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Abstract

Computational proteomics is the data science concerned with the identi-
fication and quantification of proteins from high-throughput data and the
biological interpretation of their concentration changes, posttranslational
modifications, interactions, and subcellular localizations. Today, these data
most often originate from mass spectrometry-based shotgun proteomics ex-
periments. In this review, we survey computational methods for the analysis
of such proteomics data, focusing on the explanation of the key concepts.
Starting with mass spectrometric feature detection, we then cover methods
for the identification of peptides. Subsequently, protein inference and the
control of false discovery rates are highly important topics covered. We then
discuss methods for the quantification of peptides and proteins. A section
on downstream data analysis covers exploratory statistics, network analy-
sis, machine learning, and multiomics data integration. Finally, we discuss
current developments and provide an outlook on what the near future of
computational proteomics might bear.
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INTRODUCTION

Proteins perform nearly all the work in a cell and are the key players in the structure, function, and
regulation of cells, tissues, and organs. Collectively they form the proteome (1), a highly dynamic
and diverse molecular omics space comprising interactions among proteins and other types of
biomolecules. The proteome can be studied comprehensively with mass spectrometry (MS)-based
technologies (2-4). Thousands of proteins and posttranslational modifications (PTMs) can be
studied quantitatively over a multitude of samples in complex experimental designs. Describing
all applications of proteomics is beyond the scope of this review, but among its applications are
diverse topics such as cancer immunotherapy (5) and the evolution of extinct species (6).
Computational MS-based proteomics can be roughly subdivided into two main areas: (z) the
identification and quantification of peptides, proteins, and PTMs and (b)) downstream analysis,
aiming at the biological interpretation of the quantitative results obtained in area 4. This review fol-
lows this subdivision. Computational proteomics is a highly multidisciplinary endeavor attracting
scientists from many fields and incorporates other disciplines like statistics, machine learning, effi-
cient scientific programming, and network and time series analysis. Furthermore, the integration
of proteomics data with other biological high-throughput data is increasingly gaining importance.
Peptide-based shotgun proteomics, also called bottom-up proteomics (7), needs to be dis-
tinguished from top-down proteomics (8-10), in which whole proteins are studied in the mass
spectrometer. Data analysis tools and approaches exist for top-down methods (11-13) in which
feature deconvolution plays an important part. In targeted proteomics (14-17) (Figure 1), a set
of key peptides from a target list, which is informative for a set of proteins or PTMs of interest,
is quantitatively monitored over many samples using dedicated software (18). Data-independent
acquisition (19), as exemplified by the SWATH-MS method, comes with its own computational
challenges for which solutions are provided in the literature (20-23). Imaging MS (24) is also a

a Data-dependent acquisition b Data-independent acquisition C Targeted

N
o

2]
o

N
o

Retention time (min)

400 800 1,200 1,600
m/z

Figure 1

Main formats of mass spectrometry (MS)-based proteomics. Peptide-based bottom-up proteomics is most often done in the
data-dependent acquisition mode (#). MS2 (second-stage MS) scans are triggered depending on the MS1 (first-stage MS) data features
seen in real time. Typically, at a given retention time, the 7 most intense peptide features are selected for fragmentation, dynamically
excluding masses that have just been previously selected. In data-independent acquisition (5), a set of constant mass ranges, which do
not depend on the peptides being analyzed, is isolated for fragmentation. In targeted proteomics (c), a list of peptides is targeted based
on a list of mass and retention time ranges corresponding to peptides of interest, which are particularly informative of a set of proteins
or posttranslational modifications that are the focus of the investigation.
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Figure 2

Bottom-up shotgun proteomics workflow. (@) Proteins are extracted from a sample of interest. Enrichment of organelles or affinity
purification may be performed. Proteins are digested to peptides that are optionally enriched for modifications. (@) After HPLC
separation, peptides are ionized (181, 182) and (@) injected into a high-resolution mass spectrometer (e.g., 183, 184). MSI spectra
containing peptide isotope patterns are recorded in a cycle with a timescale of about one second. (@) Peptide precursors are selected for
fragmentation and fragment (MS2) spectra are recorded. (@) Both MS1 and MS2 spectra are written to disk, typically resulting in several
gigabytes of data per LC-MS run, and then analyzed by computational proteomics software. Abbreviations: HPLC, high-performance
liquid chromatography; LC, liquid chromatography; MS, mass spectrometry; MS1, first-stage MS; MS2, second-stage MS.

fruitful area of research that will not be covered here. This review focuses on data-dependent
bottom-up or shotgun proteomics (Figure 2), which currently is the format most frequently used
in proteomics.

Itis not the aim of this review to present an exhaustive list of all available software tools. Instead,
we focus on explaining concepts and key applications. In several places, we use the MaxQuant (25—
27) and Perseus (28) software as concrete examples for the implementation of certain concepts.
Alternative software platforms developed in academia (29-31) or offered by mass spectrometer
vendors can provide similar functionality. We propose that robustness, ease of use, parallelizability,
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and automation of all computational aspects are the key factors to consider in the selection of
software tools.

Proteomics research is supported by community tools such as repositories, databases, and an-
notation sources (32). There are public repositories for the storage and dissemination of MS-based
proteomics data (33-39), and submission of raw data is highly recommended for every proteomics
publication (34). Protein and peptide sequences are essential for the interpretation of proteomics
data. For this purpose, UniProt (universal protein resource) (40) is a comprehensive, high qual-
ity, and freely accessible resource of protein sequences and functional information. Since most
amino acid sequence identifications can be put into the context of coding nucleic acid sequences—
exceptions prove the rule (41)—genome-centric sequence repositories like Ensembl (42) are of
high importance as well. Data sharing and dissemination of publicly available proteomics data are
facilitated by dedicated software tools for the reanalysis of community data (43, 44).

