
BE22CH08_Pruett ARjats.cls May 27, 2020 15:4

Annual Review of Biomedical Engineering

Physiological Modeling and
Simulation—Validation,
Credibility, and Application
W. Andrew Pruett,1 John S. Clemmer,1

and Robert L. Hester1,2
1Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson,
Mississippi 39216, USA; email: wpruett@umc.edu, jclemmer@umc.edu, rhester@umc.edu
2John D. Bower School of Population Health, University of Mississippi Medical Center, Jackson,
Mississippi 39216, USA

Annu. Rev. Biomed. Eng. 2020. 22:185–206

The Annual Review of Biomedical Engineering is
online at bioeng.annualreviews.org

https://doi.org/10.1146/annurev-bioeng-082219-
051740

Copyright © 2020 by Annual Reviews.
All rights reserved

Keywords

simulation, physiological modeling, validation, credibility

Abstract

In this review, we discuss the science of model validation as it applies to
physiological modeling. There is widespread disagreement and ambiguity
about what constitutes model validity. In areas in which models affect real-
world decision-making, including within the clinic, in regulatory science,
or in the design and engineering of novel therapeutics, this question is of
critical importance. Without an answer, it impairs the usefulness of models
and casts a shadow over model credibility in all domains. To address this
question, we examine the use of nonmathematical models in physiological
research, in medical practice, and in engineering to see how models in other
domains are used and accepted.We reflect on historic physiological models
and how they have been presented to the scientific community. Finally, we
look at various validation frameworks that have been proposed as potential
solutions during the past decade.

185

mailto:wpruett@umc.edu
mailto:jclemmer@umc.edu
mailto:rhester@umc.edu
https://doi.org/10.1146/annurev-bioeng-082219-051740
https://www.annualreviews.org/doi/full/10.1146/annurev-bioeng-082219-051740


BE22CH08_Pruett ARjats.cls May 27, 2020 15:4

Contents

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
REDUCTIONISM—WHY DO WE NEED MODELS? . . . . . . . . . . . . . . . . . . . . . . . . . . 188
INFERENCE FROM MODELS—WHAT MAKES A MODEL USEFUL? . . . . . . . . 189
PAST AND PRESENT MATHEMATICAL MODELING

EFFORTS—EXAMPLES FROM PHYSIOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
VALIDATION—INTUITIVE BUT ILL-DEFINED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
FAILURE OF VALIDITY—CLINICAL TRANSLATION. . . . . . . . . . . . . . . . . . . . . . . . . 193
CREDIBILITY—VALIDATION WITH PURPOSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Animal Model Credibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Mathematical Model Credibility in Health Care . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

INTRODUCTION

In a search of PubMed in July 2019 using the terms “mathematical model” and “human physiology
validation,” 367 models dating from 1974 were obtained. Of these, 197 had fewer than 3 citations,
with 79 of these having no citations. This search yielded an overall 20% noncitation rate versus
the estimated 10% for all science papers (1). While these search terms are not exhaustive, they
are representative. Mathematical modeling papers in physiology are rare and are rarely used by
other scientists. The papers from this search that were most cited fell into two general groups:
clinical papers with amodeling component, such as a nomogram or algorithmic control of a device,
and papers with predictions of population observations, such as growth models. Assuming that
modelers of biological systems cover topics that are similarly as interesting as experimental and
clinical studies, this suggests that a lack of model credibility is to blame for the overall disuse of
mathematical modeling in physiological research.

In this review, we survey the various notions of model validity in the physiology literature. Va-
lidity is not a straightforward concept, and, currently, there is no simple rubric to follow to ensure
that a model is a valid representation of a biological system.Although several physiological models
have been validated on an ad hoc, empirical basis by their authors, there is little information in
the literature about how a model should be validated. This deficiency is likely due to the origins
of modeling itself, which arises as a discipline at the interface of the classical subject of physiol-
ogy, biochemistry, physics, and the practice of medicine itself. Empirical agreement—that is, the
agreement of the model with a collection of data—is an important part of model validation, but it
is not sufficient to ensure that a model is an accurate or trustworthy representation of a system (2).

Without a formal definition or even common agreement about what constitutes model valida-
tion beyond the empirical, there is a necessity for a deeper understanding of what models are and
how they can complement basic and clinical research and generate scientific value. Given a better
appreciation for how they are used, we can find better ways of describing whether they are good
tools for these purposes. To do this, we consider what a scientific model is and compare the devel-
opment and defense of mathematical models with animal and cellular models. Currently, cellular
and animalmodels drive basic research, accounting formost of the evidence used to advance physi-
ological knowledge, and they provide the major translational link to clinical applications and novel
therapies in humans. In 2010 alone, there were approximately 60,000 publications in PubMed that
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usedmouse models (3). Investigation of validationmodalities in this domain can provide an under-
standing of what the larger community recognizes as valid and aid in identifying gaps in the ways
mathematical models are described, developed, and tested. After gaining a more solid appreciation
for what constitutes a good animal model, we can begin to address the problem of validation in
mathematical models and increase the use of credible models in basic and clinical research.

MODELS

Kaizer et al. (4, p. 211) define a model to be “a representation of a system, entity, phenomenon, or
process.” This broad definition can be separated into three essential subclasses, two of which are
widely used by most biological scientists and one that is less often used. These are (a) conceptual
models, (b) physical models, and (c) mathematical models (5).

A conceptual model is a heuristic representation of a system that allows one to draw qualitative
conclusions.A good conceptualmodel (a) is consistent with both itself and a set of observations and
(b) allows one to make testable hypotheses that extend beyond those observations. An example of
a conceptual model is Harvey’s 1628 description of the circulation as a loop in which blood moves
from the lungs to the heart to peripheral arteries and through pores to the peripheral veins before
returning to the right heart and lungs (6). This model obviously simplifies reality. It does not in-
clude capillaries (which had not been observed and would not be until the eighteenth century) or
basic aspects of circulatory physiology, such as local control of blood flow and the mechanics of
the vasculature and heart. However, it gives a coherent description of how blood might transport
substances around the body and allows for the development of a causal understanding of how the
organs integrate their activities into a whole, all of which went against the well-known physiolog-
ical notions in the seventeenth century. This heuristic propelled physiology forward by providing
a meaningful, self-consistent framework on which to build new hypotheses. Conceptual models
can vary in scope and substance, fromHarvey’s model of circulation to Freudian psychology or an
internist’s clinical model of disease, which is founded on years of experience and training but not
subject to mathematical precision. Conceptual models are common in biological science. They
appear as working hypotheses—that is, frameworks for understanding the interactions in complex
systems—informing a belief in the response to a stimulus. They are generally not assessed for
validity, or they are used as springboards to a more qualitative assessment of systems.

