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Abstract

In the last two decades, numerous studies have conducted patient-specific
computations of blood flow dynamics in cerebral aneurysms and reported
correlations between various hemodynamic metrics and aneurysmal disease
progression or treatment outcomes. Nevertheless, intra-aneurysmal flow
analysis has not been adopted in current clinical practice, and hemodynamic
factors usually are not considered in clinical decision making. This review
presents the state of the art in cerebral aneurysm imaging and image-based
modeling, discussing the advantages and limitations of each approach and
focusing on the translational value of hemodynamic analysis. Combining
imaging and modeling data obtained from different flow modalities can im-
prove the accuracy and fidelity of resulting velocity fields and flow-derived
factors that are thought to affect aneurysmal disease progression. It is ex-
pected that predictive models utilizing hemodynamic factors in combination
with patientmedical history andmorphological data will outperform current
risk scores and treatment guidelines. Possible future directions include novel
approaches enabling data assimilation andmultimodality analysis of cerebral
aneurysm hemodynamics.
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1. CEREBRAL ANEURYSM PATHOPHYSIOLOGY, DIAGNOSTICS,
AND TREATMENT

Cerebral aneurysms are local dilations of cerebral arteries that are estimated to affect from 2%
to 5% of the adult population worldwide (1, 2). Most aneurysms occur within the circle of Willis
(CoW) or the vessels immediately distal or proximal to it. Depending on their shape, aneurysms
can be described as either saccular or fusiform. A saccular aneurysm is a bulge on one side of
an artery, while a fusiform aneurysm incorporates the circumference of the vessel. Saccular and
fusiform aneurysms have distinctive pathogeneses; thus, their clinical management is also differ-
ent (3). Saccular aneurysms, also called berry aneurysms, are more common than their fusiform
counterparts (4) and occur predominantly in the anterior circulation of the CoW (5). Common
locations include the distal internal carotid artery (ICA), anterior communicating artery, and bi-
furcations of the middle cerebral artery. Posterior circulation aneurysms are commonly located
at the basilar artery bifurcation or on the basilar artery branches, namely the posterior inferior,
anterior inferior, and superior cerebellar arteries (5).

A number of hereditary and environmental factors are associated with a risk of cerebral
aneurysm formation, including hypertension and smoking history as well as genetic predisposi-
tion, vessel wall degradation, inflammation, and hemodynamic conditions (6). However, the exact
mechanisms underlying aneurysm progression are still not completely understood (6, 7). Cere-
bral aneurysms are three times more likely to occur in women than in men (5, 6). Approximately
20–30% of patients have multiple aneurysms (9). Aneurysm rupture leads to subarachnoid hem-
orrhage (SAH), with high rates of mortality and a morbidity rate of 50% for survivors (10, 11). A
growing aneurysm may cause a mass effect due to impingement on brain tissue or cranial nerves;
thrombotic aneurysmsmay also cause distal thromboemboli.Cerebral aneurysms are often asymp-
tomatic (12); moreover, the majority of aneurysms remain stable, with longitudinal studies of large
cohorts showing that only 10–15% of aneurysms grow over a timeline of years (13, 14).
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1.1. Diagnostics and Clinical Management

Aneurysms are often discovered incidentally, except when they are impinging on cranial nerves,
causing a mass effect or hemorrhage. Management of unruptured intracranial aneurysms (UIAs)
is challenging because the risk of rupture must be weighed against the risk of intervention (6,
15, 16). Most patients are offered treatment due to the grave consequences of a rupture (4). A
number of risk factors are considered in making a clinical decision, including the aneurysm’s size,
location, and morphology and the patient’s medical history. Aneurysm size is considered one of
the most important risk factors; aneurysms larger than 7 mm are likely to be treated, while gi-
ant aneurysms greater than 25 mm have a particularly poor prognosis if left untreated (17–19).
Aneurysms smaller than 3 mm typically do not cause symptoms and are managed conservatively
(20). Aneurysms in the so-called gray zone, between 3 and 7 mm,may still rupture, and treatment
should be individualized.The International Study of Unruptured Intracranial Aneurysms (ISUIA)
showed that the annual rupture risk for aneurysms less than 10 mm in diameter is 0.05% for pa-
tients without a history of SAH and 0.5% for those with a previous SAH (21). Irregular aneurysm
shape (e.g., with multiple lobes or with blebs/daughter aneurysms) can indicate an unstable lesion
(22). Aneurysm growth is a critical factor in predicting rupture (13); a growing UIA is associ-
ated with a >30-fold-higher risk of rupture than a stable one (23). Risk stratification guidelines
for UIAs that have been developed in large clinical studies include those by ISUIA and UCAS
(Unruptured Cerebral Aneurysm Study) as well as the PHASES (population, hypertension, age,
size, earlier subarachnoid hemorrhage, site) score; the UIATS (unruptured intracranial aneurysm
treatment score); and the ELAPSS (earlier subarachnoid hemorrhage, location of aneurysm, age,
population, size, and shape) score (7, 21, 24–26), resulting in risk calculators in which all clinical
or morphological factors are added to create a certain score. The accuracy of these scores in pre-
dicting unstable aneurysms has been suboptimal (13), potentially due to the lack of quantitative
factors related to intra-aneurysmal blood flow dynamics and wall biomechanics.

