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Abstract

Sparsity is a powerful concept to exploit for high-dimensional machine
learning and associated representational and computational efficiency. Spar-
sity is well suited for medical image segmentation.We present a selection of
techniques that incorporate sparsity, including strategies based on dictionary
learning and deep learning, that are aimed at medical image segmentation
and related quantification.
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1. INTRODUCTION

Sparsity and sparse representations are an important element of medical image analysis (1), with
the overall goal of providing a compact representation of the most important information. In
terms of a set of basic elements, the aim is to have as few nonzero weights as are necessary for
effective analysis. Sparsity constraints can be exploited to develop more efficient representations
and have been used for an array of problems in medical image processing and analysis, including
restoration (2, 3), pattern classification (4), image synthesis (5), contour tracking (6), and image
segmentation (7). In this review, we present a set of ideas unified around sparsity, with a focus
on the challenging task of medical image segmentation. We introduce a taxonomy or hierarchy
of representations that covers the use of raw local intensities, local intensities organized around
an evolving boundary, local intensity scale space, and more globally organized local intensity ar-
rangements incorporating shape. Sparsity can be embedded in these representations by learning
sets of atoms in the form of either dictionaries or other representations, whose entries can then
be used for further analysis or implicitly in neural networks through the use of dropout layers or
other mechanisms.

We begin by reviewing different types of data representations in medical image segmentation
in Section 2. Then, in Section 3, we review how concepts in sparsity and sparse representa-
tions can be introduced into a variety of segmentation schemes, while presenting a unified
framework for such ideas. In Section 4, we provide more detail by looking at a diverse set
of exemplar applications that leverage sparse representation. In Section 5, we present our
conclusions.
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2. IMAGE-DERIVED INFORMATION FOR APPEARANCE-BASED
IMAGE SEGMENTATION

There is a long history of image intensity–derived image segmentation strategies in medical im-
age analysis (e.g., 8, 9), which developed in parallel with research in other areas of pattern recog-
nition and computer vision (e.g., 10, 11). The aim of such strategies is to localize anatomically
or biomedically meaningful objects (classes) from medical imaging modalities (12) such as mag-
netic resonance imaging (MRI), computed tomography (CT), ultrasound, or nuclear medicine.
Image segmentation is dependent on the extraction of image features that are either handcrafted
or learned, or both.

Some of the most common appearance features used for segmentation can be classified as
follows. First, voxel-wise intensity appearance provides the most basic and localized feature in-
formation. Segmentation methods using individual voxel intensities perform class assignment by,
for example, employing Bayesian decision theory (10), fitting parametric model intensity (13–16),
or applying unsupervised strategies such as fuzzy c-means (17). Second, gradient, texture, and
higher-order feature appearance capture more spatial complexity than do individual voxel inten-
sities. Here, intensity, gradients, and context can be incorporated into a single feature vector (18);
spatial proximity can be included to aid in classification using region clustering or region growing
techniques (11); or graph-based representations, with connections based on the similarity of voxel
intensity features and spatial proximity, can be constructed, searched, and compared (19). Convo-
lutional neural network (CNN) approaches are designed to be able to learn contextual features
from the voxel intensities by optimizing the weights of convolution operations based on training
data aimed at a particular segmentation task. Third, image patch appearance incorporates increas-
ing regional appearance influences by using information from neighboring voxels around an image
location. Sets of image patches from a spatially local region can be used to form a set of templates
or atlases for segmentation (20, 21), or methods using nonlocal patches omit spatial relationships
between appearances in favor of a many-to-one matching of appearance that permits many sam-
ples to be compared. Finally, shape and geometry appearance can be used to define a more global
knowledge of appearance. Shape models can construct efficient representations of segmentation
boundaries (22–24), and these shape models can be combined with intensity appearance (25). In
general, segmentation methods use one or more of these appearance features in conjunction with
classification methods such as support vector machines (26), random forests (27), or neural net-
works (28) to best determine class boundaries.

A key issue in all of the above appearance categories is the need for efficient representation.
Appearance feature spaces can grow too large and suffer from the curse of dimensionality (29)
in supervised learning. Principal component analysis (30) is a straightforward technique that
enables dimensionality reduction by identifying low-variance dimensions likely associated with
noise. It is limited, however, by its linearity and its use of only first- and second-order statistics.
Sparsity, as discussed below (see Section 3), enables the development of data-driven adaptive basis
sets (e.g., dictionaries) that provide a more flexible and tailored approach to efficient appearance
representation.

3. SPARSE REPRESENTATIONS FOR MEDICAL
IMAGE SEGMENTATION

Sparse representation is a rigorous mathematical framework for studying high-dimensional data
and uncovering the underlying structure of the data (31). Advances in this area have not only
caused a small revolution in the community of statistical signal processing (31) but have also led
to several state-of-the-art results in computer vision applications, such as face recognition (32),
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signal classification (33), texture classification, and edge detection (34–36). Sparse image repre-
sentation exploits the idea that although images are naturally high dimensional, in many applica-
tions images belonging to the same class lie on or near a low-dimensional subspace (37). Sparsity
has proven to be a powerful constraint for uncovering such degenerate structure. On the basis
of sparsity constraints, the subspace of a class can be spanned in the sense of sparse representa-
tion by a set of base vectors that can be either predefined, typically in a parametric form such as a
Fourier basis (38), or learned from training samples. In the latter case, the subspace of learned base
vectors is assembled into a dictionary that encodes the signal patterns of the class. Learned dictio-
naries typically outperform predefined ones in classification tasks, in particular for distorted data
and compact representation (39). Sparse representation has also been applied to medical image
analysis settings such as shape prior modeling (40–42), nonrigid registration (43), and functional
connectivity modeling (44). We review a general framework for sparsity-based segmentation in
Sections 3.1–3.4, below. In addition, we note that a number of recent efforts have aimed to incor-
porate and interpret sparsity in the context of neural networks (see Section 3.5).

3.1. Representation Framework

The mathematical framework for considering sparse representation in the context of this review
can be constructed by first describing the representation of an n-dimensional feature vector de-
rived from amedical image, y = [y1, y2, . . . , yn] ∈ R

n, as a weighted combination ofm sets of similar
samples of the same dimension in a representation repository or dictionary,D = [d1,d2, . . . ,dm] ∈
R
n×m. Here, each element di is an n-dimensional vector of appearance and is often referred to as

a dictionary atom. The data vector y could be one instance of a collection of intensities, features,
or even boundary control points, as described above in Section 2. The dictionary D can be ei-
ther a collection of raw feature data samples themselves or a set of predefined basis functions or
of learned feature elements that represent the underlying data distribution (see Section 3.3). A
coding vector x ∈ R

m selects the weighted combination of samples from the dictionary that best
represents the data vector. Generally, the representation problem aims to find the optimal coding
vector x that minimizes the reconstruction error between the data y and the weighted dictionary
Dx:

min
x

‖y − Dx‖p, 1.

where ‖·‖p is the p norm; typically, the �2 Euclidean norm (p = 2) is used here.
In some applications, sparsity can be imposed not only on the representation x itself but also

on regions of abnormality along a boundary. Thus, a position-specific error vector e can be used
to capture rare but important discrepancies in a segmentation (see Section 4.4, below).

