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Abstract

Infectious disease research spans scales from the molecular to the global—
from specific mechanisms of pathogen drug resistance, virulence, and repli-
cation to the movement of people, animals, and pathogens around the world.
All of these research areas have been impacted by the recent growth of large-
scale data sources and data analytics. Some of these advances rely on data or
analytic methods that are common to most biomedical data science, while
others leverage the unique nature of infectious disease, namely its commu-
nicability. This review outlines major research progress in the past few years
and highlights some remaining opportunities, focusing on data or method-
ological approaches particular to infectious disease.
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1. WHAT MAKES INFECTIOUS DISEASE SPECIAL?

The key distinguishing factor for infectious disease from an analytic point of view is that much of it
is also communicable between hosts, whether via person-to-person spread, zoonotic or epizootic
spread, or spread via intermediates in the natural or built environment. Treating such transmis-
sion then becomes a critical opportunity in the analysis of infectious disease data that differs from
noncommunicable diseases. Transmission can be represented either (a) explicitly, as in reconstruc-
tions of host-to-host transmission chains to guide public-health interventions (1–3); (b) implicitly,
as in outbreak predictions and analyses that do not directly predict transmission chains (4, 5); or
(c) as the underlying spatiotemporal correlation structure to shape predictions of disease likeli-
hood, drug resistance, clinical course, etc. based on related cases (6–8). Here, we focus on the
aspects and approaches that distinguish infectious disease research from noncommunicable dis-
ease research. There are many important infectious disease studies that follow lines similar to
noncommunicable disease studies, such as genome-wide association studies of infectious disease
susceptibility (9), but those are left for other reviews.

2. METHODS: MIXING DATA SCIENCE BEST PRACTICES
AND PROBLEM-SPECIFIC METHODS

To a large degree, infectious disease research and analytics have followed general methodological
trends in the biomedical data science field, for instance, use of logistic regression, decision trees,
factor analysis, and, more recently, deep learning approaches (10–14). However, the transmissible
nature of infectious disease has led to the development of some methods particular to the field and
the increased application of others relative to noncommunicable disease research.Phylogeography
is not particular to infectious disease—for example, humans move and have progeny—but it has
had particular application in connecting pathogen sequence data with spatiotemporal data tomore
accurately model infectious disease spread (15, 16). Similarly, temporal networks (graphs that have
time-varying edges) have been used tomodel the transient nature of contacts involved in infectious
disease transmission (17). Because pathogens interact with the adaptive immune system, the use
of immunologic similarity as a distance metric has provided important insights into the expected
efficacy of antigenic memory and has provided a widely used tool to visualize antigenic evolution
(18). As richer and denser data become available, we anticipate the development of additional
statistical inference methods tuned to the particular features of infectious disease data.

3. NEW TYPES OF DATA

Much recent progress and excitement in infectious disease research have come from the availabil-
ity of new, often large-scale datasets. Some of these data have proven amenable to analysis with
well-established statistical learning methods, while others have inspired the development of new
analytic methods or given new applicability to methods that were less frequently utilized. Here,
we classify large-scale infectious disease studies according to the following rubric, schematized in
Figure 1. (a) Big computation: Recent advances in computing power have led to the generation of
large-scale datasets from computer modeling, oftenmechanistic in nature, that can be analyzed for
insight into infectious disease.Here,we focus again on infectious disease–specific concerns, partic-
ularly pathogen fitness and drug resistance. (b) Big experiments or large-scale perturbational stud-
ies: Methods such as deep mutational scanning and host factor screens have generated large-scale
experimental datasets on infectious disease fitness that have yieldedmechanistic insights into repli-
cation, pathogenesis, and transmissibility. (c) Large-scale clinical data: Clinical datasets that are

44 Kasson



BD03CH03_Kasson ARjats.cls June 25, 2020 16:9

Structural and dynamic
molecular-scale data

Large-scale screening
data (host genetic,
pathogen genetic)

Sequence data

Patient data
(EHR, other)