The decision regarding which treatment and follow-up option are best for a patient can be
challenging. Surgical clipping is the original treatment method for cerebral aneurysms; however,
the number of aneurysms treated using endovascular options such as coiling or stenting is in-
creasing (15, 16, 27). At the same time, endovascular treatment does not always result in complete
aneurysm occlusion and may fail for wide-necked or thrombosed aneurysms (28). Commonly, mi-
crosurgery results in ligation of the aneurysm neck and is sometimes combined with a bypass for
supplying distal vasculature or, in rare cases, aneurysm resection and microsurgical vessel recon-
struction (4).Microsurgical treatment of aneurysms of the basilar artery is particularly challenging
because it is critical to preserve perforators supplying the brain stem and cerebellum as well as cra-
nial nerves (28). Advantages of endovascular treatment include minimal invasion, reduced inter-
ventional and anesthesia time, and possible treatment of multiple aneurysm sites during the same
procedure (29). Endovascular aneurysm repair is commonly performed using detachable platinum
coils. The coils are deployed into the aneurysm from a catheter in order to obstruct the flow and
induce aneurysm embolization. Multiple coils of various lengths and stiffnesses are subsequently
deployed to completely pack the aneurysmal sac and obliterate the flow. The International Sub-
arachnoid AneurysmTrial, involving 2,143 patients with ruptured intracranial aneurysms repaired
by coiling or microsurgical clipping, demonstrated significantly better outcomes for endovascular
coiling (30). Nevertheless, aneurysm recurrence or recanalization was reported for a significant
percentage of coiled aneurysms, ranging from single digits to more than 30% (31), particularly for
complex and large lesions. Stent-assisted coiling can be used for complex andwide-neck aneurysms
to ensure that the coils remain in the lesion while preserving the patency of the parent artery
(32–34).
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Complex cerebral aneurysms not amenable to coiling or clipping, such as fusiform, wide-neck,
or dissecting aneurysms as well as aneurysms involving vital side branches, are increasingly re-
paired by deploying flow diverter devices (FDs) (35–38). These devices are also known as flow di-
verter stents, pipeline embolization devices, silk flow diverters, and surpass flow diverters. In these
procedures, aneurysm thrombosis is induced by reducing the flow into the lesion while preserving
the flow to side branches and distal vasculature. The tightly woven mesh of the FD provides re-
sistance to the flow across the surface of the device, thus guiding the flow along the parent artery
and away from the aneurysmal sac. Importantly, the FD acts as a scaffold for the endothelium that
will form a new blood channel following the endovascular repair. A meta-analysis by Ye et al. (39)
of multiple clinical studies involving 2,508 patients with 2,826 aneurysm cases demonstrated that
FDs are safe and effective for cerebral aneurysm treatment, with an occlusion rate of 78.8% for an
average of 6.3months of follow-up and neurologicalmorbidity andmortality rates of 9.8 and 3.8%,
respectively, following the procedure. Given the range of available options for cerebral aneurysm
repair, treatment decisions are often based on a neurosurgeon’s preference and intuition, without
considering quantitative data regarding preoperative or postoperative hemodynamic conditions.

1.2. Imaging Cerebral Aneurysms

In this section, we describe the imaging modalities used in diagnostics, evaluation, and treatment
of cerebral aneurysms and discuss the relative advantages and shortcomings of each.We focus on
imaging methods capable of providing functional data, such as flow dynamics, in addition to the
anatomical structure of the aneurysms and the surrounding cerebral vasculature.