A physical model is a physical representation of a system that is used to investigate the proper-
ties of the system under question. The representation is not the whole system or process, despite
Rosenblueth &Wiener’s (7, p. 320) proclamation that “the only material model of a cat is another,
or preferably the same, cat.” Examples of physical models range from prototypes of mechanical
components used to test the robustness of a load to three-dimensional (3-D) models of uniquely
shaped hearts or vasculature used by surgeons to plan a surgery (8, 9) to a model of the Mississippi
River used to assess the impact on flooding of particular placements of dikes and dams (10). Phys-
ical models trade realism for representation: A printed 3-D heart, for instance, lacks a realistic
substance when compared with a real heart, and the model resolution is limited by the printer
that creates it. Nevertheless, such models have been shown to be a useful technology, altering the
course of surgical plans in half of all cases in a multicenter study (8). In the context of biology,
the most important physical models are the cell lines and animal models that comprise the vast
majority of basic research. Animal models are discussed in more detail later in this review.

Mathematical models have been more variously defined. At its essence, a mathematical model
uses abstract logical systems, rather than physical manifestations, to represent a system. In engi-
neering, a mathematical model can be used to increase the ability to understand, predict, or control
a system’s behavior (11). The US Department of Defense removes the necessity of clear purpose,
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but demands that a model be a “mathematical, or otherwise logical representation,” of the system
at hand (12, p. 10). Examples of mathematical models in the biomedical domain include systems
of ordinary differential equations as 0-dimensional (lumped parameter) models, 1- to 3-D mod-
els of blood flow through vessels of regular or irregular shape, statistical models of disease based
on demographic or genetic data, models of disease propagation, and stress–strain models of me-
chanical anatomical components. These models have been associated with different purposes for
different stakeholders, complicating the answer to the question,What makes a model good? This
review attempts to show how these various purposes are just facets of a single purpose and that the
framework of verification, validation, and uncertainty quantification utilized in regulatory science
can serve as a scaffolding on which to build a unified theory of mathematical model validation for
physiology, bioengineering, pharmacology, and other biological sciences.

REDUCTIONISM—WHY DO WE NEED MODELS?

Reductionism is the idea that complex concepts can be divided into understandable units and that
by understanding the units, we understand the whole. In many ways, this has been the philosophy
of scientific enquiry since the Renaissance. The very idea of a controlled experiment comes from
the reductionist hypothesis. Mathematical modeling is way of applying reductionist thinking: By
reducing complexity to a series of equations that each agree with observations individually, and
by discarding the parts of the system that do not directly affect the outcome under consideration,
biological mechanisms may be identified.

Physics has advanced in no small part due to the successful marriage between mathematics
and experiment. Since Isaac Newton, physics has been framed as a mathematical science, in which
theory is ensconced in equations and experiment seeks to parameterize those equations in simple
cases or to test complex assemblies of hypotheses in more general cases. Because physics-based
systems can be specified and controlled, a high degree of precision is attainable. Discrepancies be-
tween theory and mathematics and experiment are easily quantified and communicated. Theory
itself becomes a sort of experiment, in which hypothetical interactions can be proposed, framed
as mathematics, and tested before physical experiments are planned or performed. In this way, the
research process itself is streamlined and focused on only the most credible ideas. For instance,
the history of astrophysics can be summarized as a progression of models of the universe, each
explaining new phenomena that were unexplainable under previous theories, that remain consis-
tent with existing data. Physics, however, can be thought of as the study of forces, each acting in a
predictable way. The interactions of these forces may be complex, but the forces themselves obey
well-defined laws.

Physics-based systems allow reductionism to be applied with great predictability. Because the
underlying rules can be easily described, one can calculate the defect that arises between applying
a simplified model of a theory and applying a more complex one. For instance, given a question in-
volving gravity, one can calculate the difference between using Newtonian theory and Einsteinian
theory. The user can determine whether the simpler theory provides enough accuracy to per-
form the task at hand and can also determine the effect of model choice on predictions. Hence,
reductionism is a choice, not a necessity.

Systems biology and physiology study themechanisms by which hundreds of agents and actions
coordinate to produce biological results. Most often associated with molecular biology, systems
biology was defined by Breitling (13, p. 4). as “the comprehensive study of molecular diversity. . . ,
the identification of simplifying principles and patterns. . .in living and engineered systems, and
the integration of this biological knowledge into complex models (of the regulatory networks) that
characterize life.” According to Noble, systems biology is the consequence of the realization that
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biological function arises from networks of interactions between cellular regulatory networks, the
environment, and the phenotype of the individual (14). The same realization has been applied
more coarsely to physiological systems for decades, recognizing biological function as an emer-
gent property of the communication between organs and tissues. Models offer a mechanism for
assembling complex systems from well-understood components in a way that allows assumptions
underlying the assembly itself to be tested. In this way, only models can test hypotheses about the
properties that arise from interactions between system components.

INFERENCE FROM MODELS—WHAT MAKES A MODEL USEFUL?

In the context of biology, the use of a physical model (a cellular or animal model of disease or
pathology) is common, and its use merits exploration as we discuss factors that make a model
useful. Biologists have developed cellular models of disease processes by adapting existing cell
lines such as HeLa (15), creating appropriate cells from stem cell lines (16, 17), developing animal
lines with known susceptibility to diseases such as lupus (18) or obesity and diabetes (19), or by
creating an environment through which an animal assumes a pathological phenotype, exemplified
by diet (20) or the nonhuman primate addiction models (21–23). In all of these cases, the goal of
the model is to replicate some aspect of pathology, behavior, or systemic response that can then
be tested to make inferences about physiology or pathophysiology. The “some aspect” part of this
is key; the similarity and applicability of the model to a pathology or behavior may not be of the
utmost importance.

