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Abstract

Recreating human organ–level function in vitro is a rapidly evolving field
that integrates tissue engineering, stem cell biology, and microfluidic tech-
nology to produce 3D organoids. A critical component of all organs is
the vasculature. Herein, we discuss general strategies to create vascularized
organoids, including common source materials, and survey previous work
using vascularized organoids to recreate specific organ functions and simu-
late tumor progression. Vascularization is not only an essential component
of individual organ function but also responsible for coupling the fate of all
organs and their functions.While some success in coupling two or more or-
gans together on a single platform has been demonstrated, we argue that the
future of vascularized organoid technology lies in creating organoid systems
complete with tissue-specific microvasculature and in coupling multiple or-
gans through a dynamic vascular network to create systems that can respond
to changing physiological conditions.
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INTRODUCTION

2D cell culture, rodents, and nonhuman primates are the conventional tools used to study human
biology.While 2D models are simple (Figure 1), the essential premise (i.e., cell growth on plastic
in nutrient baths) cannot capture the vast majority of complex cellular interactions that produce
overall tissue and organ function and response to pharmaceuticals. In contrast, animal models can
mimic integrated 3D functions of the body but can present severe limitations even beyond the eth-
ical issues, including poor concordance with human biology in areas such as cardiac function, liver
metabolism, and immune function. For example, patient-derived xenograft models place human
cancer cells in an immune-compromised mouse to mimic tumor progression, but this approach
eliminates the critical adaptive immune response to cancer present in vivo. These considerations,
along with technological advances in microfabrication and stem cell biology, have spurred the
creation of new model systems—dubbed organ-on-a-chip or tissue chips—that capture the mul-
ticellular, 3D nature of in vivo human tissues. In aggregate, these platforms are referred to as
microphysiological systems (MPSs).

Spheroids are generally defined as single-cell 3D aggregates, whereas organoids are generally
defined as 3D multicellular aggregates (Figure 1) that mimic one or more essential functions of
an organ. Organoids are generally derived either from primary human tissues or from human
pluripotent stem cells (hPSCs) (1). Organoids can be grown from either of the two main types of
stem cells: (a) pluripotent stem cells, both embryonic stem (ES) cells and induced pluripotent stem
(iPS) cells, and (b) organ-specific multipotent adult stem cells (1). Specialized media formulations
and differentiation protocols have been developed to maintain and proliferate these organoid cul-
tures. In the last decade, organoids have been used to model the functions of many human organs,
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In vitro model systems are lower throughput but are more physiologically relevant as they increase in
complexity. (Left to right) 2D monolayer culture is inexpensive and high throughput. Spheroids provide
homogeneous 3D culture. Organoids are composed of different cell types that facilitate heterotypic cell–cell
interactions (e.g., epithelial and stromal cells). Vascularized organoids add endothelial cells. Organoids with a
perfused microvasculature allow transport of cells (e.g., immune cells) and nutrients by convection at
physiological perfusion rates. Figure created with BioRender.com.

including the gut, liver, brain, bone marrow, heart, kidney, eye, lung, and microcirculation,
and many different cancers. These organoids recapitulate complex 3D organ-specific structure
and function, can include a vascular supply, and provide the basis for the next generation of
human-specific model systems. While vascularized organoids are generally lower throughput
than 2D culture and simple organoids, recent platforms have demonstrated methods to enhance
throughput (2).

In parallel, researchers have leveraged the principles of the electronic chip industry’s micro-
fabrication protocols to create tissue chips. Tissue chips integrate microfluidic channels and com-
partments on a single platform to deliver nutrients to and remove waste from cells and organoids.
Relative to traditional tissue culture wells and plates, tissue chips provide a far more dynamic
and flexible environment to mimic a greater range of human biology, including 3D, multicellu-
lar tissue function and the ability to couple multiple organoids (e.g., gut and liver) in series or in
parallel (3)—hence adoption of the MPS terminology. Finally, tissue chips are generally made of
optically clear materials such as polydimethylsiloxane (PDMS) and therefore enable excellent 3D
visualization of dynamic events with high spatiotemporal resolution.

Oxygen can freely diffuse in tissue microenvironments but is consumed by metabolically ac-
tive cells. This process creates a diffusion limit in vivo, generally considered to be 100–200 μm
(4). To form larger and more complex tissues, biology has overcome this diffusion limit by using
a network of microvessels (capillaries) to deliver nutrients and remove waste by convection. Not
surprisingly, most cells in the body are no more than 100–200 μm from a capillary. Organoids
can range in diameter from 50 to 1,000 μm, but both organoid growth and function are com-
promised when organoid size exceeds the diffusion limit of small molecules (including oxygen).
Additionally, cross talk between epithelial cells and vascular cells is critical for the appropriate
growth, structure, and function of both epithelial structures and the vasculature during organ de-
velopment (5). As such, integrating a perfused vascular network into organoids [i.e., vascularized
organoids (Figure 1)] is essential to recapitulate both normal organ growth and function and
to advance this important new field. Furthermore, the vasculature transports cells and signaling
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molecules between organs. Thus, coupling vascularized organoids representing different organs
in vitro would generate a more comprehensive platform for basic research and drug discovery.
Herein, we review the fundamental strategies and successes in creating vascularized organoid-
on-a-chip platforms and provide a future perspective for engineering coupled organoid culture
systems. The review is organized into four major sections: (a) an overview of the main strategies
to create in vitro vascularized organoids, (b) specific components needed to create self-assembled
vascular networks, (c) specific examples of organs in which some success in vascularization has
been demonstrated, and (d) vascularization of tumor organoids.

IN VITRO VASCULARIZATION STRATEGIES

Early 3D in vitro systems of microvessels used either a single suspension of endothelial cells (ECs)
or EC-coated microbeads embedded into extracellular matrix (ECM) gels such as collagen, fibrin,
or Matrigel (6, 7). These approaches yielded microvessels with lumens and were useful models
of vasculogenesis and angiogenesis. However, the vessels had limited stability over time, and the
model system was not conducive for perfusion through the vascular lumen or for delivery of nu-
trients to and removal of waste from the surrounding tissue. The emergence of microfabrication
and microfluidics for biological applications led to many innovative approaches to create perfused
microvascular vessels and networks of vessels (Figure 1). Microfluidics-based techniques to cre-
ate perfusable vascular networks can be broadly categorized into two major areas: (a) vascular
patterning (coating a patterned network of microfluidic channels with ECs) and (b) self-assembly
(stimulating a microvessel network to self-organize through either angiogenesis or vasculogenesis
and achieving a stable anastomosis with adjacent microfluidic channels).