3.2. Imposing Sparsity

Sparsity is often used in medical image analysis to solve segmentation problems, our focus in this
review. We can impose sparsity in its most basic form by simply counting the nonzero entries
of any entity and limiting or minimizing that count. The count is denoted by the �0 norm ‖·‖0.
Sparse solutions can be imposed using the �0 norm on the representation coding problem defined
in Equation 1. One way to impose sparsity is to set a threshold � on the �0 norm of the coding
vector:

min
x

‖y − Dx‖22 s.t. ‖x‖0 ≤ �. 2.
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The value of � is chosen specific to the application. Sparsity can also be realized by limiting the
overall error with a threshold ϵ instead of a sparsity threshold:

min
x

‖x‖0 s.t. ‖y − Dx‖22 ≤ ε. 3.

Again, the threshold ϵmust be chosen according to the application.While in Equation 2 we specify
the degree of sparsity, in Equation 3 we specify a limit on the error. As we demonstrate below, this
basic idea is developed in different ways. In cases when the exact determination of these sparse
solutions has proven to be computationally expensive (45), approximate solutions are considered
instead. Several efficient pursuit algorithms have been proposed; these include matching pursuit
(46) and orthogonal matching pursuit (OMP) (47–49).

Also, as is well known from the sparsity literature (50), the nonconvexity of the �0 norm makes
the constraints in Equation 2 intractable. Conveniently, the research community has recognized
that this problem can be nicely reformulated and made continuous and convex, but nonsmooth,
by use of �1 norm relaxation. In fact, efforts in computer vision (mainly in face recognition) have
shown that minimizing with respect to an �1 norm is equivalent to doing the same for an �0 norm
for sparse-enough solutions (32, 51), and medical image analysis investigators have adopted this
approach (52). Thus, replacing the �0 norm with an �1 norm in Equation 2, and reformulating
using a weighted sum, results in

min
x

‖y − Dx‖22 + λ‖x‖1. 4.

This basic idea has also been recognized in the statistics literature (53) and termed the least abso-
lute shrinkage and selection operator (LASSO). Alternatively, when the number of data samples
m is much greater than the number of selected elements �, which is often the case in medical
imaging problems, robust sparse representation may be achieved by including an �2 ridge penalty
term in the representation functional (54):

min
x

1
2
‖y − Dx‖22 + λ1‖x‖1 + λ2

2
‖x‖22. 5.

This method, termed the Elastic Net, empirically outperforms LASSO while preserving the spar-
sity of the representation. In particular, the Elastic Net formulation encourages a grouping of
highly correlated variables. Elastic Net was successfully used in one of our example applications
below (see Section 4.3).

As discussed in Section 4, the basic strategy for sparse representation as represented by
Equations 2–4 can be applied and augmented in a number of ways. The methods for actually
learning the dictionaries used for representation are discussed in the following section.

3.3. Dictionary Learning

Traditionally, representations of information derived from images have employed standard bases,
such as Fourier, Gabor, or wavelet. Instead of using a standard basis, it is possible to learn a dictio-
nary of atoms from the data themselves. Learning a dictionary, D = [d1, . . . ,dm] ∈ R

n×m, from a
finite training set of image-derived information,Y = [y1, y2, . . . , ys] ∈ R

n×s, requires solving a joint
optimization problem with respect to the dictionaryD and the sparse representation coefficients,
X = [x1, x2, . . . , xs] ∈ R

m×s:

min
D,X

‖Y − DX‖22 s.t. ∀i, ‖xi‖p ≤ �, 6.
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where � is a predetermined target sparsity constraint and p is the chosen norm. Effective algo-
rithms for solving the dictionary learning problem (Equation 6) using p = 0 or p = 1 include
K-SVD (55), the method of optimal directions (56), and a stochastic algorithm (57). K-SVD has
been widely used because of its good convergence properties. The main iteration of K-SVD con-
tains two stages: sparse coding and dictionary updating. In the sparse coding stage, D is fixed
and the problem stated in Equation 2 or 3 is solved using a matching pursuit algorithm, such as
OMP (58), to find the best matching sparse representationX. In the dictionary updating stage, the
atoms of the dictionaryD are updated. For the application of dictionaries and sparsity to medical
image segmentation that is of interest in this review, there are key parameter choices that must
be made for each specific problem: the dictionary atom size, the number of atoms included in the
dictionary, and the order of sparse regularization. Both the sparse coding and dictionary updat-
ing stages of dictionary learning could also be set and solved numerically using a LASSO-style
formulation, as shown by Equation 4.

3.4. Classification Using Dictionaries

Given a dictionary, or a set of dictionaries, segmentation of an image may be performed by classi-
fying each individual voxel into a distinct class with label c from a set of application-specific classes
c ∈ C corresponding to, for example, tissue types. The number of classes corresponds to the set
cardinality |C|. Independently of a particular application’s specific representation of the data, the
task of classification using a dictionary D reduces to assigning a class label to all data samples y,
which involves solving either Equation 2 or 3 for the sparse coding vector x̂.

For classification, dictionaries can take two forms: (a) intraclass dictionaries, in which a dictio-
nary represents data from a single class c, which we denote as Dc, and (b) interclass dictionaries,
in which a dictionary represents data from all possible classes in C. On the basis of these dictio-
nary forms, classification may be performed in one of two ways. First, in the case of intraclass
dictionaries, a classification can be made using the data residual reconstruction error:

Rc = ||y − Dcx̂||2, ∀c ∈ C, ĉ = argmin
c
Rc, 7.

where the final class assignment ĉ is made by choosing the class that minimizes these residuals.
Here, it is assumed that a data vector will belong to the class best represented by that class’s spe-
cific dictionary, that is, the class with minimum residual error. Sections 4.1 and 4.2 demonstrate
applications using this method of classification. Additional constraints can be added in order to
increase the discriminative power of the dictionaries (59).

Second, in the case of interclass dictionaries, a classification can bemade using the sparse coding
vector x̂ itself. In its simplest form, a matrix W ∈ R

|C|×m can be defined as a set of linear classifier
parameters that maps any coding vector x̂ onto a label vector h ∈ R

|C|:

ĥ = Wx̂, ĉ = argmax
c

ĥc. 8.

