In the late twentieth century, ICD was embraced for billing and reimbursement
categories, which is popularly argued to have distorted its evolution and assignment in clinical
practice. ICD can trace its roots to the Natural and Political Observations Made Upon the Bills of
Mortality (16) in the early sixteenth century and largely retained its tabular, structural origins until
the recent development of the Eleventh Revision (ICD-11).

Historical editions of the ICD are statistical classifications, not ontologies. Statistical classifi-
cations are mutually exclusive (to not double count things) and exhaustive (to have a place to put
everything). The ICDs have achieved exclusiveness through a monohierarchy (single parentage)
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Table 1 Disease ontology resources

Ontologya Descriptionb

MeSH (Medical Subject Headings;
http://www.nlm.nih.gov/mesh)

A controlled vocabulary of over 25,000 concepts used to index records in MEDLINE
provided by the US National Library of Medicine. MeSH is organized as a broader to
narrower set of subject headings that can appear in more than one part of the hierarchy,
most of which have a short description or usage notes. Qualifiers (subheadings) can be
added to subject headings to refine the topic being annotated. MeSH contains an
extensive C branch of diseases.

LOINC (Logical Observation Identifier
Names and Codes) (117)

Identifies medical laboratory observations. The Regenstrief Institute first developed
LOINC in 1994 in response to the demand for an electronic database for clinical care
and management. LOINC is publicly available at no cost and is endorsed by the
American Clinical Laboratory Association and the College of American Pathologists.
Since its inception, LOINC has expanded to include not just medical laboratory code
names but also nursing diagnoses, nursing interventions, outcome classifications, and
patient care data sets.

MedDRA (Medical Dictionary for
Regulatory Activities; http://www.
meddra.org)

Provides a standardized international medical terminology to be used for regulatory
communication and evaluation of data about medicinal products for human use.
MedDRA was first developed in the 1990s by the International Council for
Harmonisation of Technical Requirements for Pharmaceuticals for Human Use.

ORDO (Orphanet Rare Disease
Ontology)

A structured vocabulary for rare diseases capturing relationships between diseases, genes,
and other relevant features, jointly developed by Orphanet and the EBI. It contains
information on nearly 10,000 cancers and related diseases, 8,000 single agents and
combination therapies, and a wide range of other topics related to cancer and
biomedical research. ORDO was first released in 2014.

ICF (International Classification of
Functioning, Disability and Health;
http://www.who.int/classifications/
icf/) (118)

Represents diseases and provides a conceptual basis for the definition and measurement
of health and disability as organized by patient-oriented outcomes of function and
disability. ICF considers environmental factors as well as the relevance of associated
health conditions in recognizing major models of disability. ICF’s scope is across
disciplines and countries. ICF was created in 2001, and a companion classification for
children and youth (ICF-CY) was released in 2007.

MedGen (NCBI Medical Genetics) (119) MedGen contains information about conditions and phenotypes related to medical
genetics. Terms from the NIH’s GTR, UMLS, HPO, Orphanet, ClinVar, and other
sources are aggregated into concepts, each of which is assigned a unique identifier and a
preferred name and symbol. MedGen provides links to such resources as the GTR,
GeneReviews, ClinVar, OMIM, related genes, disorders with similar clinical features,
medical and research literature, practice guidelines, consumer resources, and ontologies
such as HPO and ORDO. MedGen began in 2012, and the latest release was in 2017.

ICD-O (International Classification of
Diseases for Oncology) (120)

A classification of neoplasms used by cancer registries to record incidence of malignancy
and survival rates. ICD-O has two coding axes to describe tumors: topography and
morphology. It was first published in 1976 and is currently in its third revision, which
was updated in 2011.

EFO (Experimental Factor Ontology)
(121)

Provides a systematic description of many experimental variables available in EBI
databases; supports the annotation, analysis, and visualization of data handled by many
groups at the EBI; and is the core ontology for OpenTargets.org. EFO was first
published in 2010.

DO (Human Disease Ontology) (122) A general ontology used by model organism researchers and other communities for
tagging disease entities for retrieval. DO comprises a single inheritance model based on
etiology and does not include onset (e.g., early, late, metastasis, stages), severity (e.g.,
transient, acute, chronic), or compound disease terms, as might be seen in vocabularies
such as ICD. DO was first released in 2003, with the latest update in 2017.

(Continued)
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Table 1 (Continued)

Ontologya Descriptionb

RDO (Rat Disease Ontology) (123) Provides the foundation for ten comprehensive disease area–related data sets at the Rat
Genome Database Disease Portals. Two major disease areas are the focus of data
acquisition and curation efforts each year, leading to the release of the portals.
Implemented as an asserted polyhierarchy, RDO was first released in 2016.

DSM (Diagnostic and Statistical Manual
of Mental Disorders) (124)

Defines and classifies mental disorders to improve diagnoses, treatment, and research.
The fifth version was published in 2013 by the American Psychiatric Association.

IDO (Infectious Disease Ontology;
http://infectiousdiseaseontology.org)
(125, 126)

A suite of ontologies intended to be extended for specific infectious disease categories,
such as malaria. Currently, there are over 500 classes, 20 individuals, and 39 properties.
IDO was first released in 2010, with the latest update in 2016.

ND (Neurological Disease Ontology)
(42)

A representational tool that addresses the need for unambiguous annotation, storage, and
retrieval of data associated with the treatment and study of neurological diseases. ND
was first released in 2013, with an update in 2015.

SCDO (Sickle Cell Disease Ontology)
(14)

Currently under development, SCDO will establish (a) community-standardized sickle
cell disease terms and descriptions, (b) canonical and hierarchical representation of
knowledge on sickle cell disease, and (c) links to other ontologies and bodies of work.
SCDO was first released in 2017.

PDON (Parkinson Disease Ontology)
(127)

A comprehensive semantic framework with a subclass-based taxonomic hierarchy,
covering the whole breadth of the Parkinson disease knowledge domain from major
biomedical concepts to different views on disease features held by molecular biologists,
clinicians, and drug developers. PDON was first released in 2015.

ADAR (Autism DSM-ADI-R Ontology)
(128)

An ontology of autism spectrum disorder (ASD) and related neurodevelopmental
disorders that extends an existing autism ontology to allow automatic inference of ASD
phenotypes and Diagnostic and Statistical Manual of Mental Disorders (DSM) criteria
based on subjects’ Autism Diagnostic Interview–Revised (ADI-R) assessment data.