For example, the obese Zucker rat is a model of obesity and hypertension due to a missense
mutation in the long-chain leptin receptor (19). Obese Zucker rats have been used as models
to understand the mechanisms underlying the link between hypertension and obesity in several
ways: in the consumption of high- and low-fat diets (24, 25), by focusing on renal sympathetic
nerve activity that drives hypertension (26, 27), and through many other mechanistic interactions
with these symptoms. Overall, as of July 2019, 2,098 papers had appeared in PubMed with “obese
Zucker” in the title or abstract. Yet the obese Zucker rat model is not a perfect model of human
obesity. Leptin receptor mutations are rare, affecting only 2% to 3% of individuals with severe
early onset obesity (28–30). Yet the model is still regarded as a good model of metabolic syndrome
(31).

This illustrates one of the primary drivers of interest for modeling: Models are tools to gain an
understanding of the mechanisms underlying a disease or therapy in complex, redundant, nonlin-
ear systems, which, hopefully, can give insight into a clinical condition. A mechanistic explanation
is one in which the behavior of the whole can be attributed to the actions and interactions of its
parts (32). In physiology, this is a common refrain echoing through the work of Guyton, Coleman,
and their colleagues (33–36), as well as being voiced by their chief critics (37, 38). In fact, much of
the history of physiological modeling, both animal and mathematical, is consumed with trying to
use models to provide evidence supporting a mechanism’s importance in some observation.Mech-
anistic explanation is the goal because this level of understanding allows potential interventions
to be specified.

Biologists have begun to appreciate that reductionism will not answer all questions of mech-
anistic explanation in complex systems (39). While it is useful in sciences with lesser complexity,
such as physics, biological systems have five fundamental properties that weaken the power of
reductionism.

1. Biological variation is widespread and persistent: “In any evolutionary system. . .diversity
and complexity will increase on average” (40, p. 1102; see also 41, p. 3). Variation is of
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profound clinical relevance. Even among people of the same sex, age, race, and renal func-
tion, blood pressure responses to a single antihypertensive drug can be highly variable (42).

2. Biological systems are relentlessly nonlinear. While nonlinear interactions in biology are
widely understood and explainable, nonlinear dynamics as a discipline is ill-equipped to
analyze systems as complex and large as cellular-level biology, much less organismal- or
human-level biology.

3. Biological systems are redundant. Each species is a competition to find robust ways to
maintain life in the face of multiple challenges. Many physiological or pathophysiological
states are the result ofmultiplemechanisms supporting an observable response.Redundancy
makes it difficult for a researcher or clinician to identify important causal mechanisms—that
is, in physiology, if one system fails, another system can compensate and mask any change
in the phenotype.

4. Biology consists of multiple systems interacting across different time and spatial scales. The
importance of an observation often depends on its timing.For instance, an individual’s blood
pressure response to a stimuli can depend on a combination of fast-acting neural mecha-
nisms, slow-acting hormonal responses, and long-term effects of the regulation of body fluid
volume. The importance that one scientist or another places on these mechanisms depends
on when they conduct their measurements.

5. Biological properties are emergent—that is, they come from the complex interactions of
subsystems—and, therefore, cannot be simply described as the sum of their inputs from
each single component (43).

Knowledge of complex biological systems is gained by studying the intact system and by infer-
ring knowledge about the whole after studying the system’s components separately. The factors
above, especially the principles of redundancy and nonlinearity, suggest that reducing biological
systems to single components, while an important building block in the study of complex systems,
is not enough to guarantee an understanding of that system. Somemethod of integrating the com-
ponents into an edifice that represents the real system is required to bridge the gap between agents
and actions and the functions they elicit (44).

Biological mathematical models allow knowledge and hypotheses to be integrated into a whole,
with the goal of testing the consistency of the hypotheses against data. This extends beyond the
importance of a single mechanism, and it allows modelers to construct, analyze, and understand
the emergent properties of systems. Models are often used to create data in an area where data
are sparse or unmeasurable, subject to a collection of hypotheses that can be supported through
experimental evidence (45, 46). The mathematical framework is a natural vehicle for modeling
redundancy and nonlinearity and for incorporating natural variation.Withmodern computational
methods, multiscale models are within reach (47–50), allowing complex responses to develop over
broad time domains. Hence, mathematical models can address all five basic challenges inherent
in biological systems.While molecular biology, systems biology, and functional genetics have not
yielded significant innovations in clinical diagnosis, therapeutics, or even basic science (51–53),
modeling, with appropriate methods for validation, may be the tool that will allow translational
knowledge to be synthesized from basic science.

PAST AND PRESENT MATHEMATICAL MODELING
EFFORTS—EXAMPLES FROM PHYSIOLOGY

Mathematical modeling has been used to study and describe physiological responses since Harvey
estimated cardiac output in Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus in 1628
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(6) as a means of defending his general circulatory model. Other early examples of physiological
modeling include Krogh’s (54) model of oxygen flux in skeletal muscle in 1919 and Hodgkin
& Huxley’s (55) computational analysis of neuronal membrane potential in 1952. Glomerular
function was first quantitatively analyzed by Starling (56) in 1899, and with the advancement of
new micropuncture techniques, this led to the first attempts at modeling renal and glomerular
function (57, 58).

Mathematical modeling has given insights into complex interactive mechanisms in whole or-
ganisms as well, for example the lac operon in Escherichia coli. This suite of genetic cues has been
deeply studied from a variety of perspectives, all giving insight into how this single system pro-
cesses information from the bacterium’s environment and converts it into a metabolic path for-
ward (59–62). This gives insight into how systems-based modeling returns value that cannot be
retrieved from reductionism. In these models, the interactions between coefficients and a system’s
behavior are studied intently, with the variance in a system’s behavior attributable not to an in-
teraction but to all of the interactions operating as a system. This behavior cannot be studied by
investigating component parts; instead, it must be studied in the system as a whole.