Search, social, and
sensor data

LARGE-SCALE DATA SOURCES

Pathogen fitness,
drug resistance,
immune escape

Infectivity,
transmissibility,

patient outcomes

OUTCOMES
Bi

g
co

m
pu

ta
ti

on
Bi

g
ex

pe
rim

en
ts

La
rg

e-
sc

al
e

cl
in

ic
al

 d
at

a
So

ci
al

/s
ea

rc
h/

se
ns

or
 d

at
a Spatiotemporal

metadata

Figure 1

Infectious disease data sources and outcomes measurements. Here, we organize large-scale data sources
(blue) into big computation (large-scale computational modeling and simulation); big experiments (large,
systematic screening data such as host or pathogen genetic screens); large-scale clinical data including both
surveillance and diagnostic sequencing data, as well as electronic health record (EHR) and in-hospital sensor
data; and informal out-of-hospital data sources such as search, social, and sensor data. These can be used in
models that are then validated (red) against measures of pathogen fitness, such as drug resistance and
immune escape, or of patient or animal outcomes, such as infectivity, transmissibility, and patient health
status. The communicable nature of infectious disease means that spatiotemporal metadata are of immense
utility in interpreting sequence, patient, and social data.

either large in that they involve many patients or very deep in terms of information per sam-
ple have been a major area of development. This includes deep sequencing of isolates to infer
transmission chains, disease spread, and other data, as well as use of more traditional hospital
laboratory and electronic health record (EHR) data. An exciting new area in this regard is the
use of in-hospital sensor data. (d) Social, search, and sensor data: Data from social media, search,
and other Internet activity, as well as sensor data such as from mobile phones, provide a rich and
largely collateral source of information on infectious disease outbreaks and can be used to inform
and monitor public health interventions. This expanding area also raises new ethical questions
about user/patient privacy and public health.

While not exhaustive, this categorization is designed to be illustrative and informative as to
the new opportunities and outstanding challenges for large-scale data analysis in infectious dis-
ease research. We treat each of these categories in turn, discussing the analytic opportunities and
challenges associated with each and touching on some major methods used and insights gained.

4. BIG COMPUTATION: LARGE-SCALE SIMULATION DATASETS

The continued increase in computational capacity has enabled simulation not only of larger prob-
lems but also of larger parameter spaces, whether of mutation, transmission, or otherwise. As a
result, simulation results have themselves become datasets for statistical learning. One example
is the simulation of >100 mutants of a bacterial drug-resistance enzyme. Predictions from the
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Figure 2

Use of structural and dynamic data to predict drug resistance. (a) Large-scale simulations were performed of 125 mutants of a
CTX-M9 bacterial β-lactamase, and mutations were scored by their predicted ability to increase drug resistance (blue, low; red, high).
(b) Decision trees were then trained to predict which structural features in the validated mutants transmitted the mutations to the drug
resistance enzyme active site. The decision tree shows residues and atoms in the active site the positions of which reported mutations at
allosteric sites [wild type (WT), L48, T165, S281]. This example shows how large-scale computational models can inform mechanistic
understanding. Data replotted from Reference 19.

simulation are then correlated to experimental phenotypic or enzymatic assays, and statistical
learning is performed on the simulation results to identify not only the mutant but also the par-
ticular structural features modulating drug resistance in the experimental assays (19). Analogous
work that is large scale in simulating protein conformational motions but smaller scale in mu-
tations has also yielded insight into new ligand-binding mutations in antibiotic resistance (20).
These are interesting analytic problems because the feature space includes a rich set of structural
and dynamic outputs of the simulations that can be used to extract mechanistic insights. Statis-
tical methods used include mutual information feature selection, decision trees, and time series
Markov modeling approaches developed for such simulations (20, 21). Studies to date have pri-
marily focused on either active site mutations or allosteric mutations controlling drug resistance
(Figure 2) as a path toward predicting not-yet-observed resistance mechanisms and including
such mechanisms in new drug development efforts to improve robustness against mutational re-
sistance. Since the simulations represent substantial computational effort, there is much room for
further innovation in the development of statistical learning approaches to systematically mine on
a large scale these computationally expensive datasets for insight. Other large-scale experimental
datasets that could be well paired with simulation include deep mutational scanning and similar
large-scale mutational studies (22–25). Analyzing simulation datasets matched with experimental
or clinical outcomes is particularly ripe for additional insights and is relatively underexplored.