ASDPTO (Autism Spectrum Disorder
Phenotype Ontology) (129)

Encapsulates the ASD behavioral phenotype, informed by the standard ASD assessment
instruments and the currently known characteristics of this disorder. ASDPTO was first
published in 2014.

LDA (Ontology of Language Disorder in
Autism; http://purl.bioontology.org/
ontology/LDA)

An ontology assembled from a set of language terms mined from the autism literature.
LDA was first released in 2008.

DERMO (Human Dermatological
Disease Ontology) (130)

The most comprehensive dermatological disease ontology available, with over 3,500
classes available. There are 20 upper-level disease entities, with features such as
anatomical location, heritability, and affected cell or tissue type. DERMO was first
released in 2013 and was updated in 2016.

PDO (Pathogenic Disease Ontology)
(131)

An ontology for describing both human infectious diseases caused by microbes. PDO
was first released in 2013 and updated in 2016.

ABD (Anthology of Biosurveillance
Diseases) (132)

Provides information on infectious diseases, disease synonyms, transmission pathways,
disease agents, affected populations, and disease properties. Diseases are grouped into
syndromic disease categories, organisms are structured hierarchically, and both disease
transmission and relevant disease properties are searchable. ABD was first released in
2016.

(Continued)
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Table 1 (Continued)

Ontologya Descriptionb

CVDO (Cardiovascular Disease
Ontology) (133)

An ontology based on the OGMS (Ontology for General Medical Science) model of
disease that is designed to describe entities related to cardiovascular diseases (including
the diseases themselves, the underlying disorders, and the related pathological
processes). CVDO is being developed at Sherbrooke University (Canada) and Inserm
(France). CVDO was first released in 2016, with an update in 2017.

MFOMD (Mental Functioning
Ontology–Mental Disease) (134)

Describes and classifies mental diseases annotated with DSM-IV and ICD codes.
MFOMD was published in 2012.

CKDO (Chronic Kidney Disease
Ontology;

http://purl.bioontology.org/
ontology/CKDO)

Assists routine data studies and case identification of chronic kidney disease in primary
care. First released in BioPortal in 2017.

HORD (Holistic Ontology of Rare
Diseases; http://purl.bioontology.org/
ontology/HORD)

Describes the biopsychosocial state (i.e., disease, psychological, social, and environmental
state) of persons with rare diseases in a holistic way. HORD was released in 2017.

OHD (The Oral Health and Disease
Ontology) (135)

Represents the content of dental practice health records and is intended to be further
developed for use in translational medicine. OHD is structured using BFO (Basic
Formal Ontology) and uses terms from many ontologies, NCBITaxon, and a subset of
terms from the CDT (Current Dental Terminology). OHD is in early development
and was last updated in 2016.

RPO (Resource of Asian Primary
Immunodeficiency Diseases) (136)

Represents observed phenotypic terms, sequence variations, and messenger RNA and
protein expression levels of all genes involved in primary immunodeficiency diseases.
RPO was published in 2008.

OCVDAE (Ontology of Cardiovascular
Drug Adverse Events) (137)

A biomedical ontology of cardiovascular drug–associated adverse events. OCVDAE was
first released in 2016.

DCO (Dispedia Core Ontology;
http://purl.bioontology.org/ontology/
DCO)

A schema for information brokering and knowledge management in the complex field of
rare diseases. DCO describes patients affected by rare diseases and records expertise
about diseases in machine-readable form. DCO was initially created with amyotrophic
lateral sclerosis as a use case. DCO was first released in 2015.

COPDO (Chronic Obstructive
Pulmonary Disease Ontology) (138)

Models concepts associated with chronic obstructive pulmonary disease in routine
clinical databases. COPDO was published in 2015.

IDOBRU (Brucellosis Ontology) (139) Describes the most common zoonotic disease, brucellosis, which is caused by Brucella, a
type of facultative intracellular bacteria. IDOBRU is an extension of IDO and was
published in 2011.

OGMD (Ontology of Glucose
Metabolism Disorder) (140)

Represents glucose metabolism disorder and diabetes disease names, phenotypes, and
their classifications. OGMD was created in 2009, with the latest update in 2017.

AI-RHEUM (Artificial Intelligence
Rheumatology Consultant System
Ontology) (141)

Contains findings, such as clinical signs, symptoms, laboratory test results, radiologic
observations, tissue biopsy results, and intermediate diagnosis hypotheses, for the
diagnosis of rheumatic diseases. AI-RHEUM is used by clinicians and informatics
researchers and was released in 2015.

FILDO (Fibrotic Interstitial Lung
Disease Ontology) (142)

An in-progress, four-tiered ontology proposed to standardize the diagnostic classification
of patients with fibrotic interstitial lung disease. FILDO was published in 2017.

PEO (Pre-Eclampsia Ontology) (143) Represents clinical features, treatments, genetic factors, environmental factors, and other
aspects of the current knowledge in the domain of pre-eclampsia. PEO was published in
2016.

RPDO (Removable Partial Denture
Ontology) (144)

Represents knowledge of a patient’s oral conditions and denture component parts,
originally developed to create a clinician decision support model. RPDO was published
in 2016.

(Continued)
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Table 1 (Continued)

Ontologya Descriptionb

PCOSKB (PolyCystic Ovary Syndrome
Knowledgebase; http://pcoskb.
bicnirrh.res.in) (145)

Comprises genes, single nucleotide polymorphisms, diseases, gene ontology terms, and
biochemical pathways associated with polycystic ovary syndrome, a major cause of
female subfertility worldwide. PCOSKB was published in 2015.

