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Abstract

The treatment of meniscus injuries has recently been facing a paradigm shift
toward the field of tissue engineering, with the aim of regenerating damaged
and diseased menisci as opposed to current treatment techniques. This re-
view focuses on the structure and mechanics associated with the meniscus.
The meniscus is defined in terms of its biological structure and composition.
Biomechanics of the meniscus are discussed in detail, as an understanding of
the mechanics is fundamental for the development of new meniscal treat-
ment strategies. Key meniscal characteristics such as biological function,
damage (tears), and disease are critically analyzed. The latest technologies
behind meniscal repair and regeneration are assessed.
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1. INTRODUCTION

The knee menisci are crescent wedge–shaped pads of fibrocartilage. They are found in pairs, lat-
erally and medially, between the tibial plateaus and the femoral condyles (Figure 1). The main
ligaments that attach the menisci to the tibia are the insertional ligaments and the deep medial
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Figure 1

Drawing of the knee joint, depicting menisci and major ligaments.
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collateral ligament, and they are attached to the femur via meniscofemoral ligaments (MFLs) and
the deep medial collateral ligament.

After birth, the meniscus is a fully vascularized tissue; however, vascularization decreases as the
meniscus matures (1). As a result of the limited vascularization, the meniscus contains two distinct
regions: the peripheral red zone and the inner avascular white zone. Due to this vascularization
structure and the direct relation between the healing capacity of the meniscus and its blood supply,
the central white zone is susceptible to irreparable degenerative and posttraumatic injuries (2–5).

The intrinsic limited healing capacity of the meniscus is accentuated by the fact that tears,
partial and total removal by surgery (i.e., meniscectomy), and degeneration play a role in the de-
velopment or advancement of knee osteoarthritis (OA) (6). For instance, patients who present
clinical and radiographic evidence of OA have a prevalence of meniscal lesions of 68–90% (7).
Also, knee menisci undergo several changes in OA patients (6). Macroscopic and histopathologic
observations revealed severe fibrocartilaginous separation of the matrix, significant wear, tears,
calcification, and atypical cell arrangements in menisci from OA joints.

The menisci play a key role in joint biomechanics (6, 8), especially in transferring loads across
the knee joint.Themeniscus transfers forces between the femoral and tibial joint surfaces through
the development of hoop stress within the meniscus tissue (9). As the femoral bone bears down
on the meniscal tissue, the meniscus undergoes deformation and protrudes peripherally (10). This
protrusion is halted by the anterior and posterior insertional ligaments. The hoop stress is then
generated as the axial forces are converted to tensile stresses along the circumferential collagen
fibers of the meniscus. However, this hoop stress is compromised when radial tears occur or a
partial meniscectomy is performed (11).

2. BIOLOGICAL COMPOSITION

The meniscus is a highly hydrated structure, with 72% of its wet weight consisting of water and
remaining 28% consisting primarily of an interlacing network of collagen fibers, interposed with
cells and an extracellular matrix (ECM) (12, 13). The collagen content of the meniscus increases
with joint motion and weight bearing until the age of 30, when it stabilizes until beginning to de-
crease again around the age of 80 (14). Collagen type I is found throughout the meniscus, whereas
collagen type II is found only within the inner two-thirds. Collagen type I is most abundant in
the peripheral third of the meniscus and represents 90% of its composition by dry weight, with
other collagens present in quantities less than 1% (15–17). In the inner region collagen makes
up slightly less of the dry weight at 70%, of which 60% is collagen type II and 40% is collagen
type I (2).

The orientation and structure of the collagen also differ between the surface layer and the
deeper tissue of the meniscus (18–20). Collagen fibers within the deep tissue are predominantly
circumferentially orientated.The collagen fibers covering the surface of the tissue of the meniscus
are randomly oriented and have a meshlike structure (Figure 2).

Radial tie fibers arborize from the outer region of the meniscus toward the inner tip (21). The
tensile modulus of the meniscus is influenced by the presence of tie fibers. Interestingly, a study
by Skaggs et al. (22) found that failure never occurred through or immediately adjacent to the tie
fiber during uniaxial tensile tests, indicating excellent interfacial adhesion between the fiber and
the matrix. A recent hypothesis is that the function of radial tie fibers is to transmit load to severed
circumferential fibers near a radial tear, thereby maintaining the mechanical functionality of the
meniscus (23).