Here, the nonzero values in the label vector h indicate membership in the cth class; for instance, a
labelingwith a single nonzero valueh = [0, 0, . . . , 1, . . . , 0, 0] indicates unique classmembership in
the cth class, and the final class assignment ĉ is given to the class with maximummembership value.
The assumption is that the classes will be clustered in the space of the coding vector. Section 4.3
demonstrates an application of this method of classification.
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3.5. Sparsity in Deep Learning

For many medical image analysis tasks, deep learning is becoming the dominant approach. An
increasing number of large data sets are becoming available for training, and investigators are
looking toward learning strategies based on multilayer or deep data-driven neural networks to
incorporate this information in effective ways (28). Many approaches to deep learning exist, and
there are many ways of incorporating sparsity that aim to reduce the number of nonzero-weighted
neurons. Sparsity may lead to more efficient networks and has potential benefits in terms of in-
formation disentangling, control of the effective dimensionality of the representation, and easier
separability (60). Perhaps the simplest method to incorporate sparsity is to set neuron weights to
zero during training if they are below a designated threshold and therefore are inactive (61). In
this way, a large network can be pruned, thus reducing the size of the model for greater efficiency,
reduced redundancy, and potentially improved performance.

The choice of nonlinear activation function can also influence network sparsity. The use of
rectified linear units (ReLUs) tends to create sparse networks with many inactive neurons (60,
62). Unlike other activation functions, such as sigmoids, hyperbolic tangents, or leaky ReLUs,
when the input to the ReLU is less than zero, the output is clamped to zero, leading to more
inactive neurons and sparser networks.

Sparsity constraints can also be imposed via the cost function. For example, the sparse autoen-
coder is an unsupervised method of seeking a compressed representation via a hidden layer in a
network that attempts to reproduce its input; that is, it seeks an identity function (63). Typically,
the size of the hidden layer is small so that a compact structure can be imposed on the hidden
representation. However, a sparsity constraint can be imposed by augmenting the cost function
with a term that seeks to, for example, have the average activation equal to a target small value,
forcing many units to be inactive. Sparsity within the hidden units of autoencoders has been en-
couraged by penalizing deviation from a target activation ρ (in this case, ρ = 0) measured by the
Kullback–Leibler divergence (64). Alternatively, sparsity can be imposed by using an �1 norm on
the network weights (65). The resulting representation can then be used, for example, as input to a
classifier for segmentation (66). This LASSO-style approach can also be applied to convolutional
networks in a sparse group LASSO objective (67).

Another mechanism that imposes sparsity on a network is by way of dropout. The idea behind
dropout is to randomly select a number of the neurons at each stage of training (as many as 80%)
and set the corresponding weights to zero (68). The primary goal is to avoid overfitting by making
the network less dependent on any particular node and more robust, especially when the training
data set is small. Srivastava et al. (68) found that, as a side effect of dropout, the activations of the
hidden units became sparse, even when no explicit sparsity-inducing regularizers were present.
These authors studied autoencoders and looked at the sparsity of hidden unit activations. In ad-
dition, they used ReLU activation functions with and without dropout and found that dropout
significantly increased sparsity in the resulting networks.

Papyan et al. (69) developed an interesting connection between sparse modeling via dictio-
naries and CNNs. They formulated a multilayer convolutional sparse coding (CSC) method by
using dictionaries of intensity patches. Both CNNs and the CSC method are based on a convolu-
tional structure, and both use data-driven models. These authors showed how their sparse coding
method corresponds to the forward pass evaluation of the CNN.

It is possible to integrate neural network approaches and sparse dictionary learning. Using an
encoder–decoder neural network formulation with a sparsity-inducing logistic module in between,
Poultney et al. (70) learned effective sparse representations for subsequent processing. For tissue
classification in liver images, Ben-Cohen et al. (71) used a fully convolutional network followed
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by dictionary-based fine-tuning. The sensitivity of the neural network alone was similar to that
of the combined approach. However, the combined approach had improved specificity. Thus, the
two methods worked synergistically to obtain a more robust solution.

4. KEY APPLICATION EXEMPLARS

We highlight five examples that illustrate the use of sparse representations for a diverse range
of applications within biomedical image segmentation. We start in Section 4.1 by describing a
dynamical appearance model (DAM) based on sparse representation and dictionary learning for
tracking both endocardial and epicardial contours of the left ventricle in echocardiographic se-
quences (72–74). Here we exploit the inherent spatiotemporal coherence of individual data to
constrain cardiac contour estimation.The contour tracker uses multiscale sparse representation of
local image appearance and learns online multiscale appearance dictionaries in a boosting frame-
work as the image sequence is segmented frame by frame sequentially. In Section 4.2, we present
a method to segment the cortical brain surface in postoperative CT imaging. In this challenging
application, image patches are oriented on the basis of the local evolving surface geometry in order
to develop an efficient patch dictionary that exploits the consistency of appearance at the surface
of the brain (75). This oriented appearance model, built from a clinical training sample, is invari-
ant to rotational changes in the surface. From these patches, a sparse representation of the brain
cortical surface appearance is determined in a dictionary-learning framework to model textural
appearance near the surface boundary. In Section 4.3, we describe a method for sparse dictionary
learning with atlases for brain segmentation (76, 77), an important current topic in neuroimage
analysis. Next, in Section 4.4, we examine sparsity in global shape representation for boundary-
based modeling. In global models, more complete shapes can be represented, and the sparse data
matrix is learned by observing entire shapes of object boundaries in two or three dimensions. Fi-
nally, in Section 4.5, we look at the use of data-driven, deep learning of multiscale image patches
for tissue classification from multiparameter MRI (mpMRI) data for liver cancer diagnosis and
treatment evaluation (78).

For each of these applications, the segmentation performance of sparse representation learning
is compared with that of alternative, nonsparsemethods.Comparisons aremade with conventional
algorithms that do not employ sparse coding techniques, and in two cases, the effectiveness of
sparse coding (Section 4.3) or sparsity-inducing strategies (Section 4.4) is directly compared with
that of representation learning without the sparsity constraint. Throughout this section, segmen-
tation performance is evaluated with respect to expert human-rater manually annotated ground
truths. The state-of-the-art quantitative evaluation, and the most popular in the medical image
analysis literature, involves computing the Dice overlap measure or various surface point distance
metrics, such as the Hausdorff distance. All examples included here make use of one or more
of these metrics to provide a clinically meaningful validation with respect to clinically relevant
ground truth annotations. The quantitative and qualitative visual results that follow demonstrate
the effectiveness of sparsity for data-driven segmentation across a diverse set of biomedical imag-
ing applications.