Vascular Patterning

A general approach for patterning a vascular network is to create a network of hollow microcon-
duits using 3D printing, soft lithography, or a combination of microfabrication techniques (8–13).
ECs are then coated in a monolayer onto the surface of the conduit to create an endothelial tube.
Early attempts to utilize this general strategy created the conduit by using needle etching into soft
biomaterials such as collagen (8) (Figure 2a). Vessels created this way remain stable and functional
for 2–3 weeks and demonstrate some potential advantages, including angiogenesis into the sur-
rounding soft biomaterial. Disadvantages include the technical challenge of manually placing and
removing the needle in collagen gel, which limits throughput, and the “network” being limited
to a single straight tube. Later techniques circumvented some of these challenges by using soft
lithography, in which an interconnecting network of channels in a transparent polymer such as
PDMS is created by casting the polymer over an SU-8 master mold. ECs are then introduced into
the microfluidic lines to coat the surface (Figure 2b,c). This approach has the distinct advantage
of being highly reproducible and creates a network of EC-lined channels with prescribed dimen-
sions that can precisely mimic in vivo vascular patterning.However, the ECs cannot penetrate the
surrounding polymer, which is metabolically inert; thus, the network is not dynamic and cannot
adapt to meet the changing metabolic needs of the surrounding matrix (9, 10). Additionally, the
network of channels is limited to a single plane, so true 3D networks are not possible. A thirdmajor
disadvantage is that the cross section of the microvessels (9–11) is generally a square or a rectangle
rather than a circle. Such nonphysiological geometries discourage a continuous endothelial mono-
layer, as ECs tend to avoid sharp geometrical transitions, and create in vitro artifacts; for instance,
rectangular microvessels sprout mainly at the corners of the vessel (14). Finally, the shear stress
on the ECs at different channel positions is more variable in a square or a rectangular shape than
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Vascularization strategies. (a) A single channel mimicking a vessel can be created by placing a hydrogel around a sacrificial conduit (e.g.,
needle etching), followed by coating of the microconduit with endothelial cells (ECs). A cross section of the vessel is shown at the far
right of panel a. (b) Hollow EC-coated conduits can also be made using a microporous membrane to separate (i) matrix-filled chambers
in a single-layer design or (ii) two adjacent fluid-filled chambers in a double-layer device. (c) Alternatively, ECs (red) and stromal cells
(blue) can be mixed with a hydrogel and seeded in a device created using soft lithography under controlled interstitial flow (black arrows)
and growth conditions to allow a vascular network to self-assemble. Vascular structures appear within 2–3 days, which then connect to
form an interconnected, branched, and perfused microvasculature. A cross section of the vessel is shown at the far right of panel c.
Figure created with BioRender.com.

in a native circular shape, and such variability impacts cell physiology and inflammatory response
(15, 16).

An alternative approach to pattern a microvessel network utilizes a PDMS stamp to reverse
cast a conduit in a collagen gel by using injection molding. This technique can be used to create
multiple parallel microvessels in collagen (11). In an effort to counter the sharp corners present
in square and rectangular channels, viscous fingerprinting has been employed. In this approach,
a less viscous fluid is pumped through a hydrogel while its polymerization is still incomplete,
creating a hollow cylindrical conduit in the hydrogel after polymerization (12). A major advance
in patterning vessel networks is bioprinting a sacrificial carbohydrate lattice (13).A soft biomaterial

www.annualreviews.org • Vascularized Organ-on-a-Chip Models 145



such as collagen or fibrin can then be cast around or over the lattice and allowed to polymerize,
after which the sacrificial lattice is dissolved (generally by exposing the 3D construct to water).ECs
can then be introduced to coat the channels. This technique not only produces circular channels
but also creates a true 3D network of channels, allowing for vessel sprouting or angiogenesis
into the surrounding soft biomaterial. Additional details on patterning techniques to create vessel
networks have been presented in a series of reviews (17–19).

While these methods provide consistent density and geometry of vessels and a predictable
intraluminal flow, there is no in vivo biological analog for these vascularization methods. The mi-
crovessels formed using these techniques are generally much larger in diameter (>100μm) than in
vivo capillaries (<20 μm) and result in vessel densities (<10 per mm2) that are an order of magni-
tude smaller than those present in vivo (20, 21). Finally, the networks are inspired by engineering
technology; that is, the dimensions and branching nature are prescribed by the engineering
technology and are thus created using an engineering-directed approach. An alternative approach
is biology directed and harnesses the intrinsic forces of biology to generate the vessel network.

Self-Assembly

In vivo tissue is vascularized through angiogenesis or vasculogenesis. In angiogenesis, new vessels
sprout from an existing vessel, and in vasculogenesis the ECs assemble de novo into a network of
vessels. Of note, vessels formed by vasculogenesis can subsequently undergo angiogenesis. Several
labs, including our own, have developed protocols to create in vitro microvascular networks that
mimic developmental vascularization. We refer to this as a biology-directed approach (22–29)
(Figure 2), in contrast to the engineering-directed approaches described above. The underlying
premise of these protocols is to place ECs and stromal cells together in a hydrogel (collagen,
fibrin, or Matrigel) in what is initially a random spatial distribution. Over the ensuing 3–7 days,
the ECs migrate, make contact, align, form lumens, and generate a complete perfusable network;
in other words, the intrinsic biological programming present in the ECs and stromal cells allows
the vessel network to self-assemble (22–26). An alternative approach is to coat neighboring
porous microfluidic channels with ECs and to allow the ECs to sprout, by angiogenesis, into the
adjacent matrix that separates the channels (27–29). The sprouting vessels from each channel will
anastomose to create a perfusable vascular network.

By using either of these self-assembly techniques, stable perfusable microvessel networks have
been achieved, with microvessel diameters generally in the range of 15–50 μm. The vessel ge-
ometry (diameter and length), density, branching, perfusion, stability, and permeability depend
on the biophysical (e.g., interstitial flow, intraluminal flow, matrix stiffness) and biochemical [e.g.,
vascular endothelial growth factor (VEGF)] cues provided to the ECs from the surrounding ma-
trix and stromal cells (29–31). This approach engages the complex interplay of cells, ECM, and
physical forces to dictate the characteristics of the network. Since the initial description of this
technique, there has been a significant advancement in our understanding of both the biology and
the necessary engineering.