Abbreviations: EBI, European Bioinformatics Institute; GTR, Genetic Testing Registry; HPO, Human Phenotype Ontology; MEDLINE, Medical
Literature Analysis and Retrieval System Online; NCBI, National Center for Biotechnology Information; NCBITaxon, NCBI Taxonomy Database; NIH,
National Institutes of Health; OMIM, Online Mendelian Inheritance in Man; UMLS, Unified Medical Language System.
aOntology abbreviations are followed by the full name in parentheses, along with online sources and references.
bDescriptions are adapted from BioPortal (https://bioportal.bioontology.org/), Wikipedia, or the source’s website.

so that each rubric or code has one and only one parent. This precludes multiple counting but cre-
ates arbitrary associations. For example, gastric cancer (ICD-10:C16) is a child of malignant
neoplasms but is not, nor can be, a child of digestive system diseases. Modern ontologies
conventionally embrace acyclic graphs with multiple parenting, as explained in the desiderata for
terminologies in Reference 17. ICDs invoke residual categories, such as not elsewhere class-

ified or other specified to address the exhaustive requirement for statistical classification;
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Figure 2
Ontology use over time. In aggregate, the mention and citations of disease ontologies have doubled over the
last 10 years, with the overwhelming majority of mentions to ICD, and all others increasing markedly albeit
at a much lower level. Ontologies greater than 10 years old are much more likely to be mentioned than cited.
The reverse is true for ontologies under 10 years old; however, even in these circumstances, 20% of the
papers that should formally cite an ontology do not. We used MEDLINE (PubMed) to identify the marker
papers of each ontology. Once found, we used Scopus to find publications citing each marker paper.
Additionally, we searched MEDLINE (PubMed) using MeSH subject headings and text strings to identify all
mentions of these ontologies in MEDLINE (PubMed). We mapped the Scopus DOIs to PMIDs/PMCIDs
using various services, deduplicated the list of citing/mentioning publications, and stratified by year. The
search strategies, scripts, and raw data files are all available on GitHub at https://github.com/monarch-
initiative/ont-review. Abbreviations: DO, Human Disease Ontology; EFO, Experimental Factor Ontology;
HPO, Human Phenotype Ontology; ICD, International Classification of Diseases; MEDLINE, Medical
Literature Analysis and Retrieval System Online; MeSH, Medical Subject Headings; NCIt, National Cancer
Institute Thesaurus; PMCID, PubMed Central identification number; PMID, PubMed identification
number; SNOMED, Systematized Nomenclature of Medicine; UMLS, Unified Medical Language System.
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these too violate Cimino’s desiderata (17). Some have argued that those desiderata were not in-
tended to be applied to statistical classifications.

ICD-11 was formally introduced by WHO in November 2016 at the Revision Conference
in Tokyo (18). This revision breaks away from the sixteenth-century tabular form to embrace a
multitiered architecture, centered around an acyclic-graph semantic network called the foundation
component. A monohierarchy is derived from that network to achieve the requirements of a
statistical classification, which is called a linearization because it can be printed in a book from
beginning to end. Residual categories are added only to a linearization to make it exhaustive.
Presently, the Joint Linearization for Morbidity and Mortality Statistics is the primary derivative,
and it looks and feels like traditional revisions of the ICD. However, the ICD-11 architecture can
support an arbitrary number of linearizations, optimized for decision support, subspecialty care,
quality improvement, or reimbursement.

The original architecture of ICD-11 envisioned an ontology component to semantically anchor
the foundation component and, in turn, the linearizations. A memorandum of agreement was
signed in 2010 with the SNOMED organization to partner in this process. Some researchers
proposed to create a Common Ontology (19) to address the dissonance between a simple (SKOS-
based) hierarchy (ICD) and a DL-based system (SNOMED); their idea was to invoke query logic
[as in SQL (structured query language) set theory] rather than DL (20). A substantial prototype
for the cardiovascular chapter was developed as a demonstration (21), but funding to complete
this work for the entire foundation component was not available.

The goal of automated coding from EHRs to disease classifications such as ICD is partly realized
in many commercial coding tools today. However, the new architecture implemented for ICD-11
supports a sophisticated information model around each rubric, comprising a profile of that disease
or syndrome. Presently it is populated only with fully specified terms, synonyms, and limited
human language definitions. Projects such as the Data Translator (OT3 OT-TR-16-001) from
the National Center for Advancing Translational Sciences (NCATS) may catalyze the authoring
of more complete disease information, including computable clinical criteria, that will enable
API (application programming interface) access to disease concepts. While intended to support
translational biomedical research and EHR data linkage, such tooling will also contribute to a
computational ecosystem for fully automated classification of patients from underlying granular
clinical data.

Various countries including the United States adapt the ICD for national use, namely the
ICD-10 for Clinical Modification (ICD-10-CM) and corresponding adoptions for earlier ICD
revisions. Implementing ICD-10-CM in the United States may offer marginal value for health
care or biomedical data (22) and, in any event, was done nearly 25 years after the release of ICD-
10 by WHO. ICD-11 will be formally released in July 2018, although its adoption in the United
States may again be delayed in view of the expense and effort of ICD-10-CM.

Systematized Nomenclature of Medicine–Clinical Terms

SNOMED-CT is a compositional system of clinical findings, symptoms, diagnoses, procedures,
body structures, and organisms, as well as other etiologies, substances, pharmaceuticals, devices,
and specimens. It can trace its origins to the three compositional axes of the Standard Nomen-
clature of Diseases and Operations (SNDO) in 1932 (topology, etiology, and surgical procedures;
23), which was published through 1961 (24). From this grew the Systematized Nomenclature of
Pathology (SNOP) (25), which was a four-axis compositional system replacing the surgical pro-
cedures of SNDO with morphology (histopathology) and function. SNOP was so successful that
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the American College of Pathologists attempted to embrace all of medicine with the first version
of SNOMED in 1976 (26). That expanded the SNOP axes to restore procedure and add disease
and occupation. However, the first three versions of SNOMED were effectively tabular enumer-
ations of terms with codes, arrayed in a crudely segmented hierarchy, although the third version,
SNOMED International in 1993 (27), was relatively large, totaling 132,574 concepts compared
to the few hundred in SNDO.

Given the size and complexity of SNOMED International as a compositional system, users
quickly recognized the reality and likelihood of redundant coding; for example, appendectomy
could be compositionally expressed in 17 different ways (28). This led researchers to consider
whether the emerging practicality of DL could be leveraged to provide a computable framework
for terminologies, enabling them to be internally consistent and nonredundant (29). From this
grew the preliminary work to create SNOMED for Reference Terminology (SNOMED-RT),
based on proprietary DLs from IBM called K-Rep (Knowledge Representation) (30). K-Rep
became the basis for what is today called the EL++ DL, for which there now exists an OWL2
profile (https://www.w3.org/TR/owl2-profiles). EL++ is significantly more tractable for large-
scale terminologies, as it is computable in polynomial time (31). However, EL++ is severely
compromised in expressiveness relative to OWL2, of which it is a subset, lacking any abilities to
represent class negation, cardinality restrictions, or disjoint properties, among others.