4.1. Multiple Tissue Class Dictionaries and Sparsity for Left Ventricle
Segmentation from Echocardiography

In this section, we discuss a DAM based on sparse representation and dictionary learning for
segmenting the endocardial and epicardial surfaces of the left ventricle from echocardiographic
sequences (Figure 1) (6), often used as a first step in cardiac motion (e.g., 79, 80) and strain
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Figure 1

Dynamical dictionary updating interlaced with sequential segmentation. Ii is the image of frame i, si is the segmentation of frame i, and
Dj
i represents multiscale appearance dictionaries for class j in frame i. Figure adapted from Reference 6 with permission from Elsevier.

estimation (81). Instead of learning off-line spatiotemporal priors from databases, as might be
done in more global appearance-based modeling, this model exploits the inherent spatiotemporal
coherence of individual data in order to constrain cardiac surface estimation.

For this application, individual class dictionaries are learned and established at sequential time
frames for different tissue types for a single subject, given a manual segmentation initialization at
the first time frame. The algorithm leverages a variety of complementary information, including
intensity, multiscale local appearance, and shape. A multiscale sparse representation of high-
dimensional local image appearance is used to encode local appearance patterns with multiscale
appearance dictionaries. An online multiscale appearance dictionary learning process is interlaced
with sequential segmentation. The local appearance of each frame is predicted by a DAM in the
form of multiscale appearance dictionaries based on the appearance observed in the preceding
frames. As the frames are segmented sequentially, the appearance dictionaries are dynamically up-
dated to adapt to the latest segmented frame. The multiscale dictionary learning process is super-
vised in a boosting framework to seek optimal weighting of multiscale information and to generate
dictionaries that are both reconstructive and discriminative. Sparse coding with respect to the
predictive dictionaries produces a local appearance discriminant that summarizes the multiscale
discriminative local appearance information.This method includes both intensity and a dynamical
shape prediction to complete the complementary information spectrum that is incorporated into
a region-based level-set segmentation formulation in a maximum a posteriori framework.

In this approach, the basic strategy begins with the sparsity equations described above in Sec-
tion 3. However, the equations are modified to leverage the complementary multiscale local ap-
pearance information, which leads to describing the pixel u ∈ � as a series of appearance vectors
yt (u) ∈ R

n at different appearance scales at time point t. To obtain this multiscale information,
one can extract local images of different physical sizes from images that are smoothed to different
degrees. The local images are then subsampled to construct appearance vectors.
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Key to this algorithm, and the most relevant point for this review, is sparse learning of separate
appearance dictionaries for the blood pool and the myocardium from each frame of the echocar-
diographic image data.Considering appearance at a single scale as the initial example, suppose that
D1

t andD2
t are two dictionaries adapted to appearance classes �1

t and �2
t , respectively (e.g., blood

pool and myocardium). They exclusively span, in terms of sparse representation, the subspaces of
the corresponding classes; that is, they can be used to reconstruct typical appearance vectors from
the corresponding classes. As introduced in Section 3.4, the reconstruction residuals Rct (u) for an
appearance vector can be found using Equation 7 for each class, and it is logical to expect that
R1
t (u) > R2

t (u) when u ∈ �2
t , and R

1
t (u) < R2

t (u) when u ∈ �1
t (6). This observation establishes a

key basis of sparse representation–based discrimination.
On the basis of this discrimination strategy, Huang et al. (6) developed a local appearance

discriminant At between two learned dictionaries (blood pool and myocardium), which is used to
create a class adherence probability term, p(At|�t), where�t is a level-set function.This term is in-
corporated into a level-set boundary finding optimization functional, which when solved estimates
the zero level set that segments the endocardial or epicardial boundary of the left ventricle. In this
study, the local appearance discriminant At (u) combines complementary multiscale information
by learning a series of dictionaries at different scales, and indicates the likelihood that the point u
is inside or outside the shape of interest. To obtain this appearance discriminant, Huang et al. (6)
leveraged the inherent spatiotemporal coherence of individual data to introduce an online learn-
ing process that dynamically adapts multiscale dictionaries to the evolving appearance when the
image sequence is segmented sequentially, as illustrated in Figure 1.

Three issues are important in this setting. First, the true distribution underlying the appearance
Y is not known. A uniform distribution is usually assumed to place equal emphasis on all the
training examples. There are harder and easier parts of the appearance space, and more emphasis
should be placed on the harder part so as to enforce the learned dictionaries to include the most
discriminative patterns. The relatively easier and harder parts can differ at different appearance
scales. Second, the generic dictionary learning formulation in Equation 6 gets trapped in a local
minimum and learns only the scale that corresponds to the size of local images (82).Huang et al. (6)
decompose the multiscale information into a series of appearance dictionaries, each of which is
learned at a single scale. Third, the weighting of different appearance scales needs to be optimized
in order to achieve the best joint discriminability of the multiscale dictionaries.

In order to address the above issues and further strengthen the discriminative property of the
learned appearance dictionaries, a boosted multiscale appearance dictionary learning process su-
pervised in an AdaBoost (83) framework was proposed (6). The boosting supervision strengthens
the discriminative property and optimizes the weighting of multiscale information. In this setting,
each pair of learned dictionaries is taken as a weak learning process making a weak hypothesis,
wherein each weak learner faces a different distribution of the data that is updated on the basis of
the error made by the preceding weak learners.Here, the first weak learner makes the initial guess
that the data obey a uniformdistribution.The appearance scale varies across theweak learners such
that the error made at a certain scale can hopefully be corrected at the other scales. The weighting
parameters of the multiscale information are optimized automatically through this boosting pro-
cess. The coarser-scale dictionaries encode higher-level anatomical patterns, while the finer-scale
dictionaries encode lower-level speckle patterns. Finally, all of these weak learners are combined
to reach a strong hypothesis.

This approach was validated on 26 four-dimensional (4D) canine echocardiographic images
acquired from both healthy and postinfarct canines. The segmentation results agreed well with
expert manual tracing (Figure 2) (Table 1). Advantages of this approach are demonstrated
by comparisons with conventional, nonsparse methods, such as a pure intensity model using a
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Figure 2

Typical segmentations of endocardium (red) and epicardium (purple) from four-dimensional echocardiography using the dynamical
appearance model approach based on sparse dictionary learning. Two-dimensional slices through three-dimensional results show a
comparison between expert manual tracing (green) and the algorithm, with excellent concordance. Figure adapted from Reference 6
with permission from Elsevier.

maximum likelihood estimation and a Rayleigh distribution model (84) or a database-dependent
off-line subject-specific dynamical shape model (SSDM) (85). The level-set strategy that incor-
porates the sparse dictionary learning appearance residuals approach (DAM) outperforms the
other approaches in terms of endocardial and epicardial segmentation.