COMPONENTS OF SELF-ASSEMBLED MICROVASCULATURE

Endothelial Cells

Protocols have been established to utilize human umbilical vein ECs (HUVECs) and endothelial
colony–forming cell ECs (ECFC-ECs) from human umbilical cord and cord blood, respectively,
to create in vivo and in vitro vascular networks (20, 32, 33). The latter are derived in culture
from endothelial progenitor cells (EPCs), which are found in embryonic tissues and display true
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angioblastic potential, high plasticity, and high proliferation capacity. Compared to HUVECs,
cord blood–derived ECFC-ECs have greater vasculogenic potential and ability to form perfused
networks in vivo (32). EPCs from adult blood, while much lower in concentration than in cord
blood, have also been used to create microvasculature in vivo (20, 33).However, these microvessels
are less stable than vessel networks formed using embryonic tissue–derived ECFC-ECs (20, 33).

hPSC-derived ECs (hPSC-ECs) provide a potentially inexhaustible supply of ECs from the
same donor, as well as several other advantages. First, concerns over donor-to-donor variability
in primary cells are ameliorated. Second, the hPSC cell line can be genetically modified to
create stable subclones by using advanced gene editing technologies such as clustered, regularly
interspaced, short palindromic repeats (CRISPR)-Cas9. The subclones can serve as powerful
biological tools for mechanistic studies (34). Finally, the technology has the potential to allow
modeling of patient-specific tissues in vitro, and such tissues can be used in precision medicine
applications (35). Numerous protocols have been developed to create hPSC-ECs, but the general
approach utilizes GSK3 inhibition and BMP4 treatment to convert hPSCs into mesodermal cells,
followed by exposure to VEGF-A or platelet-derived growth factor BB to produce functional ECs
or smooth muscle cells (36). We have demonstrated the feasibility of creating perfused microvas-
cular networks-on-a-chip by using iPS cell–derived ECs (37). In addition, other groups have
demonstrated the use of hPSC-ECs to create microvasculature that is perfusable in vivo (35, 38).

Microvascular ECs collected from adult organs display differences in both structural attributes
and molecular expression profiles (39–41). In one study, ECs of four major human organs—the
heart, lung, liver, and kidneys—were isolated from fetal tissues. The ECs demonstrated distinct
expression patterns of gene clusters, barrier properties, angiogenic potential, and metabolism (39).
Although organ-specific microvascular ECs can be used for vascularization for some organs [e.g.,
dermal ECs (42)], this source of ECs, in general, has very limited vasculogenic potential (even
lower than do adult peripheral blood ECFC-ECs) (33). It is therefore of interest to determine
whether ECs differentiated from EPCs, if given appropriate cues, can exhibit organ-specific fea-
tures. Notably, ECs demonstrate phenotypic plasticity in molecular expression when isolated and
cultured in vitro (39). In line with this finding, cord blood–derived ECFC-ECs change expression
of several hundred genes in response to altered microenvironments (43).

Stromal Cells

ECFC-ECs embedded in a hydrogel by themselves form poor microvasculature with incomplete
or no luminal structures (30, 31, 44). The incorporation of stromal cells, such as fibroblasts, in the
coculture facilitates the formation ofmicrovessels with stable lumens (44).The separation distance
of stromal cells from ECs is also important; while physical contact is not required, if the stromal
population is too far away, stable vessels will not form (44). Stromal cell–derived angiopoietin-
1, angiogenin, hepatocyte growth factor, transforming growth factor-α, and tumor necrosis fac-
tor (TNF) have been identified to drive EC sprouting (30). Five additional genes expressed in
fibroblasts—the genes encoding collagen I, procollagen C endopeptidase enhancer 1, SPARC (se-
creted protein acidic and rich in cysteine), the transforming growth factor β (TGFβ)-induced pro-
tein ig-h3, and insulin growth factor–binding protein 7—have been demonstrated to be crucial for
lumen formation (31). Stromal cells also impact the ECM through the expression and secretion
of matrix metalloproteinases, tissue inhibitors of metalloproteinases, fibronectin, and collagen to
facilitate lumen formation (30, 31, 45).Moreover, stromal cells can impart micromechanical forces
to facilitate microvasculature formation and angiogenesis (46). The support of stromal cells is par-
ticularly important in early stages of morphogenesis, and their selective depletion in later stages
does not appear to affect the developed microvasculature (28).
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Stromal cells from a wide range of sources—including lung (24, 26), skin (42), bone marrow
(25) [including mesenchymal stem cells (MSCs) (47)], and cancer-associated fibroblasts (CAFs)
(46)—have been demonstrated to support stable microvessel network formation. More recently,
protocols have been established to differentiate stromal cells from hPSCs (38, 48); these stromal
cells also support self-assembly or vasculogenesis of ECs into stable microvascular networks
(38, 48).

Interstitial Flow

Tissues developing in vivo experience interstitial flow in the range of 0.1–10 μm/s as fluid leaks
from the capillaries and is reabsorbed by both blood and lymphatic capillaries (49). Interstitial
flow through the tissue aids in the transport and distribution of nutrients and growth factors, as
well as in the removal of waste from the tissue. Interstitial flow influences the development of
capillaries and remodeling of the ECM by stromal cells (49, 50). We observed that interstitial
flow in the physiological range (1.7–10 μm/s) facilitates vascular network formation and enhances
both vessel length and branching (51). Interstitial flow also exerts fluid forces on ECs and provides
directional cues for budding vessels. Both (a) the shear forces exerted by interstitial flow passing
through the vascular wall [intercellular or transmural flow (52)] and around the vessel (50) and
(b) the pressure forces (53) exerted by the flow facilitate sprouting of vessels in the upstream
direction. The sensing of the directional cues in this process is attributed to integrins (50) and
associated focal adhesion proteins (53).

Because interstitial flow imparts guidance cues to sprouting microvessels, it can be specifi-
cally leveraged to design and create perfused microvascular networks in a microfluidic device (23,
24, 29). As described above in the section titled Self-Assembly, a perfused microvascular network
can be formed by distributing ECs and stromal cells in a hydrogel. A particular challenge in this
method is that the microvessels must connect (anastomose) to an adjacent microfluidic line to
become perfused but must also receive nutrients during development. We demonstrated that in-
terstitial flow can be used to accomplish both needs. Interstitial flow is used (a) first to deliver
nutrients and remove waste from the developing network and (b) then to guide vessels to connect
to the microfluidic pore connecting the tissue chamber and the microfluidic line (23, 24, 29).

Extracellular Matrix

A critical component in the design of microvascular networks is the hydrogel or ECM.The prop-
erties of the hydrogel that impact the microvascular network include density, degradability, vis-
coelastic properties, and integrin binding sites. For example, high fiber density provides good
structural support but can retard the transport of paracrine morphogens and limit capillary mor-
phogenesis (54, 55). Stromal cells can remodel the hydrogel by secreting metalloproteinases and
depositing new ECM (30, 31, 45). The remodeling process can improve transport of paracrine
morphogens, thus enhancing capillary morphogenesis (47). Soft matrices facilitate angiogenesis;
however, stiff matrices provide strong directional cues for angiogenesis, as sprouts align along
a VEGF gradient more readily in stiff than in soft ECM (55). Finally, an increased number of
integrin binding sites enhances mechanotransduction and vessel stability (56).

