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Abstract

Genomics data are important for advancing biomedical research, improving
clinical care, and informing other disciplines such as forensics and genealogy.
However, privacy concerns arise when genomic data are shared. In partic-
ular, the identifying nature of genetic information, its direct relationship to
health status, and the potential financial harm and stigmatization posed to
individuals and their blood relatives call for a survey of the privacy issues
related to sharing genetic and related data and potential solutions to over-
come these issues. In this work, we provide an overview of the importance of
genomic privacy, the information gleaned from genomics data, the sources
of potential private information leakages in genomics, and ways to preserve
privacy while utilizing the genetic information in research. We discuss the
relationship between trust in the scientific community and protecting pri-
vacy, illuminating a future roadmap for data sharing and study participation.
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GENOME PRIVACY AS A GLOBAL CHALLENGE

In 1890, Samuel D. Warren and Louis Brandeis defined privacy as the “right to be let alone” in
their Harvard Law Review article entitled “The Right to Privacy” as a response to the increase
in printing technologies such as newspapers and photographs (1). Although the meaning of “let
alone” was debated extensively, the most common interpretation was the right of a person to
choose seclusion. As vague as it is, this concept was used as a basis for the design of the broad legal
framework for privacy that has developed over the years. As part of this concept, genetic privacy
concerns the protection of one’s genetic information.

Increase in Genomic Data Brings in New Privacy Challenges

The human genome research field has come a long way since the first sequencing of the human
genome.There has been a rapid increase in technological advances, which has resulted in not only
a decrease in the cost of sequencing but also an increase in high-throughput biochemical assays
(e.g., transcriptomic and epigenomic assays) that produce large amounts of data based on next-
generation sequencing (NGS) (2, 3). The resulting data are extremely valuable in research settings
where scientists can link genome variations to function. With more genomes being sequenced
from patients,we canmake better associations between genetic information and diseases and traits.
The increase in data enables researchers to use the genetic information in clinical settings and
enables funding agencies to initiate large-scale research projects such as the All of Us Research
Program to integrate genetic data with other health observations from participants (4). In the
past decade, more initiatives, funded publicly or privately, are generating a vast amount of genetic
and related data in order to mine the genetic determinants of diseases, traits, and conditions (5–
9). Moreover, direct-to-consumer (DTC) genetic testing companies are collecting a wealth of
genetic data in order to provide health- or ancestry-related information to their customers. As
genome scientists, we live in this exciting era of genomics data science, where we can characterize
the human anatomy at different molecular levels using a mountain of genetic and related data.
However, this immense personal data collection presents unique challenges, some of which are
understudied and must be addressed. The three big challenges we face are the analysis, storage,
and privacy of the collected data. The most obvious challenge is how we are going to analyze this
vast amount of data to make meaningful biological and medical inferences.With the introduction
of artificial intelligence and other computational advances in biology and healthcare research,
we are increasingly getting better at addressing the analysis challenge. However, the slow pace
in addressing the challenges related to secure storage and privacy of genetic and related data is
threatening our progress in the analysis space.

As genomics becomes a bigger part of clinical practice, we will see more data being stored in
public repositories that can be trained and used for surveillance purposes. Moreover, we already
know that there is bias in the current genomic data ecosystem. Although the National Institutes
of Health (NIH) have established guidelines for the diversity of collected genomic data, there are
still large disparities in current data collection efforts. The amount of genomic data we have from
certain demographic groups overwhelmingly outnumbers that from other demographics. This
issue also partly relates to the privacy concerns of different populations. For example, due to the
scarcity of genomic data from Indigenous and Native American individuals, the broad sharing of
their genetic data will be more invasive to privacy.Moreover, a vast amount of genomic data from
European individuals have been collected and broadly shared, rendering this population more
prone to reidentification through forensic investigations conducted by law enforcement (10).

In the United States, one health privacy protection, the Health Insurance Portability and
Accountability Act (HIPAA), was established in the late 1990s. HIPAA regulates the privacy of
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medical health records, including the anonymization of genetic testing. As genetic testing has be-
come more widespread, the US Congress passed the Genetic Information Nondiscrimination Act
(GINA) in 2008. GINA aims to protect individuals from discrimination by insurance companies
and employers based on their genetic information.With the recent debate on whether genetic in-
formation can truly be anonymized based on HIPAA guidelines, genome privacy has increasingly
become a major focus among ethicists, legal scholars, geneticists, and computer scientists.