4.2. Sparse Orientation-Invariant Tissue Class Dictionaries for Brain
Segmentation from Computed Tomography

In segmentation of the cortical brain surface in postoperative CT imaging, specific dictionaries
are again learned or established for different tissue classes, but, in contrast to the application
described in Section 4.1, these dictionaries are learned from a population of images and are
intended to estimate intersubject segmentations for a set of test subjects (not only for a single,
intrasubject segmentation). Here, the overall goal is to segment brain surfaces that will be useful
for registering presurgical MRI images with postsurgical CT (as in 75), but similar ideas are
useful for registering pre- and postimplant MRI (86) and in postsurgical brain shift compensation
(e.g., 87–89). During these surgical procedures, neurosurgeons implant electrodes to monitor
and localize abnormal electrical activity due to epilepsy, then use this information to plan
further surgical procedures, as described in more detail by Onofrey et al. (75). While numerous

Table 1 Quantitative comparison of N = 26 canine 4D echocardiographic data sets to expert
manual segmentation of Rayleigh, DAM, and SSDM approachesa

Approach Dice (%) PTP (%) MAD (mm) HD (mm)
Endocardial Rayleigh 74.9 ± 18.8 83.1 ± 16.3 2.01 ± 1.22 9.17 ± 3.37

DAM 93.6 ± 2.49 94.9 ± 2.34 0.57 ± 0.14 2.95 ± 0.62
SSDMb 95.9 ± 1.24 1.41 ± 0.40 2.53 ± 0.75

Epicardial Rayleigh 74.1 ± 17.4 82.5 ± 12.0 2.80 ± 1.55 16.9 ± 9.30
DAM 97.1 ± 0.93 97.6 ± 0.86 0.60 ± 0.19 3.03 ± 0.76
SSDMb 94.5 ± 1.74 1.74 ± 0.39 2.79 ± 0.97

aMean ± standard deviation of voxel overlap (Dice), percentage of true positive voxels (PTP), mean absolute difference
(MAD), and Hausdorff distance (HD).
bMethodology utilizing sparsity.
Abbreviations: DAM, dynamical appearance model; SSDM, subject-specific dynamical shape model; 4D, four-dimensional.
Table adapted from Reference 6 with permission from Elsevier.
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Dictionary learning is used to learn a sparse appearance model in order to segment the cortical brain surface in postsurgical computed
tomography (CT) images in epilepsy patients. Image patches are oriented according to the surface’s local differential geometry, and the
appearance both inside and outside the brain surface is used to train two dictionaries of appearance from a set of training data. The
dictionary models are then used to drive the segmentation process of the cortical surface in test postop CT images.

surface-based, nonrigid registration methods exist (90, 91) to accomplish this task, the main
challenge is the extraction of the cortical surface from the images. Methods for segmenting the
brain surface from presurgical MRI exist (92); however, segmentation of postoperative CT images
is challenging due to (a) large portions of the skull being removed for the craniotomy, (b) imaging
artifacts caused by the implanted electrodes, (c) the most likely non-Gaussian appearance of the
brain surface, and (d) the variability in the location of the craniotomy across patients, which can
confound global models of appearance (25).

To segment the cortical brain surface in postoperativeCT imaging, a dictionary learning frame-
work learns a sparse representation of the brain cortical surface appearance (Figure 3). Similar
to the dictionary learning approach presented in Section 4.1, this framework models textural ap-
pearance of two tissue classes, in this case, the inside and the outside of the cortical surface bound-
ary. Here, dictionaries modeling the locally oriented image appearance based on the geometry
of an evolving cortical surface estimate discriminate the appearance around the boundary. The
method extracts locally oriented image patches for all points on the segmentation surface esti-
mate, u ∈ Ŝ, and transforms these patches into an appearance vector, y(u). As done in Equation 7
(Section 3.4), the appearance model residuals Rc(u) are computed for each class c ∈ C = {in, out}.
In contrast to the research described in Section 4.1, the difference between the residual values,
D(u) = Rout(u) − Rin(u), drives the evolution of the segmentation surface estimate. Intuitively, if
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Figure 4

An example of postsurgical computed tomography cortical surface segmentation results for a single subject using sparse dictionary
learning of locally oriented image appearance (blue contour) compared with ground truth segmentation (yellow contour). Arrows indicate
accurate cortical surface segmentation at the areas of the implanted surface electrodes near the site of the craniotomy, which is the
region of greatest clinical interest. Axial images progress from the bottom of the head (left) to the top (right).

u lies within the true boundary of the cortical surface in the CT image, then D(u) > 0, and if u,
in contrast, is outside the true boundary, then D(u) < 0. The cortical surface boundary is thus
located at the point where D(u) = 0; in other words, the dictionaries cannot determine to which
class the local patch belongs. Finally, to segment the cortical surface in the CT image, the method
minimizes the objective function Ŝ = minS

∫
S ‖D‖22dS.

In contrast to the research described in Section 4.1, which uses image patches canonically
aligned with the image axes, this approach uses locally oriented image patches along the evolving
segmentation surface. By orienting the image patches with respect to the differential geometry
of the surface, the oriented appearance model is invariant to rotational changes in the surface.
Furthermore, rather than creating unique intrasubject appearance models for each subject, this
approach builds an intersubject appearance dictionary using a population of clinical training data.

Experimental results using clinical images from 18 epilepsy patients who had surgically im-
planted electrodes demonstrate the accurate segmentation of the cortical surface using dictionary
learning of oriented image appearance. The oriented patch dictionary segmentation method is
compared with a standard multiatlas registration-based segmentation method as well as a deep
CNN approach. Results show accurate cortical surface segmentation in CT images (Figure 4),
and quantitative results (Table 2) show significantly more accurate segmentation in the area of
the electrodes, which is the region of greatest clinical interest. In comparison to the other tested
segmentation methods, the local patch-based sparse dictionary learning approach offers practical
advantages for medical imaging data sets that have low sample sizes. In this specific application,

Table 2 Segmentation evaluation quality measures comparing sparse dictionary learning–
based segmentation of the cortical surface to the initial surface estimate, atlas-based
segmentation, and a deep CNNa

Method Dice (%) MHD (mm) MAD (mm) MESD (mm)
Initial estimate 93.47 ± 1.86 8.09 ± 2.50 3.76 ± 0.68 1.66 ± 0.84
Atlas-based 94.21 ± 1.77 6.81 ± 2.46 3.20 ± 0.70 2.51 ± 1.06
Deep CNN 95.00 ± 1.18 7.00 ± 2.71 2.94 ± 0.44 1.11 ± 0.61
Oriented dictionaryb 94.87 ± 1.05 6.75 ± 2.39 3.23 ± 0.43 0.87 ± 0.24

aValues are expressed as mean ± standard deviation of voxel overlap (Dice), a modified version of the Hausdorff distance
(MHD) that uses the ninety-fifth-percentile distance, mean absolute difference (MAD), and mean electrode to surface
distance (MESD), which measures the distance from the surface electrode to the segmentation for the surface electrodes
closest to the region of greatest clinical interest (the site of the craniotomy). Bold entries indicate the best-performing
method.
bMethodology utilizing sparsity.
Abbreviation: CNN, convolutional neural network. Table adapted from Reference 75 with permission from IEEE.
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the dictionary appearance model can accommodate heterogeneous appearance better than global
models of appearance, such as atlas-based segmentation, because surgical site location is specific
to each patient and not enough training data exist to span all possible craniotomy locations.
The dictionary model is also of much lower dimensionality; for instance, a dictionary with
n = 256 atoms and 53 image patches at three image scales required a total of 96,000 parameters,
in contrast to the tested deep CNN, which had more than 22 million parameters. Finally, for
applications such as surgery that require a high level of trust in the algorithmic results, the easy
interpretability of the learned dictionary atoms contrasts with the difficulty in analyzing the
features of a CNN’s hidden layers.