Modeling disease transmission, evolution, and immunity has also advanced in richness beyond
traditional SEIR (susceptible/exposed/infected/recovered) models. Large-scale models incorpo-
rating pathogen genetic drift, pathogen evolution, travel and contact data derived from air and
ground transport data, and even immunity (26–31) offer a greatly increased expressive capacity
compared to simple earlier models. The critical questions, of course, are whether enough data are
available to constrain such complex models and to rigorously evaluate them, as well as what in-
sights can be extracted. Some examples include fitting spatially resolved and genetic drift–capable
agent-based models against global H3 or H1 influenza data (32) to test relationships between
global migration and antigenic drift. Similar models have been used to test the impact of immunity
on pathogen evolution (33), helping resolve fundamental questions in the dynamics and evolution
of different pathogens. As more large-scale datasets become available for parameterization, fitting,
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and evaluation, we expect the utility of such models to increase both in understanding emergent
biological phenomena and in guiding policy decisions such as vaccination or antimicrobial use
strategies.

5. BIG EXPERIMENTS: LARGE-SCALE PERTURBATIONAL STUDIES

Recent advances in high-throughput experiments have enabled studies of a comprehensiveness
not previously possible to examine determinants of pathogen fitness, virulence, and other key
observables. Broadly speaking, these have been made possible by technological advances in ei-
ther high-throughput perturbation or high-throughput measurement and consist of systematic
sweeps of pathogen genetic or chemical changes, host changes, or large and complex observa-
tional datasets, particularly on human clinical samples. We discuss some outstanding examples of
each of these below.

5.1. Pathogen Genetic Screens

Systematic genetic perturbations have long been a major tool in microbiology, exemplified by the
Keio collection of nonessential gene knockouts in Escherichia coli (34). Recent progress has enabled
more rapid generation of such genetic libraries for different pathogens and their assessment in
both cell culture and, to a more limited extent, animal models of infection (35, 36). Plasmid-
based and phase-based approaches enable generation of large variant libraries in bacteria, but the
resulting bacteria are frequently perturbed from an infection biology standpoint inmore ways than
simply the target genetic variant. For viruses, the small genome size and availability of reverse-
genetic systems to efficiently produce progeny virions from genomicmaterial have facilitated deep
mutational scanning analyses, where the fitness impact of all single point mutations in a viral gene
can be quantitatively assessed under multiple replicative conditions (35). In influenza and more
recently other viruses, this has enabled systematic prospective mapping of the replicative fitness
landscape for key viral genes (Figure 3), as well as the effects on immune escape (35, 37–39).
This level of resolution is theoretically feasible although technically more challenging in other
pathogens, offering a rich data source to analyze genetic and protein fitness landscapes.

5.2. Host Genetic Screens

The development of screens and libraries to systematically perturb host genetics has provided
another key capability in the study of infectious disease. At least within cell culture models, in-
sertional mutagenesis in human haploid cell lines, RNA interference screens, and more recently
CRISPR-based screens have permitted large-scale testing of host factors required for infection.
These screens are often complicated by cellular and screen heterogeneity that can cause low gene-
to-gene concordance levels between assays (40), but improved analytic methodologies have re-
sulted in substantial new insights, identifying both known and novel entry factors, other essential
genes for pathogen replication, and host-restriction factors (41–45). Such approaches have been
critical in identifying novel factors either positively or negatively involved in the replication of
viruses such as Ebola, influenza, and dengue.Analogous interference or single-gene-reconstitution
experiments have identified key permissive or restrictive host factors for Listeria and Coxiella in-
fection (46–48). These assays obviously apply most directly to intracellular pathogens, but the
extension of such approaches to other models of infection can yield insights into the host genetics
of other diseases as well. These screening approaches provide some of the best unbiased methods
to probe genetic effects on infection in cell culture models; they are thus a good complement to
more targeted, hypothesis-driven approaches.
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Figure 3

An experimental map of replicative fitness for all single–amino acid mutations of influenza hemagglutinin [genetic background
A/WSN/1933(H1N1)]. Letters represent amino acids, and the size of each letter is proportional to the fitness of the corresponding
variant. Plot adapted with permission from Reference 35.
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Large-scale perturbational analyses that are not specific to infectious disease have also gener-
ated important datasets and yielded fundamental insights, at least in cell culture systems. Examples
of these are phenotypic screens, combining chemical screens with genetic screens to probe drug–
gene interactions, and leveraging protein–protein interaction or drug–metabolome interaction
data (49, 50). Other techniques that are not explicitly perturbational and not particular to infec-
tious disease, such as high-dimensional cell profiling, high-content imaging, and high-dimensional
profiling of innate and adaptive immune responses in human clinical samples, also yield large, of-
ten complex datasets with the potential for great insight into infectious disease and host response
(50–53).