The abundant and naturally occurring ECM proteins, including fibrin and collagen, possess
optimal qualities to support microvascular networks and have been used extensively by many
groups (24–26, 42, 57). The entire ECM can be harvested by tissue decellularization from normal
or tumor tissue (58, 59), or individual proteins can be purified fromnonhuman sources (e.g., bovine
or rat tissue).These proteins possess the natural and necessary binding sites for the EC and stromal
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cell to elongate,migrate, proliferate, and remodel the ECM.All of these functions are required for
the self-assembly andmaintenance of a stable vascular network.The primary disadvantage of these
proteins is lot-to-lot variability in functional properties when they are procured from commer-
cial sources. This hurdle can generally be overcome by the 3D vascular network itself, as the cells
actively remodel the starting components of the matrix. In contrast, synthetic biodegradable poly-
mers have also been presented; examples include hyaluronic acid–basedmatrix (60),methacryloyl-
modified gelatin hydrogel (61), and poly[octamethylene maleate (anhydride) citrate] (62). These
materials provide a high level of control over mechanical and degradative properties, but they of-
ten have low permeability for paracrine morphogens, and robust, stable vessel networks have been
difficult to create and maintain. These topics are extensively covered elsewhere (e.g., 56).

ORGAN-SPECIFIC VASCULARIZED ORGANOIDS

Below we briefly describe organ-specific vascularized organoids, including bone marrow, brain,
heart, pancreas, liver, intestine, kidney, and lungs. This list of organs is not meant to be exhaustive
but includes major organs for which significant success or attention to vascularization has been
demonstrated.

Bone Marrow

Bonemarrow is a highly vascularized organwhose primary function is hematopoiesis. It can also be
a site of metastasis of several types of cancers, including breast and prostate cancers. The key com-
ponents of bone areMSCs, hematopoietic stem/progenitor cells (HSPCs), osteoblasts, adipocytes,
fibroblasts, ECs, and mineralized bone. Since the cellular component of bone marrow in vivo is
essentially a liquid, a bone marrow organoid requires a casing or container, which previous work
achieved by leveraging a self-assembled vascular network in the presence of bone marrow cells
(Figure 3a). Initial attempts to create an in vitro 3D model of bone marrow used bone from ani-
mal models and were focused on retaining the properties of bone marrow cells in culture (63, 64).
To create a human-specific model, protocols have been developed to differentiate bone marrow–
derived MSCs isolated from human bone marrow aspirate into perivascular or osteogenic cell
lineages (64–66). The bone marrow MSCs undergo a phenotypic transition toward perivascular
cell lineages if these cells are maintained in endothelial growth medium (65). Moreover, when
cocultured with HUVECs in decellularized bone scaffold and fed with specialized endothelial
growth media, these bone marrow MSCs support self-assembled vascular networks (64). Alter-
natively, MSCs differentiate into osteogenic cells if maintained in media that contain osteogenic
factors, such as dexamethasone, sodium-β-glycerophosphate, and ascorbic acid-2-phosphate (64,
66).As an alternative to invasive bonemarrow aspirations, human adipose tissue–derived stem cells
separated from skin can be differentiated into a bone matrix and can support a self-assembled mi-
crovessel network (61). Soft and stiff hydrogels created by using methacryloyl-modified gelatin
hydrogels, instead of animal bone, can also be used to support microvasculature and osteogene-
sis (61). The most recent example of a vascularized in vitro model of bone marrow utilized the
process of vascular patterning and seeded ECs on a channel adjacent to a stromal compartment,
thereby successfully mimicking features of patient-specific bone marrow toxicity (67).

The multipotency of HSPCs is difficult to maintain in 2D in vitro culture systems. HSPCs
have been demonstrated to maintain the multipotent state (CD34+ CD38−) if seeded with bone
marrow–derived stromal cells in close proximity with a patterned EC monolayer (68). Our own
group recently reported on the creation of adjacent perivascular and endosteal bonemarrow niches
that included perfusable self-assembled vascular networks (69). The in vitro model demonstrated
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Strategies to create organ-specific vascularized organoid-on-a-chip systems. (a) Tissues with primary secretory (e.g., liver and pancreas),
mechanical (e.g., heart), or specialized (e.g., brain, bone marrow) functions can be created using a range of strategies in which organ-
specific cells or organoids are introduced with ECs and stromal cells and the vascular network is allowed to self-assemble. Organoid and
vascular network formation is generally improved in the presence of interstitial flow. (b) Alternatively, tissues characterized by
absorption of molecules across specialized epithelial surfaces (e.g., lung, intestine, kidney) can be created by placing the specialized
epithelial cell as a monolayer over a semipermeable barrier patterned with soft lithography. Air or liquid can flow over the epithelium,
and the underlying adjacent compartment can then be seeded with ECs and organ-specific stromal cells to enable self-assembly of a
vascular network. Abbreviations: EC, endothelial cell; HSPC, hematopoietic stem/progenitor cell. Figure created with BioRender.com.
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physiological permeability of the microvasculature, maintenance of the multipotent phenotype
of HSPCs, hematopoiesis, and the egress of mature neutrophils into adjacent microfluidic lines,
thereby mimicking natural functions of bone marrow (69). The vascularized bone marrow chips
can qualitatively recapitulate bone formation, hematopoiesis, and cellular egress.

Brain

The brain microvasculature is unique because its transendothelial transport barrier is more selec-
tive than any other network in the body; this property is termed the blood-brain barrier (BBB).
ECs, astrocytes, pericytes, and a complex ECM compose the neurovascular unit, and the cross
talk between these components induces a high level of tight-junction protein expression in the
EC, along with a decrease in paracellular transport as a consequence of the downregulation of
plasmalemmal vesicle–associated protein (70). Several MPS models of the BBB have been devel-
oped (71–73); however, only a few have a perfused vascular network, mostly relying instead on
engineered single channels (70). Transepithelial electrical resistance (TEER) of a monolayer of
ECs nearly quadrupled when the monolayer was cocultured with rat primary astrocytes (74). An
oscillating shear was used to achieve a peak TEER of 4,400 �·cm2 (71), which is within the in vivo
BBB range (1,500–8,000�·cm2) (75). Recently, iPS cell–derived ECs were cocultured with human
primary brain pericytes and astrocytes to form a self-organized microvasculature in a microflu-
idic device. The permeability of these microvessels was 8.9 × 10−8 cm/s and 2.2 × 10−7 cm/s for
40 kDa and 10 kDa fluorescently labeled dextran, respectively; these measurements are compara-
ble to values from in vivo rat cerebral microcirculation (76). Interestingly, the barrier properties
of iPS cell–derived brain microvascular endothelial cells improve in coculture with astrocytes and
neurons relative to coculture with either astrocytes or neurons alone (77), showing the importance
of parenchymal cells for retention of brain-specific features of the vasculature.