4.3. Sparse Dictionary Learning with Atlases for Magnetic Resonance
Imaging Brain Segmentation

In sparse dictionary learning with atlases for brain segmentation, and similar to the task discussed
in Section 4.2, sparse coding of a collection of labeled images from a population of training data
is used to perform segmentation of a test image for a new test subject, in this case segmenting
anatomical brain structures inMRI data.This approach is useful in a variety of neuroimaging anal-
ysis problems, including those related to both structural and functional biomarker measurement.
Here, patch-based sparse appearance learning is used to segment a test subject image by trying to
match patch-based features to a set of similar-looking patches found in a set of atlases. The idea is
that a patch-based learning problem is posed where weights are sparse and their values are large
when the test subject patch matches the correct atlas patch. This method was initially proposed by
Tong et al. (76) for two label classes (hippocampus and background) and was then generalized by
Roy et al. (77) to include multiple classes (gray matter, white matter, and cerebrospinal fluid). This
application contrasts with the previous two (Sections 4.1 and 4.2) in two ways. First, this approach
creates separate local appearance dictionaries for each voxel in the test image, as opposed to the
other methods, which use global dictionaries of appearance that apply to the whole image domain.
Second, the dictionaries in this application contain appearance samples that are representative of
all classes of interest (interclass dictionaries), whereas the previous methods utilize separate dic-
tionaries for each class of interest (intraclass dictionaries). In this manner, classification (and the
resulting segmentation) is performed on the appearance dictionary’s sparse coefficients instead of
on the reconstructed appearance representation. The intuition behind this approach is that, for
a given dictionary size, intraclass dictionaries are better suited for global patch-based appearance
modeling, wherein appearance is relatively homogeneous within a class throughout the global
image domain, whereas interclass dictionaries are better suited for local patch-based appearance
modeling because these dictionaries must contain information from a variety of classes that may
have an increasingly heterogeneous appearance outside of the local spatial neighborhood.

Inspired by facial recognition research from the computer vision community (32), atlas-based
segmentation (Figure 5) is developed in two different ways (76). The first approach, termed
sparse representation classification (SRC), uses a dictionary based on a large number of training
patches selected from a subset of most similar atlas images. Sparse coding is used to select the
most representative patches in the dictionary using Equation 5. Similar to the application in
Section 4.1, dictionary reconstruction residual error is used to discriminate class membership,
with segmentation performed by selecting the class label with minimal residual (or reconstruc-
tion) error (see also Section 3.4). The second strategy, termed discriminative dictionary learning
for segmentation (DDLS), attempts to exploit discriminative information in the training patch
library by learning a small-sized, (discrimination) task-specific dictionary. This approach adds a
linear classifier, f (x,W) = Wx, to the objective function for learning dictionaries that contain
the ability to both reconstruct patches and determine to which class a patch belongs (93). The
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Figure 5

Flow chart of the SRC and DDLS methods (76). One target voxel is labeled by three different methods: patch-based labeling, SRC, and
DDLS. The red box in the target image represents the target patch. The blue boxes in the atlas images represent the search volume
area for extracting template patches. Abbreviations: DDLS, discriminative dictionary learning for segmentation; SRC, sparse
representation classification. Figure adapted from Reference 76 with permission from Elsevier.

objective function modifies the dictionary learning function in Equation 6 to include two �2

norms subject to sparsity:

D̂, Ŵ = arg min
D,W,X

‖Y − DX‖22 + β1‖H − WX‖22 s.t. ∀i, ‖xi‖0 ≤ �, 9.

where W ∈ R
|C|×m is the linear classifier parameter and each column of a matrix H =

[h1, . . . ,hm] ∈ R
|C|×m is a vector hi corresponding to the central voxel label of the atlas template

patch with C different classes. Nonzero entry positions in the vector hi = [0, 0, . . . , 1, . . . , 0, 0]
indicate the class label of the data sample yi surrounding the central pixel or voxel of the patch
as belonging to the jth class. In this application, C = {

hippocampus, background
}
with cardinality

|C| = 2.Using the set of labeled training atlases, this equation is solved using themethod proposed
byMairal et al. (57) to learn a dictionary, D̂(u), and classifier, Ŵ(u), for every possible target voxel
u ∈ � in the target image. To segment a target voxel, the sparse representation of the target x̂(u)
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is found by solving x̂(u) = argminx(u) ‖y(u) − D̂(u)x(u)‖22 + β2‖x(u)‖1 using Equation 5. Finally,
the label value of the target voxel ĉ(u) is found from the linear predictive classifier, as in Equation 8.

The abovementioned sparse segmentation approaches learn subject-specific, voxel-wise dic-
tionaries for multiple classes from a set of labeled atlas images that most closely match the target
image in a form of online learning and segmentation. Alternatively, Mairal et al. (57) also pro-
pose learning fixed dictionaries off-line to be applied to more efficient online segmentation. In
this scenario, fixed DDLS (F-DDLS) forms voxel-wise dictionaries from a subset of subjects in
the training set, not only the most similar matching ones, and these dictionaries can be saved and
then applied to segment target images.