In 1972, Guyton et al. (35) published a model of integrative human physiology that challenged
the existing views of blood pressure control. When published, it was widely believed that total
peripheral resistance controlled blood pressure while the heart controlled cardiac output. This
concept was revolutionized by the concepts of pressure natriuresis and blood flow autoregulation.
In 1983, with the rapid advancement of the computer, Coleman&Randall (63) developed a model
of human physiology called HUMAN, an extension of the 1972 Guyton et al. model. In the 2000s,
this was expanded into a Windows software package called Quantitative Circulatory Physiology
(http://hummod.org). This model uses several hundred mathematical functions to describe car-
diovascular, renal, neural, respiratory, endocrine, andmetabolic relationships acrossmultiple organ
systems. It is freely downloadable (64; see also http://hummod.org/hummod-baro.zip).

Several groups around the world are creating environments for developing integrative mod-
els of human physiology. The International Union of Physiological Sciences’ (IUPS) Physiome
Project is a worldwide effort to develop databases andmodels to aid in understanding physiological
responses. This group states that its mission is “the databasing of physiological, pharmacological,
and pathological information on humans and other organisms and integration through compu-
tational modeling” (https://www.physiome.org/About/index.html). It comprises databases and
software for developing computational models of cellular functions (http://models.cellml.org/).
Some of these models are based on the 1972 Guyton et al. (35) model of integrative physiology.
The major limitation of the IUPS Physiome Project is that there is no integration of the sub-
models into a whole-body or integrative model of human physiology. The National Simulation
Resource Physiome Project at the University ofWashington is affiliated with the IUPS Physiome
Project. Their submodels of physiology are written using JSim, a Java-based simulation system.
There are more than 250 separate models, but similar to the IUPS project, there is no integra-
tion. SimTK is a free project-hosting platform that focuses on models of cellular dynamics and
protein folding,musculoskeletal and neuromuscular dynamics, drug–target dynamics, and neural–
prosthetic interactions (https://simtk.org/). This group also has cardiovascular projects, but that
work focuses mainly on finite element meshing and computational fluid dynamics.

Quantitative Circulatory Physiology has been expanded into HumMod by the Center for
Computational Medicine and the Department of Physiology at the University of Mississippi
Medical Center.HumMod is a large,multiscale model of human physiology that integrates multi-
ple physiological systems, including the renal, autonomic, endocrine, and cardiovascular systems.
With considerable content added to the backbone of the model developed by Guyton et al.
(35), published more than 45 years ago, HumMod is composed of more than 8,000 independent
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variables and ∼2,000 parameters and equations (http://hummod.org/hummod-baro.zip). The
development of HumMod has led to accurate predictions in numerous areas of physiology, includ-
ing glucose homeostasis (65), insulin resistance (66), salt-induced hypertension (67), fluid homeo-
stasis (68), the effects of spaceflight on the cardiovascular system (69), cardiovascular responses to
hemorrhage (70), and the cardiovascular, neural, and hormonal responses to baroreflex stimulation
(71).

VALIDATION—INTUITIVE BUT ILL-DEFINED

In this section, we summarize the idea of model validation, which turns a model’s value from
potential to actual. The ultimate goal of a model is prediction. The word predict has a specific
usage here, and it is integrally tied to the word hypothesis (72). Scientific hypotheses are tested
by comparing what is expected with what actually happens. If expectations and actuality agree, we
presume that some level of understanding has been reached, and a model’s behavior serves as a
prediction of the real system. Considering a model as a component of a scientific hypothesis of
human disease, actuality is what happens in humans, while the model conveys the expectations. An
often-missed part of model development is that the model itself is the hypothetical framework on
which prediction rests, and so model construction is part of the process to determine whether a
model is predictive. A successful predictive model can then be a tool for explanation. The model’s
components can be tested for their contributions to an effect, and the powers of redundancy and
emergence can be measured. In order to extract this value from models, we need a concrete un-
derstanding of what makes a model predictive.

Ideally, validation is the process by which the actions of a model are proved to accurately rep-
resent the system under consideration or predict its response to perturbation. This is a misleading
definition, as it hides many pitfalls that can confuse modelers and end users. Chief among these
pitfalls is the question,What does it mean to accurately represent a system? It is not clear whether
a model should simulate all aspects of the system, including all known components and their inter-
actions, or whether coherence on 1, 2, or 100 of the variables is enough. It is unclear as well whether
a model should duplicate the mechanisms comprising the system or whether simple agreement
with an end point through one or more system perturbations is sufficient for validation. This al-
lows different users to interpret the concept of validation differently, which reduces the overall
effectiveness of modeling as a scientific enterprise.

In physiological models (mathematical or otherwise), validation is typically empirical. In em-
pirical validation, one selects a collection of experimental end points and compares them with the
model’s outputs. Comparison can be qualitative or quantitative, steady-state or transient (43). For
example, systemic lupus erythematosus (SLE) is an autoimmune disease believed to be caused by
a combination of environmental factors and genetic variation in multiple alleles, each with minor
functional contribution, resulting into a multifactorial disease (18, 73, 74). Mouse models of SLE
were originally confirmed as models of the disease by noting a shortened life span, renal disease,
increased prevalence in females, and peripheral vascular disease, which together resemble the phe-
notype of SLE in humans (75, 76). Some, but not all, of the genetic variation seen in humans with
SLE has been observed in the mouse model, further confirming it as a model of the disease, but
the original assertion of validity rested on a few empirical agreements in the simple end points
mentioned previously.

If animal models of diabetes exhibit the blood glucose characteristics of human diabetes, in-
cluding changes in fasting glucose levels and perturbations in the oral glucose tolerance test, is this
enough to confirm that the model is a valid representation of human diabetes? We consider the
systemic response to glucose infusion as the primary intervention. If the model does not exhibit
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the comorbidity of diabetic nephritis that appears in ∼40% of human diabetics, is the model still
valid? Conversely, if diabetic nephritis appears 100% of the time in a certain animal model, can
we say the model is valid? In animal research, there is no objective, quantitative discrimination
between these situations, and models that display one or more levels of similarity with the human
disease might be accorded more or less validity by different scientists in this domain, depending
on their particular area of interest in a disease. If a drug is shown to meet a clinical end point, such
as improving renal function, in an animal model that always develops diabetic nephritis, that does
not mean it will meet that same end point in an animal model that does not. This suggests that
models need to be attuned to a purpose in order for the question of validity to even make sense.
This restriction is in line with the assumption that a predictive model remains true in similar
situations (72).