Coculture of vascularized brain organoid models and neurons has been used for disease
modeling, reflecting the important role that neurovascular coupling plays in the pathogenesis of
neurodegenerative disorders (70). Human ES cell–derived motor neuron spheroids and iPS-ECs
or HUVECs cultured in a microfluidic device create 3D, perfusable vascular networks. The
microvascular networks promote synaptic connectivity, and motor neurons influence vascular
network formation (57). The coculture of human ES cell–derived neural progenitor cells, ECs,
MSCs, and microglia/macrophages in polyethylene glycol hydrogels is reported to generate self-
assembled vascular networks and neural constructs with diverse neuronal and glial populations
and microglia (78). This coculture system is reproducible and can be used as a predictive tool for
neurotoxicity screening of chemical compounds (78).

A linked organ-on-a-chip model of the human neurovascular unit was recently developed and
used to demonstrate metabolic coupling of the vasculature to neurons; specifically, this coupling
led to increased synthesis and release of neurotransmitters, including GABA (79).Numerous neu-
rological diseases—including Alzheimer’s, Huntington’s, and Parkinson’s diseases and multiple
sclerosis (70)—have been linked to a dysfunctional BBB, and so a vascularized brain model will
undoubtedly prove invaluable in furthering understanding of these diseases.

Heart

Proper heart function depends on highly synchronized and coordinated contraction of cardiac
muscle—the result of electromechanical coupling at the single-cardiomyocyte level and the tightly
coupled interactions between cardiomyocytes and supporting stromal cells. Not surprisingly,
the high workload of the cardiac muscle is matched by a high metabolic rate that is maintained
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exclusively through oxidative phosphorylation. The resulting oxygen demand is met in vivo
with an extensive vascular network in which the distance between a capillary and the nearest
cardiomyocyte is as small as 1 μm (80); this network delivers oxygen by convection throughout
the 3D cardiac muscle.

Development of a perfused vascularized cardiac organoid (Figure 3a) is particularly challeng-
ing for several reasons. First, primary adult cardiomyocytes with a contractile phenotype are dif-
ficult to maintain in vitro and do not proliferate in culture. Second, the contractile function of
cardiomyocytes creates hurdles to capturing imaging endpoints and requires additional spatial de-
grees of freedom in culture.Third, cardiacmuscle is cell dense,with an intrinsically highmetabolic
rate and oxygen demand. Despite these challenges, long-term culture of contractile cardiomyo-
cytes in a 3D environment has been demonstrated, and the use of cardiomyocytes generated from
hPSCs has been extensive over the past decade (81) but has been beset with an immature phe-
notype. More recently, contractile conditioning of a 3D iPS cell–derived cardiac tissue construct
demonstrated remarkablematuration and phenotypic features of adult cardiac tissue (82), although
a vascular supply or vascular network was not demonstrated. Both adult cardiac matrix and a 3D
microenvironment improve iPS cell–cardiomyocyte maturation (83), while ECs provide cardio-
protective effects in vitro and ECs and cardiac fibroblasts improve proliferation rates of cardio-
myocytes (84–86).

The unique features of cardiac muscle necessitate unique device designs. A coculture of (a) hu-
man coronary artery ECs, (b) cardiac fibroblasts, and (c) adult cardiomyocytes or iPS cell–derived
cardiomyocytes in a hanging drop resulted in vascularization of the tissue (87). In another ap-
proach, cardiac cell sheets produced from coculture with ECs were triple layered to produce a
3D structure (84). Of note, the ECs in this cardiac sheet model formed lumens that were perfus-
able and that could anastomose with host vasculature upon implantation. To create thicker tissue,
cardiomyocytes derived from iPS cells, ECs, and fibroblasts were combined to make spheroids,
and the spheroids were assembled into a tubular construct by using bioprinting (88). The cardiac
construct could be electrically paced at high frequencies, yet returned to baseline beat rate after
stimulation ceased. Our group recently created an integrated chip of cardiac and colon cancer tis-
sues to assess the efficacy and cardiotoxicity of chemotherapeutics.This chip integrated electrodes
in the chip for stimulation of cardiomyocytes and had a patterned microvasculature to introduce
drugs through the vascular mimic (89). A 3D cardiac organoid composed of cardiomyocytes, sup-
porting stromal cells, and a perfusable microvessel network remains to be developed.

Pancreas

Pancreatic islets are the functional unit of the endocrine pancreas and are highly vascularized in
vivo—they constitute only 1% of the pancreas, yet receive 15% of blood flow to the pancreas
(90)—and each insulin-secreting beta cell is associated with at least one EC. As is the case in many
organs, the pancreatic vasculature has a distinct phenotype; in this case, it is highly fenestrated.
In addition to insulin-secreting beta cells, the islets contain alpha and delta cells, which secrete
glucagon and somatostatin, respectively. Protocols to obtain these cell types from iPS cells are
being developed; however, to accurately model the appropriate cell composition and functionality,
cadaveric human islets are used. One study found that encapsulation of islets with collagen and
HUVECs facilitated vascularization following in vivo implantation (91), and similar strategies are
being pursued in vitro (Figure 3a). Although isolated islets are small (<1 mm in diameter), due to
their high rates of metabolism, long-term maintenance in culture is a problem. The functionality
of islets can be improved somewhat by increasing the interstitial flow (92), and they are often
maintained in perfusion devices, but for long-term culture of pancreatic islets, vascularization
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strategies are needed. Several groups, including ours, are currently developing microfluidic-
based, vascularized human islet platforms, and one of these has been published (93). However, no
glucose-stimulated insulin release was demonstrated, so the functionality of these islets is yet to
be demonstrated (93). Type I diabetes is an autoimmune disorder that involves the destruction
of beta cells, likely by a combination of T cells and macrophages. The use of models employing
perfused vasculature will be essential for the accurate reproduction of lymphocyte and monocyte/
macrophage delivery to tissues.