6. LARGE-SCALE CLINICAL DATA

Recent years have seen huge strides in the availability and accessibility of clinical and surveil-
lance data for analysis. Route availability of pathogen whole-genome sequencing has permitted
both deeper analyses of pathogen genetic features and much more precise measures of spread and
transmission; hospital laboratory and telemetry data also provide a rich source for analysis of in-
fectious disease spread, drug resistance, and patient prognostic factors. Finally, innovative use of
sensor data in the clinical setting has made possible what were previously painstaking epidemio-
logical studies on a much larger-scale, systematic, and routine basis.

6.1. Whole-Genome Pathogen Sequencing

As in many areas of biology, the increased accessibility of whole-genome pathogen sequencing
has had a tremendous impact on infectious disease research. One clear metric of its utility can be
seen in the public health arena, where multiple public health agencies have transitioned to routine
whole-genome sequencing of all positive samples for several diseases (54–56). This is facilitated
by the smaller genome size of most pathogen genomes than those of higher eukaryotes, but it is
also driven by the utility to epidemiological research, infection control, and, increasingly, direct
clinical utility.

Because many pathogens exhibit substantial genetic variation, whole-genome sequencing has
found direct application in determining transmission chains—using genomic and spatiotemporal
data to infer either direct transmission or closely related transmission in an outbreak as opposed
to multiple unrelated introductions of a pathogen. This is often performed via phylogenetic clus-
tering. However, the choice of algorithm for such clustering depends on the desired purpose.
For instance, different algorithms produce superior results for monitoring pathogen clade/strain
evolution or for modeling transmission (57). Some of this methodological divergence also de-
rives from the typically sparse nature of sequence sampling; it is possible that given arbitrarily
many pathogen sequences per space-time unit, these problems would be reduced (1, 2). Alternate
approaches utilize Bayesian estimates of spatial probabilities in conjunction with phylogenetic
tree reconstruction to model phylogeographic spread—movement of sequences in space and time
(15, 58, 59). Insight from these approaches has been applied at both the global scale—examining
worldwide patterns of viral genetic drift (32, 60)—and the local scale—transmission patterns in
individual communities and households (61, 62). Surprisingly, not all spatiotemporally correlated
infection events are clonally related; work of this nature has shown that there are many indepen-
dent introductions of influenza into a region and that multiple co-occurring infections even within
a single household can sometimes represent independent infection events (62).

Pathogens such as RNA viruses display high rates of mutation and thus substantial genetic
variation within a single infection of a single host. Aided by large-scale deep sequencing, this has
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permitted both clinical and experimental studies of how host-to-host transmission functions—
how stringent the transmission bottlenecks are, how severe the founder effects are upon infection
of a new host, and how stereotyped the process of diversification is within a host. Although initially
disparate estimates of transmission bottlenecks for influenza seem to be converging on a range of
1–4 distinct genomes per human-to-human transmission (62–64), additional modifiers potentially
include biological variables such as strain, route of transmission, and whether the virus is well
adapted to both hosts. This work addresses a set of critical questions for infection biology: For a
given pathogen, how great is the within-host genetic diversity and how strict is the transmission
bottleneck and resulting founder effect in between-host transmission? The variation in number of
genomes transmittedwith regard to biological variables likely reveals important information about
barriers to and efficiency of viral infection under different conditions.The similarity or divergence
of within-host genetic populations in consecutive hosts illuminates the rate of stochastic drift
and the stringency of selection (33, 61, 62, 65, 66). Analogous studies have also yielded data on
the within-host diversification and transmission of bacterial infections, which can be expected to
function differently from RNA respiratory viruses (67, 68).

