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Abstract

Subconcussive head injury represents a pathophysiology that spans the ex-
pertise of both clinical neurology and biomechanical engineering. From
both viewpoints, the terms injury and damage, presented without qualifiers,
are synonymously taken to mean a tissue alteration that may be recover-
able. For clinicians, concussion is evolving from a purely clinical diagnosis
to one that requires objective measurement, to be achieved by biomedical
engineers. Subconcussive injury is defined as subclinical pathophysiology in
which underlying cellular- or tissue-level damage (here, to the brain) is not
severe enough to present readily observable symptoms. Our concern is not
whether an individual has a (clinically diagnosed) concussion, but rather, how
much accumulative damage an individual can tolerate before they will expe-
rience long-term deficit(s) in neurological health. This concern leads us to
look for the history of damage-inducing events, while evaluating multiple
approaches for avoiding injury through reduction or prevention of the asso-
ciated mechanically induced damage.
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INTRODUCTION

The topic of subconcussive head injury introduces a concept that requires collaboration between
clinical neurology and biomechanical engineering. As characterization and evaluation of brain in-
jury over the last decade have evolved, the engineering and clinical communities have begun to
build on the inference by McKee et al. (1) that the presence and severity of long-term neurodegen-
eration associated with chronic traumatic encephalopathy (CTE) (2) was not well correlated with
the history of diagnosed concussions. Rather, a critical contributor to such injuries is taken to be
subconcussive head injury—a subclinical pathology in which underlying cellular- or tissue-level
damage (here, to the brain) is not severe enough to present readily observable symptoms.

For clarity, we wish to briefly emphasize the congruence of the clinical and engineering def-
initions of both injury and damage. Both of these concepts are intended to refer to potentially
recoverable changes in cellular health. Generally, it is interpreted that damage alters the integrity
or behavior at a cellular level, which may aggregate to manifest at the tissue level as injury—i.e.,
achieve sufficient alteration that one may readily detect pain or dysfunction. Note that these def-
initions are superficially different from common neurological parlance of a brain injury being a
pathology that may naturally recover, and brain damage generally being associated with a pathol-
ogy that, at best, requires intervention to be overcome but may be permanent. We argue that the
more traditional viewpoint equating the nature of injury and damage lends itself well as a general
framework for all medical researchers and clinicians trying to understand traumatic brain injury
(TBI).

Given the potential for subclinical damage to manifest as clinically observable injury, multiple
investigations and contextual analysis of extant data emphasize that the clinical diagnosis of a
concussion is inadequate to characterize the presence or extent of alterations to brain structure,
function, or chemistry. Supporting this contention requires a gold standard capable of linking
the engineering definition to the neurological definition of injury. Medical imaging research
demonstrated that alterations in all three of brain structure, function, and chemistry are statisti-
cally correlated with repeated exposure to head acceleration events (HAEs)—either direct blows
or whiplash movements by the head, arising from participation in contact sports. As initially
reported in 2010 (3), Talavage et al. (4) used functional magnetic resonance imaging (fMRI) to
document that near-term alterations in the brain’s health—assessed by responses to relatively
simple working memory tasks—were well correlated with significant recent exposures to certain
numbers, types, and magnitudes of HAEs. This finding has subsequently been corroborated
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(5-7) and extended by deploying other MRI-based modalities, including resting-state functional
connectivity (8-11), diffusion-weighted imaging (12-16), perfusion (17), neurovascular coupling
(18-20), and magnetic resonance spectroscopy (21-23).

Therefore, medical imaging presently serves as the gold standard against which other potential
measures of neurological function or anatomical compromise must be evaluated. Given what is at
stake for persons affected by TBI, we should also seek external (direct or surrogate) measures of
brain health that accurately predict the presence or absence of underlying pathophysiology.

WHY WE SHOULD CARE ABOUT SUBCONCUSSIVE EXPOSURES

It is valuable to understand how subconcussive head injury and concussion are posited to be re-
lated to each other and to TBI, in general. Initially considering the latter two, it is important to
note that there remains debate as to how the diagnosis of concussion reflects the presence of—or
is even synonymous with—a TBI and associated alterations in brain behavior. As McCrory et al.
(24) observed, concussion and TBI likely should not be viewed as strictly equivalent, and the re-
quirement of the immediate presence of symptoms associated with a TBI is inappropriate, given
the historical lack of a gold standard by which to assess various diagnostic criteria. Supporting this
interpretation are multiple survey-based studies of collegiate athletes that have uncovered appre-
ciable underreporting or underdiagnosis of concussions (25-31) in collision-based sports, with the
detection/reporting rate of true events possibly being below 25% (32). Given the inability to easily
detect symptoms (see Table 1), it is unclear whether McKee’s hypothesis relating subconcussive
exposures to long-term neurological consequences can yet be substantiated by recording of clini-
cal symptoms. However, modeling efforts have documented that the likely history of exposure to
HAE:S is, in fact, an effective predictor of later-in-life neurological health (33-38).