Liver

During liver organogenesis, newly specified hepatic cells from endoderm interact with ECs and
mesenchymal cells to form vascularized liver tissue (94, 95). Several groups are developing liver
MPSs, although not all these groups are including vasculature, and these efforts were recently
reviewed (96). A key structural feature of the liver is the organization of the vasculature; such or-
ganization allows for oxygen gradients across the lobules that generate zones of differingmetabolic
function. In addition, the highly fenestrated vasculature allows for high interstitial flow through
the liver. These functions will ideally be incorporated into MPS models to allow for full function-
ality, but this goal has not been met. In the meantime, human iPS cell–derived hepatic endoderm
cells (94) or human fetal liver cells (95) cocultured with HUVECs and umbilical cord–derived
MSCs have been shown to form vascularized liver buds that anastomose to host vasculature in
vivo (94, 95). The hydrogel used in these studies was critical for this process: Matrigel (laminin,
collagen IV, and entactin) (94) or a combination of collagen I and fibronectin (95) supported op-
timum bud formation, but collagen I, laminin, or agarose did not. Moreover, the density of the
gel is also critical; dense Matrigel did not support liver bud formation (94). In a separate study,
human primary hepatocytes and normal human dermal fibroblasts were precoated with the ECM
proteins fibronectin and gelatin. HUVECs mixed with these cells create lumen structures, and in
studies in vivo, the vascularized tissue starts producing albumin earlier than a nonvascularized tis-
sue or hepatocyte suspension does (97). Bioprinting has also been used to create tissues containing
hepatocytes and HUVECs. Microvascular structures form but are not perfused. Despite this lack
of perfusion, the combination of ECs and hepatocytes produced more albumin and urea than did
hepatocytes cultured alone, suggesting a positive trophic effect of ECs (98). A liver MPS model
(99) was recently coupled to several other tissue MPS systems to create an integrated systems
model; however, vasculature was not incorporated (100).

Intestine

The gut includes a range of discrete anatomical regions, including the mouth, oropharynx, larynx,
esophagus, stomach, small intestine, and large intestine. Smaller structures within the gut include
sphincters separating the regions (e.g., lower esophageal sphincter), and there are subdivisions
within the small intestine (i.e., duodenum, jejunum, and ileum) and large intestine (i.e., cecum,
appendix, ascending colon, descending colon, sigmoid colon, rectum, and anal canal). These dif-
ferent regions have discrete functions and microbiota, all of which impact the vascular supply.
Most attempts to model the primary functions of the gut have focused on the large and small
intestines. The intestinal lumen is lined by epithelial cells that provide an absorptive surface for
nutrients and drugs but that can also be sites of acute inflammation, cancer, and infection. The
microvasculature lies just beneath the epithelium and plays a critical role in intestinal function. As
such, a successful strategy to create vascularized models of the intestine has utilized a patterned
organ-specific epithelium overlying a vascular network (Figure 3b).
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The threemajor cell types used to create vascularized intestinal organoids are intestine-specific
epithelial cells, myofibroblasts, and ECs. Protocols have been established to derive intestinal
epithelial and myofibroblast cells from both hPSCs and primary human tissue specimens (101–
105). The hPSC-derived organoids self-organize into structures that include a lumen, villus-like
structures, and crypt-like proliferative zones (101, 102). The organoids also consist of all the
major epithelial cell types, including enterocytes, goblet cells, Paneth cells, and enteroendocrine
cells. The intestinal myofibroblasts support the self-assembly of a microvascular network from
HUVECs and cord blood–derived ECFC-ECs (103, 104). Although primary microvascular ECs
extracted from intestine have been used to create microvessels by patterning (105), the potential
of these ECs to self-assemble into a vessel network has not been shown. Not surprisingly, the
microvascular networks directly impact the function of the intestinal epithelium. For instance,
coculture of ECFC-ECs with patient-derived intestinal myofibroblasts and ileal epithelial cells in
a microfluidic platform improved the barrier function of the intestinal epithelial cells (104). Other
studies have placed endothelium-coated tubes next to intestinal epithelial cell–coated tubes sepa-
rated by a flexible microporous membrane (106). These studies have recreated an impressive array
of intestinal functions, including the maintenance of a bacterial colony to simulate the human
microbiome (106). Finally, patient-derived organoids from the small intestine have been shown to
form villi-like projections lined by epithelial cells that undergo multilineage differentiation (105).

Kidney

The key functions of the kidney include removal of waste products from the blood, especially
urea (the primary nitrogenous by-product of protein metabolism), and maintenance of water bal-
ance. The kidney has an extensive vascular supply and receives approximately 20% of the cardiac
output. Waste products, excess water, solutes, and drugs are removed from blood, while essen-
tial components, including glucose, proteins, and other solutes, are retained. The functional unit
of the kidney is a nephron, which consists of an epithelialized lumen through which the effluent
passes while the lumen constantly exchanges mass with the surrounding stroma.The distinct parts
of a nephron include the glomerulus, proximal tubule, loop of Henle, and distal tubule, which pro-
vide specialized filtration of molecules. A protocol to differentiate hPSCs into kidney epithelial
and parenchymal cells has been developed (107). These organoids self-assemble into lumenized
structures and display epithelial markers specific for all types of nephron cells (107). A general
strategy to create access to the lumen is to create patterned conduits of the epithelial cells (108)
(Figure 3b). Such strategies have been applied to create the proximal tubule to demonstrate re-
absorption, albumin transport (109, 110), and glomerular function to demonstrate ultrafiltration
(111). The human kidney microvascular ECs exhibit barrier function and have the capacity to
self-assemble (112). However, their angiogenic potential is lower than that of HUVECs, and thus
supplementing the media with a high concentration of VEGF (40 ng/mL) has been required for
the self-assembly assays (112).

Lungs

The primary function of the lungs is respiratory gas exchange (of O2 and CO2). The lungs are
characterized by two major regions. The first region is the delicate alveolar tissue, which is com-
posed of grapelike clusters of small (50–100 μm in diameter) air-filled sacs termed alveoli. The
alveoli are characterized by a very thin membrane (on the order of 0.5 μm) that separates the
air from the blood in the pulmonary circulation and is the site of respiratory gas exchange. The
alveolar membrane has an air interface; consists of type I and type II epithelial cells, ECs, and
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fibroblasts; and experiences cyclical strain during breathing. The alveoli also contain leukocytes
(e.g., macrophages) and have important roles in host defense. Circulation through the alveoli is
derived from the right side of the heart, which represents cardiac output.The secondmajor region
of the lungs is the branching airways, which provide a conduit for air to travel from the outside en-
vironment to the alveolar region, and vice versa.The airways contain a thin layer of smoothmuscle
that can become overactive, leading to airway constriction—a hallmark of bronchial asthma. The
airways have a separate circulation—the bronchial circulation—that is derived from the left side of
the heart and serves to provide nutrients and remove waste products from the airway tissue. Sim-
ilar to the intestine and kidney, an attractive approach to model the alveolar and airway regions of
the lungs is a patterned epithelium overlying a self-assembled vascular network (Figure 3b).