Testing was performed using 202 T1-weighted MRI data from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) data set (94) and 80 images from the International Consortium for
Brain Mapping data set (95), with the goal of classifying hippocampus versus background. The
sparse coding SRC, DDLS, and F-DDLS methods were compared with a more standard, nonlo-
cal patch-based segmentation method (96) that performs a weighted classification of atlas patches
(based on the Euclidean distance). All methods utilized patch sampling within a small, nonlocal
7 × 7 × 7 search window of the target patch. Preprocessing for each data set was performed (94,
96), all images were linearly registered to theMNI (MontrealNeurological Institute) 152 template
space, and histogrammatching (97) was used to normalize image intensities. For SRC,DDLS, and
the patch-based method, the sum of squared differences of intensity values was used to select the
10 atlases most similar to each target image. Visual comparisons based on segmentation results for
three of the methods from the ADNI data set are shown in Figure 6, which illustrates the better
performance of the sparse coding appearance methods (both SRC and DDLS) compared with the

Best subject

Median subject

Worst subject
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segmentations

k = 0.9079

k = 0.8939

k = 0.7709

DDLS

k = 0.9058

k = 0.8721
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k = 0.8233
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Figure 6

Method comparison. Segmentation results were obtained by DDLS, SRC, and the patch-based method for
the subjects from the ADNI data set, with the best-case, median, and worst-case Dice coefficient results
depicted. Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; DDLS, discriminative
dictionary learning for segmentation; SRC, sparse representation classification. Figure adapted from
Reference 76 with permission from Elsevier.
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Table 3 Median Dice overlaps for 202 ADNI subjects using different approachesa

Method Left hippocampus
Right

hippocampus
Whole

hippocampus Time
Patch-based 0.848 0.842 0.844 10 min
SRCb 0.873 0.869 0.871 40 min
DDLSb 0.872 0.872 0.872 3–6 min
F-DDLSb 0.865 0.859 0.864 <1 min

aThe numbers in bold represent the highest Dice overlaps among different methods. All three sparse coding methods (SRC,
DDLS, and F-DDLS) outperform standard nonlocal patch-based classification. The sparse dictionary learning methods are
also computationally efficient compared with conventional, nonsparse patch-based segmentation. Bold entries indicate the
best-performing method.
bMethodology utilizing sparsity.
Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; DDLS, discriminative dictionary learning for
segmentation; F-DDLS, fixed DDLS; SRC, sparse representation classification.

patch-based strategy, indicating the promise of such approaches for atlas-based segmentation. Re-
sults in terms of Dice overlap coefficients for finding the right, left, and entire hippocampus using
all methods are shown inTable 3, quantifying the potential advantages of themethods on the basis
of sparsity. Notably, the atlas selection strategy offered small improvements over F-DDLS. The
sparse dictionary learning methods also demonstrated computational efficiency compared with
conventional, nonsparse, patch-based segmentation (Table 3). Roy et al. (77) extended all of this
research to multiple classes and applied it to whole-brain tissue segmentation in normal subjects
as well as to multiple sclerosis lesion segmentation, both from T1-weighted anatomical MRI.

4.4. Sparsity in Global Representations: Representations of Boundary Shape
and Boundary-Based Local Appearance Modeling

Many of the applications discussed in this review concern sparse representations of image intensity
or image appearance–based information. Sparsity in medical image analysis, especially regarding
segmentation, can also be advantageous in object boundary representations. In this section, we de-
scribe a primary example of this type of approach, from work by Zhang et al. (98). These authors
used a sparse shape composition (SSC) method in which an explicit shape representation [either
a two-dimensional (2D) curve or a three-dimensional (3D) triangular mesh] is formed using the
coordinates of a set of vertices that define the shape. For each object i, the coordinates are con-
catenated into a single shape vector, di ∈ R

n, where n is the product of the number of vertices in a
shape multiplied by its spatial dimension. A training depository (or, as above, dictionary) of shapes
can be represented as D = [d1,d2, . . . ,dm] ∈ R

n×m. In this framework, any input shape y can be
approximately represented as a weighted linear combination of shapes (or shape data) existing in
the database di, i = 1, 2, . . ., m, where x = [x1, x2, . . . , xm] ∈ R

m are the coefficients or weights
and m is the number of shapes. Unique to this approach is the idea that a set of sparse, gross er-
rors in a contour or surface boundary can be incorporated by modeling an error vector, e ∈ R

n.
Equation 2 can then be modified to model both a sparse linear combination and a sparse error for
outliers to find this solution:

argmin
x,e,β

‖T (y, θ ) − Dx − e‖22, s.t. ‖x‖0 ≤ �1, ‖e‖0 ≤ �2, 10.

where �1 is the predefined sparsity number for x and �2 is the sparsity number for e, which
captures the sparse but large errors caused by occlusion or missing points at particular locations
(vertices) in a model instance. Furthermore, we note that, in this equation, T (y, θ ) is the global
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transformation operator with parameter θ that aligns the input shape y to the mean of the existing
data repository D.

Testing was performed on a variety of data sets related to several different clinical problem
areas, including 2D lung localization from X-ray images and 3D liver segmentation from low-
dose CT, as described by Zhang et al. (98) and in follow-on research by Wang et al. (99). The
latter group (99) further developed the sparsity strategy to simplify the solution by stacking the e
and x vectors into a single new vector (x′) that could be set up as a one-variable sparsity term.We
show an example result for the liver segmentation problem using this sparsity-driven, shape-based
approach in Figure 7. In References 98 and 99, the clinical goal was to use the segmented CT

Figure 7

Comparison between SSC liver segmentation from low-dose CT and segmentation approaches based on
other shape models (all using the same training data). (First row) Procrustes analysis, rigid + scaling. (Second
row) Thin-plate spline model using nonrigid deformation. (Third row) SSC and proposed algorithm. (Fourth
row) Manual segmentation (ground truth). Note that the SSC results are closer to the ground truth. Areas
marked by circles indicate differences where the other techniques failed, likely due to breathing artifacts.
Each result was subsequently further deformed and refined. Abbreviations: CT, computed tomography; SSC,
sparse shape composition. Figure adapted from Reference 98 with permission from Elsevier.
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Table 4 Quantitative comparisons of the distances (voxel-based) between algorithm-
segmented surfaces and manually segmented ground truth for nonsparse and sparse
approachesa

Method Mean distance (mm)
Shape model search 2.26 ± 1.72
Thin-late spline 2.92 ± 2.19
Sparse shape compositionb 1.31 ± 0.95

aResults are reported as mean ± standard deviation. Bold font indicates the best-performing method.
bMethodology utilizing sparsity.
Table adapted from Reference 98 with permission from Elsevier.

surfaces to register to surfaces derived from positron emission tomography data for oncological
diagnosis. A total of 67 low-dose CT scans were acquired and annotated by manual segmentation
to provide ground truth.Of these, 40 were used for training, both to obtain the landmark data used
to do the initial intra-CT shape model registration and to construct the data matrix/dictionaryD.
The other 27 data sets were used for testing. For training, a reference shape was chosen, and all
other data sets were registered to it using a deformable model–based strategy (100). For matching
to image gradient data for eventual test case estimation, the fitting of a deformable model based
on Reference 101 was incorporated into the sparsity strategy. For both training and testing, each
3D shape had approximately 1,000 vertices, 20 of which were selected as landmarks for initial
registration. Also, in this study the weighting parameters in these equations were set to λ1 = 50
and λ2 = 0.3 for all results. Table 4 quantitatively compares the SSC method with two other
methods to localize liver surfaces. The two approaches whose results are reported in this table are
(a) a shape model search approach that is a module within the popular active shape model (24) and
(b) a standard thin-plate spline approach (102).Note that the SSC approach had the lowest overall
mean voxel distance error (as well as the lowest overall standard deviation over the test cases)
between the computed result and the manually segmented, ground truth result, demonstrating
the potential power of this approach.