It remains to be determined if there is a demonstrable physical difference between subconcus-
sive and concussive exposures. The physiological mechanism by which energy is dissipated during
an HAE is known to affect cellular sequelae, as in the contrast between a blast wave versus a direct
mechanical impact or an acceleration event. However, from the moment of damage onward, the
actual source of the disruption is no longer relevant—the cellular behavior has been disrupted,
and a healing process potentially initiated. While there may be potential for a specific injury pro-
cess to initiate a particular subsequent pathological event (such as injury-specific inflammation or
necrosis), we consider these postacute event complications as outcomes of the induced damage
rather than remote consequences of the specific injury mechanism.

In light of this perspective, the engineering-based argument would be to care that acute
damage has occurred, and not be overly concerned with observation of symptoms that result
after an accumulation of insults, and perhaps only at a significant temporal delay. We have

Table 1 Easily observable and often hidden or ignored symptoms of concussion

Easily observable Often hidden or ignored
Loss of consciousness Metallic taste
Amnesia Seeing stars
Inability to concentrate Sensitivity to light
Fainting Tinnitus
Stuttering speech Headache or migraine
Balance difficulty Itchy extremity
Uncontrolled tears, rhinorrhea Blindness in an eye
Seizure Altered perception of odors
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hypothesized that asymptomatic populations should not be expected to have coherent alterations
in brain health measures over large, contiguous extents of tissue or else they would almost cer-
tainly not be asymptomatic (16). The sequence of HAEs experienced by each individual should
be expected to produce a unique pattern of compromised tissue—representing the superposition
of the patterns of tissue strain induced by each event in the sequence. A key consequence of this
intersubject variability would be that a population average may not benefit from sufficient over-
lap to reveal a particular characteristic pattern of injury. This prediction is largely consistent with
the heterogeneity of neuroimaging findings in concussed athletes reported by Klein et al. (39).
Furthermore, accumulation of compromised tissue will progress in an individual-specific manner,
in terms of both location and time. Therefore, the specific neural tissues that eventually become
incapable of normal behavior are going to be unique to each individual, meaning that each indi-
vidual will exhibit a unique set of deviations from their personal baseline performance. However,
in a larger population, this might appear as an early and increased incidence of a common clinical
presentation, such as mood swings, parkinsonism, or dementia.

Following from this argument, our concern becomes not simply whether an individual has
a (clinically diagnosed) concussion, but rather, how much cumulative damage an individual can
tolerate before they will experience long-term deficit(s) in neurological health. The former ques-
tion leads one to look for the (typically assumed to be singular) hit that caused the concussion. In
contrast, the second question allows us to evaluate a variety of techniques for preventing injury,
because we must accept that we cannot necessarily know the individual contribution of any single
event, or when a threshold for eventual neurological demise has been breached.

A growing appreciation of the importance of understanding which HAEs most contribute to
changes in brain structure, function, and chemistry opens the door to the engineering commu-
nity of validating additional methods to reduce long-term consequences of repeated exposure to
these events. Intuitively, any effort that reduces the number of sustained HAEs—be it reduced
participation, early detection of brain function or anatomical changes, or modeling of individual
risk—has a reasonable chance to lead to reduction in the deleterious effects of these HAEs. We
here explore all of these approaches, highlighting how the melding of medicine and engineering is
essential to both development of appropriate protective measures, including activities and equip-
ment, and evaluation of the efficacy of activity changes that may allow athletes to participate in
collision-based sports with reduced risk of adverse outcomes.