This review consists of two main parts, the first dealing with the data analysis steps performed
on the spectral data itself, going up to the identification and quantification of peptides, proteins,
and PTMs. This part is organized in a problem-centric way, where in each subsection, a particular
challenge in the MS workflow is described. The second part is about the downstream data analysis.
Here, the sections are organized by methodologies rather than application areas, which is a more
approachable organization scheme, since the number of different applications is enormous, while
the methodologies overlap. The downstream analysis of proteomics data is still an art, and there is
not always only one correct way to arrive at biologically meaningful conclusions. Hence, we give
a comprehensive overview of the available methods that can be used along the way.

IDENTIFICATION AND QUANTIFICATION OF PEPTIDES, PROTEINS,
AND POSTTRANSLATIONAL MODIFICATIONS

Liquid Chromatography-Mass Spectrometry Features

Since the early days of MS, the detection of peaks in a mass spectrum, corresponding to molecular
features, played a central role (45). Nowadays, the mass resolution is sufficiently high in general
that the isotope pattern of peptides is resolvable (Figure 34). On the molecular level, a single
peak corresponds to an isotopic species with fixed elemental composition and several nucleons.
In case of ultrahigh mass resolution, the isotopic fine structure of peptides in the low-mass range
can be resolved (46) (Figure 3a), resulting in increased information about the atomic constituents
of the peptide. While obtaining isotopic resolution is standard nowadays for peptides, the same
is still technically challenging for whole proteins in top-down proteomics. For instance, for each
charge state of an antibody, usually only an envelope is detected, while the isotopic peaks remain
unresolved.

In proteomics, the mass spectrometer is typically coupled on-line to additional continuous
separation dimensions like liquid chromatography (L.C) (47) or ion mobility separation (48). MS
features can therefore be viewed as higher-dimensional objects. In case of LC-MS, peaks become
three-dimensional (3D) objects in the m/z—retention time—intensity space (Figure 354). Using
ion mobility adds another dimension, turning features into 4D objects. Technically, due to its
dimensionality, the problem of MS feature detection is equivalent to general-purpose 2D image
feature detection or voxel assembly to 3D volume elements (49), respectively. However, since MS
data often have additional regularities that can be exploited, the problem is often simpler than
generic object recognition. Simplifying assumptions specific to mass spectrometer types should be
exploited to apply faster algorithms to the multidimensional feature detection problem. (Readers
are referred to the supplement of Reference 25.)
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MST feature-based computational tasks in a proteomics workflow. (7) Theoretical spectrum of an MS1 feature measured in three
different resolutions. The lowest resolution (1,000 FWHM) does not resolve the isotope pattern. The ultrahigh resolution (1,000,000)
reveals the natural isotopic fine structure. (b) A three-dimensional isotope pattern in 7z/z—retention time-intensity space. (c) Peptide
mass errors as a function of retention time and peptide 72/z before and after nonlinear recalibration. Clearly, nonlinear systematic
errors were present and were then removed by recalibration. (4) Mass error distribution before and after recalibration. A large increase
in mass accuracy was achieved through nonlinear recalibration. (¢) Retention time alignment curve between two LC-MS runs.

(f) Matching between runs. Peptide identities are transferred between LC-MS runs from MS2-identified MS1 features to nonidentified
MSI1 features in other similar LC-MS runs based on accurate mass and retention time. Abbreviations: FWHM, full width at half
maximum; LC, liquid chromatography; MS, mass spectrometry; MS1, first-stage MS; MS2, second-stage MS; ppm, parts per million.
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Once features corresponding to isotopic peaks are detected, they are assembled to isotope
patterns, effectively deisotoping the spectrum. Different models exist (50-52), one of them being
the Averagine model (50), which can be used to explore spectral properties, since nearly all peptides
with a given approximate molecular mass have a similar elemental composition. In the model, it is
assumed that a peptide is made up of the average number of the 20 amino acids according to their
natural occurrence. The model then predicts the mass differences between isotopic peaks in an
isotope pattern, as well as their relative heights. This approach is usually sufficient when dealing
with data with unresolved isotopic fine structure. When the isotopic fine structure is resolved,
one will have to employ the true atomic compositions of the peptide candidates to utilize this
information. In the approaches using higher-dimensional features, the exact coelution of isotopic
peaks can also be utilized to increase the specificity of assignment of isotope patterns. While in
most cases, the spectral information is not sufficient to determine the elemental composition,
one will obtain the charge state and a highly precise estimate of the monoisotopic mass from the
information contained in the higher-dimensional features.

One can find labeling n-plexes of isotope patterns in the MSI1 (first-stage MS) data prior to
peptide identification, similar to how features are assembled to isotope patterns. This applies
to nonradioactive differential isotopic sample labeling techniques (53, 54) like SILAC (stable
isotope labeling by amino acids in cell culture) (55) or dimethyl labeling (56, 57). Analogous to the
deisotoping step, specific mass differences between the isotope patterns participating in a labeling
n-plex are expected. This is not the case for N labeling (58, 59) in which all nitrogen atoms are
completely exchanged with the stable heavy isotope. Isotope patterns belonging to an n-plex are
usually coeluting, depending on the type of labeling, which can be exploited in the assembly of
n-plexes.

While mass measurements from modern high-resolution mass spectrometers, in combination
with the aforementioned higher-dimensional feature detection, can achieve very-high-mass pre-
cision, this does not automatically translate into high-mass accuracies, due to the presence of
systematic measurement errors. In Figure 3¢, the peptide mass error prior to mass recalibration is
displayed as functions of #2/z and of retention time. Systematic errors are typically nonlinear and
depend on multiple variables. In addition to 72/z and retention time, the mass error can depend on
signal intensity and ion mobility index, if applicable. Nonlinear recalibration on multidimensional
parameters is difficult when it must rely on only a few calibration points, as is usually the case
if dedicated spike-in molecules are used. Hence, it is typically better in complex samples to use
the peptides from the sample itself as calibration points for multivariate recalibration, which is
achieved in MaxQuant by a two-level peptide identification strategy (25, 60, 61). The mass ac-
curacy increases by large factors resulting from the applications of these nonlinear recalibration
curves obtained in this way (Figure 34).