Proteoglycans are found within the meshwork of collagen fibrils and account for 1–2% of the
composition of the meniscus by dry weight (24). Proteoglycans are composed of a core protein
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Illustration of the internal structure of the meniscus depicting variation in collagen orientation, vascularization, and cell population.

with glycosaminoglycans attached; the main proteoglycan found in the meniscus is known as ag-
grecan. The glycosaminoglycans in the meniscus typically consist of 40% chondroitin 6-sulfate,
10–20% chondroitin 4-sulfate, 20–30% dermatan sulfate, and 15% keratan sulfate (12, 25, 26).
The inner third of the menisci has the highest glycosaminoglycan concentration (27). Proteo-
glycans in the ECM are responsible for the absorption of water and support the meniscus under
compressive loads (17, 28). Nakano et al. (29) demonstrated that proteoglycans smaller than ag-
grecan are found in the meniscus and do not aggregate with hyaluronic acid; examples include
decorin, biglycan, and fibromodulin. Nakano et al. (29) reported that biglycan and fibromodulin
are present in higher concentrations in the inner zone of porcine meniscus, whereas decorin is
found primarily in the peripheral zone. The precise function of each of these small proteoglycans
remain unknown. Adhesion glycoproteins such as fibronectin, thrombospondin, and collagen type
VI also play a key role in the meniscus and act as a link between ECM components and cells (17).

Humanmeniscus of the osteoarthritic knee demonstrates enhanced expression of major matrix
components, namely procollagens of types I, II, and III, in the anterior horn segments in com-
parison to control menisci (nonarthritic knees) (30). Also, insulin-like growth factor 1 (IGF-1)
is upregulated in OA menisci, which seems to be partly responsible for the increased procolla-
gen expression. Katsuragawa et al. (30) suggest that this shift in terms of gene expression could be
associated with a reparative response toOA.Although alterations in gene expression have been ob-
served, histological analysis of matrix production and biomechanical evaluation shows only mod-
erate changes in OA menisci, consistent with the macroscopic appearance.

Ghadially et al. (31) were among the first researchers to identify the cells found in the human
meniscus. They classified cells as chondrocytes, fibroblasts, or cells of intermediate morphology
on the basis of their shape and the absence or presence of territorial matrix. Although the chon-
drocytes found in the meniscus have morphological similarities to articular cartilage, their matrix
protein expression is collagen type I, whereas in articular cartilage collagen type II is predomi-
nant. Therefore, these cells are often referred to as fibrochondrocytes (32, 33). However, various
terms have been used to describe these cells (fibrocytes, meniscus cells, fibrochondrocytes, and
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chondrocytes), with no consistency in the literature (34, 35). Meniscus fibrochondrocytes are sur-
rounded by a pericellular matrix (PCM), which together with the enclosed cells has been termed
the fibrochondron (36).

Regardless of the terminology used, there is consensus on the shape and behavior of the cells
found in the meniscus. The meniscus contains three cell populations, each of which is found in a
distinct region (Figure 2). Histological examination of the meniscus revealed that the inner and
middle sections of the meniscus contain cells that appear similar to chondrocytes. These cells are
round in appearance and found in a lacuna surrounded by the ECM (35, 37). The outer vascular-
ized zone of the meniscus contains fibroblast-like cells. Fibroblasts are spindle shaped and reside
within a dense connective tissue (37). Recently, a third population of cells was identified in the
superficial zone of the meniscus. These cells are fusiform in shape and lack cell extensions, and
their exact purpose has not been established. However, it has been hypothesized that these cells
could contain specific progenitor cells with healing potential (32, 35).

In a study performed by Cengiz et al. (38), the three-dimensional cellular density of the human
meniscus from the OA knee was quantified using a segmental and regional motion method. These
authors observed that the cellular density in the vascular region was more than twice as high
as in the avascular region. The cells possessed two distinct morphologies, roundish or flattened.
Moreover, both fibrochondrocyte and fibroblast-like cell morphologies were observed, with the
first type of cell present at much higher densities. Significantly higher cellularity was also observed
in the anterior segments. Pauli et al. (6) detected atypical cell agglomeration in regions where the
meniscus matrix suffered a greater degree of disruption, namely around frayed edges and tears.
In terms of morphology, these cells were larger than the normal fibrochondrocytes observed in
healthy menisci.