In addition to host-to-host and host-to-environment movement of complete pathogen
genomes, bacterial pathogens also contain mobile genetic elements, both plasmid and chromoso-
mally integrated. Antibiotic and toxin resistance are frequently encoded on these mobile elements,
and the increase in whole-genome sequencing of patient and environmental isolates in hospitals
has led to an awareness that drug resistance can be spread on relatively short timescales in a fashion
that is neither proliferation of a particular resistant strain nor fixation of a mutation but instead
interspecies transmission of a mobile genetic element (69–71). One example of this was a multi-
species outbreak of carbapenem-resistant Enterobacteriaceal infections where resistance-mediating
plasmids spread across genetically disparate bacterial strains and multiple species (72). This was
appreciated much more readily because of the availability of large-scale whole-genome sequenc-
ing and then motivated more traditional epidemiological and infection-control investigations to
identify reservoirs for this exchange and institute interventions to reduce the spread of resistant
organisms to patients (3). Although a large number of studies have developed methods to predict
drug resistance from pathogen genomic sequences, the slower turnaround time of whole-genome
sequencing (and plasmidome sequencing for bacteria) relative to drug susceptibility testing means
that this has not entered common clinical practice, despite good results from prospective testing
(73). One early exception wasMycobacterium tuberculosis, where slow growth of the organism and
therefore longwaiting times for susceptibility testing led some public health authorities to institute
routine whole-genome sequencing for susceptibility testing (54); this is now being implemented
for a greater number of notifiable pathogens tracked by national centers (56).

6.2. Analysis of Laboratory and Telemetry Data

With widespread adoption of EHRs, there is an opportunity to use EHR data to improve in-
fectious disease detection and care. We delineate three categories of such use: infectious disease
surveillance, quality-of-care improvement, and personalized medicine or systems designed to im-
prove clinical care of an individual patient. As discussed below, the first two of these areas are
more developed than the third.We also note that, although EHRs have become common, not all
healthcare systems have highly portable records between healthcare providers, so much work has
concentrated either on a single healthcare setting, on using insurance data in non-single-payer
systems, or on using single-payer EHR data when available.

ICD-9 (International Classification of Diseases, Ninth Revision) codes, ICD-10 codes, and
their modifications are the most straightforward way to parse EHR data. Not surprisingly, this
has been the starting point for many data-analytic approaches, including syndromic surveillance
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for outbreak detection. One example is a large-scale deployment of ICD-10-based surveillance
for acute respiratory infection in Germany (74). Given the limitations of ICD coding, natural lan-
guage processing of narrative text entry fields in the health record is a richer area for processing.
Some early large-scale deployments of syndromic surveillance used manual coding of free text (4),
but this has largely been replaced in more recent work by natural language processing approaches
(75, 76).However, provider and facility variability in both narrative text coding and laboratory data
complicates large-scale use of such methods across many hospitals (75). Despite these challenges
and the historic use of more manual methods such as sentinel sites and patient questionnaires,
there remains substantial interest and value in reliable, automated syndromic surveillance for out-
break detection. Despite the deployment of some functional systems, there remains a substantial
gap between validation of retrospective analyses and the routine use of real-time automated syn-
dromic surveillance from EHR data.

Infection-control and quality-of-care analyses utilize much of the same analysis as outbreak
detection but have somewhat relaxed immediacy requirements. Obviously, interrupting or pre-
venting transmission of healthcare-associated infections is of the greatest benefit to patients, but
systematically identifying clusters and spurring earlier and more systematic follow-up and correc-
tive action are of substantial value to hospitals and benefit to patients. The attention to infection-
control analytics stems from two factors: First, since some EHR data are less immediate (discharge
diagnosis, insurance claims, etc.), permitting a time lag before analysis improves data quality. Sec-
ond, in many healthcare systems including the United States, hospitals have a strong financial in-
centive to reduce healthcare-associated infections.There has thus been substantial scholarship and
methodological innovation in this area. Careful traditional epidemiology has been a cornerstone
of infection-control and quality-of-care improvements; the hope is that more advanced analyses
will further enhance the utility of such work.We highlight the work ofWiens and colleagues in de-
veloping logistic regression predictors for Clostridium difficile infection in individual patients based
on automatic EHR data extraction that can readily be specialized to the data features available in a
given hospital and outperform curated predictors (77, 78). However, to our knowledge, such tools
have primarily been used in a retrospective manner, while maximal benefit will be derived from
prospective use for risk stratification and intervention.

Predicting individual patient risk for healthcare-associated infections straddles the line be-
tween infection-control measures designed to learn from patient outcomes to systematically im-
prove care for future patients and analyses designed to improve care for the patient at hand. This
latter category, effectively comprising decision support systems based on EHR data in the area
of infectious disease, represents an area of personalized medicine and a substantial opportunity
for real-time data analytics. HIV risk has been a particularly active area for EHR-based analytics,
particularly in developing better targetedHIV screening (79) and better targeting of pre-exposure
HIV prophylaxis (80). These have used a mix of manual feature coding, natural language process-
ing for ingestion of free text, and structured data extraction from EHRs.