The imaging modality most commonly used in clinical practice for both diagnosis and treat-
ment of cerebral aneurysms is digital subtraction angiography (DSA; also called X-ray angiogra-
phy), which is based on X-ray imaging of the flow of an iodine-based contrast agent injected into
the vessel of interest from a catheter (40, 41).The images obtained prior to contrast arrival are dig-
itally subtracted from those with contrast-enhanced vessels, thus removing all other background
tissues from the image. The standard technique acquires a planar, projection view of the imaged
vasculature. A sequence of acquired X-ray images shows the propagation of the injected contrast,
enabling not only visualization of the anatomy but also assessment of the regions with obstructed
or stagnant flow. These dynamic data also have high spatial resolution, allowing for the imaging
of submillimeter blood vessels. The acquisition traces the contrast flow through the arteries, cap-
illary beds, and the venous side of the circulation. These images identify distal vascular territory
supplied by the injected vessel, thus indicating feeding and draining blood vessels for a lesion and
allowing for surgical planning. By varying the position of the imaging C-arm, the operator can
obtain projection images from different perspectives. Rotating the C-arm during the acquisition
allows for the combination of multiple projections to form volume-rendered three-dimensional
(3D) images of blood vessels, termed 3D rotational angiography (3DRA).Most importantly, DSA
is themodality used for image-guided interventions, as it allows the operator to visualize the place-
ment of endovascular devices such as stents and coils and assess their efficiency in altering blood
flow dynamics during the procedure.While invaluable for endovascular procedures,DSA has lim-
itations as a diagnostic modality, as it requires patient catheterization and radiation exposure. Even
though DSA provides time-resolved data with excellent spatial resolution, obtaining quantitative
measurements of the underlying flow fields is quite challenging, as the standard two-dimensional
(2D) projections of the vasculature result in intersection of blood vessels located in different planes
as well as foreshortening of vessels crossing the field of view at oblique angles (42). Injection of the
contrast agent mixture may alter the flow in distal vessels and even cause a retrograde flow through
the collateral arteries. Also, a steady injection is superimposed on the pulsatile blood flow, further
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altering the native hemodynamic conditions. Strother et al. (43) proposed the use of color-coded
DSA to visualize flow patterns and quantify contrast arrival times.While the time interval between
contrast arrival and departure calculated from the images may not objectively measure flow resi-
dence time, color-coded DSAmay detect intra-aneurysmal regions prone to thrombus deposition.

Computed tomography angiography (CTA) is also a clinical standard of care, providing tomo-
graphic images of the cerebral vessels. A large field of view covering the entire cerebral circulation,
starting from the aortic arch, can be obtained in seconds, which is an important advantage in de-
tecting a bleeding aneurysm relative to other modalities. The images of the vascular anatomy can
be enhanced by contrast injection. Previous studies suggested that the sensitivity and specificity of
CTA in cerebral aneurysm diagnostics are comparable to those of DSA (44, 45); however, a recent
report by Philipp et al. (46) showed that CTA has lower sensitivity for detecting aneurysms less
than 5 mm in size. Although it delivers 3D images with submillimeter spatial resolution, CTA is
not resolved in time, thus providing no data on flow conditions. This modality also requires radia-
tion exposure, making it less than ideal for longitudinal studies monitoring aneurysm progression
over time.

Magnetic resonance angiography (MRA) allows for noninvasive 3D imaging of vascular
anatomy without ionizing radiation. Time-of-flight (TOF) MRA is a technique based on satu-
rating a region of interest with repeated radio-frequency pulses, thus obtaining a signal from un-
saturated blood flowing into this region from the proximal arteries (47, 48). TOF does not require
a contrast agent; thus, it is entirely noninvasive. It provides submillimeter resolution sufficient to
image the CoW and its distal arteries. The drawback of TOF MRA is that it can be affected by
signal loss due to saturation in regions of slow flow. This may cause artifacts in imaging of large
aneurysms with regions of flow recirculation, which appear as low-intensity regions. This issue
can be resolved by an intravenous injection of gadolinium to increase the T1 contrast within the
arteries relative to surrounding tissues (49, 50).Gadolinium-enhanced or contrast-enhancedMRA
(CE-MRA) is well suited for monitoring aneurysms with longitudinal studies in order to detect
growth (Figure 1c). In such studies, aneurysmal geometries imaged at the baseline are coregistered
with those imaged at the follow-up study, thus enabling visualization of aneurysm progression as
well as calculation of volumetric change that occurred between the studies (51).