Similar to the mass accuracy, the consistency of the retention times of peptide features can
also be increased by recalibration. Due to often unavoidable irreproducibility in chromatography,
retention times are usually not comparable between LC-MS runs, thereby limiting identification-
transfer and quantification between runs. Nonlinear shifts by several minutes are common.
Hence, algorithmic approaches were developed to align retention times between multiple runs
(Figure 3e). Typically, these retention time corrections need to be nonlinear (62). In MaxQuant,
this is achieved with a sample similarity—derived guide tree, which avoids the need for singling out
one LC-MS run as the master run (63) that all the other runs are aligned to. Ion mobilities can
be aligned between LC-MS runs with similar methods as retention times.

Once masses, retention times, and ion mobilities are recalibrated, one can transfer iden-
tifications between related LC-MS runs from peptide features identified by fragmentation to
unidentified peptide features by having same mass, charge, retention time, and ion mobility (64)
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(Figure 3f). Following this strategy, the quantification profiles across many samples become more
complete, which partially removes the stochastic behavior of the data-dependent acquisition in
bottom-up proteomics. Determining and controlling false discovery rates (FDRs) for these kind
of matching approaches is challenging and the subject of current research. However, if samples
are similar, error rates caused by matching are in acceptably low ranges.

Peptide Identification

Peptide identification tools analyze the fragmentation spectra obtained by the mass spectrometer
with the aim of determining the sequence of the peptide. In the most popular approach, database
search engines (65-69) utilize a target database of theoretical fragmentation for identification
(Figure 4a). The database is generated from all protein sequences that are known or thought to
be produced according to the instructions in the genome of an organism. The protein sequences
are digested in silico into peptides according to a cleavage rule mirroring the protease used in the
experiment (e.g., trypsin, which cleaves after the occurrence of lysine or arginine in the protein
sequence). For each of these in silico peptides, the list of expected fragment masses is calculated
based on the backbone bond breakages expected for the fragmentation technique used in the exper-
iment. For a given measured fragmentation spectrum, the search engine calculates a match score
againstall theoretical fragmentation spectra within a specified peptide mass tolerance. The highest-
scoring peptide spectrum match (PSM) is taken as a candidate for the identity of the peptide.
Since the highest-scoring PSM might still be a false positive, most workflows control the FDR us-
ing a target-decoy approach (70) (Figure 4b). In this approach, fragmentation spectra are searched
notonly against the target database, but also againsta decoy database, which is designed to produce
false-positive PSMs. Comparing the score distributions of target and decoy PSMs, posterior error
probabilities can be calculated and FDRs can be controlled. One procedure to generate decoy
sequences is to reverse the target sequences, providing peptides that do not occur in nature.

Additional peptide features besides the search engine score, such as the length of the peptide and
the number of missed cleavages, help distinguish true identifications from false positives, leading
to more high-confidence identifications. In MaxQuant, the posterior error probability, which is
the probability of a PSM being wrongly identified, is conditional on the score and additional
peptide properties (25). Other tools such as PeptideProphet (71, 72) and Percolator (73) use linear
discriminant analysis or support vector machines (SVMs) with the same aim. Machine learning was
used to predict intensity patterns in fragmentation spectra in order to support database scoring
and further improve identification (74), but it failed to improve upon the state of the art. In
contrast, the application of deep learning to de novo peptide identification did yield improvements
(75).

De novo peptide sequencing (Figure 44) is another technique for identifying peptides from
fragmentation spectra. The peptide is identified using only information from the input spectrum
and the characteristics of the fragmentation method. Mass differences between certain peak pairs
correspond to amino acid masses, which are interpreted as consecutive ions in one of the expected
fragmentseries, for example, y or b ions for collision-induced dissociation. If these mass differences
can be continued to a whole series from N- to C-termini, the peptide is identified without reference
to a sequence database. An incomplete de novo amino acid series is called a sequence tag and might
be completed on either of the termini with a sum of amino acid masses and PTMs. The many
existing tools for de novo peptide identification explore different algorithmic approaches, some
allowing for de novo sequencing errors and homology searches (76-79). An interesting approach
is a hybrid between database search and de novo sequencing (80); it requires only a little de novo
information and hence inherits high sensitivity from the database search approach.
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Figure 4 (Figure appears on preceding page)

Overview of peptide identification methods. (#) In the peptide database (DB) search engine approach, measured second-stage mass
spectrometry (MS2) spectra are scored against a list of theoretical spectra from an in silico digest of protein sequences. De novo peptide
identification allows reading the peptide sequence partially or completely out of the MS2 spectrum. () In the target-decoy approach,
true and decoy protein sequences are offered to estimate the false discovery rate (FDR). (¢) Determining the localization probability for
a posttranslational modification on a peptide. (4) Open search and dependent peptide search are methods for detecting modifications in
an unbiased way. Modifications still must be localized after open search. (¢) Modifications found in a typical dependent peptide search.
Data from Reference 185 were used.