In recent years, different schemes for assessing the validity of animal models have been pro-
posed. There is basic recognition that a disease model should share some mechanisms with the
human version of the disease. For instance, one definition states that an animal model is consid-
ered valid if it “resembles the human condition in etiology, pathophysiology, symptomology, and
response to therapeutic interventions” (77, p. 956). This definition borrows from the philosophy-
of-science literature, in which the standard of animal model validity is suggested to rest on three
factors: face validity (i.e.,manifestation of symptoms similar to clinical presentation), construct va-
lidity (i.e., similar underlying biological mechanism), and predictive validity (i.e., similar response
to intervention) (78).

This intuitive framework againmasks several underlying problems. For diseases without a clear
etiology, construct validity is an impossible standard to meet. Even in cases in which the natural
history of the disease process is clear, replicating it in a laboratorymay not be feasible for economic
or time reasons. Face validity has been called into question as a reproducible and well-defined con-
struct (79). Predictive validity, the raison d’être of using animal models as tools for the preclinical
evaluation of an intervention, is rarely satisfied also. For example, this is evident in the poor trans-
lation rate of new chemical entities in clinical trials for several diseases, including stroke and cancer
(80–82). Numerous suggestions have been made about how to increase the predictive validity of
animal models. One suggestion was to extend the modeling of pharmacokinetic and pharmacody-
namic relationships because of their potentially profound effects on dosing assumptions in humans
(83). Another was to develop more and better biomarkers of disease (84–86). However, these pro-
posals are aimed at specific marginal problems in translation as opposed to being a more general
appraisal of whether current validation schemes ensure that so-called valid models are actually
predictive.

FAILURE OF VALIDITY—CLINICAL TRANSLATION

Animal models are one of the major sources of knowledge leading to the development of new
pharmacological or device-based therapies and are key for regulatory evaluations (87, 88). The
scientific use of animal models dates back to a period when they were the only complex system
available for studying integrative biology. Unfortunately, during the past decades, numerous po-
tential drug targets have been discovered in animal models that have failed to materialize into
effective human therapies (89, 90). These failures, along with the enormous costs of developing
novel therapies into marketable products, led to an investigation into this process by the US Food
and Drug Administration (FDA) (91). While multiple systemic features play a role in the failure
rate and high cost of innovation, one of the chief points of failure is the clinical translation from
animal models (91). The translation step has been deeply studied during the past 10 years, as it
exists as a scientific, as opposed to a policy or regulatory, impediment to progress (92–97). These
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findings are especially relevant to mathematical models because they expose potential failures in
translating these models to the clinical domain as well. For a model to be credible, it must address
potential failures in modes of translation and quantify or qualify the risk associated with each.

The translational problems in animal models consist of failures of either intrinsic or extrinsic
validity (98). Intrinsic validity speaks to the clinical trial methodology itself. End points of clinical
trials are often derived from previous animal or cellular studies. These include early estimates of
effect size, the end points used in the trial, and the inclusion and exclusion criteria for the trial.
Together, these choices can bias a cohort that may misinform a statistical model used to explain
treatment effects. These methodological problems can be reduced with a better use of modeling.
Extrinsic validation problems exist because animal models are, in fact, models of human disease
and not the disease itself. For example, animals are induced into a disease state via pharmaceuticals,
surgical or genetic modification, or environmental intervention at ages and in ways that differ from
the natural history of the disease in humans (85, 98). This is not by chance: If we understood the
natural mechanistic history of the pathologies that interest us, there would be no need to study
them. But by establishing a pathology outside of its natural setting, there is a risk of creating
something with the same phenotype but with a different root cause and different response to
intervention than in the human presentation.

Here, animal models vividly illustrate the problem of the model of the possible as opposed to
the model of the actual (99). An animal model is built on assumptions (e.g., a genetic background,
a diet, an initial intervention that begins the progression of the disease, or normality). The model
represents one possible way in which the symptoms of a disease may come into being. It is not
surprising to find an animal model that exhibits a specific phenotype and set of responses to a
limited group of interventions that match those seen in a cohort of similarly diseased or normal
humans. This does not imply that the animal model is a good model of the cohort, neither does it
imply the opposite. The model may coincide with the human cohort in some way; for instance, it
may have etiological, histological, or other parallels with the human disease. Each such similarity
reduces the range of possibilities and adds additional evidence that the animal model is a good
representation of the human disease, but more is necessary to be predictive of a specific cohort.
Conversely, differences between a model and its disease increase the opportunity for systemic dif-
ferences to develop and for the model to lose predictive capability. Consider the genetic models of
rodent obesity. Broadly used monogenic models of obesity, such as the ob/ob, db/db, and s/s mouse
models, and the obese Zucker rat, Koletsky rat, Zucker diabetic fatty rat, and Wistar Kyoto fatty
rat models, are acceptable, based on the existence of hyperphagia, decreased energy expenditure,
and the potential for hyperglycemia and insulin resistance at some point in their lives, all of which
mirror obesity in humans. Each model brings a different facet of obesity into view. The models
themselves are based on clear assumptions: a specific genetic defect that echoes throughout the
organism to create a phenotype. The single defect provides an underlying logic to the model that
allows for explanation of the phenotype, but it does not match the heterogeneous disease seen
in most obese humans (29, 30). Because of this, a therapy that reduces obesity in one of these
cases would not be guaranteed to be effective in humans. However, the use of one of these models
to investigate the effects of obesity-derived inflammation might be completely predictive of hu-
man inflammation; this linkage would depend on the similarity between the model’s inflammatory
profile and that seen in humans. This would require a careful analysis of the effects of the natu-
ral history of obesity and the effects on inflammation. The models are useful but not necessarily
translatable.The usefulness depends on matching the construction of the model with the question
being asked of it. An example of a well-constructed animal model is the animal model of diabetes
that results from pharmacologically inducing the loss of insulin secretion by destroying pancreatic
β-cells with streptozotocin. This animal model represents human type 1 diabetes by eliminating a
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particular cell type, and the animals are used to study the downstream effects of long-term insulin
deficiency. This is an excellent model of the disease because it acts along the same mechanism as
the human disease (100). A pharmaceutical that affects end points directly related to the disease
in the animal model is more likely to perform well in humans because of the shared similarity.