What is Genetic Information?

Genetic information is highly personal and identifying. Although Homo sapiens share a large por-
tion of their genome, the small number of differences are extremely unique and identifying (11).
These changes can take different forms (Figure 1). For example, a single-nucleotide polymor-
phism (SNP) is a single base change in an individual’s genome. Insertions and deletions (indels)
are single or a few base pair insertions or deletions in the genome. Most SNPs and indels are
common and shared across individuals. However, some can be rare or unique (i.e., de novo SNPs),
which makes them extremely identifying. In addition, some can be population specific (e.g., a vari-
ation specific to European or African genomes). SNPs and indels (or combinations of different
SNPs or indels) can be biomarkers for many human traits such as eye color, hair color, height, and
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(a) Illustration of the most abundant and identifying genomic variations: single-nucleotide polymorphisms
(SNPs), insertions and deletions (indels), and short tandem repeats (STRs). Every individual carries two
copies of DNA, one from maternal and one from paternal genomes (called haplotypes). The difference on
the DNA sequence with respect to a reference genome and whether it is on the maternal copy only, the
paternal copy only, or both are genomic variations that make every genome unique and, thus, identifying.
(b) Examples of structural variants. (c) Examples of genomic variations on a chromosome and which trait they
might affect. Genomic variation on a specific locus or combinations of variations on different specific loci
might be responsible for different traits and diseases. Figure adapted from images created with
BioRender.com.
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susceptibility to disease. The genome also contains short tandem repeats (STRs), which are short
units of DNA sequences repeated at different times in different individuals. These are used by law
enforcement agencies for DNA profiling and sometimes in paternity testing. Structural variants
(SVs) are larger changes in the genome, such as large insertions, deletions, and inversions. SVs are
less abundant and less commonly used for identification or DNA profiling but might be disease
related. The combination of all of these variations in an individual’s genome can be analogous
to that person’s Social Security number (SSN): They might be meaningless sequences of letters
by themselves but can reveal a dangerous wealth of private information specific to the individual.
However, one can easily change their SSN in case of a data breach but cannot change their ge-
netics.Moreover, genetic information is largely shared with close family members. Therefore, the
personal genetic data implicate not only the immediate owner but many third-party relatives as
well. Such power of genetic information has led to its different uses in forensics, creating additional
concerns over privacy (12).

Interplay Between Policy and Technology to Enable Genomic Data Sharing

Data sharing among researchers, institutions, and even continents is essential for biomedical re-
search. In particular, genetic data sharing can increase the statistical power for rare genetic disor-
ders and can save lives (13). Indeed, the international scientific community recognizes that broad
data sharing is a prerequisite for many important integrative analyses. However, the extremely
identifying nature of genetic data brings global challenges. For example, the regulations that gov-
ern the protection of genetic data radically differ by jurisdiction, thus severely hampering data
sharing. Even fundamental expectations and definitions of privacy differ between US frameworks
(14) and European frameworks such as the General Data Protection Regulation (15). In compli-
ance with this patchwork of regulations, genetic data are increasingly siloed into more restrictive
archives that may constrain data access to the physical boundaries of a jurisdiction, even though
the data are generated without regard to jurisdiction. However, there are serious privacy-related
concerns that form the basis of these different jurisdictions and policies, which we expand upon
throughout this review. Studies have shown that anonymized data can be linked to the identities
of the donors; hence, sensitive phenotypes of known individuals can be revealed (16). Without
protective legislation, this issue will have monetary consequences, such as discrimination during
employment. It can also create harm through the stigmatization of medical conditions and health
statuses. The use of genetic data can also lead to racial profiling and bias (17).Moreover, improved
technology, increased data availability, and a deeper understanding of genotype-to-phenotype as-
sociations make it easier to identify links between datasets, thus demanding a careful and dynamic
reevaluation of our understanding of genetic privacy.