Such work has primarily treated infectious disease risk as a static phenomenon, learning fea-
tures associated with risk, rather than leveraging the spatiotemporal correlation imposed by dis-
ease transmissibility.We anticipate that further research combining baseline static predictors with
localized risk estimates will further improve the accuracy and utility of these methods. The feasi-
bility and utility of such transmission-aware models will depend on sampling density: The more
patients there are in a transmission chain who have EHR data available, the greater the utility will
be for models that incorporate explicit or implicit transmission.

In addition to infectious disease transmission, much work has been devoted to predicting
patient decompensation due to infection, namely sepsis prediction in an inpatient setting (81–
85). Most work in this regard leverages both hospital laboratory and telemetry data to predict
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sepsis before it is clinically evident, giving providers time to respond. Initial work on improved
patient-specific alarms from telemetry data (81) has matured into more event-specific learning. As
would be expected, initial research used retrospective prediction (82, 85), but some systems have
been placed into prospective testing with good results or ongoing trials (83, 84) (http://www.
clinicaltrials.gov/ identifiers NCT03655626 and NCT03960203). This represents an exciting
example of clinical deployment of decision support systems to improve patient outcomes.

6.3. Other Sensor Data in a Healthcare Setting

In-hospital sensor data have proven to be another rich source for infectious disease transmis-
sion studies. Despite the growth of transmitting devices in routine use (the so-called Internet
of Things), most studies have explicitly placed transmitting tags on individuals, locations, or ob-
jects and analyzed the resulting data to help connect contact patterns to disease transmission and
inform recommendations for improved infection-control practices (86). Such data also provide
useful adjuncts to traditional microbiological data, permitting higher-resolution time series and
spatial modeling of contact networks in conjunction with other information (87). As discussed
below, similar approaches have been taken outside the healthcare setting, particularly with infor-
mal data sources. Here, we distinguish explicitly interventional studies in a controlled healthcare
environment from the use of informal data sources in uncontrolled environments.

6.4. Summary

Large-scale clinical data offer a variety of feature-rich information for analyzing pathogen trans-
mission, dynamics, drug resistance, and clinical outcomes. Progress in generating and ingesting
datasets for clinical whole-genome sequencing, patient records, and the like has already enabled
substantial discoveries, such as better estimates of transmission bottlenecks, pathogen evolution,
and unexpected reservoirs for drug-resistant organisms. The use of such analyses in real-time sys-
tems aimed at improving clinical care for individual patients is an area for future growth—there
has been exciting progress in recent years, but most systems are deployed either retrospectively or
as time-limited research projects rather than being in routine clinical use. The latter represents
an exciting frontier, and the increasing availability of all kinds of healthcare data—sequencing,
laboratory, physician-entered, and sensor data—provides rich material for improved research on
infectious disease and the development of more sophisticated predictive and analytic models. Be-
cause of the transmissibility of infectious disease, models that incorporate online learning based
on recent data are particularly useful in this arena compared to noncommunicable diseases. In
general, real-time decision support models will have to be rigorously validated and shown to be
efficacious, easy to use, and cost effective in improving patient care.

7. SOCIAL, SEARCH, AND SENSOR DATA

Informal data sources, particularly from social media, search queries, and incidental sensor data
outside the healthcare setting, present an important yet challenging area for infectious disease
analytics. These data are high frequency and often high coverage, yet can display correlated noise
in ways that are difficult to model. For tasks such as outbreak surveillance and transmission mod-
eling, the frequency and coverage of informal sources help overcome weaknesses of formal data
sources that can be lower frequency, involve time delays, or have much lower sampling coverage.

7.1. Search Data

The canonical example of using search data for infectious disease detection wasGoogle FluTrends
(later Google Disease Trends, including dengue) (88). This service used signals from Google
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Figure 4

Google Flu Trends predictions for several influenza seasons plotted for the United States and Sweden. Data from Google Flu Trends
(http://www.google.org/flutrends), used with permission.

search data to estimate influenza-like illness incidence in near-real time (Figure 4), providing
information much more rapidly than the authoritative estimates from the Centers for Disease
Control and Prevention (CDC). These predictions later showed some systematic overestimation
versus CDC estimates and have been criticized by some as an example of big tech hubris (89).
Nonetheless, more recent third-party evaluations of the dengue data and reanalyses of the in-
fluenza data with new statistical models have shown utility for some situations (90, 91), andGoogle
Disease Trends opened the use of search and social data for infectious disease surveillance.Canada,
for instance, routinely uses an automated alert system based primarily on news data with ongo-
ing efforts to expand to social media data (92). Similarly, HealthMap is a prominent monitoring
system using traditional news sources (93).