Perhaps the appropriate filter under which to consider the failure of models in translation
comes from the Duhem thesis. Duhem (101, p. 203) stated that,

The [scientist] can never submit an isolated hypothesis to the controls of experiment, but only a whole
set of hypotheses; when the experiment disagrees with the [scientist’s] prediction, he learns that at least
one of the hypotheses that constitute the set is erroneous, but the experiment does not indicate which.

If a model fails to replicate an experimental observation, as models are made of components,
then one of the components must be wrong, but we do not know which one. The negative form
of the Duhem thesis stands inspection as well: If a model replicates an experimental observation,
one does not know which model components are responsible for this replication. In a state of
ignorance, a model may replicate all of some set of observations but not generalize in any way.
This observation is true regardless of the model context: cellular, animal, mathematical, or even
a clinical trial, which is a model of a population. For example, a mathematical model could be
generated by interpolating polynomials to fit a data set without forcing them to conform to any
logic underlying the system. Every data set underdetermines an infinite number of models that
can generate that data set.

To assert predictive capability, more information is necessary. The model, again mathematical
or animal, is more than the phenotype: It is must represent the human cohort as a whole (2). The
model is a combination of assumptions, each of which must be present and none of which can be
separated. In the domain of mathematical models, this is like the process of equation selection and
the calibration of model coefficients. The coefficients are a function of the equation forms chosen
as much as they are of the data used for calibration.

CREDIBILITY—VALIDATION WITH PURPOSE

In the examples above, the primary concern is whether a model is an accurate representation of
the human system and whether it makes high-quality predictions about the system. This is a value
statement rather than an objective declaration. Different users can envisage different utilities for
a model, and their evaluations of the model as a tool for these utilities may well be different.
Recognizing this subjectivity explicitly leads to another conception of model quality and one that
is arguably better for all users.This is the concept ofmodel credibility.Credibility has been defined
as the willingness of individuals to base decisions on information obtained frommodels (102, 103).
Credibility associates qualities of a model with qualities of the system being considered. It moves
the focus from asking whether it is a good representation to asking whether it gives actionable
evidence. Credibility is more than empirical validation: it is confidence in model-based decisions
(104). For clinical utility, this is a high bar.Various rationales can be used to argue for the credibility
of a computational model. These include:

1. Evidence relating to the validity of assumptions underlying the equations governing a
model. The governing equations here are considered as mathematical forms combined
with coefficients. The equation forms (e.g., polynomial, exponential, decay equation, lo-
gistic function) relate to the theory underlying the interaction being modeled (e.g., physics,
chemistry), while the coefficients are concerned with particular experiments or clinical data.
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This evidence exists before the model is constructed and is obtained ex post facto from the
experimental record;

2. Calibration evidence.Calibration is the process of fitting a model to match clinical or exper-
imental data. Model coefficients that cannot be directly measured must be calculated from
model states that are measurable. This process of fitting coefficients may yield evidence of a
model’s credibility—for example, a correlation between coefficients that are believed to be
related—or the discovery that a particular response can be obtained from a hypothesized
system;

3. Validation evidence. This refers to the comparison of a model’s predictions with real world
data not used in calibration (105).

Determining credibility requires a complete analysis of the problem the model is asked to
solve, the assumptions underlying the model, the methods used to integrate those assumptions,
the effect of the modeler’s choices on the model’s outcomes, the quality of the data used to build
and test the model, the tools used to transform the assumptions into simulation form, the means
by which comparisons with data are made, and the choice of which data are used as comparators.
This holistic view tests not just the end points but also every aspect of the model to determine
where it is inadequate and where it is strong.

A more general quantification of model validity has been proposed using a credibility–risk
matrix (102). Biology and engineering share significant overlap when man-made products interact
with human biology. While engineering has used modeling and simulation as parts of its design
process at every step in a product’s life cycle (e.g., design, deployment, monitoring, and redesign),
a similar process-oriented perspective may benefit biological simulation (106). The most general
parts of the schema are an assessment of the risk of making a bad decision because of information
obtained through simulation and an assessment of the credibility of the model against a range of
properties, including the amount of data available, the epistemic foundations of the model, and
the assumptions made by the modeler. Altogether, the credibility of the model increases with the
amount of data available to support it (107). The most modern approaches to model validation in
biology, biological engineering, and regulatory science take a broad view of validation as it pertains
to clinical applications.We discuss the validation frameworks of animal and mathematical models
because the two inform and build off of one another.

Animal Model Credibility

One approach for increasing the predictive validity of animal models has been to develop stan-
dards, such as the ARRIVE (Animal Research Reporting of In Vivo Experiments) guidelines (108),
to improve the reporting quality of preclinical data that are analogous to the CONSORT (Con-
solidated Standards of Reporting Trials) guidelines for clinical trial data. These guidelines assume
that with better data governance, a more comprehensive evaluation of preclinical data can be
performed and better predictions obtained (109). The ARRIVE guidelines rest on extensive ab-
stracting of research studies to encapsulate a study’s goals, motivations, assumptions, and method-
ologies. While these standards increase the amount of information available to help understand
why a model may or may not be predictively valid, the information they retain is only descriptive.
Such standards facilitate meta-analyses and, thereby, increase the evidentiary quality of the data
(110). These standards merely facilitate analysis, however, without providing better evidence of
links between the model and its human presentation.

Another example, the Framework to Identify Models of Disease rubric, was recently developed
to categorize and quantify the validity of animal models by surveying a snapshot of the animal
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model literature and analyzing the validation methodologies used therein (111). This framework
relies on yes/no answers to questions about model characteristics across eight evenly weighted
domains. These domains are (111):

1. Epidemiological validity (i.e., sex differentiation and age differentiation)
2. Symptomology and natural history (i.e., symptom type and duration, time to disease onset,

disease progression, and severity)
3. Genetic validity (i.e., similarity between the animal and human genetic bases for disease and

mutations)
4. Biochemical validity (i.e., similarity between biomarkers, prognostic and otherwise)
5. Etiological validity
6. Histological validity
7. Pharmacological validity (do the same drugs work in humans and animals?) and
8. Clinical translation (are the end points in animal studies translatable to human end points?).