Data privacy and security are traditionally studied under the umbrella of computer science,
law, and ethics. However, maintaining the privacy and security of biological data while preserving
their utility differs from that of other data types, requiring a deep understanding of how biologi-
cal systems work, how biotechnological advances (e.g., omics data generation) produce new data,
and how existing bioinformatics file formats and tools operate on the data. Recent advances in
biotechnology, increases in scalable computing, and the immense amount of large-scale biologi-
cal data at the population level provide the perfect opportunity for integrating multidimensional
information to study human variation and disease. However, these efforts must be complemented
with interdisciplinary privacy research fueled by an understanding of the biology behind the data
in order to develop methods and file formats with high utility. Given the interconnected nature of
data privacy and utility, bridging these diverse fields will be imperative to maximizing the utility
of biological data while preserving patient privacy.
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Figure 2

Where genetic information can be obtained, what can be learned from it, and how we can protect it. Abbreviations: eQTL, expression
quantitative trait locus; SNP, single-nucleotide polymorphism. Parts of figure adapted from images created with BioRender.com;
middle column plots adapted from Reference 62.

As “privacy” is often an ill-defined term itself, this review is organized as a walk-through of the
important aspects of genetic privacy to give the full picture on why we do and should care about
privacy in biomedical research (Figure 2).We start by describing what kind of information can be
revealed about an individual from their genetic data. We then talk about the obvious and hidden
sources of genetic data leakages in research, clinical, and commercial settings.We discuss how we
can prevent this leakage using technology and policy and argue that the current one-size-fits-all
types of protections are too stringent for some data types and too lenient for others. Finally, we
conclude our review by describing the relationship between privacy protection and public trust,
sketching a roadmap of practical solutions that might simultaneously benefit open science and
restore the public trust in research participation.

WHAT CAN BE LEARNED FROM AND WITH GENETIC DATA?

When it comes to the information that can be gleaned from genetic data, various parties are
relevant to the discussion. There are legal responsibilities defined by laws and policies, ethical
considerations that take into account the risk–benefit balance in data sharing, and technical
ways to both breach privacy and prevent these breaches. These three aspects of the information
inferred from genetic data do not necessarily overlap. In this review, we focus on this problem
from a technical perspective and direct readers to other valuable studies for the ethical and legal
considerations (18–27).
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Data deidentification, such as the removal of identifiers mandated by HIPAA (28), have been
shown not to be effective for genetic data (14, 16). There are several ways to breach the privacy of
individuals using genetic information, namely, completion attacks, identity tracing attacks, and at-
tribute disclosure attacks (14, 16). In a nutshell, a completion attack relies on using a partial genetic
variant list of a known individual to imputemore genetic variants using the nonrandom association
between the alleles of multiple genetic loci in a given population, also known as linkage disequi-
librium (LD) (29). Identity tracing attacks start with an unknown genome and aim to identify
the person to which the genome belongs using various auxiliary information such as genealogical
information (10, 30). In attribute disclosure attacks, one can use partial, full, or summary-level
genetic information about a known individual to discover an attribute about that person (e.g.,
participation in a drug abuse study). These attacks and countermeasures have been extensively
surveyed by other genetic privacy perspectives and review papers (16, 31).

Since the jargon about these attacks and how they penetrate privacy can be confusing for re-
searchers outside this field, here we delineate the information that can be learned through genetic
data leakage in categories for clarity (Figure 2).

Full Genetic Information

The genome of an organism is like a manual. It contains the information for the cells and tissues
to grow and develop. As a result, our traits and phenotypes have direct or indirect links to our
genomes. Although there are environmental factors at play, there is a wealth of information that
can be garnered from having access to an individual’s genome. For example, ancestry, disposition
to genetic diseases, and physical traits such as height and eye color are among the information
that can be directly or indirectly inferred from genetic data.