In addition to imaging the lumen, magnetic resonance imaging (MRI) is capable of visualiz-
ing and characterizing the arterial wall with associated pathologies. Vessel wall imaging proto-
col includes a black-blood MR sequence, suppressing the signal from adjacent tissue and blood
to enhance the wall. This MRI technique is invaluable for imaging various wall components,

a b c d

Figure 1

Imaging cerebral aneurysm anatomy and hemodynamics. (a) DSA image. (b) CTA image. (c) CE-MRA maximum-intensity projection
for an ICA aneurysm. (d) 4D flow MRI streamlines for an ICA aneurysm. Abbreviations: CE-MRA, contrast-enhanced magnetic
resonance angiography; CTA, computed tomography angiography; DSA, digital subtraction angiography; ICA, internal carotid artery;
MRI, magnetic resonance imaging. Panel c courtesy of Dr. David Saloner. Panel d courtesy of Dr. Susanne Schnell.

www.annualreviews.org • Hemodynamics of Cerebral Aneurysms 235



BE22CH10_Rayz ARjats.cls May 27, 2020 14:55

visualizing intra-aneurysmal thrombus, and detecting wall inflammation, thus providing insight
into aneurysm stability (52, 53). Imaging the arterial walls of intracranial vessels is challenging due
to their tortuosity and low wall thickness, thus requiring spatial resolution delivered by high-field-
strength MR scanners. Recent imaging studies revealed that unstable cerebral aneurysms are fre-
quently characterized by vessel wall enhancement (54). Zhu et al. (55) conducted high-resolution
MRI in 88 asymptomatic aneurysms and showed that the degree of arterial enhancement is asso-
ciated with traditional aneurysm rupture risk factors calculated by UCAS and PHASES scores.

Blood flow velocities are commonly measured with Doppler ultrasound; however, the skull
prevents the use of this modality for quantifying flow in most intracranial blood vessels. The only
imaging modality that can provide time-resolved measurements of intracranial flow velocities is
phase-contrast MRI (PC-MRI) (56, 57). The phase of the magnetization vector is proportional
to flow velocity, allowing velocity encoding with appropriate gradients of the magnetic field (58).
2D PC-MRI acquisition is based on encoding velocities in one direction, thus obtaining either
through-plane or in-plane measurements. Three-directional velocity encoding synchronized with
an electrocardiogram signal, named four-dimensional (4D) flowMRI, provides time-resolved, 3D
velocity fields (59–61). Recent studies demonstrated the capabilities of 4D flowMRI for capturing
complex flow patterns in the major vessels of the CoW (62–64). The accuracy of 4D flow MRI
is affected by limited spatiotemporal resolution and velocity dynamic range, as well as by image
artifacts and noise. 4D flowMRI in cerebral aneurysms is particularly challenging, since their rela-
tively small size and complex flow patterns may result in underresolved or erroneous velocity mea-
surements. These errors are further amplified in calculations of velocity-derived hemodynamic
forces (62, 65–67). Enhancing 4D flow imaging of cerebral circulation and reducing imaging time
are currently active areas of research (68).

In order to obtain comprehensive information about a cerebral aneurysm, it is often necessary
to use different imaging modalities (Figure 1) to combine angiographic images showing vascular
anatomy with dynamic data that characterize the flow of a contrast agent or, ideally,measure intra-
aneurysmal velocities. In addition, vessel wall imaging is crucial for detecting intra-aneurysmal
thrombus, atherosclerotic deposits, and local inflammation of the arterial wall.

2. IMAGE-BASED MODELS OF CEREBRAL ANEURYSM
HEMODYNAMICS

Local hemodynamics is key in the initiation, progression, and rupture of cerebral aneurysms (69–
74); however, multiple studies investigating the exact relationship between the flow factors and
aneurysmal disease have provided controversial results (75–77). In the last two decades, numerous
research groups have developed modeling pipelines generating patient-specific models of the flow
in cerebral aneurysms based on medical imaging data. Steinman & Pereira (78) recently investi-
gated the sources of error and variability of state-of-the-art computational fluid dynamics (CFD)
models of the flow in cerebral aneurysms. Several CFD challenge studies were conducted in which
the same aneurysms were modeled by multiple research teams (79–83). The results were highly
variable, showing that computed flow fields and hemodynamic forces depend on the modeling
methods and assumptions used by the modelers. In this section, we describe the key steps in con-
ducting image-based flow simulations for cerebral aneurysms, discuss modeling assumptions and
sources of error, and demonstrate clinical applications of CFD models.