Plotting these domain scores on a radar plot yields a visual comparison between potential models,
and grading the responses allows a reproducible categorization of model validity.

This approach has numerous benefits, but a significant detriment. For benefits, it considers the
whole organism,making assumptions clear (e.g., genetic basis, natural history of disease, biomark-
ers). It forces the user to recognize the dependence of model validity on the disease parameters,
especially etiology and pathophysiology.Without a clear understanding of the mechanisms of hu-
man disease, it is difficult to claim that the model is valid. There is a dependency as well on the
data that are used for the comparison; a pharmaceutical manufacturer may have access to different
biomarkers or data than an academic. Hence, models may not have a consistent validation score,
increasing the difficulty in communicating results.

The greatest failing in this validation schema is that it does not account for anything outside of
the declared study design. For example, adverse effects, which by definition spring from mecha-
nisms secondary to the effect of a therapy, are not included as part of the determination of validity.
Predicting adverse effects is as important as predicting the effect of the therapy on the disease.
Adverse drug effects are costly, accounting for up to 30% of hospital admissions in the United
States and Canada, and significantly prolong hospital stays (112). Understanding adverse effects
may lead to better science by suggesting new interactions that may not yet be known.

A third set of examples comes from the US FDA. As a response to the decline in new molecu-
lar entities and the general decline in novel submissions and qualifications through the 1990s and
early 2000s, the FDA launched the Critical Path Initiative in 2004. In order to provide clear ex-
pectations to industry, the FDA developed a collection of qualification processes for models being
used in regulatory filings. These include the Drug Development Tool and Animal Model Quali-
fication Program (AMQP) of, respectively, the Center for Drug Evaluation and Research and the
Center for Biologics Evaluation and Research, as well as the Medical Device Development Tools
framework of the Center for Devices and Radiological Health (113–116).These three frameworks
are all directed at the goal of creating clear industry standards for using advanced technologies in
the creation, description, and qualification of novel therapies, but they also serve as models of
validation for more widespread use. We consider only the AMQP here.

The AMQP is a voluntary validation framework for animal models used for product approval
under the Animal Rule, which covers products for which efficacy trials are unethical or field trials
are not feasible. This rule is the most stringent set of guidelines on the use of animal models
in the United States, exceeding those used for academic or basic research purposes. All four of
the following criteria must be met for animal models to be the chief source of evidence: (a) the
pathophysiological mechanism of toxicity of the substance is well understood as is the prevention
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or reduction of this by the product under consideration; (b) the effect has been demonstrated in
more than one animal species whose response is predictive for humans; (c) the animal study end
point is clearly related to the benefit in humans; and (d) the kinetic and dynamic data are sufficient
to allow for effective dose selection in humans (115).

Models are qualified independently of any particular product. Scientifically, this follows from
the construction of the model: The animal model is of a disease or of a toxicity and is a tool to
address the hypothesis that a drug or biologic agent effectively reduces the danger of that disease
or toxicity. Critically, animal models are qualified only for a specific context of use (COU). The
COU is a precise statement that describes the appropriate use of the animal model as a scientific
tool. The COU distills the assumptions of a model and the utility of a model envisaged by the
designers and defines a scope of validation. In this way, a new user has a summary expectation
of the correct usage of a model. A single model may be useful in more than one COU, but each
COU requires independent examination and qualification. Once qualified, the model is useful in
any regulatory or developmental action within its COU and, by extension, in any scientific utility
within that COU.

Mathematical Model Credibility in Health Care

Computational modeling and simulation (CM&S) have been used to support medical device de-
sign and development for decades. Since 1997, CM&S has been allowed as indirect evidence in
submissions for regulatory qualification. By 2018, CM&S was usable as direct evidence for qual-
ification, in some cases obviating Phase III clinical trials (117, 118). The foundation of the FDA’s
review of drugs, biologics, and devices is an assessment of the benefit–risk relationship (119). Fol-
lowing the US National Aeronautics and Space Administration’s (NASA’s) standards (120) and as
an extension of ongoing efforts to define industry standards for engineering models, the American
Society for Mechanical Engineers (ASME) developed the Verification and Validation (V&V) 40
guideline in partnership with the FDA, industry, and academia as a single framework designed
to parameterize the credibility–risk balance detailed above (119–121). While it was intended for
the types of modeling and simulation work seen in biomedical engineering (e.g., computational
fluid dynamics, solid mechanics, electromagnetics and optics, ultrasound, and heat transfer), the
plan is generalizable to any mathematical modeling effort. While other standards are in place in
the FDA’s Center for Drug Evaluation and Research and the Center for Biologics Evaluation and
Research, the V&V 40 guideline is most broadly applicable to the biological and physiological
sciences. The framework consists of four phases: plan, risk assessment, verification, and validation
(Table 1). We describe these phases individually.

Plan. In the planning part of V&V 40, the user addresses two concepts: the question being asked
and the COU of the model. Mathematical models of biological systems are intended to address a
question that takes the form of one or more responses to a stimulus of some kind. In a computa-
tional fluid dynamics model, the response of interest might be hemolysis or platelet aggregation
(or both) resulting from a certain type of blood flow. In a lumped parameter model, it might be
the transient response to and steady-state outcome of a drug or surgical intervention. The valida-
tion process is intended to describe when a model is credible—that is, when data obtained from
the model can influence a medical decision pertaining to that question. As such, formulating the
question that the model addresses is the first essential step in validation because it provides a con-
text in which to interpret all other information. The COU describes the conditions in which the
model will be considered. Once use conditions pass out of this context, model credibility suffers.
Together with the question, the COU describes the full intent of the modeler.
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Table 1 Overview of verification and validation efforts (V&V 40) for evaluating the credibility
of mathematical models in health care (121)

Identification
number Stage Step Activity

1.1 Verification plan NA Description of the question
1.2 Description of context of use
2.1 Model risk

assessment
NA Model influence

2.2 Decision consequence
3.1.1 Verification Code Software quality assurance
3.1.2 Numerical code verification
3.2.1 Calculation Discretization error
3.2.2 Numerical solver error
3.2.3 Use error
4.1.1 Validation Computational

model
Model form

4.1.2 Model input
4.2.1 Comparator Test samples
4.2.2 Test conditions
4.3.1 Assessment Equivalence of Input Parameters
4.3.2 Equivalence of Output Parameters
4.4.1 Applicability Relevance of Quantities of Interest
4.4.2 Relevance of Validation to COU

Abbreviations: COU, context of use; NA, not applicable.