Access to a known person’s full genetic information (if not voluntary) is the most obvious infor-
mation leakage.The leak of such data can cause monetary harm such as the denial of life insurance.
Note that discrimination in health insurance coverage and employment based on genetic informa-
tion has been protected against by GINA in the United States (32). The leak of these data might
also cause harm in the form of stigmatizing people with dispositions to certain health conditions
such as mental health problems. Moreover, there could be indirect inferencing of stigmatizing
phenotypes that are not directly related to one’s genetic information. For example, a patient’s
genome might be sequenced under a large-scale “anonymized” HIV database. If an adversary has
access to the identity and the genome of an individual, they can easily search the genome in this
database and learn whether this person has HIV (Figure 3a).

With the current protections in place, it is fairly difficult to access genetic information of a
known individual. However, studies have shown that “anonymized” genomes, i.e., genomes of
unknown individuals, can be easily deanonymized if the individual deposited their genome into
a genealogy database (30). It was also shown that the metadata of the anonymized genomes can
be overlapped with other datasets (such as the US Census) to deanonymize and reveal private
information about the individuals (33).Moreover, unknown genomes sequenced from the evidence
in crime scenes can be used to search for genetic relatives of the culprit in genealogical databases,
such as in the famous case of the Golden State Killer (12). In short, the DNA sample obtained
from a victim was sequenced and searched against public and private genome databases to find a
matching relative of the culprit. Furthermore, recent discussions have centered on whether facial
images can be reconstructed using genomes, sparking further privacy concerns (34–36).

Partial Genetic Information

Leakage of partial genetic information of a known individual can be as dangerous as leakage of full
genetic information (Figure 3b). This is mostly because there are strong correlations between the
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(a) An anonymized dataset can be deanonymized by using the genome of an individual, which can serve as a
unique identifier. (b) Partial genomes can be completed using linkage disequilibrium information inferred
from genomes of the population to which the individual belongs. Completed genomes can be further used to
deanonymize sensitive datasets. Figure adapted from images created with BioRender.com.

genetic variants residing on the same haplotype block. A haplotype block is a region in the genome
with little evidence of recombination; thus, the genetic variants on the same block are typically
inherited together (37). Alleles in a haplotype block are in LD. Given partial genetic information
of an individual, one can use the principles of genotype imputation (38–41) and complete the full
genome using many available and highly accurate imputation tools (42–45). For example, in 2008,
Dr. JamesWatson’s genomewas sequenced and released in a public database (46). PerDr.Watson’s
request, all gene information related to apolipoprotein E (encoded by APOE, a gene implicated
in Alzheimer’s disease and cardiovascular disease) was masked from the sequence. However, it
was later communicated that the risk status of this gene can easily be inferred using available LD
information between the APOE risk alleles and other alleles present in the released genome (47).
Moreover, just like in the case of full genetic information, partial genetic information can be used
to query datasets to either deanonymize the genomes or mine private information about a known
individual.

Summary-Level Genetic Information

Genomic summary results (GSRs) are by far the most controversial data type in terms of broad
sharing. The privacy discussions surrounding GSR data have resulted in the NIH changing their
data sharing policy multiple times in the past 20 years (48–50). GSRs are the results of genome-
wide association studies (GWAS) performed on genomes from a cohort of individuals within a
single study or across multiple studies. In particular, GSRs represent two types of information:
the allele frequency of a variant in the cohort and the statistical association between genotype and
phenotype, such as p-values, beta values in regression, odds ratios, and effect sizes (51).

At first glance, one might think that GSRs do not contain any individual-level data; therefore,
sharing themwould not violate the privacy of the cohort individuals.However, several studies have
shown that GSRs can be combined with genotypes from known individuals to reveal participation
in potentially stigmatizing cohort studies (52–55). For example, in their seminal work, Homer
et al. (52) showed that one can accurately predict whether a genome of an individual is present
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in a mixture of genomes by comparing the allele frequencies of SNPs in a reference population
and in the mixture. It is important to point out that this study was intended for applications in
forensic science, but it raised the issue of potential inferring whether an individual participated
in a GWAS. Furthermore, Sankararaman et al. (53) developed a statistical quantification method
that challenges the limits of detection of individuals in GWAS in an effort to provide GSR sharing
guidelines for researchers. In 2012, another study developed a statistical membership inference
method to show that p-values and regression coefficients that are typically shared in GSRs can
reveal the participation of an individual in a study and their private phenotypes (55).