BIOMECHANICS OF INJURY

The ultimate motivation for studying the biomechanics of brain trauma is to elucidate the relation-
ship between kinematics of the entire intact skull and cellular-level impairment. Skull kinematics
have been characterized for American football (hereafter termed football), lacrosse, women’s soc-
cer, and ice hockey (4, 5, 40-47) using a variety of sensor systems to quantify translational and
rotational accelerations (48-50). Gross-level head movements are important inputs to the sys-
tem and, somewhat surprisingly, exhibit similar ranges among multiple sports and across levels of
competition. There are fundamental confounding factors when estimating deformations of brain
tissue associated with HAEs. One is the complicated geometry of the skull, especially near the
base, which contributes to a similarly complicated strain pattern. The second is the tissues that
tether the outside of the brain to the inside of the skull at various points, making it possible for
an HAE with even a small angular component to induce large strains in tissues all over the brain
(51). A third complicating factor is that white matter is highly anisotropic and its load-deformation
curve is highly asymmetric, while gray matter typically behaves isotropically. The surfaces at which
these two tissue types interface are thus complex and difficult to quantify. It should be noted, as
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well, that the most important aspect of energy transfer actually occurs at the cellular and subcellu-
lar levels. To date, computational models have incorporated white matter orientation, viscoelastic
effects, and rapid rotations (52-56), but future computational models will have to integrate the
microscale cellular structure (57-59). Roughly 160 billion cells comprise the human brain. Half
of these cells are heterogeneously distributed neurons (Figure 1). The remainder are mostly as-
trocytes, oligodendrocytes, and microglia that aid in maintaining the biochemical environment
needed for normal neuronal activity. Physical insults directed at any of these cell phenotypes or
their myriad interconnections can result in altered neurophysiology; however, little is known about
the mechanisms by which skull motions generate damage at the cellular level.

While multiscale biomechanical problems are challenging to solve under the best of circum-
stances, a primary difficulty with brain biomechanics is that there exist a number of misconceptions
about the transfer of energy from the whole skull to the individual cells. One is that HAEs cause
the brain to strike the inside surface of the skull. In truth, the brain presses and shears against the
soft tissue layers that make up the meninges. Another misconception is that only coup-contrecoup
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injuries generate brain damage during an HAE. Bayly et al. (51) demonstrated quite effectively
that, in addition to compression waves, numerous regions of high tensile and shear stresses are
induced at and around the brain’s tethering points. Taken together, these data strongly indicate
that every HAE has the potential to affect much, if not most, of the brain and that it is important
to understand the effects not only of compression but also of tension and shear.

The energy delivered by violent head accelerations affects more than just the neuronal cell
population, and it dissipates in a variety of ways. Dissipation mechanisms consist of elastic and
permanent deformations (including rupture) of the soma, axons, dendrites, synapses, myelin, and
interconnections between glial cells and the microvasculature. Simple engineering models sug-
gest that the most compliant structures in the brain will deform the most and serve as the primary
sources of energy transfer. Unfortunately, this approach neglects the fact that tearing of the extra-
cellular matrix, rupture of cell membranes, and other forms of failure absorb tremendous amounts
of energy. The takeaway is that the brain’s macro- and microstructure are sufficiently complicated
that predicting the type of failure for a given HAE is extraordinarily difficult.

Modeling energy transfer to the brain requires a thorough understanding of the mechanics of
white matter and gray matter, both of which are nonlinear, strain-rate-sensitive materials (57-59)
with significant water content. White matter in the brain and spinal cord is highly anisotropic due
to the presence of fiber bundles and, in the longitudinal direction, is considerably stiffer than gray
matter (58). In a landmark study, Galle et al. (57) were the first to correlate the applied macro-
scopic compressive stress (perpendicular to the fiber bundles) directly to cell membrane disrup-
tion. A subsequent study demonstrated that the compound action potentials were not substantially
affected until 50-70% compression was achieved, and that the reduction in action potentials di-
rectly correlated to the level of membrane damage (60). Transverse impact loading of intact spinal
cords (61) indicated that debonding of the axon-myelin interface absorbs the most energy, and
relatively little permanent damage occurs to the axon—an outcome consistent with stiffness mea-
surements obtained using atomic force microscopy (62). Despite the lack of direct damage to the
axon, however, the function of that cell may be compromised due to effective elongation of the
node of Ranvier. Compression of cortical neurons embedded within hydrogels demonstrates that
bleb formation, mechanoporation, and cell death depend on overall strain, strain rate, and hours
elapsed since loading (63). Slow axial loading induces neurite outgrowth (64), while rapid axial
loading tends to induce cell membrane tears (65).

Little has been done to examine the effects of mechanical loading on synapse function, de-
spite the obvious importance to neuronal signaling, and these synapses’ often precarious mechan-
ical tethering (see Figure 1¢)—especially involving axosecretory, axoextracellular, and axosynaptic
synapses. The fact that there is a marked response in synapse structure and function postinjury
(66) suggests that there is likely a short-term effect that has not yet been well characterized. The
integrated effects of synaptic disruption might be observable with electroencephalography (EEG),
but detailed characterization will likely require histologic evaluation.

Likewise, characterization of capillary mechanics and vasculature disruption is crucial to un-
derstanding both the short-term and long-term physiologic responses of the brain. However, only
a handful of researchers have attempted to perform the necessary experiments (67-71) or develop
relevant models (72, 73). Better understanding of the damage and repair mechanisms of the brain’s
microvasculature will be crucial to developing predictive models of brain recovery. Characteriz-
ing this response in animals and humans will require detailed computational models combined
with advanced imaging techniques, such as MR-based perfusion imaging and spectroscopic
characterization.