3. BIOMECHANICAL PROPERTIES

3.1. Tensile Properties

Many authors have examined the tensile modulus of animal and human meniscus. The modulus
has been measured with collagen fibers running circumferentially and radially, and the results vary
with respect to sample location. The depth of the sample within the meniscus has a significant
effect on the results due to structural variation in the collagen fibers in the meniscal cross section.
For example, Bullough et al. (20) reported that strength is highly dependent on the orientation
of the fibers to the tensile axis. Subsequent tensile testing studies confirmed this finding (39–
42). However, discrepancies have arisen in the literature; for example, the posterior segment of
medial meniscus has a statistically greater tensile modulus compared with the anterior region (39).
However, that finding was contradicted in a study by Fithian et al. (43), and later studies reported
no significant variation between the different regions (40, 44). Table 1 shows that the tensile
properties of the meniscus vary significantly between animal model and sample thickness.

3.2. Compressive Properties

Compressive properties of the meniscus are typically measured by confined compression tests,
unconfined compression tests, and indentation tests. Confined compression testing enables as-
sessment of the aggregate modulus and permeability. Table 2 shows that the aggregate modu-
lus differs by region in the meniscus (39, 45, 46). Joshi et al. (47) investigated the compressive
properties of the medial meniscus of six different species (47) and found a significant difference
in aggregate modulus for porcine and bovine meniscus. Overall, these authors observed, among
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the six species, that as stiffness increased the permeability of the meniscus decreased. In a later
study, Sweigart et al. (46) investigated the compressive properties of varying species and found
that the bovine model was the most closely correlated with the aggregate modulus of the human
meniscus. Andrews et al. (48) investigated the effects of swelling on the meniscus under a confined
compression test. They found that material properties differed significantly between swollen and
recompressed configurations.

Leslie et al. (49) investigated the human meniscus at different strain rates using unconfined
compression and found that Young’s modulus was approximately twofold higher in the circumfer-
ential versus axial direction at a low strain, with no significant variation at high strain.Their results
suggested that fluid flow predominates over matrix composition in determining the compressive
strength of the meniscus. Chia &Hull (50) found that the compressive modulus at a physiological
strain rate was considerably greater than that at equilibrium, with the difference attributed to the
tissue’s biphasic behavior.The same study established that the modulus was significantly greater in
the anterior region than the posterior region. Results from other investigations followed the same
trend observed by Chia and Hull, with the anterior zone of the medial meniscus displaying higher
modulus than the posterior zone (50–53). For detailed information about unconfined compres-
sion tests and indentation tests, with respect to different test methods, varying sample size, and
locations, see Table 3.

As described above, moderate or severe OA tends to severely disrupt the meniscal matrix,
mainly in the posterior horn (6). This disruption translates into biomechanical alterations during
knee flexion, since the femoral condyles revert on the tibial plateau and more force is transmitted
to the posterior meniscus. By contrast, the anterior horn seems to be constantly affected to a lesser
extent, which may represent either greater resilience to degeneration or less exposure to biome-
chanical forces. Katsuragawa et al. (30) evaluated OA alterations in the mechanical performance
of the meniscal matrix through confined compression testing. They observed changes in the me-
chanical properties of the medial menisci as a result of OA (the aggregate modulus was 40% lower
than in the control menisci), whereas those changes were not as evident in the lateral menisci.

4. MENISCAL TEARS AND CURRENT TREATMENTS

In the United States, meniscal tears are the most common knee injury and are the most frequent
cause of surgical procedures performed by orthopedic surgeons (54). One million meniscal surg-
eries are performed annually in the United States (55), most of which involve a partial or total
meniscectomy. The estimated annual cost of meniscal disease in the United States is between
$500 million and $5 billion (56).

Meniscal tears are more common in males than females, with reported ratios of three to one
and four to one, respectively (57–60), and occur most frequently in the medial meniscus (54, 59).
A study performed by Drosos & Pozo (59) found that 32% of meniscal tears occurred in sports-
related activities, 38% occurred during non-sports-related activities, and 28% could not be asso-
ciated with any specific event. In younger patients, meniscal tears are often a result of a traumatic
sports injury, whereas in older patients, they are more frequently associated with degeneration of
the meniscus and loss of mechanical elasticity. The mechanism of meniscal injury usually involves
a twisting or shearing motion with a varus or valgus force (61). As discussed above, poor vas-
cularization of the meniscus leads to irreparable damage once the meniscus tears in the avascular
region.Unfortunately, oncemeniscus injury occurs, kneeOA commonly follows (62) due to subse-
quent loss of the articular cartilage. Additionally, proinflammatory cytokines, such as interleukin
(IL)-6, IL-8, and tumor necrosis factor α, display higher levels in the chronic phase of menis-
cal tears. This increased proinflammatory state is maintained in the joint from the time of initial
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Table 4 Meniscus tear patterns