Recently, Global Alliance for Genomics and Health’s genomic data sharing beacons (56) have
been proposed as another way of sharing summary-level genetic data, which have been shown to
leak private information about the cohort individuals (56–58). After the seminal work by Homer
et al. (52) in 2008, theNIH and other institutions changed their GSR data sharing policies to place
the data behind controlled access. Although it is still heavily debated whether the risk to privacy in
sharingGSRs broadly is theoretical or practical, theNIH revised their policy in 2018, releasing the
aggregate data from controlled access. This decision was not made lightly, but considered findings
from public workshops, stakeholder comments, and accumulated public input over the years. In
themeantime, researchers have developed amyriad of technological solutions using cryptographic
techniques for performing GWAS and releasing GSRs.

Machine learning models that are trained on genetic information from research participants
or patients are another type of summary-level data that might leak genetic information. Although
the model parameters do not directly summarize the data, as with GSRs, studies have shown that
they carry enough information to determine whether data from an individual are in the training
set (59, 60). Moreover, these attacks can be utilized to infer information about the genomes in a
training dataset of generative models used for creating synthetic genomic data (61).

Proxy-Level Genetic Information

By “proxy-level genetic information,” we refer to the molecular measurements that have asso-
ciations with or relations to genetic variants. These measurements are not necessarily made for
the purpose of inferring genetic variants, but because they are correlated with genetic variants,
they might contain cryptic private information about the individuals from which the measure-
ments are taken. Proxy-level genetic information is probably the hardest information leakage to
pinpoint and sometimes requires different levels of sophisticated statistical inference. It is also
not clear if the theoretical risk to privacy can or will translate into practical risk moving forward.
Therefore, this level of privacy risk is also the least studied. Functional genomics data, such as
from RNA sequencing (RNA-seq) and chromatin immunoprecipitation and sequencing (ChIP-
seq), are the most studied molecular measurements known to leak private information and have
been extensively reviewed (62).

There are various ways that these molecular measurements leak private information. NGS-
based functional genomics assays such as RNA-seq or ChIP-seq contain direct genotype informa-
tion of individuals (63, 64), and, therefore, we often share the raw data behind controlled access
(Figure 4). One of the most common ways to analyze NGS-based functional genomics measure-
ments is to examine the signal tracks and identify highly active regions with peaks (i.e., regions
that overlap with sequenced reads). Signal tracks are often deemed to be safe to share in terms of
private information leakage, but recent work has shown that deletions can be easily inferred by
considering the lack of signal in these tracks (65).

Some of the most summarized forms of RNA-seq data are gene expression values, which
are broadly shared. However, it has been shown that using the correlation between the publicly
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Progressive summarization of RNA-seq data and the leakage of genetic variants at each summarization level.
RNA-seq data can be a proxy for genetic variants through (a) NGS reads obtained from the sequences,
(b) signal profiles obtained from the sequencing coverage per gene, and (c) inferences of eQTLs that belong
to the sample. Figure adapted from Reference 62. Abbreviations: eQTLs, expression quantitative trait loci;
NGS, next-generation sequencing; RNA-seq, RNA sequencing; SNVs, single-nucleotide variants.

available expression quantitative trait loci, genetic variations whose genotype correlates with ex-
pression of the gene, and the expression values of an individual’s genes, one can easily predict the
private genotypes of the individual (66, 67) (Figure 4).Moreover, even lists of allele-specific genes
have been shown to leak various genetic variants of the research participants (68). Summary-level
DNAmethylation data have also been shown to leak genetic variants or private disease information
(69, 70). In general, a rule of thumb in assessing these molecular measurements is that if at least
20 independent SNP genotypes can be inferred from the measurements, then it is likely that one
can use these measurements to reidentify individuals or infer private phenotypes about them (11).

Summary

It is almost impossible to precisely quantify the amount of genetic information leakage in a dataset.
This is because there can always be a correlation between an observation and genetics that has not
yet been discovered. Another reason, and probably the most problematic, is that multiple datasets
can be combined to infer more private information about an individual, and we have very little idea
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of what kind of data types, datasets, or measurements will be available in the future. A dataset that
is privacy-attack-proof today could be revealing too much genetic information tomorrow.Overall,
the inferred genetic information can be used in many ways that penetrate privacy, such as tracing
the identity of an individual, recovering an individual’s full genome, or recovering phenotypic
information about an individual (16).