7.2. Social Media Data

The use of social media data brings both new possibilities and new concerns, particularly sur-
rounding the use of individually identifiable data that may be private or semiprivate. Perhaps for
that reason, most work on outbreak detection using social media has focused on public Twitter
data. In the wake of Google Flu Trends, several papers analyzed Twitter data for influenza-like
illness outbreak detection or dengue detection (94–96). More recent work has tended to be
multimodal, integrating social media data with other signals, perhaps recognizing that such
adjunctive approaches yield the greatest accuracy at this time (5). Simply using social media data
as geospatial signals with assorted content/contextual analysis is perhaps most straightforward
(97–99). However, explicitly taking into account social network structure to analyze risk and
potential spread of infectious diseases is an area that is less well explored, substantially more
complex, potentially richer as a novel data source, and more fraught with ethical considerations.
Clearly, online social network structure does not trivially map to infectious disease transmission
risk, as many individuals have online contacts who are not physically proximal, but social media
information likely contains rich signals about risk profiles and transmission of contagious diseases.
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The legal and ethical ramifications of such information have been explored more extensively for
physical contacts and risk information in the context of, for instance, public health follow-ups of
notifiable infectious diseases (100–102), but even there the legal framework varies substantially
by jurisdiction, and online social network information contains increased technical, legal, and
ethical complexities (103). This will be a challenge for the field in future years.

7.3. Sensor Data

In addition to formal sensor placement in the healthcare setting, informal sensor data in uncon-
trolled environments constitute rich data sources for infectious disease studies.With high mobile
phone uptake in much of the world,many individuals now carry mobile location sensors. Similarly,
transmitting devices built into other objects provide a wealth of signals that could be analyzed for
infectious disease research. In addition to the privacy implications of such work, there are ana-
lytic challenges posed by confounders in such data (104). However, they have been utilized for
out-of-hospital retrospective or observational studies of disease risk or epidemic analysis (105–
108). Despite a set of associated confounders, the increasing availability of sensor and locational
data constitutes a potentially fruitful frontier in monitoring potential community transmission of
infectious diseases and providing individualized risk assessments in the future.

8. OUTLOOK

From a statistical viewpoint, increased model complexity brings greater expressivity but requires
more extensive training and validation data. Recent increases in the scope of infectious disease
datasets have enabled the use of more expressive statistical models and thus greater scientific in-
sight. Data sampling density is particularly critical for infectious disease because of two factors:
transmissibility and immune- or treatment-mediated selection. In both of these cases, sparsely
sampled data simply do not permit accurate modeling of transmission, immune escape, or drug re-
sistance because the key links between distant data points are not resolved. Even underdetermined
problems can be constrainedwith large-scale computational sampling, and progress has beenmade
on several fronts in that regard, but large-scale datasets are becoming transformative in enabling
definitive answers to questions of how pathogens are transmitted around the world, acquire drug
resistance, and escape the immune system.We anticipate the availability of such datasets to result
in both further methodological developments and fundamental advances in biological insights.
In the clinical arena, increasing real-time availability of EHR data, in-hospital sensor data, and
informal sources such as search, social, and mobile phone data provide both greatly increased data
volumes and the potential to deploy systems that give real-time, patient-specific risk assessments
and recommendations.This is an incredibly exciting front, but one that will require careful valida-
tion, harmonization across disparate technical and legal environments, and navigation of privacy
concerns both inside and outside the hospital. Ongoing clinical trials, as well as out-of-hospital
sensor projects such as Verily’s Project Baseline, will help researchers explore potential approaches
to this promising but tricky area, and the field will learn from their successes and failures. In all
of these areas, infectious disease continues to be a productive discipline for advanced data ana-
lytics, and its unique features reward methods development as well as the application of current
state-of-the-art techniques.1

1This article was written before the emergence of COVID-19. The scientific and public-health response to
the pandemic has illuminated the capabilities and challenges discussed in the article in the context of other
pathogens and once again illustrates the power of big data approaches to infectious disease research.
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