4.5. Tissue Classification via Deep Learning with Dropout Sparsity

The past several years have witnessed a significant trend toward the use of data-driven deep
learning approaches to biomedical image segmentation. In this section, we discuss the use of
CNNs based on a U-net-style (103) architecture to address tissue classification/segmentation
from mpMRI related to liver cancer diagnosis and treatment targeting/evaluation (78). Network
sparsity is incorporated through the use of ReLUs as the activation function and dropout layers
applied during the training process.

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and one
of the deadliest cancers worldwide (104). mpMRI data sets contain multiple images from multi-
ple magnetic resonance protocols that reveal different aspects of the tissue. mpMRI is commonly
used as a diagnostic tool for suspected HCC cases and is important for defining treatment targets
and predicting outcomes for a number of therapeutic strategies, including transarterial chemoem-
bolization (TACE) (105). TACE treatment involves localized injection of embolytic agents that
will help destroy the tumor. As a first step, the liver must be segmented from the background using
3D mpMRI and, for example, the strategy described in Section 4.4, above. It is then necessary to
classify the liver tissue into its clinically relevant types: normal parenchyma, viable tumor tissue,
and necrosis (dead or necrotic tissue).

www.annualreviews.org • Sparsity in Medical Image Segmentation 145



BE22CH06_Duncan ARjats.cls May 27, 2020 15:13

Recent developments in the design of deep CNNs provide ways to construct powerful models
that can learn to extract both low- and high-level features for accurate inference that are usu-
ally difficult to formulate with traditional methods (103). However, such models typically need
a large quantity of training data with expert-curated labels, which are particularly expensive for
this application because training requires 3D segmentation fully annotated by radiologists. To
overcome these challenges, Zhang et al. (78) designed a model that classifies each local patch (or
region) given a set of patches from the images. These patches are sampled at a fixed size, but
with varying resolutions, in order to capture information from different scales efficiently. This
model has an autocontext-based (106), multilevel architecture that, when coupled with a multi-
phase training procedure, can effectively learn at different levels. The architectural and proce-
dural design proposed by Zhang et al. (78) specifically includes regularization within the CNN
using a patch-based learning scheme. This design includes the use of ReLU activation functions
and the insertion of dropout layers to implicitly address network sparsity, as discussed above (see
Section 3.5).

This study is one of the first to use a neural network approach to segment tissue types on
mpMRI in HCC patients without the need to manually design image features, as was done pre-
viously (107). While deep CNNs have been developed for liver tumor segmentation from CT
images (108, 109), the mpMRI problem faces additional challenges. Also, the coupling of an
autocontext-based model and a multiphase training strategy encourages the model to use contex-
tual information from the previous phase.This hierarchical combination of several predictive units
outperforms a single U-net model given the available data, without overfitting. This methodol-
ogy is generalizable to other detection and segmentation tasks in medical images where full image
annotation is difficult to acquire.

In order to illustrate the utility of the above approach to tissue classification, experiments were
performed on 3D mpMRI data sets from 20 liver cancer TACE patients. Each data set consists of
one T2-weighted magnetic resonance image and three T1-weighted dynamic contrast–enhanced
(DCE) magnetic resonance images. DCE images reflect the kinetics of injected contrast and are
acquired at multiple time points. These images were acquired at three time points during the
TACEprocedure: precontrast phase (before contrast injection), arterial phase (20 s after injection),
and venous phase (70 s after injection). All four images were mutually registered using standard
methods (110). In this testing protocol, liver outlines were manually provided, limiting the tissue
classification to within the liver in order to achieve a fair comparison with a benchmark method
and focus on classification within the liver.

The images used in this study are from HCC patients undergoing TACE as part of a larger
clinical study on treatment outcome analysis. In these cases, the number of lesions ranged from
one to three, with diameters greater than 20 mm. During TACE, the largest tumors are the most
important targets. Therefore, the patch sampling resolutions were selected as 2, 1, and 1 mm with
a patch size of 16 × 16 × 16 voxels, in order to focus performance on medium-sized and large
tumors. The 20-patient data set generated 1,700 nonoverlapping patches with random sampling
and random rotation augmentation.The first two units of themodel were designed to differentiate
lesions from normal liver tissue, while the last one was designed to identify viable tumor tissue
within each detected lesion. For each unit in the model, we implemented a U-net CNN with
10 layers of 3 × 3 × 3 convolution, 10 corresponding layers of dropout, and 2 levels of max
pooling/upsampling.

Fivefold cross-validation was used to evaluate the performance of different models. Hyperpa-
rameters, such as learning rate and class weights in the loss functions, remained the same across
all five folds. Figure 8 and Table 5 show that, with increasing dropout beyond the optimum
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Figure 8

Results with varying levels of dropout. (a) Three dynamic contrast–enhanced magnetic resonance images at one slice level. (b) Manual
ground truth tissue class segmentation (dark purple, background; blue, liver parenchyma; green, tumor; yellow, necrosis) and (c) deep
neural network segmentation results for different levels of dropout (0.0, 0.1, 0.3), with the best correspondence to ground truth when
dropout equals 0.1.

level (10% in this experiment), the model tends to underfit the data and results in lower accuracy.
Figure 8 shows 2D slices through each of three phases of DCE magnetic resonance images, the
manually traced ground truth, and the output of the U-net segmentation with a particular level of
dropout.Table 5 shows the per-class Dice similarity coefficient when compared with expert radi-
ologist manual segmentations for each of four classes (background, liver parenchyma, tumor, and
necrosis) when using three different levels of dropout [no dropout, 10% (optimum), and 30%] for
one of the folds during fivefold cross-validation testing. Higher levels of dropout during training
tend to lead to a higher percentage of inactive neurons and thus a sparser network.

Table 5 Dice similarity coefficients in comparison to manual expert segmentations for four
classes using one fold out of five during cross-training

Background Parenchyma Tumor Necrosis
No dropout 0.99 0.97 0.73 0.51
P = 0.10a 0.99 0.97 0.77 0.56
P = 0.30a 0.97 0.93 0.40 0.08

aMethodology utilizing sparsity.
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5. CONCLUSIONS AND FUTURE DIRECTIONS

Sparsity is a powerful mechanism for efficient representation and computation in machine learn-
ing for medical image segmentation. It has proven to be of great utility in the formulation of
data-driven representations suitable for the characterization of appearance and shape suitable for
segmentation.We believe that these methods will continue to be relevant in the context of neural
networks and will likely continue to be an important strategy in the future.
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