WHAT ARE THE SOURCES OF GENETIC DATA LEAKAGES?

Access to genomics data by scientists is immensely important and should be made as easy as pos-
sible. However, if this access infrastructure is not secure enough, then the data can be obtained
by parties for purposes that violate and harm the patients or the research participants. Here, we
describe how such adversarial access can be possible.

Forensic Databases

All over the world, there are DNA databases that are maintained by governments. In the United
States, all states are required to collect DNA samples from individuals who are convicted of cer-
tain crimes (71), and many states and the federal government collect DNA samples from all in-
dividuals arrested (not convicted!) for various offenses. Some of these collected DNA data are
incorporated into the national Combined DNA Index System (CODIS) database. Although the
CODIS database is composed of 13 STR loci that are very unique and identifying, there are also
correlations between these STRs and more medically meaningful genetic variants (72, 73). This
means that access to forensic databases not only will result in identity tracing but also will re-
veal potentially private or stigmatizing phenotypes about the individuals. Moreover, due to the
selective bias in collecting the samples for these databases, there is more risk of privacy breaches
for certain communities, which start with racial profiling and lead to even more racial profiling
(74–76).

Genealogy Databases

In the past 20 years, genetic genealogy has become increasingly popular as the cost of sequencing
has decreased. Several genetic genealogy services (e.g., GEDmatch and FamilyTreeDNA) enable
matchmaking among users’ uploaded genomic data to identify genetic relatives. Oftentimes, the
uploaded genetic data are accompanied by the identities and sometimes the addresses of the users.
As was the case with the famous Golden State Killer case (12), law enforcement agencies have
increasingly been using these services to identify the relatives of culprits (77). It was indeed shown
that about 60% of searches for individuals of European ancestry in the United States through
these services will return a third-cousin or closer match (10). The privacy implications of law
enforcement using these searches to solve cold cases have been extensively discussed (78, 79).
Moreover, some of these genetic genealogy servers such as GEDmatch have insecure underlying
infrastructure and information dissemination systems such that falsified uploads can be used to
obtain private genetic information about the individuals in the database (80).

Direct-to-Consumer Genetic Services

As the interest in genetic genealogy increases, an increasing number of companies are offering
DTC tests for a variety of purposes ranging from genetic ancestry inference to linking genetic
variants to disease risk. The way that these services work is by collecting biosamples (most com-
monly saliva) from customers and returning a written report through a web application in return
for a fee. There are many privacy-related issues concerning how DTC services work. Similar to
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genetic genealogy services, most of these companies allow law enforcement to use their databases
for searching genetic relatives of suspects (81). Another issue arises regarding data ownership.
Since the companies own the data they generate from customers’ DNA, they also hold the right
to sell the data as they see profitable. Some of these companies also biobank the collected speci-
men for a long time, risking the physical security of the samples and creating an unknown sense of
the future for the privacy of the data. The legal problems in providing privacy and how solutions
fall short of providing required protections have also been discussed extensively (82).

Cloud Computing and Shared Servers

Unintentional data leakages might happen while researchers compute on the data in cloud com-
puting settings or in shared servers. First and foremost, the genetic data that are not deidentified
should not be stored and computed on cloud servers or in high-performance computing settings
without a trusted system between the user and service provider in place. However, considering
how impossible it is to fully deidentify genetic data, genetic data are vulnerable in cloud and shared
server settings even in a deidentified form.

Attacks on Healthcare and Related Data

There is always risk for adversaries to attack databases in institutions or hospitals that contain
genetic data for monetary gain. Many of these attacks take advantage of vulnerabilities such as
network endpoints (i.e., laptops or tablets that are not properly secured). These attacks can es-
pecially be easier for the data in transit, as moving data from one place to another creates more
opportunities for adversaries to access the data through unsecure endpoints if proper protections
are not in place (83).