Tissue chip modeling of the lung really launched the field of tissue chip modeling with a sem-
inal report in 2010 (10). In this model, a simple monolayer of alveolar epithelial cells and ECs
was cultured on opposite sides of a porous flexible membrane to mimic the alveolar membrane.
The flexible membrane was subjected to cyclical strains, recreating forces present in native tis-
sue, and the model allowed for analysis of immune cell trafficking, disease, and drug treatments
(10, 113, 114). Less work has been reported using stem cell–derived lung cells or organoids, but
lung epithelial cells derived from hPSCs have been shown to express specific markers and perform
certain functions, including secretion of surfactant by type II epithelial cells (115, 116). The lung
epithelial cell structures in these organoids are surrounded by smooth muscle and myofibroblasts
(116). The coculture of bronchial epithelial cells, lung fibroblasts, and ECs (HUVEC or lung de-
rived) in an ECM (fibrin or Matrigel) has also been reported as a model of angiogenesis in the
airways (117). In addition, the self-assembly of discrete epithelial and endothelial structures with
lumens has been demonstrated (118). Furthermore, lung fibroblasts exhibit the exceptional ability
to support the self-assembly of vascular networks; as such, a wide range of research groups have
used these cells in multiple models (7, 24, 29, 119–121).

An ideal model of the alveolar region of the lung would recreate its spherical geometry, would
include a dynamic model of the pulmonary circulation and interstitial space, and would mimic im-
portant diseases processes such as pulmonary hypertension and fibrosis. Similarly, the ideal model
of the bronchial airway would include airway smooth muscle, a dynamic circulation that could un-
dergo angiogenesis, and the airway epithelium. Our understanding of the pluripotent stem cells
necessary to create these complex structures by self-assembly is still evolving.As such, an engineer-
ing approach that combines patterning techniques with the self-assembly of anatomical structures
could be a productive direction to create the next generation of vascularized lung organoids.

VASCULARIZED TUMOR ORGANOIDS TO MODEL
TUMOR PROGRESSION

Modeling of cancer progression and drug response has historically been dominated by 2D cell
culture and mouse models. Unfortunately, 2D models are constrained by their inability to model
the complex, 3D nature of the tumor microenvironment (TME). For example, most tumor cells
are programmed with redundant and dynamically changing pathways that control differentiation,
migration, and cellular response to exogenous factors. Furthermore, a growing body of evidence
demonstrates that tumor cells display significant phenotypic plasticity in 3D cultures relative to 2D
cultures (122–126). Cell–cell interactions and cytokine cross talk involving immune cells, CAFs,
ECs, and tumor cells are critical for cancer growth, response to treatment, and development of
drug resistance (127–129).

In contrast to 2D cell culture, animal models are outstanding at simulating the aggregate re-
sponse of the tumor and host, but they have a limited ability to mimic human biology and have
limited spatiotemporal resolution to probe molecular events. Modeling cancer progression and
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Vascularized organoid models of tumor progression. (a) Primary tumor progression. (i) Primary tumors grow, invade, intravasate, and
stimulate angiogenesis in the surrounding matrix. (ii) Several microfluidic models, including the simultaneous coculture of tumor cells,
stromal cells, and endothelial cells in a central compartment (left), can mimic this process. Alternatively, first the vasculature can be
developed within a central compartment over the course of ∼1 week, and then tumor cells or spheroids can be seeded in a compartment
adjacent to the preformed microvasculature (right). (b) Metastasis of tumor cells at a distant site. (i) Such metastasis involves cell
adhesion to the endothelium, extravasation from the vasculature, and growth to form metastatic tumors. (ii) An example of a
microfluidic device to model this process is creating a vascular network by self-assembly in the presence of organ-specific stromal cells
to create an organ-specific microenvironment. Tumor cells can then be introduced in adjacent microfluidic lines and thereafter enter
the vascular network. Figure created with BioRender.com.

drug response using 3D vascularized organoids provides exciting opportunities to fill in the gaps
between 2D cell culture and in vivo models.

Cancer progression can be divided into the following steps: tumor initiation and growth at
the primary site, infiltration of immune cells, angiogenesis, intravasation of primary cancer cells,
transit of cancer cells through the vasculature, extravasation of cancer cells at a distant site, and
growth of metastatic tumors (Figure 4a,b). As such, the tumor microvasculature plays an essen-
tial role in tumor progression, as it supplies nutrients to the growing tumor, facilitates immune
cell trafficking, and provides a route for cancer cells to disseminate and metastasize. To faithfully
recapitulate tumor progression in vitro, organoid models need to include the vasculature.

Early approaches to create 3D vascularized tumor organoids utilized a mixture of tumor cells
and ECFC-ECs to create a spheroid and then embedded these spheroids in a 3D gel containing
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fibroblasts (121). This strategy allowed the tumor microvasculature to self-assemble. The mi-
crovessels penetrated the tumor spheroids, extended into the surrounding matrix, and displayed a
different structural phenotype than did nontumor cell controls (121). The vascularized spheroids
lacked luminal or interstitial flow, since they were created under static well plate culture condi-
tions. In work fromour labs, cancer cells, lung fibroblasts, andECFC-ECsweremixed in fibrin and
seeded in a single chamber of a microfluidic device under physiological interstitial flow conditions;
the microvessels formed and connected with the microfluidic lines, generating a perfused micro-
tumormodel: the vascularized microtumor (VMT) (Figure 4a). The individual cancer cells in this
model proliferated to create microtumors (22), which could then be treated with chemotherapeu-
tics and antiangiogenic drugs through the perfusable vasculature to assess efficacy of the drugs
(22). Follow-up studies showed that tumor gene expression in the VMT closely matched that in
the same cells in vivo but was quite different from that seen in monolayer cultures or in spheroids
(130). In line with this finding, drug responses in the VMT also closely followed those in vivo, but
not those in 2D or in spheroids (130). Finally, the TGFβ pathway inhibitor galunisertib, which
is in clinical use, was found to be effective in the VMT and in mice, but not in monolayers or
spheroids (130).

A potential drawback of this model system, however, is that because the vasculature is formed in
parallel with tumor growth, angiogenesis can be studied only after the initial phase of vasculogen-
esis is complete. Angiogenesis, and not vasculogenesis, is the primary mechanism used by growing
tumors to recruit microvessels. In early studies, a single patterned microvessel was used to model
tumor angiogenesis (26, 131). When malignant glioblastoma cells (the U87MG cell line) were
seeded in a separate compartment, tumor cell–derived soluble factors stimulated vessel sprouting
in the microfluidic device (26). In another study, a vessel patterned in collagen gel sprouted only
when the collagen was mixed with renal cell carcinoma cells (131). The integrity of the original
vessel in this assay was, however, lost because a large number of angiogenic sprouts originated from
a single vessel (131). Notably, the microvessels were initially quiescent, were enveloped by a basal
membrane, and were partly covered by stromal cells. We have developed an alternative approach
to model angiogenesis in the TME that employs the initial self-assembly of a vascular network
in a separate compartment, followed by introduction of cancer cells or cancer-secreted factors in
an adjacent compartment (Figure 4a). In this strategy, the microvascular network acquires partial
pericyte coverage, a basement membrane, and quiescence prior to the introduction of tumor cells
(22, 23). Both tumor cell lines and patient-derived tumor organoids have been introduced into
the compartment adjacent to the stable perfusable microvascular network. In this system, vessels
sprout by angiogenesis toward the tumor to form a vascularized tumor organoid, and drugs can
be delivered to the tumor through the vessel network (23). In a recent study, we found distinct EC
populations using single-cell RNA sequencing. Interestingly, only ECs in the angiogenic sprouts
highly expressed proangiogenic genes (43).