SNOMED-CT represents a union between SNOMED-RT and the UK National Health
Service (NHS) Clinical Terms V3 (32); the latter is a large clinical terminology that is the successor
to the NHS Read Codes (33). SNOMED-CT still uses the EL++ DL, although less than a
quarter of its content is logically defined; the remainder is primitive. SNOMED-CT supports
composition, although it now has a sophisticated clinical model of concepts that frame correct
compositional syntax. Compositional expressions that are redundant with precoordinated terms
can be computationally reduced to a canonical form (34), obviating historical concerns such as the
17 ways to express appendectomy.

More recently, SNOMED has embraced concept models for medical genetics (35) and harmo-
nizing content for nursing models (36). It is exploring mechanisms to facilitate decision support
in EHRs (37). Authors are also exploring evaluation techniques for larger terminologies (38) and
the degree to which these are transferable to other ontologies such as Uberon (39). SNOMED
has 30 member countries and is maintained in a variety of languages.

The Unified Medical Language System

The Unified Medical Language System (UMLS) is a suite of data and knowledge resources for
biomedical concepts and terms maintained by the National Library of Medicine since 1990. Its core
component since its inception is the Metathesaurus; the 2017AB release (40) contains 3.64 million
concepts, and 13.9 million unique terms from 201 source vocabularies. These statistics have all
increased by more than an order of magnitude from the original release. The structure and detail
of the Metathesaurus have also evolved, at various times being published as bar-delimited ASCII
(American Standard Code for Information Interchange) text files, SQL data sets, ASN.1 (Abstract
Syntax Notation One) notation, and, since 2004, the canonical RRF (Rich Release Format) (41),
which expands the ASCII sources to preserve source file transparency.

True to its name, the Metathesaurus is a joining of terms from source vocabularies, such as
MeSH and the ICDs, to generate a semantically harmonized union of terms and concepts. The
UMLS distinguishes concepts, which have a unique meaning, from terms, which have similar
words and order after lexical simplification. A concept may have many associated terms that are
effectively synonyms (42). Many synonyms are human language translations, such as Spanish,
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where those human languages are explicitly tagged. One consequence of this semantic reduc-
tion is that the Metathesaurus can function as a mapping from source terminologies with shared
concepts even if the exact terms significantly differ. Additionally, concepts are structured as a hier-
archy, supporting near-meaning mappings from a highly specific term to a term parent in another
source terminology. Despite frequent attempts by investigators and NLP practitioners to use the
Metathesaurus as an ontology, this often proves impractical because the hierarchy can be cyclic.
If the hierarchy ordering of a source terminology declares concept B to be a child of A, while
another source declares A to be a child of B, both relationships will be deliberately instantiated in
the UMLS to preserve source transparency; the RRF format disambiguates which source asserts
which relations.

A second component of the UMLS, the Specialist Lexicon (43), is designed to support the lexical
normalization of text for natural language processing (NLP). It comprises a suite of software tools,
a knowledge resource of regular lexical forms (case, tense, number, etc.) for the English language,
and a database of more than 30,000 terms with regular and irregular lexical forms. The Specialist
Lexicon is used to generate lexically similar versions of text to define terms for the Metathesaurus.

The third major component of the UMLS is the Semantic Network (44). This is an upper
ontology of biomedicine (45) that presently comprises 133 biomedical semantic types (such as
disease or syndrome) in a hierarchy of 54 relationships. These numbers have changed little over
the 27-year history of the UMLS, consistent with the stability of an upper ontology. Each concept
in the Metathesaurus is assigned a semantic type, which can serve to disambiguate homonyms
such as “cold” disease (disease or syndrome) and “cold” temperature (natural phenomenon

or process).
The UMLS has been used widely in scholarly analyses of terminologies and ontologies. It has

also been used to enhance or develop applications, such as EHRs, classification tools, dictionaries,
language translators, and text mining (46, 47).

National Cancer Institute Thesaurus

NCIt (https://ncit.nci.nih.gov; 48) is produced by the National Cancer Institute (NCI) and
was derived originally from the NCI Metathesaurus in 2001. Within the NCI, a variety of in-
dependent coding systems had arisen, and NCIt was designed to assist uniform data and activ-
ity annotation of cancer research across NCI’s programs. The NCIt today is a widely utilized
standard for coding, knowledge reference, and public reporting. For example, NCIt is a key fea-
ture within the international Clinical Data Interchange Standards Consortium terminology, is
used by the US Food and Drug Administration (FDA) for drug approval applications, and is
included within the Federal Medication Terminologies and the Japanese National Council for
Prescription Drug Programs for medication coding. A large part of this ontology incorporates
standardized drug information, which is used to facilitate clinical trial research and registration
such as to code ClinicalTrials.gov. NCIt is also used to code studies within the Cancer Genomic
Data Commons (49), other cancer-based public databases, and new initiatives such as KidsFirst
(https://commonfund.nih.gov/kidsfirst) and the Variant Interpretation for Cancer Consortium
of the Global Alliance for Genomics and Health (http://cancervariants.org/).

The NCIt covers a wide variety of concepts in clinical care, translational and basic research,
and public information and administrative activity, with over 100,000 textual definitions and over
400,000 relationships between terms. NCIt represents over 10,000 cancers and related diseases
and 8,000 single agents and combination therapies related to the diseases. NCIt is a comprehen-
sive taxonomy of neoplasm types, including a range of very broad terms such as carcinoma

(NCIT:C2916) and highly specific subtypes such as Thyroid Gland Mucosa-Associated
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Lymphoid Tissue Lymphoma (NCIT:C7601). Subsets of the NCIt facilitate tasks in a variety
of contexts, such as the neoplasm subset that forms a core reference set of approximately 1,400
cancer classification terms (50). The NCIt Browser (51) enables user navigation of concepts and
displays the text definitions, logical relationships, synonyms, coding subsets, and mappings (see
below).