Surreptitious DNA Sequencing

When an adversary has access to a discarded item that contains a known individual’s genetic ma-
terial without the consent of that individual and sequences the genetic information on the sample,
they can obtain almost the entire personal DNA sequence of the individual depending on the
sample (63). Such information can be used for malicious purposes, and currently there are no laws
protecting against surreptitious DNA sequencing in the United States (22).

HOW CAN WE PROTECT GENETIC DATA?

Just like any other data, genetic and related data can take three forms: data in transit, data at
rest, and data in use. Many of the privacy policies surrounding genetic and related data focus on
the protection of data in transit and data at rest and do not provide guidelines for data in use.
This is because it is a much harder problem to solve. Moreover, traditionally it was expected that
researchers would compute private data locally without using shared servers or cloud services.
However, this expectation is no longer realistic, as the amount of data and the resources needed
for the complexity of the analyses can no longer be addressed with local computational power.

Shortcomings of the Current System

In research settings, we face three genetic data sharing models (84): (a) Generated data cannot be
shared due to a lack of consent or proprietary reasons, (b) the data behind a firewall can be shared
to authorized users due to terms of the consent (controlled access), and (c) the data can be broadly
shared without any limits.
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The first model raises important questions related to the reliability of the published results,
reproducibility, and democratized access to research results. If there is no consent by the research
participant or the patient, the data, of course, should not be shared with any parties. But if the data
are not shared due to proprietary reasons, but consent from the participants is provided, then there
are ways to compute the data without breaching confidentiality using cryptographic techniques
(85).

The second model, also known as controlled access, is an audit-based protection. The users
apply for access with a justification on how they will use the data. They agree not to use the data
for purposes other than the justification they promised. A data-access committee reviews these
applications and grants access to the users.TheNIHDatabase of Genotypes and Phenotypes (86),
National Institute of Mental Health’s Data Archive (87), and the European Genome-Phenome
Archive (88) are commonly used controlled-access databases. Historically, the expectation from
the authorized users is to download the encrypted data using secured channels provided by these
institutions, decrypt the data with the provided key, compute the data locally, and then delete the
sensitive data from the local computers. As the analyses become more computationally intensive
and data become larger, funding agencies are moving toward cloud-based solutions. For example,
a wealth of controlled-access genetic data can be accessed through the National Human Genome
Research Institute’s Genomic Data Science Analysis, Visualization, and Informatics Lab-Space
(AnVIL), which is a cloud-based infrastructure for genomic data access, sharing, and computing
across large genomic and genomic-related datasets, as long as the user is authorized to access the
dataset of interest. There are two important issues related to this system from both a utility and a
privacy perspective. A controlled-access model puts a burden on researchers and delays scientific
progress. First of all, researchers must choose the best data types for their analysis,mostly based on
poorly developed metadata that often do not follow a standardized structure. Once they identify
a dataset, they draft an application and submit it to the data use committee. This is often done
via signing officials at the institutions. This application step can take a significant amount of time,
as small institutions with limited resources may not have an adequate number of signing officials.
After a months-long application period, the researchers wait for the data use committee to review
their applications and grant access, which also can take up to several months depending on the
access-granting institution.

After access is granted, the data can be downloaded locally for analysis or the computation
can take place in a dedicated cloud computing environment such as AnVIL. This is when privacy
problems arise. Research labs usually have a certified secure partition within their local high-
performance computing system to store the sensitive data for which they obtained authorization.
However, oftentimes, junior members of these labs are not adequately trained on how to handle
sensitive data, and they might unintentionally misplace the data into servers or computers (89).
Although there are serious consequences if identified, these behaviors often go unnoticed because
there are no reliable audit mechanisms in place once the data leave the access-granting institution.
There are no imposed actions but rather best practices to safeguard the sensitive data to which
researchers were granted access (90). The issues with storing and analyzing the controlled-access
data in the cloud environment are, as described above, the control of the data by third parties and
the potential collusion of the information during data analysis.