Tear type Description Reference(s)
Horizontal tears Begin at the inner margin and extend toward the capsule; generally not visible by

arthroscopy or MRI. Frequency is associated with age; commonly accompanied by
meniscal cysts. Mechanically stable; usually asymptomatic but may give rise to flaps

129, 130

Longitudinal/
bucket-handle
tears

Occur along the long axis of the meniscus between the circumferential collagen
fibers; may eventually extend into bucket-handle tears. Bucket-handle tears occur
in young patients after knee trauma and cause mechanical symptoms or true
locking of the knee

130, 131

Oblique/flap tears May give rise to a flap, which gets caught within the joint during flexion. Usually
found between the posterior and middle third of the meniscus. A flap tear results
from a short-segment, horizontal meniscal tear with either superior or inferior
displacement of a meniscal fragment

130, 132, 133

Radial tears Occur on the radial axis of the meniscus, perpendicular to the long axis. They section
the circumferential collagen fibers, disrupting the meniscal hoop stress and thereby
affecting its functionality to transmit load. Commonly found in the avascular zone,
and thus are not responsive to repair. Arthroscopy shows that up to 25% of all
meniscus tears are radial

131, 132, 134,
135

Complex and
degenerative tears

Combination of longitudinal, radial, and horizontal tears. May not be associated with
a trauma; may have an insidious onset. Degenerative tears are not associated with
trauma and result from slowly developing changes of mucoid degeneration and
shear stresses on the meniscus. The exact etiology of degenerative meniscus tear is
still unclear; may be associated with the OA disease process. Usually observed in
elderly patients; associated with increased risk of radial displacement of the
meniscus and meniscus deformation. Degenerative tears usually have no healing
capability and are not amenable to repair

131, 136

Root tears Typically radial-type tears occurring within 1 cm of the meniscal insertion to bone.
Posterior of the medial meniscus is most frequently affected. When a root tear
occurs, the contact pressure experienced by the medial compartment is of the same
magnitude as a total medial meniscectomy, leading to accelerated progression of
OA

131, 135,
137–139

Discoid meniscus
tears

Due to congenital variance and are abnormalities of the meniscus; most common in
Asian populations. Patterns can be classified as type I, II, or III. Type I (incomplete
discoid) is larger than the normal meniscus with attachments intact. Type II
(complete discoid) covers the entire tibial plateau and has normal attachments.
Type III (Wrisberg type) lacks a posterior capsular attachment. Young patients with
a torn discoid lateral meniscus display more pronounced valgus inclination of the
lower limb versus patients with a torn nondiscoid lateral meniscus

140, 141

Abbreviations: MRI, magnetic resonance imaging; OA, osteoarthritis.

injury to several months later, whichmay be another key factor in hindering cartilage regeneration
(63). In general, meniscal tears are often classified only according to their tear pattern (Table 4)
or classified clinically into peripheral meniscal lesions and avascular meniscal lesions. Figure 3
illustrates the most common meniscal tears.

Depending on the type of meniscal tear, various treatments are possible. These include (a) no
surgery with conservative therapy only, (b) partial or complete meniscectomy, (c) meniscal repair,
and (d) meniscus implantation. Therefore, when a tear is identified, the tear pattern and location
information are essential to plan the treatment. Determining which patients will benefit from a
particular treatment can be challenging, as treatment success is affected by many factors, such as

508 Murphy et al.



BE21CH19_Collins ARjats.cls May 3, 2019 8:43

a b c

d e f

Figure 3

Most common meniscus tears. (a) Horizontal tear (cleavage), as shown by the line drawing below the illustration. (b) Longitudinal or
circumferential tear. (c) Bucket-handle tear. (d) Oblique tear (flap). (e) Radial tear. ( f ) Complex/degenerative tear.

the tear’s age, location, and pattern; the patient’s age and activity level; and any associated injuries.
Obesity, female sex, and preexisting early-stage OA are risk factors that increase the likelihood
of developing OA following meniscectomy (64). Meniscectomy is known to predispose the adja-
cent articular cartilage to increased contact forces, resulting in the early onset of degenerative OA
(33, 65). Nevertheless, meniscectomy is still the predominant treatment for meniscal tears.Mont-
gomery et al. (54) suggest that 96% of patients undergo meniscectomy, with only 4% undergoing
meniscal repair.

4.1. Meniscectomy

Meniscectomy generates high contact stress on the articular cartilage, which leads to degradation
and development of OA. This is because the tibiofemoral contact area is significantly decreased
while the contact pressure is considerably increased (66). A finite-element model showed that after
meniscectomy the shear stress at the bone–cartilage interface is approximately 150% (67).