Another energy dissipation mechanism that is often overlooked is the viscous shear stress re-
sulting from the relative motion between the extracellular fluid, which makes up approximately
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Characterization of the accumulation of injury in the brain will require validated computational models that can operate on
preexposure structural information (e.g., as acquired using MRI) and a known history of exposures to HAEs to produce individual-
specific maps of strains, which are expected to be tightly correlated with the accrual of neural tissue injury. Future work in animals is
expected to provide a linkage between the accumulation of strain and dysfunction at the neuronal and vascular levels, resulting in
prediction of short-term risk of neural injury. Such an approach can enable the healthcare team to hold an individual out of lower-value
activities (e.g., practices as opposed to games) or to highlight an individual in need of additional training to reduce use of risky
techniques. Abbreviation: HAE, head acceleration event; MRI, magnetic resonance imaging.

25% of the tissue volume (74, 75), and the matrix of cells. This mechanism has been noted in a vari-
ety of mixture theory models of mechanics in bone and cardiovascular tissues (76-78). The results
of this interaction are difficult to predict, because they depend on the direction of fluid movement
relative to the orientation of the axons, microvasculature, and synaptic connections. However, in-
tegration of MR-based diffusivity measures should make it possible to designate boundaries on
the stresses generated by fluid-solid interactions for various loading regimes.

As a whole, the literature indicates that cellular-level damage can take many forms and produce
a complex array of cellular, tissue, and whole-brain-level deficits. Understanding the relationship
between mechanical insult, energy dissipation mechanisms, and the corresponding level of cellular
damage will be accomplished by a thorough integration of animal and human data, linked by a
combination of computational models and medical imaging (see Figure 2).

MITIGATION OF BRAIN TRAUMA

There are two fundamental options for ameliorating the effects of HAEs on the brain: repair the
damage after the fact or make an effort to prevent the damage from occurring in the first place.
While some progress has been made in the treatment of brain plaques (such as those putatively
associated with CTE) using invasive and noninvasive methods (79), neurologists and engineers
agree that preventing brain injuries is a more efficient and cost-effective approach to the problem.

www.annualreviews.org o Mitigating Subconcussive Head Injuries 393



394

We next focus on a variety of methods aimed at prevention, focusing on the current state of the
data supporting each method and its overall potential for mitigation. These include: reducing
the number of HAEs through changes in participation and training, head impact monitoring,
improving protective systems, and readily accessible injury detection. We believe that preventing
subconcussive injury is an important part of the discussion.

Reduce HAEs

HAE:s experienced by athletes have been measured with a variety of helmet-based and head-based
sensors, demonstrating that the number of HAEs per week varies considerably between sports.
There are two interesting, if often overlooked, aspects of these data sets. The first is that HAEs
can occur from direct impact with another player, the ground, or a whiplash event without any
direct head contact. Noncontact HAEs in the range of 10-20 g often occur with a sudden change
of direction, with a jump, or even with kicking a ball (45). 20 g is often assumed to be a lower
bound on the types of HAEs likely to cause human brain damage, but this assumption will require
validation with exquisitely sensitive biomechanical measurements of alterations in brain structure,
function, and/or chemistry. The second important aspect of the HAE data sets collected thus far is
that they exhibit remarkably consistent frequency histograms across sex and sport. Given that most
detection systems use a threshold of 10 g to record events, the assumption of a true lower bound
for damage at 20 g, combined with what appear to be sport-independent distributions of HAEs,
makes it likely that a fair estimate of overall exposure may be achieved even when low-resolution
sensors are used simply to count the total number of HAEs.

Recent studies have demonstrated that there may be floor thresholds in HAE magnitude, be-
yond which HAEs are particularly deleterious (16, 17, 20, 23). While additional work is required
to elucidate the specific ranges at which the neurophysiological changes become damaging, these
data suggest that it may be possible to modify team practices and monitor individual participation
in a manner that reduces both individual and accumulative HAEs.

It is not unusual for high school and college athletes participating in certain contact sports to
experience at least 100 HAEs exceeding 10 g of linear acceleration in a week. It has been suggested
that, in football conferences or leagues that do not limit the number of contact practices, or with
coaches who encourage frequent hitting, the numbers are even higher. Early studies in high school
football demonstrated that, when computer-based cognitive testing and task-based fMRI analy-
sis were jointly performed, 21 of 22 evaluations conducted during the competition season were
flagged by at least one of the two measures (80). A subsequent study found that, in the postseason,
athletes were more likely to be flagged by one or both measures if they had experienced an average
of more than 50 HAEs per week (again, exceeding 10 g of linear acceleration) during the season
(81). Clearly, reducing the number of HAEs in practices and games is important. This goal can be
accomplished in a variety of ways (82).