The NCIt is a rich DL-based ontology and was released in OWL2 in 2017. The NCIt has a fairly
large number of subontologies, such as Anatomic Structure, System, or Substance; Bio-
chemical Pathway; Abnormal Cell; Disease, Disorder or Finding (where the neoplasm
branch mentioned above is included); Diagnostic or Prognostic Factor; Chemotherapy

Regimen or Agent Combination; Molecular Abnormality; Organism (for nonhuman refer-
ence); and others. The ontology contains a rich set of transitive role properties between concept
pairs, as well as nontransitive association properties. For example, the logical definitions ofThyroid
Gland Mucosa-Associated Lymphoid Tissue Lymphoma (NCIT:C7601) include related find-
ings, anatomic sites, genetic abnormalities, associated diseases, and cellular origins, among many
others:

Disease_Has_Finding: Primary Lesion

Disease_Has_Associated_Anatomic_Site: Thyroid Gland

Disease_Has_Normal_Cell_Origin: Marginal Zone B-Lymphocyte

Disease_May_Have_Associated_Disease: Hashimoto Thyroiditis

Disease_May_Have_Cytogenetic_Abnormality: t(3;14)(p14.1;q32)

The rich knowledge structure contained within the NCIt makes it amenable to modern quality
assurance and development processes that leverage OWL semantics (52, 53). The NCIt has also
been used to evaluate the quality of the annotations on the Common Data Element value sets in
cancer research (54). The NCIt has been used in an increasing number of applications that leverage
the rich semantics to predict activities of cancer patients (55), facilitate precision medicine (49),
support diagnosis (56), and crowdsource cancer variants (57).

NCIt was recently released as an Open Biomedical Ontologies (OBO) ontology (58) to support
translational and interoperable use across basic and clinical research (59). This release is a direct
transformation of the NCIt using OBO-style term Internationalized Resource Identifiers and
annotation properties, with direct references to terms from other domain-specific OBO Library
ontologies [e.g., Cell Type Ontology (60) and the Uberon Anatomy Ontology (61)]. The release
also contains NCIt, ICD for Oncology, and Oncotree mappings and subsets that also include
OBO Uniform Resource Identifiers in their logical axioms.

Human Phenotype Ontology

HPO (10) provides terms that allow deep phenotype descriptions of patient and disease charac-
teristics. The set of HPO terms, or phenotypic profile, is the basis of comparison for identifying
candidate diseases and variant prioritizations. Numerous clinical labs and diagnostic tools use
HPO and the HPO-provided disease–phenotype associations for this purpose. The HPO was
initially published in 2008 with the goal of integrating phenotypic data for translational research
and diagnostics. It has since become a standard used by projects such as the NIH (National In-
stitutes of Health) Undiagnosed Diseases Program and Network, the 100,000 Genomes Project,
DECIPHER (Database of Genomic Variation and Phenotype in Humans using Ensembl Re-
sources), Deciphering Developmental Disorders, and the European Reference Networks, and it
has been translated into such languages as Japanese, Chinese, French, and Spanish (10). Following
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Table 2 The most important components of the HPO (Human Phenotype Ontology) term atrial septal defect

Item Example Explanation

ID HP:0001631 Accession number for this term

Name Atrial septal defect Preferred label

Synonyms ASD, Atrial septum defect Other commonly used names for the same concept

Text definition Atrial septal defect (ASD) is a congenital abnormality
of the interatrial septum that enables blood flow
between the left and right atria via the interatrial
septum.

Human-readable definition of the concept

Xref ICD-10:Q21.1 Cross-reference to synonymous terms in other
databases

is_a abnormality of cardiac atrium (HP:0005120);
abnormality of the atrial septum

(HP:0011994)

One or more so-called parent terms, i.e., more
general terms located directly above this term in the
ontology

Logical definition ‘has part’ some (‘closure incomplete’ and

(‘inheres in’ some ‘interatrial septum’)

and (‘has modifier’ some abnormal))

Computable definition of the concept

experiences in the 100,000 Genomes Project, the NHS is now using HPO for patients with rare
diseases (62).

The HPO has four subontologies, Phenotypic abnormality, Clinical modifier, Mode of

inheritance, and Mortality/Aging, with 12,299 terms and 15,976 subclass relations between
the terms. Each term has a text definition and, in many cases, synonyms and comments (see
Table 2). Additionally, 5,717 of the terms have DL-based class definitions that provide com-
putable definitions of HPO terms based on concepts from ontologies for anatomy, biochemistry,
pathology, cell types, proteins, and biological functions. Each term in the Phenotypic abnor-

mality subontology describes a specific phenotypic abnormality (sign, symptom, laboratory or
imaging finding, behavioral abnormality, etc.). Thus, the terms of the HPO describe the individual
components of diseases rather than the diseases themselves. The links to diseases are provided
in the form of annotations, i.e., computational assertions that a certain disease is associated with
a set of HPO terms. Each annotation is supplemented with metadata reflecting the provenance
of the assertion and, in many cases, with attributes such as the typical age of onset or the overall
frequency of a given feature in all patients with some disease [e.g., about 20–50% of patients
with Noonan syndrome have Pulmonary valve stenosis (HP:0001642)]. The HPO project
currently provides a total of 131,827 annotations to 6,996 diseases with identifiers from OMIM
(Online Mendelian Inheritance in Man) (63), 2,664 from Orphanet (64), and 47 chromosomal
disorders from DECIPHER (65). Although the initial focus of the HPO was Mendelian disease,
it is being extended to common disease. A pilot using concept recognition in PubMed abstracts
was used to derive 132,620 HPO annotations for 3,145 common diseases (66).

DISEASE AND PHENOTYPE ONTOLOGIES IN ACTION

Using Disease Ontologies for Search and Retrieval

Perhaps the simplest kind of computer-based search is a search for a text string in a document,
where a string is simply a sequence of characters such as “Fanconi anemia.” This type of search
does not always work well for medical purposes because almost all concepts in medicine have
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multiple synonyms. A search in MEDLINE (Medical Literature Analysis and Retrieval System
Online) using only text strings retrieves different numbers of results for “Fanconi anemia” and
“Fanconi’s anemia” or for the gene symbol “RAD51C” and an alternate symbol “BROVCA3” for
the same gene. Most ontologies define synonyms for the concepts in the ontology. An ontology-
aware search like the PubMed interface to MEDLINE will return identical results for any of the
synonyms of a given concept. In general, ontologies present the concepts within the ontology as
a hierarchy of related terms, whereby more specific terms are presented as children of general
terms; for instance, “Fanconi anemia, complementation group B” is a specific form of “Fanconi
anemia” and would be represented as a child of the latter term in a disease ontology. This rela-
tionship allows ontology-driven searches to return not only matches to a given concept (say, all
abstracts in PubMed that are annotated with “Fanconi anemia”) but also to all of the more specific,
descendant concepts (e.g., “Fanconi anemia, complementation group B” and the other forms of
Fanconi anemia). Historically, this has been the most important use for vocabularies designed for
identifying the scientific literature (i.e., MeSH). Information retrieval within and across a large
number of resources such as research registries and EHRs can also benefit from integration with
common ontologies to annotate and index each resource (67–69).