In a long-term clinical study, Roos et al. (68) compared meniscectomized knees with controls,
confirming that increased pressure leads to radiographic evidence of OA.Furthermore, removal of
the lateral meniscus leads to greater risk of developing OA compared with removal of its medial
counterpart (69). This is because the lateral meniscus covers a greater percentage of the tibial
plateau and carries 70% of the compartment load. Additionally, the lateral tibial plateau is slightly
convex, and this juxtaposition of the convex lateral tibial plateau against the convex distal femoral
condyle results in greater point loads. Because the medial tibial plateau is concave, it leads to lesser
point loads and provides some congruity (70).

Once the effects of total meniscectomy became clear, interest in the field shifted toward pre-
serving as much of the meniscus as possible. As a result, surgeons began performing partial menis-
cectomies. In a partial meniscectomy, only the torn area is removed and much of the meniscus
remains intact, especially the peripheral rim, which is essential for transferring the axial load into
hoop stress. Partial meniscectomy is an attractive treatment for meniscal tears because it allows
athletes to return to sporting activities within 2 weeks (71). However, although early short-term

www.annualreviews.org • Meniscus in Normal and OA Tissues 509
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studies showed promising results (72, 73), long-term studies have shown that partial meniscectomy
does not prevent joint degeneration, but merely delays it (74). For patients with a meniscal tear
andmild tomoderate kneeOAwhowere treated with either (a) arthroscopic partial meniscectomy
and postoperative physical therapy or (b) physical therapy alone, there were no significant differ-
ences between the two groups in terms of the magnitude of improvement in functional status and
pain after 6 and 12 months (75). Overall, the literature suggests that there is no significant differ-
ence in outcome between physical therapy only and partial meniscectomy. Additionally, physical
therapy before surgery does not compromise the surgical outcome (76). A recent study (77) re-
ported that patients with meniscal tears and knee OA treated with arthroscopic meniscectomy had
a threefold-increased risk of future knee replacement surgery.

The value of arthroscopic surgery for meniscus tears continues to be debated, in particular for
degenerative knees (78–80). Recent systematic reviews andmeta-analyses have presented evidence
that arthroscopic knee surgery has little benefit for most patients with knee pain (81–84). On
the basis of these reviews, patients with degenerative knee disease have been recommended not
to undergo arthroscopic knee surgery (85). Due to the adverse effects of meniscectomies and
predisposition of the knee to subsequent disease progression and accelerated degenerative changes
once injured, surgeons and researchers are now focusing on preservation, repair, and regeneration
of the meniscus in an effort to halt the onset of disease and knee arthroplasty.

4.2. Meniscal Repair

The avascular nature of the meniscus poses the most significant obstacle to repair of this tissue,
as limited blood supply prevents the meniscus from healing (86). However, whenever possible,
meniscal repair is preferred over meniscectomy. Meniscal repair techniques can be categorized as
inside out, outside in, or all inside (33).

Inside-out repair involves the use of a single- or double-barreled cannula, and sutures are passed
from inside to outside using long flexible needles. In this technique, a cannulated 18-gauge spinal
needle is passed across the tear from the outside in.The suture is then passed through the lumen of
the needle and pulled through the arthroscopic ipsilateral portal. An interference knot is then tied,
and the suture is pulled back.The free ends are tied together over the capsule through an accessory
skin incision to stabilize the tear (87).Despite their promise, all-insidemeniscal repair devices have
demonstrated higher failure and complication rates compared with other repair techniques. In an
effort to overcome these problems, researchers have developed all-inside meniscal repair devices
that are flexible and suture based and allow for variable compression and tensioning across the tear
(88). A recent review that compared the inside-out technique withmodern all-inside devices found
no differences in failure rates, functional outcome scores, or complication rates (56); however, the
quality of the evidence comparing all-inside and inside-out meniscal repair remains low.

The gold standard for meniscal repair remains the inside-out technique. The success rate aver-
ages 60–80% for isolated meniscal repairs and up to 90% when repaired in conjunction with the
anterior cruciate ligament (89). The main disadvantage of this technique is the risk of neurovas-
cular damage, as the peroneal nerve can be injured on the lateral side and the saphenous nerve
and vein are at risk on the medial side (87).

4.3. Allograft

Meniscal allograft transplants were initially performed in open surgery; at present, they are mostly
performed in arthroscopically assisted and arthroscopic procedures (90). Allografts may simply be
secured in place by peripheral suturing (91, 92). However, bone bridge or plug fixation, combined
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with peripheral suturing, is the preferred method (92). In the plug fixation method, the allograft
is implanted using anterior and posterior bone plugs through transosseous tunnels. In the bone
bridge method, the bone bridge is secured to the tibia using transosseous sutures (61).