While the process of angiogenesis extends the microvessels toward growing tumors, aggressive
tumors also migrate toward microvessels and intravasate to enter the circulation. The migration
of tumor cells toward the microvasculature is guided by morphogen gradients and interstitial
flow (132). Intravasation of cancer cells into microvessels has been demonstrated in several
different microfluidic platforms (23, 133, 134). In a device with separate chambers for tumor cells
and self-assembled microvasculature, the tumor cells invaded the vascular chamber, and a small
number of cells breached the endothelial barrier (23). Interestingly, the intravasation efficiency
of tumor cells was enhanced if the tumor cells were coseeded with macrophages, which increased
the permeability of the microvasculature by secreting TNFα (133). A patterned microfluidic
channel coated with ECs and separated from tumor cell–containing chambers by a membrane also
supported tumor growth and intravasation of tumor cells (134). However, the membrane pores of
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these devices are small (<10 μm) (134), and free passage of large cells, such as ECs, can impede
angiogenesis.

Multiple microfluidic devices have been established that both contain microvasculature
through which tumor cells can be perfused (Figure 4b) and allow for observation of extravasation
events with high spatiotemporal resolution (25, 135, 136). To study breast cancer metastasis, a
microenvironment of vascularized bone was developed using a self-assembled microvascular net-
work (25, 135). The bone-specific microvascular network was supported by osteodifferentiated
primary human bone marrow MSCs, which also secreted bone-specific ECM proteins and gen-
erated calcium deposits. The study reported that the extravasation rates of a metastatic breast
cancer cell line into the bone microenvironment were four times higher than in a control skeletal
muscle microenvironment (25), in line with in vivo observations. An alternate strategy employs
a patterned microfluidic channel lined by ECs adjacent to a tumor compartment. By using this
strategy to model metastatic brain cancer, a single patterned vessel lined with brain microvascu-
lar ECs supported by astrocytes showed low permeability to fluorescent tracers. The integrity of
the endothelium was disrupted by lung cancer cells (A549), breast cancer cells (MDA-MB-231),
and melanoma cells (M624), but not by liver cancer cells (BEL-7402) (136), consistent with in
vivo observations. High-resolution imaging afforded by on-chip devices was used to demonstrate
that adhesion of cancer cells via α3β1 and α6β1 integrins to subendothelial laminin is a critical
prerequisite for successful extravasation (137).

Immune cells, such as monocytes and macrophages, lymphocytes, and neutrophils, closely
interact with cancer cells and ECs and directly impact cancer progression. Vascularized tumor
organoid models provide an unprecedented opportunity to investigate and visualize cancer
immunology at high spatiotemporal resolution. For example, research has demonstrated that
intravascular monocytes directly reduce cancer cell extravasation but that, once monocytes trans-
migrate through the vasculature, they acquire macrophage-like properties and lose the ability to
reduce extravasation (138). In related work, our group recently showed that M1 macrophages, but
not M2macrophages, inhibit angiogenesis and tumor growth of colorectal tumors (43), consistent
with in vivo observations (139). In another study, attack of natural killer (NK) cells was mimicked
in a vascularized model of cancer in a microfluidic device (140). Antitumor antibodies diffused
through the vessels to the TME, but diffusion was substantially hindered by the density of the
tumor. In contrast, NK cells could actively transmigrate across the endothelial barrier, penetrate
the ECM, and destroy the tumors. The combination of antibody-cytokine conjugates and NK
cells led to an enhanced cytotoxicity located mostly at the periphery of the spheroid (140).

FUTURE PERSPECTIVES

The full potential of organ-on-a-chip and organoid technologies will be realized when multiple
organ systems with organ-specific microvasculature are physically coupled to allow exchange of
cells and fluids. Conditions that require interorgan exchange of fluid and cells can be modeled
using integrated systems. Examples of such conditions are physiological and pathological inflam-
mation, autoimmune diseases, allogenic transplants, infections, immune cell therapies, and cancer
metastasis. A common feature of these conditions is that paracrine molecules and cells transit
through the vasculature and impact the function of distant organs. For example, during infection
or cancer, local tissue-specific cells prime immune cells located at distant lymphoid tissues to at-
tract immune cells to the affected tissue. The immune cells must traverse the endothelial barrier
and find the target tissue while in transit.

For drug screening applications, multiorgan platforms can mimic absorption, distribution,
metabolism, and excretion (ADME) to predict drug efficacy and toxicity more accurately (126,
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141, 142). The issue of the relative scaling of various micro-organs in an integrated platform is a
critical consideration. Micro-organs can be scaled using power laws, which are created using data
across a wide range of living species that relate body and organ masses (143), or can be scaled
to match in vivo organ functions, concentrations, or residence time (141, 142). Indeed, a simple
coupling approach, in which media from one organ system were manually transferred to another
system, generated clinically relevant ADME and toxicity data (100). More complex systems that
allow continuous interactions between organ systems via fluidic circuits (144–147) or via periodic
exchange of fluid using automated transfer arrangements result in more reliable analysis of phar-
macokinetics and toxicity (148). Importantly, the potential use of in vitro–derived pharmacoki-
netic data to mimic in vivo observations using these coupled systems was recently demonstrated
(148).

Nonetheless, to recreatemore complex in vivo dynamics, the organ systemsmust be linkedwith
a dynamic vascular network that can respond (i.e., change vessel caliber or undergo angiogenesis)
to changing metabolic needs. Such coupling could be initially achieved by microfluidic lines and
later be replaced by larger vasoactive vessels, strategies that have been discussed elsewhere (149).
One particularly interesting area of application for integrated systems is immunology. It is notable
that animal models cannot mimic all features of the human immunological response (150). An
integrated model of lymphoid tissue (e.g., bone marrow, spleen, lymph node) and other organs
could model human-specific immune responses and would represent an immediate and a much-
needed alternative model to advance our understanding of cancer and inflammation.
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