2.1. Patient-Specific Modeling Pipeline

In order to simulate flow and determine hemodynamic metrics related to aneurysm progression,
patient-specific models are generated from medical imaging data. While a variety of modeling
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methods and tools can be used for this purpose, the modeling pipeline typically starts from seg-
mentation of medical image data and construction of 3D vascular geometries. The flow is then
either simulated by solving the governing Navier–Stokes equations or measured in experiments
conducted in patient-specific flow phantoms. For both approaches, it is essential to ensure that
the flow conditions at the inlets and outlets of the model represent the flow in an actual patient.
Once the velocity distribution is either computed or measured, various flow-derived metrics can
be calculated and analyzed.

2.1.1. Image segmentation. The first step in generating an aneurysm model is to segment im-
age data in order to obtain a 3D geometry of the aneurysm with its proximal and distal vessels.
The segmentation process depends on the imaging modality, with 3DRA typically considered the
gold standard due to its high spatial resolution (78, 84). Importantly, because 3DRA is a standard
of care, 3DRA data are available for large cohorts of patients, thus allowing CFD studies to be
conducted for a statistically significant number of aneurysms (69, 85). Alternatively, aneurysmal
geometries can be obtained from CTA or MRA data. Geers et al. (86) reported significant differ-
ences in aneurysm necks reconstructed from CTA versus those obtained from 3DRA, which were
explained by the difference in imaging resolution. Ramachandran et al. (87) assessed the sensitivity
of resulting geometries to imaging modality by using imaging data with comparable spatial res-
olutions. A comparison of morphological metrics for models generated from in vitro and in vivo
imaging with 3DRA, CTA, TOF-MRA, and CE-MRA found consistency across the resulting ge-
ometries. As described above, while 3DRA and CTA provide only vascular anatomy, MRI studies
can incorporate PC-MRI velocity measurements, thus providing patient-specific flow conditions
(88, 89). Image resolution and quality, as well as segmentation approaches, are considered to be
major sources of variability for patient-specific modeling (78, 82). The finite size of image voxels
results in a partial volume effect, that is, an approximation of a continuous smooth vessel wall by
rectangular voxels. Image artifacts and noise often require manual adjustment of the segmented
surfaces, thus making modeling results dependent on operator experience and intuition. Once the
3D vascular geometries are obtained, the region to be modeled, typically involving the aneurysm
with the vessels immediately proximal and distal to it, has to be selected.

The CFD challenges demonstrated variability in segmenting the same image data sets among
participating research groups (79, 82). Several studies investigated the effect of the proximal ves-
sel geometry on the flow in cerebral aneurysms, demonstrating that maintaining long segments of
the arteries feeding the aneurysm is crucial for matching patient-specific flow conditions (90–92).
Finally, some degree of smoothing is usually applied to ensure that there are no discontinuities or
sharp edges in the resulting surface of the model, which could affect the quality of the computa-
tional mesh. It is important to ensure that surface smoothing does not alter the size of modeled
vessels, which would affect the computed velocity fields.

2.1.2. Numerical solution of the Navier–Stokes equations. The flow in major cerebral ar-
teries is highly three dimensional and is characterized by intermediate Reynolds and Womersley
numbers, thus requiring a numerical solution of the unsteady Navier–Stokes equations. Various
solvers, using a finite-volume, finite-difference, or finite-element approach, are used to obtain
a numerical solution for velocity and pressure fields. Botti et al. (93) compared the accuracy of
finite-volume and finite-element CFD solvers in modeling intracranial aneurysm flow and con-
cluded that both solvers converge to the same numerical solution provided sufficient refinement
of the computational mesh. The CFD challenges showed the variety of numerical solvers used
by different research groups, with some teams combining commercial modeling packages with
in-house scripts and other groups relying on software they developed specifically for modeling
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hemodynamics. There are a couple of open-source platforms providing tools for the entire mod-
eling pipeline, from image processing to flow visualization and analysis (94, 95). These platforms,
based on a finite-element flow solver, provide unique capabilities for specifying inlet and outlet
boundary conditions, as described below. A computational mesh is generated on the domain in
order to discretize the governing flow equations. An unstructured mesh is commonly used due to
the complexity of the vascular geometries. It is crucial to ensure mesh independence of the numer-
ical solution, that is, to establish that the spatial resolution of the computational mesh is adequate
for resolving flow features in the region of interest. An important paper by Valen-Sendstad &
Steinman (96) considered the effect of increased spatial and temporal resolution of CFD simula-
tions on various hemodynamic parameters. Both high- and normal-resolution simulations were
carried out for the same group of aneurysms by using quadratic versus linear mesh elements in
the numerical discretization and increasing the number of time steps per cardiac cycle by an order
of magnitude. The results showed that numerical discretization used in state-of-the-art simula-
tions may underresolve flow fields in cerebral aneurysms, thus not detecting unstable or turbulent
flow and dynamic changes of wall shear stress (WSS) over the cardiac cycle. Nevertheless, time-
averagedWSS distributions were similar for both normal- and high-resolution computations.The
time steps used in a numerical simulation should be sufficiently small to resolve temporal changes
of the flow. Recent high-resolution CFD studies revealed flow instabilities and intermittent struc-
tures in cerebral aneurysms that were not detected in simulations with default solving settings and
underresolved meshes (97–99).