Meniscal transplantation has become an accepted treatment for relatively young, active, symp-
tomatic meniscectomized patients (93). Patients who display symptoms of early degenerative
changes, such as pain and swelling, are typical candidates for allograft transplantation (61). Al-
though allograft transplantation has been performed for 30 years, there have been no randomized
clinical trials; estimates of its efficacy come from pooled case studies and systematic reviews (90).
A systematic review by Verdonk et al. (94) found that allograft transplantation had a chondropro-
tective effect in 30–40% of patients, although OA may still develop in most patients. Second-look
arthroscopy and magnetic resonance imaging (MRI) evaluations demonstrated healing of the al-
lograft to the rim. However, all allografts showed some shrinkage over the long term (94).

Another systematic review used patient-reported outcome measures (PROMs) as an assess-
ment tool (92). The Lysholm scale (0–100, with 100 the optimum) was the most commonly used
PROM, and the average score improved from 56 preoperatively to a mean of 81 at final follow-
up. Other PROMs, such as International Knee Documentation Committee and Tegner scores,
showed similar results (92). Furthermore, a review of animal studies showed that, in comparison
to meniscectomy, allografts do not prevent cartilage damage but merely slow it down (95). Re-
cently, Samitier et al. (93) reviewed literature on the optimal timing of transplantation, finding
that there was not enough evidence to suggest that meniscal allograft transplant must be per-
formed at the same time as or immediately after meniscectomy to prevent cartilage degradation.
Meniscal transplantation at 7 to 14 years’ follow-up showed improved function and patient quality
of life. In long-term follow-up, the overall failure rate was found to be 10–29%, which resulted in
the need for knee arthroplasty.

In the short term, allografts improve knee function and reduce pain, which may justify their use
in younger patients who are symptomatic after meniscectomy (96). However, meniscus allografts
undergo a deleterious remodeling process and eventually fail. This procedure is not curative in
the long term, and subsequent surgeries are to be expected (97).

5. COMMERCIALLY AVAILABLE SCAFFOLDS
FOR MENISCAL REGENERATION

Meniscal scaffolds were developed in the early 1990s in an effort to prevent the negative effects of
partial meniscectomies.The aim of a meniscal scaffold is to provide the structure and environment
to allow and promote the ingrowth of tissue, with the eventual goal of degradation of the scaffold
as well as replacement of new healthy meniscal tissue.Various materials are under investigation for
use as a meniscus scaffold (98). However, only two meniscal scaffolds are commercially available:
the Collagen Meniscus Implant (CMI®) and Actifit®.

The CMI (Ivy Sports Medicine GmbH, Gräfelfing, Germany), developed by Stone et al. (99,
100), is composed of collagen type I from purified bovine Achilles tendon with supplemented
glycosaminoglycans. The scaffold is cross-linked with aldehydes and is molded in the shape of
the medial or lateral meniscus. The scaffold is bioresorbable and is usually resorbed over 12 to
18 months (101). For the meniscus implant to work effectively, the meniscal rim must be intact
in order to support hoop stress and serve as a cell source for the scaffold. If the meniscal rim is
deficient or extruded outside the joint margin, it will not provide the required support (90).

Monllau et al. (102) studied the clinical outcome of CMIs implanted in injured medial menisci
after a minimum of 10 years’ follow-up. Twenty-five patients received the implant, which overall
provided significant pain relief and functional improvement. However, this study lacked a control
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group andwas a nonrandomized trial (102).A nonrandomized study byZaffagnini et al. (103) on 33
patients compared use of the CMI in the medial meniscus to partial meniscectomy at a minimum
follow-up of 10 years. These authors used several clinical outcome scores along with radiography
and MRI to evaluate the effectiveness of the CMI. Patients who received an implant reported
significantly lower scores for pain and displayed higher activity levels, and radiographic evaluation
demonstrated significantly less joint space narrowing (103). Despite reports of improved clinical
scoring with implantation of the CMI, some studies have observed drawbacks of the implant. For
example, the CMI shrinks over time (102–106). Furthermore, its signal intensity does not match
that of native meniscus (102, 103, 105), suggesting that the regenerated tissue is not fibrocartilage,
and it has been reported to generate predominantly scar tissue in its place (106).