Cohort Identification

Now ubiquitous in health care settings, EHRs capture various aspects of the clinical care en-
counter. EHR data are increasingly used for translational research and to develop learning health
care systems that aim to improve patient care based on existing system-wide data (70). How-
ever, substantial effort is required to extract, encode, and preprocess phenotypic information from
EHRs prior to statistical analysis and integration with other data sources (genomic, metabolomic,
etc.). Further, routine clinical care data do not necessarily constitute a perfect rendering of the
biological observables of the patient, as clinicians seek to best describe the patient for the pur-
poses of obtaining labs or insurance to provide the best care for their patients. As in the case of
the eMERGE consortium, phenotyping algorithms are sets of rules and filters that exploit in-
formation in billing and diagnosis codes, clinical notes, and other unstructured data, laboratory
measurements, and procedure and medication data (71) and can help better identify cases and
controls for specific medical conditions (72). The Accrual to Clinical Trials ontology aims to
streamline cohort definitions by harmonizing labs across clinical sites within the context of i2b2
(Informatics for Integrating Biology and the Bedside) (73, 74). Disease and phenotype ontologies
are increasingly used as a critical component of text mining and phenotyping algorithms, which
use recognition of synonyms and subsumption of more specific terms under general ancestor terms
to improve the recognition of medical concepts in text. This is covered extensively in this volume
by Shah and coauthors (75).

Using Ontologies for Patient Diagnostics, Care, and Decision Support

An extremely diverse spectrum of ontology-based efforts aims to support improved patient diag-
nosis, care management, and decision support. For example, Zhang et al. (76) implemented an
ontology-based monitoring system that integrates patient data, medical knowledge, and patient
assessment criteria for continuous management of chronic disease. Another example is the inte-
gration of alert information with EHR data, piloted with atrial fibrillation alerts (77), to classify
alerts so that the most important ones are better highlighted. Ontology-based classification can
also help triage patients in the emergency room (78), diagnose and monitor progress of Parkinson
patients (79), and enable caregivers and clinicians to provide adaptive care to dementia patients
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by monitoring their cognitive and behavioral status (http://www.demcare.eu/). Ontologies are
increasingly used within clinical decision support systems, especially in the context of telemedicine
or to support improved evidence-based decision making. Some interesting examples are consul-
tation systems to support medical care onboard seagoing vessels (80) and ultrasound diagnosis in
obstetrics and gynecology (81). Ongoing work on the ontologies aims to integrate multiple clin-
ical practice guidelines to provide improved clinical decision support (82) and electronic clinical
quality measures using the UMLS and the SNOMED-CT core problem list (83).

Some biomedical ontologies can have greatly expanded utility when applied in innovative ways.
For example, the logical structure of the HPO provides a powerful foundation for computational
phenotype analysis (84–87) and has been especially useful for the development of rare disease
diagnostic tools, such as Exomiser (88–90), Phevor (91), Face2Gene (http://face2gene.com/),
and numerous others. In these contexts, sets of HPO terms used to describe a patient provide the
basis of comparison against known diseases (90, 92) and other patients. The Global Alliance for
Genomics and Health Matchmaker Exchange (http://www.matchmakerexchange.org) utilizes
HPO for N-of-1 (single-patient) global patient discovery (93), and new applications are being
developed to support patient-led matchmaking using the HPO (http://www.phenotypr.com).

Use of Disease Ontologies in Information Exchange Standards

While ontologies provide a standard for describing data, they are not themselves a standard for
computational exchange of data. A standard for exchanging data encoded with ontology terms is
also needed; for instance, should we send a list of ontology terms in JSON ( JavaScript Object
Notation), XML (Extensible Markup Language), or some other format? What other metadata
(such as the provenance of the data) or associations (such as with a genotype) are required, and
what data structures can be used for data transmission? Exchange standards for phenotypic and
genomic data for translational research and genomic medicine are still emergent, and no single
standard has been widely accepted at the time of publication. However, several standards have
obtained wide community participation and are under active development. Clinical data exchange
between organizations is now routine, although proprietary systems (e.g., Epic) or the network
of Health Information Exchanges leveraging the Consolidated Clinical Document Architecture
(94), which in turn references standard ontologies and terminologies, should be bound to exchange
documents in XML. The Fast Healthcare Interoperability Resources (https://hl7.org/fhir/) is a
next-generation RESTful (Representational State Transfer) standard for exchanging health care
information electronically that provides an abstraction layer on top of EHR information systems
and is currently being extended for genomic data (95).

Observational Health Data Sciences and Informatics is an international collaboration that has
developed a common data model allowing EHR data from multiple centers to be integrated and
analyzed with standardized tools and ontologies (96). The Global Alliance for Genomics and
Health is striving to develop standards, policies, and ethical frameworks for responsible genomic
data sharing (97). For example, Phenopackets (http://www.phenopackets.org) is an extensible
exchange format for exchange of data relating to patients, diseases, and phenotypic abnormalities
together with metainformation such as age of onset. Increasingly, the community is converging
on a suite of interoperable ontologies that define or cross-reference their terms by means of a
compatible set of reference ontologies. For example, this can enable RDF (Resource Description
Framework)-linked data approaches to integrate data from source ontologies for querying and
analytics, such as in Reference 98 and the University of Pennsylvania’s new project Transforming
and Unifying Research with Biomedical Ontologies (http://upibi.org/turbo/).
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DISEASE ONTOLOGY CHALLENGES AND OPPORTUNITIES

Precision of Disease Concepts

One of the biggest issues with many disease-related ontology resources is that using them effec-
tively for data annotation requires clearly defined terms. However, many ontologies leave disease
entities and groupings undefined; this is the case for just under half of terms in the Human Disease
Ontology (DO), for just over half of terms in Orphanet’s Rare Disease Ontology (ORDO), and for
three-quarters of neoplasm terms in NCIt. Moreover, when definitions are provided, they often
lack the precision necessary for curation or do not align with the taxonomic classification. In many
cases the label/disease name acts as proxy for the definition, but this is unreliable as the label may
be ambiguous alone. Using a formal language such as OWL allows for specification of definitions
in a logical language, providing benefits for humans and machines, but it is not always possible to
provide these. This is often easier with diseases such as cancer (10,000 of 15,000 neoplasm terms
in NCIt have OWL definitions), whereas with syndromic conditions, the definition is frequently
more nuanced or statistical in nature. For example, compare definitions for pancreatic cancer from
different sources:

“A carcinoma arising from the exocrine pancreas. The overwhelming majority of pancreatic carcinomas
are adenocarcinomas.” (NCIt)

“Pancreatic cancer shows among the highest mortality rates of any cancer, with a 5-year relative
survival rate of less than 5%. By the time of initial diagnosis, metastatic disease is commonly present.
Established risk factors include a family history of pancreatic cancer, a medical history of diabetes type
2, and cigarette smoking.” (OMIM)

Similarly, compare definitions for Ehlers–Danlos syndrome (EDS):

“An inherited connective tissue disorder characterized by loose and fragile skin and joint hypermobil-
ity.” (NCIt)

“Group of inherited disorders of the connective tissue; major manifestations include hyperextensible
skin and joints, easy bruisability, friability of tissues with bleeding and poor wound healing, calcified
subcutaneous spheroids, and pseudotumors.” (UMLS)

For pancreatic cancer, the NCIt definition is based on etiology, while the OMIM definition is
about disease attributes and prognostic indicators. For EDS, both definitions describe phenotypic
features of the diseases, but to varying degrees.

Defining ontological concepts is a socio-technical challenge that requires community coordina-
tion and adoption. Defining disease entities is nontrivial and different resources have different crite-
ria for doing so. For example, OMIM requires that there be two published cases and one of the fol-
lowing: “first mutation to be discovered, high population frequency, distinctive phenotype, historic
significance, unusual mechanism of mutation, unusual pathogenetic mechanism or distinctive in-
heritance” (63, p. D794). ClinGen (Clinical Genome Resource; http://www.clinicalgenome.org)
(99) has a lumping and splitting working group, which has defined rigorous criteria for the cre-
ation of disease entities (different molecular mechanisms, phenotypic variability, segregation, and
clinical management), essentially using genotypic, phenotypic, and care attributes to define in-
dependent disease entities. However, even with robust processes for disease definitions, there is
a fundamental gradient between disease and health. Further, disease has been ontologically de-
scribed as a process, event, state, disposition (e.g., a propensity), and a pathological anatomical
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structure. Schulz et al. (100) approached this by enabling these three conceptual views of disease
to be conflated (as demonstrated in the context of SNOMED-CT, where there is significant con-
fusion between pathological structures, dispositions, and processes) and to be distinguished only
when useful, such as in certain diseases. All of these efforts speak to the fundamental problem that
disease definitions must sit at the intersection of robust descriptive patient attributes and ease of
use, both by clinicians and by ontologists and other curation communities.

Ontology Mapping

While there is now a plethora of ontologies to choose from, each having specific advantages or
domain coverage, this also leaves the community with the specific problem of not knowing which
ontology to use for a given use case. Most disease classifications are not designed to be combined for
cross-disease or cross-domain computational use. However, the cross-domain scope is important
for both diagnosis and care: Across history, all kinds of disease subtypes have been reassigned to
another domain when the underlying cause was uncovered. Many disease ontologies or databases
contain overlapping content, with the same or similar disease entities and disease groupings present
in each resource, with distinct identifiers. To combine these resources, researchers use mappings
(also known as cross-references) to link identifiers from one resource to another. For example,
Ehlers-Danlos syndrome in the Orphanet ORDO ontology is cross-referenced to Ehlers-

Danlos syndrome in ICD-10 (Q79.6).
A new disease ontology, Monarch Disease Ontology (MonDO), recently was assembled to

address the need for a single cohesive ontology that combines the respective strengths of existing
partially overlapping ontologies. The original version of MonDO was created using algorithmic
means (101) but has recently transitioned to a fully curated ontology with ongoing algorithmic
support. MonDO covers multiple disease types, including rare, common, cancerous, and infectious
disease, and is openly available as an axiomatized OWL ontology. It is updated regularly to ensure
inclusion of new disease entities coming from numerous sources. It is utilized by resources such
as ClinGen and the Monarch Initiative (102), which have a need to create computable definitions
of disease for diagnostic purposes.

Table 3 highlights the diversity and precision of synonyms and mappings available from each
ontology source for pancreatic cancer and EDS. For each of these example diseases, we sys-
tematically compared 11 ontologies: DO, ICD-10, ICD-11, MedDRA (Medical Dictionary for
Regulatory Activities), MeSH, MonDO, NCIt, OMIM, Orphanet, SNOMED, and UMLS. De-
spite the similarities between records of the same disease concept, the differences pose challenges
to automatic integration: Labels, definitions, synonyms, classification, and cross-references all
partially overlap (for the same concept).

For example, the EDS records in the respective 11 ontologies together comprise 4 distinct
labels, 7 distinct textual definitions, 61 distinct synonyms, and distinct external records over 14
other ontologies. EDS record differences range from minor (labels, hyphens, and casing) to major
(conceptual differences in definition and hierarchy); MonDO aims to address these differences
in a unified record (MONDO:0020066). Across the ontologies, we found significant conceptual
differences in EDS classification, both in terms of subtypes of EDS and in terms of which parent
terms EDS is classified under.

We repeated this comparison for pancreatic cancer records in the 11 ontologies. Taken
together, the pancreatic cancer records comprise 4 distinct labels, 5 distinct definitions, and 59 dis-
tinct synonyms, and reference distinct external records distributed over 16 other ontologies. Dif-
ferences range from minor (labels and casing) to major (conceptual differences in definition and hi-
erarchy); MonDO aims to address these in a unified record (MONDO:0009831). Table 3 does not
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capture the nuanced semantic drift between concepts. For example, NCIt and MonDO have
distinct unique concepts for a neoplasm (which is not necessarily malignant/cancer) and for
familial and somatic forms, whereas in other resources they may be conflated.

MonDO captures the valid union of all external references (Xrefs) but also provides a curated
assessment for where the two diseases are truly logically equivalent and guaranteed to be one-
to-one. Moreover, unlike other disease terminologies, MonDO (a) describes the provenance of
these relationships and (b) makes explicit the nature of the relationships to other ontology terms.
Although flat lists of undifferentiated Xrefs and synonyms are indeed helpful for manual browsing,
machines need to know which of these are broader, narrower, exact, related to, derived from, etc.
While a record may have many Xrefs listed, the designation equivalent to in MonDO means
that, both algorithmically and by manual quality control, the relationship is logically consistent.
While extensive synonyms can appear useful, in many cases these may mislead, as the synonyms
are proxies for either descendant or parent terms; in other cases, hierarchies are implied but are
difficult to use deterministically. The specificity and rigor provided by MonDO allows the user to
make informed decisions about what sources of data (annotated to these various ontologies) might
be appropriate to combine and which combinations would result in conclusions that are spurious
at best or incorrect diagnoses at worst.