For a peptide that has been identified as having a certain sequence and carrying one or more
modifications, the positions of these modifications on the sequence might not be localizable
with complete certainty. Hence, a score needs to be calculated that quantifies for each poten-
tially modifiable amino acid in the peptide sequence the certainty of localization at a given locus
(Figure 4¢). For instance, a peptide might contain several potentially phosphorylated serine, thre-
onine, and tyrosine residues, but from the peptide mass it is known that it is phosphorylated
only once. Then one needs to determine which of the sites are phosphorylated and use the spec-
tral evidence to derive each site’s probability that it is the one bearing the modification (81-85).
The most important spectral features for the calculation of localization probabilities are the site-
determining ions, which are fragments that are matched with one hypothetical localization but not
with the other. The exact way the localization score is calculated varies between different meth-
ods. In MaxQuant, the localization probability is calculated as a weighted average of exponential
Andromeda scores over all combinations of phosphorylation configurations (86).

The identification of modified amino acids, either as PTMs such as phosphorylation or as
modifications introduced during sample preparation, is usually done by adding these as variable
modifications into the database search. While this strategy is highly sensitive, all modifications have
to be specified beforehand. The number of modifications that can be specified is limited due to the
combinatorial explosion of modified peptides species, leading to a large increase in database size.
There are two approaches overcoming these limitations: open search (87) and dependent peptide
search (88) (Figure 4d). The open search approach does not extend the sequence database but
instead widens the precursor mass tolerance window for the MSI1 precursor peptide molecule
to, for example, +£500 Da, while keeping the fragment mass tolerance low (87). Therefore, a
modified peptide with a mass within the tolerance window can still be matched to the correct
unmodified database sequence despite ~50% of fragment ions being shifted by the modification.
The high number of candidate matches makes the open search computationally demanding, but
recent approaches make use of fragment ion indexing to speed up the search significantly (89). The
dependent peptide search, also implemented in MaxQuant, is a generic approach to retrospectively
identify unassigned MS2 (second-stage MS) scans; it relies on the assumption that the sample
contains not only the modified dependent peptide, but also its unmodified base peptide counterpart
(88). Using any search algorithm will yield identifications, as well as unassigned MS2 spectra.
The search now queries all unassigned spectra against all identified spectra, while simultaneously
localizing the modification. The mass difference between the peptides is the putative mass of the
modification, which is used to generate a shifted ion series for each position in the peptide. The
highest-scoring match will therefore determine the sequence of the peptide, as well as the mass and
locus of the modification. Figure 4e shows the most frequent modifications found by dependent
peptide search in a typical data set.

There are a number of special topics in peptide identification, starting with dipeptides resulting
from cross-linked proteins (90, 91), which have the challenge of a vastly increased search space
due to pairing of peptides, for which several popular software packages are available (92-97).
In proteogenomics searches (98), peptides are identified based on customized protein sequence
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databases generated from genomic or transcriptomic information. Search spaces for proteoge-
nomics searches are typically larger than in conventional searches since they often involve three- or
six-frame translations of genomic sequences. Furthermore, these search spaces are heterogeneous,
since the sequence content ranges from clearly existing, manually validated protein sequences to
in silico—translated genomic regions without any prior evidence for their expression. Hence, extra
measures need to be taken in the identification process to account for this heterogeneity. Pro-
teomics of species without sequenced genome requires tools to integrate incomplete sequencing
data with homologous sequence data from closely related species (99).

Protein Inference and False Discovery Rate

Protein inference, that is, the assembly of peptides into a list of proteins, is a crucial step in a
computational proteomics workflow, since usually the peptides are only technical aids to study
proteins. (Readers are referred to Reference 100 for a review.) The relationship between peptides
and proteins is many-to-many, since upon digestion a protein gives rise to many peptides, but
a peptide can also originate from more than one protein. Furthermore, based on the identified
peptides, proteins that share common sequences might not be distinguishable from each other.
Hence, a redundancy grouping of protein sequences is necessary.

Peptides that are unique to a protein are more desirable than nonunique ones. On average,
longer peptides are more likely to be unique, and hence, more informative. As an order of mag-
nitude estimate, we calculate how often a random peptide of a given length would occur in the
human proteome, assuming it is randomly composed out of the 20 amino acids and has the same
size as the latest human UniProt release 2017_09, which contains 93,588 protein sequences com-
prising 37,118,756 amino acids in total. Peptides of length 5 should occur on average 12 times
in the proteome, meaning that their information content is nearly worthless. Peptides of length
6 should occur on average 0.6 times, making them only just potentially useful, but many of them
can still be expected to be nonunique. In this model, only peptides of length 7 or longer are on
average expected to be informative and useful. Although other factors like tryptic peptides and
paralog relationships between genes realistically should be considered, the conclusions hold true
of real data.

Many tools and algorithms for the protein assembly have been described in the literature. The
most frequently applied ones can be roughly subdivided into parsimonious and statistical models.
Parsimonious models (25, 101-104) apply Occam’s razor principle (105) to the protein inference
problem by finding a set of proteins that is as small as possible to explain the observed peptides.
Usually, fast greedy heuristics are used to find such a protein set. Statistical models (106, 107)
can assemble large amounts of weak peptide identifications to infer the existence of a protein.
However, for both types of models, it is worth considering a threshold on peptide identification
quality, for example, 1% FDR for PSMs. High-quality peptide identifications allow for solid
conclusions about the properties of the identified proteins, while weakly identified peptides can
compromise protein quantification accuracy. Ideally, the output of the protein inference step is a
list of protein groups. Each protein group contains a set of proteins that cannot be distinguished
from each other based on the observed peptides. Either the proteins in a protein group have equal
sets of identified peptides or the peptide set of one protein is a proper subset of that of another
protein, in which case, based on the peptide identifications, there is no evidence for the existence
of the latter protein, assuming that the former protein is in the sample.

The phenomenon of error expansion from peptide to protein identification in large data sets is
well known in the field (106, 108). Even if the FDR is thoroughly controlled at the PSM level, if
no additional measures are taken, the FDR on protein level can become arbitrarily large. Hence, it
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is highly important to use workflows that control FDR on the protein level (25, 106, 108, 109) to
limit the number of proteins falsely claimed to be present in the sample, particularly if the number
of identified proteins is a relevant outcome of the study.