Scaffold fixation and retention have also posed problems, due to the scaffold’s highly porous
structure and insufficient robustness and strength, leading to challenges in handling during arthro-
scopic procedures as well as sutures cutting through the implant.A recent study (107) that explored
the pull-out strength of different suture materials, along with the type or temperature of irriga-
tion fluid, for the fixation of the CMI found that implant stability can be improved by altering the
type of suture material and irrigation fluid and electrolyte-free mannitol–sorbitol irrigation fluid
provided the best biomechanical properties. Overall, clinical studies have produced inconclusive
results. Long-term randomized controlled trials conducted in large populations will be required
to confirm the benefits of the CMI.

The Actifit implant (Orteq, London, United Kingdom) is a porous scaffold made of synthetic
material that promotes tissue ingrowth. The product is CE (Conformité Européene) marked and
available in the European Union. Similar to the CMI, over time, the Actifit is replaced by tissue as
it slowly degrades. It is made from stiff segments of polyurethane, which provides good mechan-
ical strength, and soft segments of poly(ε-caprolactone), which provides flexibility and control of
degradation. The soft segment constitutes 80% of the implant and is biodegradable (108, 109).
Compared with the CMI, the Actifit is stiffer, with easier handling for insertion and a slower
degradation rate once implanted (approximately 5 years).

More studies have been performed on the CMI than on Actifit, simply because the CMI has
been in use longer. Verdonk et al. (109) published the first outcomes of a case study for Actifit with
52 patients and a follow-up of 12 months. After 3 months, dynamic contrast–enhanced MRI scans
revealed successful early tissue ingrowth into the scaffold. Biopsies were taken from the center of
the inner free edge of the implanted scaffold at 12 months. All biopsies showed fully vital mate-
rial, with no signs of necrosis or cell death, demonstrating the success of the scaffold in supporting
cell growth. Furthermore, the authors observed a distinct, layered tissue organization resembling
that of native human meniscus tissue (109). This finding was contradicted by a later study (101),
which observed an edema-like signal rather than fibrocartilage. In a study with a follow-up pe-
riod of 24 months, Verdonk et al. (110) demonstrated that patients had statistically significant
improvements in both pain and function. Furthermore, more than 90% of the patients showed
stabilization or improvement of the articular cartilage condition, suggesting that the implant has
a chondroprotective effect.

More recently, Baynat et al. (111) studied 18 patients with an Actifit implant over a 24-month
follow-up period. After 1 year, the mean Lysholm score was 92%, indicating excellent outcomes.
Furthermore, MRI scans showed no degeneration of neighboring cartilage, and histological ex-
amination showed scaffold ingrowth by normal chondrocytes and fibrochondrocytes (111).

Although the Actifit implant has shown positive results, similar to the CMI it has not been the
subject of long-term, randomized controlled studies. Only when these studies are conducted can
the long-term benefits of the Actifit implant be determined.
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6. COMMERCIALLY AVAILABLE MENISCAL REPLACEMENT

Currently, only one permanent or artificial meniscal replacement product is on the market: the
NUsurface®. This implant requires the presence of the peripheral rim of the meniscus for im-
plantation, indicating that at present there is no implant on the market for patients requiring a
total meniscectomy.

The NUsurface (Active Implants, Memphis, TN) is a free-floating meniscal replacement im-
plant made of polycarbonate urethane (PCU) and ultrahigh-molecular-weight polyethylene. The
implant has been used in Europe under the CE mark since 2008 and in Israel since 2011. It is
currently pending investigational device exemption approval in the United States. Originally, the
implant was studied in vivo, as a fixed implant, circumferentially reinforced with Kevlar® fibers.
The implant showed promising results in a sheep model, and 6 months postoperatively it re-
mained securely in place and displayed high durability with no adverse effect on the articular
cartilage (112). For human testing, the design of the implant was changed to free floating with no
embedded fibers. The location of the implant was tracked during static weight-bearing conditions
within a range of motion of 0° to 120°. During flexion, both the anterior and posterior sections of
the implant moved significantly backward. Additionally, the radial displacement was observed to
be larger in the implant than in the native meniscus (113).

The clinical results of theNUsurface were investigated in a short- tomedium-term study.Clin-
ical scores such as KOOS (knee injury and osteoarthritis outcome score) and Lysholm along with
MRI data were obtained postoperatively at 1, 2, and 5 years; the results showed significant pain re-
lief 1 year postoperatively. However, complications including inflammation and effusion occurred
in 78% of the patients. Furthermore, 19 of the 41 implants were removed at 2 to 26 months’
follow-up due to radial tear or rupture (n= 7); dislocation (n= 4); synovitis and hydrops, possibly
due to reaction to polymer particles (n = 2); medial pressure caused by a too-large size (n = 3);
and persistent pain or development of OA (n = 3). Overall, the investigators concluded that the
short-term failure rates were too high to support widespread clinical use of the implant (114).