A simple and cost-effective method of reducing HAE exposure is to decrease the number of
contact practices and ensure that such practices do not occur on consecutive days, so that some (as
yet unknown) amount of healing can occur. Many states mandate no more than two contact foot-
ball practices per week at the high school level (typically occurring on Tuesdays and Wednesdays),
with games on Friday nights or Saturdays. Regardless of coaching style, reducing the number of
such contact practices to one per week should reduce HAEs by approximately one-third and add
the benefit of eliminating consecutive contact practices. There are often fewer regulations for
younger participants, possibly arguing for greater examination of the consequences of participa-
tion in youth leagues—a concern partially addressed by USA Soccer when it prohibited heading
for players 10 years of age or younger and restricted heading to (controlled) practices for players
ages 11-13 years.

Nauman o Talavage o Auerbach



Similar, easy-to-implement rules changes for football include not allowing players to play both
offense and defense, and limiting overtime periods (or allowing tie games during the regular sea-
son). Such rules changes could have a huge potential benefit. For instance, an athlete who plays
both ways in a double overtime game may experience three times the number of HAEs compared
to a player who played on one side of the ball during a normal regulation-length game.

All contact sports might benefit from a less egalitarian approach to postseason play. States
whose high school playoffs include all teams (regardless of regular season record) generate ad-
ditional rounds of competition, increasing the accumulative HAE exposure by adding multiple
weeks to the competition season. By example, only allowing the top quarter of the teams into
postseason play would eliminate two games and the associated practices.

The aforementioned methods for reducing the number of HAEs are essentially free of addi-
tional financial cost (other than revenue generation from spectators and sponsors) and quick to
implement, whereas adding technological solutions (e.g., improved protective equipment, HAE
sensors) might add benefits, but at a financial cost. Nonetheless, these costs may represent an
acceptable trade-off. Monitoring HAEs during practices requires some form of sensor attached
to the head or the helmet (48-50) and provides a range of options for reducing HAE exposure.
Tracking which drills and forms of game play result in the greatest number of HAEs is a method
for evaluating the opportunity to make activity changes, such as modifying practices and rules.
With currently available sensor technology, individual players can be tracked and HAE monitor-
ing data can be used to determine which of them are particularly in need of focused observation,
training, and behavior modification.

Further interventions that merit further study include altering the stance of linemen, and mod-
ifications to tackling instructions and technique. A recent study of football players in a professional
developmental league participating in a structured scrimmage demonstrated reduction in HAEs
when offensive linemen began in a two-point stance as opposed to a three- or four-point stance
(83). Tight ends were observed to be particularly vulnerable to HAEs because they may block and
act as receivers on the same play. Future studies should examine the effects of changing lineman
stance patterns in less structured and more realistic game environments, especially in situations
where they have had prolonged practice time to acclimate to the new technique (84, 85). USA
Football’s Heads Up program has endeavored to empower coaches of youth football to teach
safer tackling techniques and provide greater awareness of concussions (86). While results from
these various initiatives have been mixed, modifications to lineman stance and tackling technique
hold promise for future improvements, especially if they are coupled with head impact monitoring
and video feedback to augment the ability of coaches to deliver quality instruction.

More active instructional tools include the MVP robotic tackling system (87). It enables the
coaching team to simulate game speed movements and improve the way that tackling technique
is taught. Future work should evaluate the ability of robot-assisted tackling drills to transfer tech-
nique improvements from the practice field to game situations.

Monitoring Technology

In the absence of a direct physiological means to assess neurological health on the sidelines, the
body of literature argues that deviations from normal measures of brain health (here, referring to
the preactivity baseline for an individual) may be roughly predicted by the accumulation of HAEs.
This finding agrees with intuition. That is, knowledge of the direction and magnitude of incident
forces (or whiplash-like accelerations) should permit prediction of strain fields in the brain, with
greater accumulation (over time) of strain being associated with a greater risk of tissue injury.
Therefore, monitoring aggregate accelerations would, when coupled with meaningful models of
an individual’s specific anatomy, be anticipated to have the greatest predictive power (e.g., 53, 55).
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Figure 3

Example of chewing damage to a mouth guard-based sensor used for one season of high school football.
Inset reveals exposed wiring from circuitry associated with confirming that the device is in the mouth.
Mouth guard devices will require careful placement of batteries and current-bearing electronics to ensure
that athletes remain safe, even if they chew through the plastic.