Quantification

Proteomics becomes more powerful when done quantitatively, as compared to only browsing
through lists of identified proteins. Many responses to stimuli on the level of proteins are not
switching the expression of a protein on and off completely, but manifest themselves as changes in
cellular concentrations that might be small, yet important. Quantitative proteomics approaches
can be subdivided into absolute and relative quantification methods. In absolute quantification,
one wants to determine copy numbers or concentrations of proteins within a sample, while in
relative quantification, a quantitative ratio or relative change of protein concentrations between
samples is desired. Both absolute and relative quantification can be done either with the aid of
labels or label-free.

Figure 5 shows an overview of relative quantification methods. In label-free quantification,
the samples being compared are biochemically processed separately. The distinction between
metabolic and chemical labeling is not important from a computational perspective. Instead, the
main distinction is between MS1-level labeling, in which the peptide signals corresponding to
the multiple samples are compared and form multiplexed isotope patterns in the MS1 spectra,
and MS2-level or isobaric labeling, in which the multiplexed signals appear in the fragmentation
spectra. Hence, computational methods for relative quantification should be distinguished between
label-free, MS1-level labeling, and MS2-level labeling.

In label-free quantification, one faces particular challenges with normalization intensities be-
tween LC-MS runs and the compatibility of quantification with prefractionation. In MaxQuant,
the MaxLFQ algorithm (110) is implemented for relative label-free quantification. It uses signal
intensities of MS1 peptide features as input, optionally including the ones identified by matching
between runs, and produces as output relative protein abundance profiles over multiple samples.
MaxLFQ accounts for any peptide or protein prefractionation of the samples by applying a sophis-
ticated intensity normalization procedure to the feature intensities of each LC-MS run. A protein
intensity profile is constructed that best fits protein ratios determined in all pairwise comparisons
between samples. In each of these pairwise comparisons, only peptides that occur in both samples
are used, which makes the relative comparison very precise. Hence, MaxLFQ is more accurate
than merely summing up all peptide intensities belonging to a protein. By using a sample-similarity
network for the intensity normalization step, the algorithm scales well to large data sets and can
quantify hundreds of samples against each other.

Stable isotope labeling with sample multiplexing appearing on the level of MSI spectra (55—
57,111, 112) promises to be more accurate than label-free quantification since the coelution of
features in the same LC-MS run can be exploited. The ratio calculation can be performed along
the elution profile separately in each MS1 scan and separately for each isotopic peak. This results
in many estimates of the ratio, which can be summarized by taking the median. This robust ratio
estimate is less sensitive to contamination by other coeluting peptides. In this way, the ratios
between MS1-label channels are calculated in a more precise way, as compared to the label-free
approach, where feature intensities are calculated separately before their ratio is taken. During
MS1-label n-plex assembly, the isotope patterns of parts of the z-plex might be missing, leading
to an incomplete quantitative profile. Proper MS1 isotope patterns might be missing for peptides
arising from low-abundant proteins. In MaxQuant, the requantification algorithm tries to find
traces of these isotope patterns close to the noise level.
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One can use one labeling channel as a common standard, as is done in Super-SILAC (113),
which allows quantifying unlabeled samples with the added accuracy of labeling by using ratios of
ratios to compare samples with each other. Computationally, these hybrid samples are analyzed
like MS1-labeled samples in the feature detection, but the downstream analysis proceeds nearly
as if they were label-free samples.

Inisobariclabeling (114-116), peptides in different samples are labeled with different molecules
per sample that have the same mass but that eject different reporter ions upon fragmentation. The
biggest advantage of isobaric labeling is its multiplexing capacity. Up to 11 samples can be mea-
sured simultaneously with the currently available tandem mass tag reagents. The downside is
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that the presence of coeluting peptides in the isolation window for fragmentation leads to ratio
compression (117). To be precise, cofragmentation makes ratios wrong in arbitrary and individual
ways. However, since it is often a valid assumption that most of the proteins are not changing
between samples, the cofragmented peptides are likely to have 1:1 ratios, thus compressing the
ratios of changing proteins. There are several experimental strategies to reduce or remove the
cofragmentation problem, such as gas-phase purification (118), MultiNotch MS3 (119), and use
of complementary ions (120). There are several computational methods that reduce ratio com-
pression. Reporter ions of low intensity are prone to carry more noise and be more affected by
cofragmentation signals. Hence, peptides with higher reporter ion intensities should be given
higher weights when calculating protein intensities. Another approach is to calculate the fraction
of precursor signal divided by the total MS1 signal observed in the isolation window (121, 122),
which can be used for filtering peptides used for quantification. To some extent, this quantity can
also be used to correct for ratio compression (123).

Approximate measures of absolute protein abundances can be obtained with simple computa-
tional prescriptions like the iBAQ or Top3 methods (124, 125). The problem that peptides of a
protein have vastly different flyability (a term used to cover the relative efficiencies of ionization,
transfer, and detection), making them not directly comparable for quantification, is solved by av-
eraging over many peptides or selecting the most intense ones, which enriches for high flyability.
For eukaryotic cells, one can add an absolute scale to these readouts with the proteomic ruler
approach (126), which uses the signal of histones, assuming that it is proportional to the amount
of DNA in the sample.

The quantification of peptides and PTMs differs from protein quantification in that only
a single or few features can be used for quantification, while on the protein level, accuracy is
achieved by accumulating quantitative information over many peptides. Hence, the variability of
PTM quantification data and the number of missing values is usually higher than it is for proteins.
For combined PTM-enriched and proteome data, computational methods exist for calculating
occupancies (86, 127), which are the percentages of proteins modified at a given PTM site.