2.1.3. Modeling assumptions and flow boundary conditions. CFDmodeling of flow in cere-
bral aneurysms requires assumptions regarding the flow regime, blood rheology, arterial wall com-
pliance, and, most importantly, flow boundary conditions at the inlets and outlets of the model.
We address each of these assumptions, as they contribute to variability of patient-specific CFD
modeling.

Flow in cerebral arteries is commonly assumed to be laminar, as the Reynolds numbers are
in the range of several hundred; however, pulsatile flow in stenotic or aneurysmal vessels may
have unsteady shear layers, which lead to transitional flow, as described in the previous section
(97–99). Appropriate flow regime remains an open question, particularly since state-of-the-art in
vivo flow measurements in cerebral aneurysms lack the temporal resolution required to detect
transitional flow. Several studies have addressed non-Newtonian blood behavior and its effect on
intra-aneurysmal flow (100, 101). The shear thinning and yield stress properties of blood caused
by the interaction among red blood cells (RBCs) can be accounted for by various non-Newtonian
viscosity models. Several reports suggested that non-Newtonian viscosity can influence WSS and
intra-aneurysmal thrombus deposition in cerebral aneurysms; however, the non-Newtonian blood
behavior is currently thought to have a secondary effect on the flow (78). The non-Newtonian
blood behavior is significant in flow with shear rates below 100 per second, which is usually below
the range observed in cerebral aneurysms.Moreover,while RBC aggregationmay take several car-
diac cycles, such aggregations break apart in higher-shear-rate regions practically instantaneously.

Accounting for arterial wall compliance requires conducting fluid–structure interaction sim-
ulations in which the flow dynamics equations are coupled with solid mechanics equations. In
addition to increased computational cost and complexity, this approach is challenging due to the
lack of information on vessel wall geometry and material properties available from imaging data.
A nonuniform wall thickness and the variability of the structural components that constitute the
aneurysmal wall may cause drastic differences in stress distribution. While advanced MRI tech-
niques such as black blood (52) may eventually be able to provide such data, incorrect assumptions
may lead to numerical results that would be inferior to those obtained assuming a rigid wall (84).
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In addition, aneurysmal disease is characterized by loss of elastic lamina and overextension of the
collagen fibers, resulting in reduced wall compliance (102).

The remaining assumption, inflow and outflow conditions, is perhaps the most disputed part of
image-basedCFDmodeling.A computationalmodel represents only a small part of the circulation
and therefore requires information on the flow in the vessels proximal and distal to the modeled
region. The only modality capable of in vivo flow measurements is 4D flow MRI; however, at
present it is used for imaging cerebral aneurysms at only a few research centers. Moreover, as
discussed above, the limited spatiotemporal resolution and image noise may affect the accuracy
of 4D flow data, often resulting in a discrepancy between the inlet and outlet flow rates, thus
contradicting the principle of mass conservation. Regardless of these shortcomings, obtaining at
least 2D PC-MRI measurements can improve the fidelity of CFD simulations (78, 84). In the
absence of patient-specific flow data, the velocity and pressure values at the inlets and outlets must
be either prescribed from published data or calculated from reduced-order models. The inlet flow
waveforms obtained from the literature can be scaled for a patient-specific vessel size on the basis
of the optimal WSS values observed in healthy arteries.