To this end, a variety of technologies have been developed to monitor accelerations experi-
enced by an individual participating in sport, including accelerometers placed in the helmet, on
the head, and affixed to the maxilla (via mouth guards). Each technology has advantages and dis-
advantages (e.g., 48, 50, 88, 89). The earliest implementations relied on helmet-based sensors (49),
which offer appreciable ease-of-use with limited required interaction with the athlete. However,
such sensor designs are not practical for use in nonhelmeted sports, and it has been well docu-
mented that helmet-based sensors may have their signals contaminated by relative displacements
between helmet and head, or by flexion of the helmet shell (48, 88). Maxilla-affixed devices repre-
sent the conceptual ideal, given that they are expected to move in conjunction with the cranium,
but the typical presence of a nonimplantable lithium-polymer battery inside the mouth—often
in positions through which athletes might chew (e.g., see Figure 3)—raises safety concerns. Cir-
cuitry that would limit the risk of high currents in case of damage to the battery might obviate this
concern, making this the preferred option for the future. Further, such devices must never allow
a battery to be swallowed. Preference for this form factor would be strengthened by the ability
to use such a device in nonhelmeted sports that generate HAEs (e.g., soccer, rugby). As of this
writing, behind-the-ear designs currently offer the best combination of ease-of-use and safety, as
well as sufficient accuracy to permit meaningful prediction of changes in brain health from accu-
mulative exposure data. While there may be some overestimation of accelerations due to the skin
possibly being displaced relative to the underlying skull, previous quantification of this error (89)
was reported for accelerations in a range (6-13 g) well below those likely to represent meaningful
impacts (45). This tested range is also well below thresholds that have thus far been found to be
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relevant to predicting changes in brain health (16, 17, 20, 23). Given the consistency of the counts
of HAEs across helmet- and head-based systems (48), it would be important to document this
error for higher resultant accelerations, because the discrepancies may simply represent a noise
floor that averages out over the course of a larger number of higher-magnitude observations.

Regardless of the site used to assess accelerations, current technologies do a poor job of estimat-
ing rotational accelerations (48, 50, 88), which are conjectured to be critical in assessing the risk
of neural injury (90). Most devices now have embedded gyroscopes or employ machine learning
algorithms to classify the most likely rotational acceleration based on the profile of (measured)
translational accelerations. The latter technique is suspect, in part because the number of real-
world impacts (with accurate classification) required for the training set is almost never acquired
and therefore tends to result in a strong (and perhaps erroneous) linear relationship between the
reported peak translational and rotational accelerations (45). Even using an embedded gyroscope
does not represent a panacea, because these devices more typically report rotational velocity, and
the acquired signals must be numerically differentiated to obtain acceleration measurements. The
subsequent preservation of high-frequency noise complicates translation of the sensor accelera-
tion to the center-of-mass of the athlete’s head. Further, the sampling rate required to achieve
high-fidelity translation to the center-of-mass is quite high, complicating the power requirements
to achieve the necessary data acquisition, storage, and transmission.

Fortunately, the literature thus far indicates that generic hit counts, particularly those counting
only HAESs registering above particular thresholds of translational acceleration, are effective for
crude prediction of what is likely the initiation of an underlying neural injury and repair process.

The use of current devices to count HAEs is likely of greatest benefit in providing athletes and
coaches evidence of player technique, practice activities, or positional mismatches that warrant
examination and possible intervention. Regardless of the technology used, counting HAEs does
not yet provide a clear indication of the present brain health for a given athlete. However, these
counts are likely to be effective as a proxy for identifying athletes at greater risk of substantive
HAEs—and therefore at greater risk of high-energy impacts that would be expected to increase
the risk for neural injury.

Future development of technology for monitoring HAEs can likely incorporate information to
support enforcement of protective rules. For example, measuring and monitoring orientation of
the head of a football athlete may permit automated calling of penalties for spearing or otherwise
lowering one’s head prior to tackling or blocking. Additional information could be generated by
such devices. This includes relative positions of the heads/helmets of multiple players involved in
a collision, perhaps alerting coaches and athletic trainers to the individual who struck their head
on another athlete’s knee or the ground—two causes frequently documented to be associated with
subsequent diagnosis of concussion (91-93).