DOWNSTREAM DATA ANALYSIS

Exploratory Statistics

Once proteins have been identified and quantified over many samples, one obtains a matrix with
proteins (or protein groups) as rows, samples as columns, and protein abundances or abundance
ratios in the matrix cells. Usually, the interpretation of this quantitative protein or PTM data
and the translation into significant biological or biomedical findings are the most important and
labor-intensive parts of a study. The Perseus platform (28) was developed to support the domain
expert in this data exploration. It is workflow based, modular, and extensible through a plugin
infrastructure.

There are some preparatory steps preceding most analyses, such as normalization of intensities
or ratios, data filtering, and potentially missing-value imputation (Figure 64). A common task in
discovery proteomics is to identify proteins of biological interest and distinguish them from the
rest of the proteome. Statistical models are popular tools for identifying differentially expressed
proteins. Clustering methods, such as hierarchical clustering, are often used for finding expression
patterns of groups of proteins and for their visualization in a heat map. Principal component
analysis (PCA) is an alternative method of visualizing the main effects in the data and the relatedness
between samples. It also provides information on proteins responsible for a separation of sample
groups through the so-called loadings.
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The statistical tests 7-test and ANOVA (analysis of variance, which is the generalization of the
t-test to more than two groups) are the basic versions of a series of statistical models that test for
significant changes between sample groups (128, 129). In more complex experimental designs,
one might want to test for the effects of two factors simultaneously (e.g., gender and treatment),
in which case two-way ANOVA can be used. ANOVA can be generalized to any number 7 of
factors, resulting in z-way ANOVA. After retrieving a list of significant proteins from ANOVA,
a post hoc test can be applied to pinpoint the sample groups within the experimental design
that were changing. If samples are related and independency assumptions are violated, so-called
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Figure 6 (Figure appears on preceding page)

Downstream analysis overview. (#) Putative workflow for downstream proteomics analysis. After data upload (Szep I) and preprocessing
(Step 2), common analyses include differential expression (Step 34), principal component analysis (Step 3B), hierarchical clustering (Step
4A), annotation enrichment (Step 4B) and time series analysis (Step 4C). Data preprocessing (Step 2) may involve several steps including
data normalization and visual inspection of distributions of protein quantification values in histograms. Differential expression analysis
(Step 3A4) reveals those proteins that are significantly changing their concentrations between two or more conditions. Principal
component analysis (Step 3B) highlights main trends in the data such as a separation between cellular conditions, as shown in the
example. Hierarchical clustering (Step 4A) is often done in conjunction with heat map visualization of expression changes and reveals
characteristic patterns relating groups of samples to clusters of proteins. Results are often validated using annotation enrichment
analysis (Step 4B). Time series analysis (Step 4C) can distinguish between characteristic temporal patterns such as phases of peaking
protein concentrations in a periodic process, as shown in the example. Adapted from Reference 28. (b)) Support vector machines are a
powerful machine learning tool for classification. From training data they learn decision rules that can distinguish between classes of
samples based on their protein expression profiles. The decision rule is indicated here by a separating line between the two classes.
Support vectors are those samples that contribute most to defining the separating line. Adapted from Reference 28. (c) Applications for
machine learning in proteomics include finding predictive protein signatures and predicting the subcellular localization of proteins.
The colored clusters represent proteins that are localized in same organelles. Data from Reference 147 were used.

repeated measures ANOVA is a valid method of data analysis. For all of the methods above,
it is crucial to control false positives due to multiple hypothesis testing, since many tests are
done simultaneously. If only a moderate p-value cutoff is applied to define significant proteins,
the number of false positives will be inflated (130). Benjamini-Hochberg FDR control (131) or
permutation-based FDR estimates (132) are efficient methods to deal with this problem.

When an interesting group of proteins has been identified, for instance, by statistical testing,
clustering, or PCA, enrichment analysis can be performed to find biological processes, complexes,
or pathways common to these proteins. Fisher’s exact test checks for contingency between group
membership and the property of interest. It clarifies what is common to the cluster-member pro-
teins and might indicate the functional role of the cluster. For this purpose, annotation sources like
gene ontology (133), pathway memberships (134), or curated protein complexes (135) are needed.

Biological processes under study often exhibit temporal changes, with proteins following an
expected pattern, for instance, as periodic changes in the cell cycle or circadian rhythm. Other
studies involve measuring a response to dose changes of stimuli. In these situations, methods can
be applied that detect concentration changes following a given model, such as periodic changes
with a given periodicity. For this case of periodic temporal changes, the analysis will assign an
amplitude of change and a peaking time to each protein (136).

Posttranslational Modifications

Quantitative PTM data can be represented as a matrix resembling proteome-expression data,
but with modified peptides or modification sites on the identified proteins as rows. Therefore,
PTM studies can be analyzed with methods similar to those used for protein expression. For
instance, after suitable normalization and filtering, hierarchical clustering or PCA can be applied to
determine dominant patterns of phosphorylation changes (86). As previously discussed, one needs
to be aware of the higher variance of PT'M-level data compared to protein-level data. This requires
a higher number of replicates compared to protein-level data to achieve the same statistical power.