In meniscal implant designs, both the circumferential and axial/radial moduli are important
determinants of the contact pressure distribution and the risk of OA (115). Furthermore, finite-
element modeling has established that the optimum stiffness of an artificial meniscus should be in
the range of 100–120MPa to minimize the susceptibility of the articular cartilage to degeneration
arising from excessive shear stresses (67).

7. FUTURE PROSPECTS FOR MENISCAL REGENERATION
AND REPLACEMENT

Several scaffold materials, cells, and growth factors are currently being investigated for regener-
ation or replacement purposes in an effort to find alternative treatments to meniscectomy. The
implants discussed in this section are expected to attract much attention in the coming years.

Azellon, a spin-off company from the University of Bristol, United Kingdom, is developing
and commercializing a scaffold for tissue repair known as the Cell Bandage, with a primary focus
on the treatment of white zone meniscal tears. The technology utilizes mesenchymal stem cells
(MSCs) infused into a biological scaffold. A prototype version of the Cell Bandage has undergone
trials in five patients, aged 18 to 45 years, with white zone meniscal lesions. The scaffold was
made from collagen and seeded with autologous MSCs isolated from an iliac crest bone marrow
biopsy. A 2-year follow-up showed encouraging results. Three patients were asymptomatic, with
no evidence of recurrent tear on MRI; however, two patients required subsequent meniscectomy
due to retear or nonhealing (116). The Cell Bandage is undergoing further development as part
of an Innovate UK grant–funded project.
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TRAMMPOLIN is a Dutch national consortium developing an anatomically shaped non-
resorbable meniscus implant. The consortium consists of surgeons, tribological experts, biome-
chanical engineers, material scientists, and biologists. Private partners include DSM, Biomet, and
Baat Medical, and academic partners include RUNMC, TU/e, and UMCG (see http://www.
lifesciencesatwork.nl/profile/trammpolin/). The implant is made from PCU (Bionate® II 80A;
DSM Biomedical, Berkeley, CA) produced via injection molding. A short-term study of meniscal
replacement in a goat model (117) found that the implant did not cause an inflammatory response,
and no sign of wear was observed after 3 months. However, implant fixation was not successful,
and severe cartilage damage was observed in all animal models (117). Changes in articular carti-
lage tribology in the presence of PCU have been studied through the use of a cartilage–meniscus
in vitro model, which mimicked the stance and swing phases of the gait cycle. During stance, a
low coefficient of friction (COF) was observed in the cartilage implant model. However, during
swing, high COF was observed, indicating a breakdown in interstitial fluid lubrication, which may
lead to cartilage wear over the long-term (118). The manufacturers of this implant are currently
focusing on new fixation strategies.

Orthonika, a spin-off company from Imperial College London,UnitedKingdom, is developing
a novel total meniscal replacement,MenisciKnitTM,which is the result of collaboration with Sierra
MedTech. The implant is atomically designed and nondegradable and is based on a proprietary
high-strength synthetic polymer with embedded reinforcing fibers. Its structure is intended to
replicate the structure–function properties of the native meniscus, whereby the embedded fibers
can replicate the hoop stress mechanism that allows for load redistribution. It also aims to replicate
the underlying microstructure and anisotropic properties affiliated with the native tissue. The
implant is currently in development at the preclinical stage.

8. CONCLUSION AND OUTLOOK

Meniscus cartilage is crucial for knee homeostasis, and clinicians are tending to treat meniscal
tears with partial meniscectomy so as to preserve as much tissue as possible. However, this treat-
ment is not sufficient to preserve appropriate contact biomechanics of the knee and leads to OA.
Physical therapy alone may be more beneficial than partial meniscectomy. Therefore, more in-
depth studies should be performed to confirm physical therapy as a preventative measure against
further knee degeneration. Recent efforts toward meniscal tear treatment have concentrated on
designing implants for regeneration and replacement purposes. Although good clinical results for
meniscus implants have been reported, long-term, randomized controlled studies should be per-
formed to determine their long-term effects. Finally, despite the progress in this field, the key issue
remains the development of a biofunctional and patient-specific implant that has the biomechani-
cal function of nativemeniscus and is capable of restoring knee contact mechanics.The unique and
complex structure of the meniscus renders the creation of such an implant a challenging task. It is
likely that future therapies will involve biopolymers,which exhibit immunomodulatory properties.
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