Protective Technology

In 1973, the National Operating Committee on Standards for Athletic Equipment (NOCSAE)
adopted a drop-tower test that was subsequently used to certify football helmets. Similar standards
were later developed for hockey and lacrosse helmets. These standards dramatically reduced the
number of skull fractures and fatalities (94). Using drop-tower-based methods, it was established
that current football helmets offer significantly more protection than do lacrosse helmets (95) and
that the differences between new and used lacrosse helmets are minor (96). Aftermarket add-on
devices, such as the Guardian Cap, demonstrated some improvements, but the effect sizes were
small (97). It should be noted, however, that the traditional drop-tower systems and the more
modern versions that utilize pneumatic rams employ similar output metrics, which have never
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been validated against closed-head trauma. In 2019, Cummiskey et al. (98) reported a system that
integrated a modal impulse hammer to record the input force with a Hybrid III Headform adapted
to output the translational and angular accelerations. Quantifying both the inputs and outputs
makes it possible to obtain a transfer function at each impact location that can be used to evaluate
the effects of specific helmet design elements.

Such testing capabilities are crucial because recent studies on high school football and women’s
soccer have demonstrated that changes in neurovascular coupling (20) and brain chemistry (23)
correlate best with the number of head impacts exceeding 50 g in magnitude, while structural
changes in the brain, quantified with diffusion-tensor imaging, were found to correlate with lower
acceleration levels (16). These data provide the first true design goals for helmets and other pro-
tective systems aimed at reducing the cumulative burden of HAEs. Current data on football (98)
and lacrosse helmets (99) suggest that helmets can be designed to achieve the 50-g threshold for
the 95th percentile head impact observed in high school and collegiate contact sports. It should
be noted, however, that the ultimate validation of new helmet features will require the aforemen-
tioned MRI gold standard to quantify changes in brain structure, function, and chemistry.

Detection

As we enhance the ability to monitor HAEs, the critical question of confirmation of the devel-
opment of pathophysiology rises to the fore. Any approach that seeks to reduce exposures, to
improve protection, or to monitor and predict pathophysiology merely serves to improve our as-
sessment of the risk of injury in any given individual. Diagnosis and treatment of HAE-associated
pathophysiology requires a local, effective means to confirm the presence of that pathophysiol-
ogy. Methods to detect alterations in brain health represent one frontier upon which depends the
scientific pursuit of the consequences of prophylactic interventions intended to prevent repetitive
HAE exposure and their translation into future standard-of-care for preventing brain injury.

Several tools have been promoted as potential means to enhance diagnosis of concussion, with
an eye toward detection of the more subtle neurological alterations associated with repetitive
HAE exposure. Some of these tools are primarily checklist evaluations—such as the Sport Con-
cussion Assessment Tool (SCAT), Concussion Symptom Inventory (CSI), and Glasgow Coma
Scale (GCS). Although these have been used as a means to regularize assessment of the most
commonly observed symptoms associated with a diagnosed concussion (100-104), at least one
(GCS) was never intended or validated for that purpose. Recent tools development has emphasized
computer-based versions and/or extensions of traditional neuropsychological tests, such as the Im-
mediate Post-Concussion Assessment and Cognitive Testing ImPACT) battery (105, 106). Such
tests are intended to evaluate higher-order cognitive function that relies on greater neurological
integration and may, therefore, be more likely affected by subtle alterations in the transmission
of information in the brain (107-109). However, computer-based neuropsychological testing is
sensitive to how it is administered, and interpretation of results is not trivial (110-112). Finally, as
a complement to neuropsychological tool extension, there have been efforts to apply neurological
function testing to head injury (with or without a diagnosis of concussion), including assessments
developed for vestibular function (113-117), oculomotor behavior (118-120), or the integration
thereof (121-123).

Nearly all of these tools (or their subcomponents) were originally developed to confirm
symptomatic concussion—i.e., used by clinicians in an effort to quantify deficits associated with a
suspected or already-diagnosed concussion, allowing some recovery tracking in the acute period
following injury. While proving to contribute some value in the multifactorial assessment of
nonconcussed populations exposed to HAESs, none of these tools has been found to definitively
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suffice as a diagnostic vehicle (e.g., 124-126). Serving in the role of a diagnostic aid, many of
these tools offer limited benefit, because they suffer from shortcomings related to reproducibility
and subsequent reliability of individual-subject baselines (111, 127-129—but see 130 for a coun-
tering view). Perhaps these shortcomings tie back to the fact that few such tools provide direct
information about the underlying physiology, and whether it remains intact or is compromised.