Innovative Solutions

It is about time that the human genetics community recognizes the sensitive nature of genetic data
and gets inspired by the industry-scale cybersecurity taglineNever decrypt!Genetic data need to be
protected at all times: at rest, in transit, and in use. However, cryptographic frameworks that can
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provide such properties have been deemed theoretical and not practical or scalable.With increas-
ing advances in algorithm designs and computing power, this view has started to change in other
sectors and recently in genomics. Many of these emerging technologies and their applications in
genomics have been discussed in other reviews (62, 89, 91).

Funding agencies such as the National Human Genome Research Institute have recognized
this need and have been funding initiatives such as the iDASH Genomic Privacy Challenges
(92), where interdisciplinary scientists come together to solve problems in genomics using cryp-
tographic techniques. In these challenges, researchers have demonstrated that differential pri-
vacy can be implemented to protect queries on genomics data in a scalable manner (93). Efforts
have also shown that secure GWAS is possible using a technique called homomorphic encryption,
which enables the data to be encrypted in transit, in analysis, and at rest (94). Many other studies
have also shown that secure GWAS is possible even when the data are distributed across differ-
ent sites (95–97). A traditional genomics tool, genotype imputation, was also shown to be feasible
using different cryptographic techniques (98–100). Recently, iDASH challenges have started to
include tracks related to blockchain-based solutions, which are the first applications of blockchain
technology in genome privacy and security (101–105).

TRUST

As scientists, an important principle in designing a research study is to balance the risk and benefit
to the research participants (106). However, this ideally requires a quantitative way of measuring
the risks and benefits.When it comes to collecting genetic information from participants, the risk
in terms of privacy cannot be objectively quantified for many reasons: (a) We do not have a way of
knowing if the participants have given their genetic and related data to other parties, (b) we cannot
oversee what kind of potential data leakages will arise in the future, and (c) we cannot anticipate
potential policy and legislative changes in data sharing and protection in the future. Moreover,
disentangling risk from its historical and political context will also result in underestimating the
harm (107). We can help biomedical science move forward and save lives only if we can recruit
participants to the studies.However, since we cannot quantify the risk, the systemmust be built on
trust. Trust can only be gained if we actively seek new technologies and innovations to minimize
the risk instead of pushing the status quo because it is more convenient. Trust will also stem from
active efforts to bring the benefits to everyone (Figure 5).

Research participants are humans, not just subjects. In 1948, the United Nations issued the
Universal Declaration of Human Rights (108), which defines privacy as a human right (109). In
working in a field that seeks to help human life, it is dangerous for biomedical researchers to
feel entitled to data, considering the harm is almost always disproportionately distributed toward
disadvantaged groups.We can never anticipate how such data will be used in the future; therefore,
wemust take extra precautions to protect research participants’ data.For example, recent news that
China has used publicly and privately collected genetic data to traceminorities is a great example of
an unanticipated yet harmful use of genetic data (110).Moreover, it is extremely important to think
about genetic data sharing in the historical context.Trust is not given; it is gained. Exploitative and
discriminatory practices in the history of biomedical research will always be importantly relevant
when individuals from marginalized groups decide to participate in genetic research (111).

The path forward in protecting genetic privacy is a legal, ethical, and technological ecosystem
that involves all of the stakeholders. If the goal in biosciences is to reduce human suffering, then
this ecosystem cannot be only based on what is convenient for the scientists. If history has taught
us anything related to discrimination, then we must start taking proactive rather than reactive
measures to protect genetic privacy given the sensitive nature of genetic information.This involves
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Figure 5

Studies involving genetic data collection efforts pose significant privacy risks to participants. However, the
benefits of these studies go to a tiny fraction of the participants. Keeping this system in place increasingly
risks the recruitment of participants to future studies. This cycle can be broken by placing appropriate
precautions to secure the data and actively working to remove biases in the healthcare system so that
diagnosis and treatment options work for and are affordable to everyone. Figure adapted from images
created with BioRender.com.

not only the creation of a legal and ethical protection system that takes into account historical
context, but also the promotion of genetic privacy studies, the implementation of technological
solutions, the training of the next generation of genetic privacy researchers, and the creation of
funding opportunities for genetic privacy studies that are different from traditional hypothesis-
driven science. None of these endeavors should be perceived as in competition with advances in
biomedical research but should be deemed as important complementary efforts.
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