Model risk assessment. Risk assessment is a combination of the weight that is given to simulation
evidence in the medical decision process and the risk associated with an incorrect decision. The
risk can be to a patient in the form of an adverse reaction, injury due to the intervention, or injury
due to the disease process itself that is exacerbated by using the simulation-suggested intervention
instead of another one. An example of the latter risk would be the use of an ineffective treatment
in place of an effective treatment in a disease that rapidly progresses, such as cancer. The model
risk assessment step describes the modeler’s assumptions about how simulation evidence will be
used.

Verification.The verification process is an engineering assessment of all modeling assumptions
and tools, implemented to check that the results of the simulation consistently reflect the model
code. It is composed of two types of activities: code verification and calculation verification. Code
verification is a quality checking step, consisting of software quality assurance and numerical code
checking. Software quality assurance tests the user interface, data pipelines, application protocol
interfaces between model components, and all of the computational components that control the
simulation, its inputs, and its outputs.Numerical code–checking establishes that the mathematical
solver outputs the correct values against benchmark code.

The second verification activity is calculation verification, which tests the assumptions under-
lying the numerical solver. The first step is calculation of discretization error, which tests the mesh
of solutions in the case of finite element methods, step sizes in the case of ordinary differential
equation methods, or similar decisions regarding prediction intervals. The expectation is that the
assumption of interval size can have a bearing on a model’s performance, and this effect must
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be quantified for the purpose of decision-making. Other solver parameters may also influence
the final predictions for a model, and these parameters are highly dependent on the solution
framework itself. Finally, the inputs and outputs of the model must be verified. This includes
verifying that model inputs are inserted appropriately and that the correct outputs are recorded
for comparison with external data.

Validation.The final step in determining a model’s credibility is validation, which spans three
types of activities: model validation, assessment of the comparators proposed to address the
question within the context of use, and model assessment.Model validation consists of listing and
testing assumptions about a model’s form and also sensitivity analysis.Model assumptions take the
form of the relationships that are included (and excluded) and the mathematical representations
of those relationships. The sensitivity analysis is intended to test the robustness of the model to
small changes in model coefficients. There are multiple methodologies for sensitivity analyses,
and the methods chosen must be clear to end users.

The comparators’ step in validation details the closeness of the model to the evidence. Cred-
ibility assessment of comparators begins with an assessment of the comparator data itself. The
data is rated for its quantity and the similarity of the comparator system to the system detailed
in the COU. Measurement uncertainty is accounted for in this step as well. The breadth of ex-
perimentation done to generate the comparators is also considered; model performance tests that
challenge extreme and median values of variables are generally preferable to ones that stay within
a narrower range. Finally, model variables are checked for similarity against the comparators. In-
put parameters (the interventions) must be compared with the experimental interventions. This
comparison covers the range of values utilized in the model, as well as the closeness of the model
intervention to the experimental one. For instance, a mathematical model of type 2 diabetes that
determines insulin resistance by a single, user-defined parameter will be less credible than a model
that includes glucose transporter kinetics and the mechanisms that affect those kinetics. Similarly,
model outputs must be compared for similarity in both substance and value to the data being used
for end point comparisons. This is the empirical validation component that is most commonly
used as the sole measure of validation in physiological models.

The final step of validation is an assessment through the COU of the relevance of the model
to the question being asked. This activity is concerned with establishing the relationships be-
tween the measured variables in the model and those used in the comparator and verification sets.
In the context of physiological modeling, two questions need to be asked: What degree of reduc-
tion in system complexity is present in the simulation with respect to the quantities of interest?
How does such a reduction affect simulation outcomes on the timescale inherent in the COU?
The first question addresses the philosophy and intent of the model directly and interprets the
effects of epistemic validation on the confidence that the simulation outputs describe the system.
The answer to the second question should convey a level of confidence that the model’s equations
approximate the comparator variables in a reasonable way, taking into account the simulated scale
of the computation. The context determines the appropriateness of the measure and its model.
This brings the credibility assessment full circle.

CONCLUSIONS

In this review, we have attempted to convey some understanding of the richness of the problem
of validating mathematical models. By contrasting simulation with widely used animal models, we
have demonstrated that the difficulties encountered in validating mathematical models are inti-
mately related to the same difficulties in animal models, challenges that have only recently begun

200 Pruett • Clemmer • Hester



BE22CH08_Pruett ARjats.cls May 27, 2020 15:4

to be appreciated. Practical consideration of model credibility has caught up to philosophical con-
cerns, and we are in an exciting period in the history of modeling. Armed with computational tools
that grow more powerful each year, along with deep access to data, physiological modeling and
simulation can be potent factors accelerating mechanistic understanding and have a real impact
on the world through clinical utility, provided modelers can successfully demonstrate their value.

SUMMARY POINTS

1. The purpose of physiological mathematical models is to test hypotheses that cannot be
feasibly tested in other ways. These restrictions may be due to ethics, measurement im-
possibility, the inability to construct an appropriate animal model of a process or disease,
or some other factor.

2. In the past, validation of animal or mathematical models has been largely empirical. The
failure of novel therapies to translate from animal models has forced a reassessment of
validation modalities.

3. Currently, a notion of credibility—the confidence that a model represents reality well
enough to justify making a decision with it—is the new standard of validation.

4. Validation for regulatory submission or for clinical adoption should include an assess-
ment of all assumptions underlying a model, all processes for implementing and solving
the model, all choices used for comparisons, and methodologies. Every assumption that
can be communicated and tested should be.
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