The most robust insights into the presence and nature of pathophysiologic alterations asso-
ciated with exposure to HAEs have been derived from medical imaging research. Noninvasive
measures that are capable of quantifying physiology and structure offer the best opportunity to
detect presymptomatic changes in body tissues and have been readily adopted by multiple clini-
cal fields (e.g., cardiology). With pathophysiology from HAE exposure being first observed with
fMRI (3, 4), it is no surprise that various modalities of MRI have proven effective in detecting
and characterizing physiological alterations in collision-sport athletes that lie outside the range of
natural variation of peer populations who are not engaging in collision sports. While MRI can jus-
tifiably serve as a gold standard for detection of a range of pathophysiologic outcomes, it remains
an impractical (size and cost) modality to be deployed for widespread detection (and tracking)
of consequences of brain injury. Several neurologically related assessments—Ilargely representing
assessment of oculomotor behavior—have been evaluated in conjunction with MRI acquisitions,
providing key evidence of their potential as portable and affordable options for injury detection
(e.g., 131-133).

Fortunately, other noninvasive imaging modalities that lie outside the traditional standard-of-
care (for persons not diagnosed as concussed) may also reveal measurable changes in brain health
with HAE exposure. Quantitative EEG (QEEG), which is more portable and affordable than
MRYI, has been extensively applied for detection of alterations in brain health, proving highly ef-
fective for detection of concussion (134-137). However, limited effort has been directed at QEEG
categorization of subjects who have been exposed to repetitive HAEs in the absence of symp-
toms, so there is yet little evidence whether QEEG provides a strong match to the gold stan-
dard currently represented by MRI. In contrast, another noninvasive modality that has been used
quite frequently in conjunction with MRI to evaluate concussion or other brain injury is func-
tional near-infrared spectroscopy (FINIRS) (138). Encouragingly, investigations have frequently
observed similar changes in brain physiology as assessed by MRI and FNIRS, while the brain is
at rest (139) and during task performance (140). As researchers seek to overcome the logistical
impediments associated with MRI from the evaluation of brain health in concussed and noncon-
cussed individuals exposed to HAEs, it is likely that one or more alternatives will meet a minimum
standard to become widely adopted and enhance the standard of care.

IMPLICATIONS FOR HAE-RELATED BRAIN INJURIES

Failure to diagnose injuries that are (by traditional methodologies) undetectable at the time of
acute injury, but are suspected to contribute to catastrophic debilitation later in life, is the most
important health issue facing sports today. Lack of coherence across the diversity of neural tissues
that are compromised by TBI implies that there is no reason to expect consistency of easily observ-
able symptoms in a population exposed to repetitive HAEs. Such an implication is well supported
by literature that documents a high rate of missed or unreported concussions (e.g., 28, 32), and
by inconsistent imaging findings in populations exhibiting a common clinical presentation (141).
We must accept that in studies of concussion—and perhaps even more typically in other forms of
TBI—populations are sampled as a whole across a range of a complex postinjury repair processes
despite the fact that these populations are possessed of unique (to each population) patterns of
compromised tissues. In other words, deviations from normality induced by repetitive HAEs or
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other subconcussive events are fundamentally diffuse and, over time, likely expand and coalesce
to impair transmission of information around the brain, at which point symptoms arise and the
underlying injury is finally acknowledged (107, 109).

This hypothesis regarding an accumulative origin of symptomatic brain injury does not pre-
clude an individual from exhibiting easily observable symptoms arising de novo from a single
event. Should a particular event result in sufficient mechanical strain to compromise a functional
unit of tissue (e.g., the lateral geniculate nucleus on one side of the brainstem, leading to inability
to see a full field of vision), there is no reason to expect the individual to remain asymptomatic.

Ultimately it may be argued that the only difference between a subconcussive event and a
concussive event is one of degree, in terms of the severity and focal nature of the tissue-level injury.
Therefore, it is imperative that we continue to investigate and learn about cause and effect in brain
health for collision-sport athletes (as a specific test bed), for the sake of current participants and
generations to come.

CONCLUSION

HAEs—whether resulting from direct impacts, blast waves, or whiplash movements—have been
documented with neuroimaging to produce low-level cellular damage and tissue dysfunction (in-
jury) in the brain. These low-level injuries are poorly connected to readily observable clinical
impairments that may be identified as concussion symptoms—an observation not altogether sur-
prising given the complexity and interconnectedness of the brain. Thus, low-level injury can be
deemed subconcussive. Better identification of the HAESs that accumulate and thereby contribute
to ultimately deleterious clinical outcomes can be achieved through improved modeling of en-
ergy transmission and absorption in brain tissues, coupled with enhanced characterization of head
movements. Until such time as these characterizations have been achieved, minimization of HAE
exposure represents the simplest method to reduce accumulative brain injury, particularly for in-
dividuals participating in activities regularly involving collisions (e.g., sports such as football and
soccer). In sports, minimization may be effected through changes in the number or nature of col-
lision activities in practices and games, improved training to promulgate more safe techniques,
and improvements in protective equipment.
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