There are several public resources for obtaining PTM specific annotations. UniProt (40) pro-
vides comprehensive information on local protein properties at the PTM site or in its vicinity.
Specialized databases, such as PhosphoSitePlus (137), Signor (138), and Phospho.ELM (139),
cover mostly phosphorylation events. They include functional annotations, as well as kinase—
substrate interactions. This information can be used for enrichment analysis to gain information
about the processes involved in writing, reading, and erasing the studied PTMs. One can also
analyze PTMs in the context of signaling networks, as discussed below.
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Machine Learning

Machine learning has several applications in the downstream analysis of proteomics data
(Figure 6b,c). A very prominent one is the classification of patient-derived samples based on
their protein expression patterns (140-142). For artificial intelligence-based diagnosis, a super-
vised learning algorithm is first trained on samples derived from patient cohorts for which a
certain property is known, for instance, the cancer subtype. The trained algorithm is then used
to diagnose novel samples, that is, to predict the same property for samples where the property
is not known. The same supervised learning approach can be combined with feature selection
algorithms to derive predictive protein signatures. Each signature contains proteins that show a
distinct expression pattern and can be used for sample classification. Multivariate feature selection
methods can take the interdependence of proteins acting within networks into account and can
find patterns for which the discriminatory power is not apparent in the expression profiles of
single proteins. This makes machine learning—based feature selection a powerful alternative to
ANOVA-like methods to determine protein signatures, where a p-value is calculated for only one
protein at a time, independently from all the other proteins.

Machine learning approaches are most easily validated using cross-validation (143), which pro-
vides a measure of how well the prediction performance of a classification or regression model
will generalize to independent data not used for model training. Cross-validation helps avoid the
notorious problem of model overfitting and can be used to monitor prediction errors when ex-
tracting optimal protein sets from the output of feature selection algorithms. SVMs (144) often
perform particularly well in classification or regression of samples in omics spaces. This is not sur-
prising, since for most technologies, including proteomics, the number of features (biomolecules)
is typically much larger than the number of samples. SVMs were created to perform well in spaces
with exactly these properties. Deep learning (145, 146) is gaining traction in proteomics (75) and
will likely find more applications in the future.

Machine learning has also been successfully applied to the prediction of subcellular localization
with the dynamic organellar maps method (147, 148), which allows global mapping of protein
translocation events. First, one generates a database of marker proteins with known localization and
absolute copy number information and characteristic fractionation profiles. Then, using SVMs, a
model is built for the prediction of cellular localization. This method has dynamic capabilities to
capture translocation events upon a stimulation. This enables a widely applicable proteome-wide
analysis of cellular protein movements without requiring process-specific reagents.

Network Biology

MS-based proteomics provides researchers with diverse tools for the study of biological net-
works (149). Enrichment protocols interrogate the interaction partners of a bait protein and
provide the basis for the assembly of large-scale protein—protein interaction (PPI) networks
(Figure 7a). Affinity enrichment/purification coupled to LC-MS is routinely used to quan-
tify hundreds of physical interaction partners. Since relying only on identification of proteins
in the pull-down leads to many false positives, it is crucial to distinguish background binders
from significantly enriched bona fide interactors. Statistical tests, such as the two-sample #-test,
can identify true interactors but require a control to compare against. This control sample ei-
ther can be a dedicated experiment lacking the bait protein or can be assembled from other
orthogonal experiments within the same study (150, 151). Due to its quantitative nature, this
approach can probe not only steady-state interactions, but also dynamic rewiring upon stim-
ulation by internal or external stimuli. If intensity-based quantification is used, the missing
values problem for enriched samples can be overcome by imputation. Alternative methods
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Network analysis. (#) Protein—protein interaction networks can be constructed by applying statistical testing to a series of pull-down
experiments with different bait proteins. The resulting network of proteins with significant enrichment to any of the bait proteins can
be visualized in tools such as Cytoscape. Adapted from Reference 28. (b) Signaling pathway reconstructed from phosphoproteomics
data derived from MCEF7 cells after epidermal growth factor stimulation (160). The pie charts in the network visualize the measured

phosphorylation changes on each of the proteins. Proteins with unknown phosphorylation states are colored gray.

relying on spectral counting directly accommodate for the absence or presence of a protein
in a sample (152). Both approaches have been used to construct large-scale PPI networks
(151, 153).

Cells often achieve signal transduction through PTMs, which are enzymatically written, read,
and erased. The interpretation of PTMs in the context of these signaling networks is therefore nat-
ural. PTM specific networks, such as kinase—substrate interactions, can be obtained from curated
databases, such as PhosphoSitePlus (137). To increase coverage, kinase—substrate relationships
can also be predicted by machine learning and PPI network analysis (154). Logic models obtained
from, for example, the Signor database (138) can provide a mechanistic interpretation of phos-
phoproteomic data, indicating active kinases, as well as functional phosphorylation sites. Several
computational methods predict kinase activities from kinase—substrate interactions and phospho-
proteomics data. For a recent review and benchmark, readers are referred to References 155 and
156. Kinase-substrate enrichment analysis (157) uses parametric tests to compare the changes of
the substrates of one kinase to all other substrates. Cluster evaluation (158) clusters phosphoryla-
tion sites based on time series data, from which enrichments of kinase—substrate annotations are
calculated. Inference of kinase activities from phosphoproteomics (159) uses machine learning to
estimate the strength of kinase-substrate interactions, as well as kinase activities. Phosphopro-
teomic dissection using networks (PHOTON) (160) is a method using general PPI networks for
interpreting phosphorylation data within their signaling context. PHOTON identifies proteins
that significantly contribute to signaling and uses these proteins to reconstruct the most plausible
signaling pathway from the PPI network (Figure 7b).

For general-purpose network analysis, Cytoscape (161) has emerged as the de facto standard.
Through its plugin infrastructure, it provides a wealth of analyses and visualizations, often in-
tegrating expression-omics technologies with interaction networks. Cytoscape reads networks
from various standard formats and can extend them with interactions and pathways from var-
ious databases. Tools such as BINGO (162) can identify significantly enriched gene ontology
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terms in these networks. Large-scale networks can be clustered into modules, either by topology
(MCODE; see Reference 163) or by differential expression (jActiveModules; see Reference 164).
Alternatively, network reconstruction tools, such as ANAT (165), identify a subset of interactions
connecting, for example, differentially expressed proteins to their signaling stimulus.