Mappings are created using a variety of different approaches, ranging from completely man-
ual to semiautomated and completely automated. In general, expert-provided mappings are ex-
pected to contain fewer errors, but they are hard to keep current and may commonly have
omissions, especially as referenced vocabularies evolve. Automated approaches typically lever-
age lexical similarity or graph-based matching. An example of a mapping tool is UMLS metamap
(https://metamap.nlm.nih.gov/) (the same techniques often underpin named-entity recognition
approaches; see below). Sometimes mappings are created by the same creators of the ontology
and distributed alongside it (for example, in the commonly used OBO format, these appear as
Xrefs). In other cases, mappings may be created by third parties. Examples of an automated
approach by a third party are the mappings that can be explored in the BioPortal mappings
system (http://bioportal.bioontology.org/mappings), but these still require review by experts
and computational quality assurance (103). Another example of a system that can be used to
explore mappings is the OxO web-based tool, a companion to the Ontology Lookup Service
(https://www.ebi.ac.uk/spot/oxo/). The precise semantics of mappings vary according to who
produces them—even within an ontology. Sometimes the intent is to provide one-to-one mappings
between identical disease concepts, but in practice, mappings rarely have this desirable property,
and imprecision and semantic drift mean that mappings cannot reliably be treated as equivalence
relations. In some cases, mappings are annotated with a semantic relationship: For example, ORDO
annotates mappings to OMIM as being either exact, broad-to-narrow, or narrow-to-broad.

Disease Stratification and Discovery

Ever increasing amounts of genomic, imaging, EHR, and other data are becoming available for
disease research and health care, but existing computational infrastructure is not well prepared
to fully exploit the potential of this deluge. Recent advances in genomic research have led to
discoveries of disease subtypes with therapeutic implications, but this knowledge is currently
difficult to integrate into hospital information technology and even academic research databases.
An example of a disease that could benefit from tighter integration is systemic lupus erythematosus
(SLE), an autoimmune condition with severe and varied manifestations. The FDA has approved
only one drug for SLE treatment in the past 50 years, and several recent phase III trials of novel
therapeutics proved unsuccessful, perhaps because of an underlying molecular heterogeneity of this
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disease. Precision medicine aims to identify disease subgroups that have well-defined pathogenetic
abnormalities and thus are likely to have a relatively homogeneous response to targeted treatments.
In principle, this will allow clinical trials to be conducted on specific subgroups, thereby maximizing
the response and minimizing adverse effects. A recent study on blood transcriptome profiling of 158
pediatric lupus patients identified seven molecular subgroups and suggested stratified treatment
approaches for individual subgroups (104). One of the challenges to making the maximum use of
these findings is the fact that there is currently no terminology or ontology that can be used to
identify patient samples and results in studies conducted at different centers, and there is no way
of identifying patients assigned to these subgroups in clinical terminologies such as SNOMED-
CT. SLE is a great example of where it would be useful to have computational definitions of
subgroups linked to disease and phenotype ontologies in a way that would support translational
bioinformatics and research.

What researchers need are machine-readable disease definitions that would support and ac-
celerate the entire endeavor of precision medicine. The most prominent proposal was made in
2011 by the Committee on a Framework for Developing a New Taxonomy of Disease (105).
The committee suggested an information commons in which data on large numbers of patients
would be derived from normal clinical care (e.g., EHRs or patient-derived data) and a knowledge
network that would integrate the clinical data with other data and knowledge about fundamental
biological processes. Precision medicine is about finding well-defined stratifications (subgroups of
patients and the treatments that work best for them); the most useful classifications of disease are
those that make these stratifications possible. Current taxonomies serve many other needs such as
hospital administration and billing and are not necessarily the optimum foundation for the disease
taxonomy of the future. Instead, the committee suggested that an ideal taxonomy for precision
medicine would be based on clinical, environmental, genetic, genomic, and epigenomic data and
knowledge. While this vision has not yet been fully realized, programs such as the NCATS Data
Translator initiative are exploring strategies for developing such a taxonomy.

While current disease ontologies are far from perfect, they already enable sophisticated analysis
of medical data in many ways. One of the classic uses of GO was to determine the characteristic
GO terms (i.e., the terms that show statistically significant overrepresentation) in a set of overex-
pressed genes in a high-throughput experiment using microarrays or RNA sequencing (for recent
examples, see References 106–108). These methods have been extended to integrate GO, HPO,
or DO annotations to identify terms enriched with disease-relevant data (109, 110). Further, HPO
disease−phenotype annotations can be used to integrate phenotypic analysis into larger genomic
investigations of disease. For instance, phenotypic analysis was used to classify the pathomecha-
nism of chromosomal deletions as either enhancer adoption or gene dosage based on an analysis
of tissue-specific enhancers and genes adjacent to the deletions as compared to the phenotypic
features of the patients (111). GREAT (Genomic Regions Enrichment of Annotations Tool) per-
forms functional interpretation of regulatory regions by enrichment analysis with various ontology
terms (112). GIANT (Genome-Scale Integrated Analysis of Gene Networks in Tissues) investi-
gates genome-wide functional interaction networks for human tissues and cell types and allows
visualization of interacting genes weighted according to functional similarity (113). Several other
recent works show how gene−disease associations can be used for predicting therapeutic targets
(114) or can be analyzed or predicted using ontological analysis (115, 116).

CONCLUSIONS

There are numerous disease ontologies with varying degrees of logical complexity and focus of
disease areas. Some disease ontologies contain phenotypic and other disease attributes, whereas
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others create separate annotations to support their use. Many disease and phenotype ontologies are
in wide use across a variety of biomedical applications, and their use is increasing as better methods
of patient stratification, care management, diagnostics, and data integration are required with new
medical advances. However, defining disease for robust computational use has been nontrivial, and
new ontological and statistical methods are needed. Reconciling existing resources’ definitions of
disease in the context of data integration or multiplatform analyses has been difficult, but methods
are emerging that can reduce redundancy and best leverage the advantages of each ontology.
Determining when to retire a disease ontology standard—or even when or how to evolve one—
is nontrivial and dependent on social, technical, and financial factors. Disease and phenotype
ontologies are key resources in biomedical data science for data classification and inference of new
knowledge.
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