There is a general consensus that assigning zero pressure at all outlets should be avoided, as it is
not based on physiology (84). Outflow boundary conditions can be prescribed using Murray’s law.
This law, based on kinetic energy minimization, assumes that the flow division is proportional to
the cube of the vessel radius.While this assumption is based solely on the geometry of the branches
immediately distal to the model, it may be fairly accurate, as blood vessels remodel according to
their flow rate in order to maintain an optimal WSS (103). The state-of-the-art approach is based
on coupling the 3DCFD domain with reduced-order models of the surrounding vasculature (104,
105). In the open-source modeling platforms developed for patient-specific hemodynamic simu-
lations, distal and proximal vascular territories are modeled using lumped parameter networks
coupled with a finite-element solver (94, 95, 104). Alternatively, one-dimensional Navier–Stokes
solutions based on flow variables averaged over vessel cross sections can be coupled to full 3D
equations (106, 107). An important advantage of the reduced-order models is their ability to sim-
ulate flow alterations caused by vascular interventions. Surgical clipping of a vessel or adding a
bypass can be modeled by adjusting the resistance and capacitance of the corresponding segments
of the equivalent network model.

2.1.4. Computing clinically relevant metrics. The numerical solution of the Navier–Stokes
equations provides velocity and pressure distributions that can be used to calculate flow-derived
variables thought to be related to arterial wall remodeling. Multiple flow metrics based on intra-
aneurysmal flow characteristics (e.g., velocity, vorticity, flow rates, and residence time),WSS (e.g.,
time-averagedWSS, oscillatory shear index,WSS spatial gradient, and area of low or highWSS),
pressure difference (temporal and spatial), and energy (e.g., kinetic energy and viscous dissipation)
are used to find correlations between hemodynamic forces and aneurysm progression. A couple
of papers provide comprehensive lists of hemodynamic variables correlated to aneurysm rupture
(108, 109). While intra-aneurysmal flow fields can markedly vary over cardiac cycle, there is ev-
idence that time-averaged flow metrics are equally effective in aneurysm risk stratification (109).
CFD challenge studies (79, 83) showed that normalizing flow metrics computed in the aneurysm
to some reference values, such as those computed at the parent vessel, improved the agreement
and consistency of CFD results obtained by different modeling teams. This finding suggests that
patient-specific CFD results should be considered not as absolute and fixed values but rather as
relative distributions that could be affected by changes in physiological activity or stress level.
CFD data allow for colorful visualization of the flow fields and corresponding distributions of the
flow-derived parameters (Figure 2), with some critics referring to CFD as “colors for doctors.” It
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Figure 2

Numerical simulations of blood flow in an internal carotid artery aneurysm. (a) Flow streamlines. (b) Wall
shear stress distribution. The computational model is generated from magnetic resonance imaging/magnetic
resonance angiography data obtained at San Francisco VA Medical Center.

is challenging, however, to distill this abundant information into a few specific indices that clin-
icians can use for therapeutic decision making. Establishing relevant hemodynamic factors and
determining their uncertainty are the focus of current research in cerebral aneurysm modeling.

2.2. Experimental Flow Models

While the vast majority of patient-specific models of cerebral aneurysms use the computational
approach, in vitro flow measurements provide valuable insights into intra-aneurysmal hemody-
namics and can serve as benchmark data for CFD validation. Vascular geometries obtained from
imaging data, as described in Section 2.1.1, are used to fabricate flow phantoms with 3D print-
ing (110, 111). The phantoms are then connected to a flow loop with a blood-mimicking fluid,
typically a mixture of glycerol and water. Two primary methods used for experimental flow mea-
surements in cerebral aneurysm models are particle image velocimetry (PIV) and in vitro 4D flow
MRI. In order to conduct PIV measurements, the flow is seeded with fluorescent particles, a 2D
plane or a volume is illuminated by a flashing laser, and particle motion is recorded with high-
speed cameras. This approach can provide spatiotemporal resolution comparable to that of CFD
models.Most PIV studies in cerebral aneurysms have measured the flow in a cross-sectional plane
due to challenges in obtaining volumetric data in complex and tortuous geometries. The Lieber
group (112, 113) carried out pioneering studies on flow diverters placed in aneurysm models and
found a strong correlation between PIV measurements and X-ray angiography data. A compari-
son of CFD simulations and PIV measurements conducted by Ford et al. (114) in replicas of two
cerebral aneurysms with matching boundary conditions demonstrated good overall agreement
of the velocity fields. Raschi et al. (115) compared PIV and CFD results in models of a growing
aneurysm constructed from imaging data acquired at three time points during the aneurysm evolu-
tion. The measured and computed velocities were found to be in good qualitative and quantitative
agreement, except for some discrepancies in the near-wall regions.