Multiomics Data Analysis

Analyzing data from two omics technologies applied to the same samples becomes straightfor-
ward if there is a near one-to-one match between the biomolecules measured in each of the two
omics spaces. For instance, when comparing the proteome and the transcriptome, the one-to-one
correspondence between transcript and protein sequences holds true with only little deviations
due to, for example, translation errors and postprocessing of the protein sequence. Thus, the
molecular correspondence is sufficiently valid to conceptually work with matching rows between
the two omics matrices. The problem reduces to mapping transcript to protein identifiers and to
dealing with the different depth in distinguishable splice variants, for which algorithmic solutions
exist (28). A similar molecular correspondence can be applied to the genome—proteome spaces for
correlating local genomic properties such as DNA copy number (166) or loss of heterozygosity
to protein expression if proteins matching to the same gene model are grouped together. Also,
ribosomal profiling data (167) can be brought into molecular correspondence with proteomics
data.

Once a correspondence between omics spaces has been established, one can perform pointwise
comparisons, as is done in the scatterplots in Figure 84, in which protein abundances, messenger
RNA levels, and ribosomal profiling data are compared. Individual outliers in each of these plots
may hint at interesting biology. However, it is difficult to assign significance to individual data
points. Hence, researchers developed 2D annotation enrichment (168; Figure 8b) to answer the
question, Which classes of gene products show concordant and which show discordant behavior
between the different levels of gene expression? While transcriptional regulation is a dominant
factor in expression control, there are many known examples of posttranscriptional regulation
like microRNA-controlled inhibition of transcripts (169) and directed protein degradation (170),
which are detectable by this method.

Further examples of simultaneous multivariate analysis in two matched omics spaces are joint
time series analysis, which is exemplified in Figure 8¢ for circadian transcriptomics, and pro-
teomics data (136). Here, it was possible to derive time lags between peaks in transcript and
protein abundances as a proxy for the time lag between transcription and translation for individual
cycling transcripts and their associated proteins. Additionally, joint transcriptomics—proteomics
PCA performed on the same data (Figure 84 ) indicates global similarities in transcript and protein
concentrations, but with a time delay.

When the input is time-resolved data for transcriptome and proteome, protein expression con-
trol analysis (PECA) (171, 172) computes the probability of regulation changes between adjacent
time intervals. PECA quantitatively dissects protein expression variation into the contributions of
mRNA and protein synthesis—degradation rate ratios.

Unlike in the previous examples, when combining proteomics with metabolomics, there is
not a one-to-one correspondence between molecules. In biochemical pathways, proteins are as-
sociated with reactions between metabolites as catalysts. The required mapping of biomolecules
is facilitated by the consensus human metabolic reconstruction Recon 2.2 (173), which has a
high potential for integrating and analyzing diverse data types. Recon 2.2 facilitates the integra-
tion of proteomics data with an updated curation of relationships between genes, proteins, and
reactions.
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Cross-omics data analysis. (#) Comparison of protein abundances, ribosomal profiling data, and mRINA expression. Proteins are
quantified with the iBAQ method (124), while RPKM (186) was used for the other two data types. Adapted from Reference 28.

(&) Output of the two-dimensional enrichment analysis applied to protein and mRNA abundances. Adapted from Reference 28.

(¢) Side-by-side heat maps for daily rhythmic proteins and transcripts showing a cycling pattern. In the rows, samples are ordered by
time of extraction, and in the columns, proteins are ordered by time of their peak concentration. Adapted from Reference 136.

(d) Principal component analysis performed jointly on transcriptomics data (red ) and proteomics data (b/ue) of two phases of circadian
mouse liver data. Labels next to data points denote time in hours. Both transcriptomics and proteomics data points arrange in a periodic
time series pattern in the first two principal components. Adapted from Reference 136. Abbreviations: ECM, extracellular matrix;
iBAQ, intensity-based absolute quantification; mRINA, messenger RNA; ncRNA, noncoding RNA; RPKM, reads per kilobase per
million mapped reads; rRNA, ribosomal RINA.
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DISCUSSION AND OUTLOOK

Computational proteomics has matured substantially and is keeping up well with the massive
amounts of data produced by modern mass spectrometers. Platforms for identification and quan-
tification of proteins can analyze the data in a reliable and automated way. Therefore, attention is
increasingly being shifted to the downstream part of the data analysis, in which the quantification
results are interpreted, hypotheses are tested, and novel biological and biomedical knowledge is
gained. We anticipate that future developments of computational proteomics tools will be partic-
ularly active in these areas, including network biology and cross-omics data analysis. In previous
work (28), we made the case for enabling the end users—the researchers from fundamental biol-
ogy, drug discovery, and medical sciences—to perform large parts of the data analysis themselves,
and this is increasingly happening.

Single-cell DNA and RNA sequencing (174) have shed new light onto the heterogeneity and
diversity of biological processes behind the cellular averages that are typically monitored in many
omics technologies. According to reports in the literature (175), single-cell proteomics is just
around the corner and will likely bear many new discoveries. Once it is scalable and sufficiently
deep in terms of proteome coverage, it might help define a highly resolved atlas of all cell types and
cell states in the human body (176). Certainly, novel computational tools will have to be developed
for the particular challenges of single-cell proteomics data, which will likely have unique challenges
in terms of normalization and handling of missing data.

Thereisstill alarge gap between the generation of large-scale proteomics data and the modeling
of signaling pathways and biochemical reactions. The curated knowledge of PTMs currently
available in public resources (134, 177) is still limited and needs to be expanded to support more
comprehensive analyses. New tools are emerging to reconstruct signaling pathways and translate
them into logic models (178). Hopefully, the path from large-scale time series data to kinetic
modeling (179, 180) will become more accessible for many interdisciplinary researchers, leading
to an improved mechanistic understanding of the biological processes under investigation based
on large-scale data.
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