High-resolution data obtained in CFD and PIV models can be used to assess the accuracy of
4D flow MRI. van Ooij et al. (66) compared CFD and 2D PIV results with in vitro 4D flow MRI
measurements in a cerebral aneurysm phantom, showing reasonable qualitative and quantitative
agreement of both modeling modalities withMRI data under steady and pulsatile flow conditions.
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The root-mean-square errors of the velocity magnitude in the CFD and MRI comparison (4–5%
of the maximum PC-MRI velocity) were smaller than those for the PIV and PC-MRI compari-
son (10–12% of the maximum PC-MRI velocity), which could be explained by the experimental
setup. An instructive study by Roloff et al. (116) compared several flow quantification techniques,
including CFD; in vitro PC-MRI; and standard, stereoscopic, and tomographic PIV. Steady flow
fields acquired with multiple modalities in a silicone model of an ICA aneurysm were compared
using a similarity index that accounted for velocity vector direction and magnitude. The quantita-
tive agreement between CFD and all PIV methods was high; however, PC-MRI data had inferior
agreement with the other modalities due to this technique’s lower resolution.

The resolution of imaged velocity fields can be increased by scaling flow phantoms, as long as
the Reynolds and Womersley numbers of the experimental and in vivo flow fields are maintained
the same. In a comprehensive analysis,Amili et al. (117) investigated various flowmetricsmeasured
with 4D flow MRI in a scaled aneurysm phantom and compared the results with numerical sim-
ulations reported for the same aneurysm in the 2012 CFD challenge (81). Good agreement was
found for cycle-averaged quantities; however, significant discrepancies between MRI and CFD
were present at peak systole. Increased spatial and temporal resolution of in vitro measurements
allowed for meaningful comparison of the main flow statistics and demonstrated the potential of
4D flow MRI in capturing intra-aneurysmal hemodynamics, which may eventually be attainable
in vivo. Although they provided cross-validation for both numerical and experimental approaches,
these studies did not compare modeling results with in vivo velocity data. A comparison of in vivo
4D flowMRI measurements with both CFD and PIV models was recently conducted by Brindise
et al. (118). While the general velocity features acquired with different modalities were similar,
substantial discrepancies were found in distributions of WSS, oscillatory shear index (OSI), and
relative residence time (RRT). Since the same algorithms were used to compute these flow-derived
variables from velocities obtained with all modalities, the observed differences should be attributed
to the specific assumptions and uncertainty of each flow quantification approach.

2.3. Image-Based Computational Fluid Dynamics Models in Unruptured
Intracranial Aneurysm Risk Stratification and Interventional Planning

As patient-specific modeling tools became more sophisticated and the time required to carry out
flow analysis decreases, a few research teams collaborated with clinicians to conduct modeling
studies for relatively large cohorts of cerebral aneurysm patients. These studies aimed to provide
guidance either in risk stratification of UIAs or in planning surgical or endovascular interventions.
Below, we discuss some of the successful studies that demonstrated the potential value of hemody-
namic modeling for assessment of aneurysm stability or for predicting interventional outcomes.
Note that while these models provided valuable results, they have not necessarily affected clinical
decisions regarding treatment options for these patients.

2.3.1. Predicting cerebral aneurysm growth and rupture. Despite numerous studies on
the subject, assessing the risk of aneurysm rupture remains a clinical challenge. As discussed in
Section 1.1, most UIAs remain stable, with approximately 10–15% showing growth in longitu-
dinal studies (13, 14), but since an aneurysm rupture leads to high mortality and morbidity rates
(10, 11), most UIAs are currently treated even if the probability of rupture may be negligible.
Risk stratification scores such as those from the ISUIA and UCAS, as well as PHASES, UIATS,
and ELAPSS, mentioned above (7, 21, 24–26), are based on a combination of aneurysm location
(e.g., posterior or anterior), morphology (e.g., size, shape), and clinical factors (e.g., comorbidities,
age, gender, smoking status, family history). These scores do not account for local hemodynamic

www.annualreviews.org • Hemodynamics of Cerebral Aneurysms 241



BE22CH10_Rayz ARjats.cls May 27, 2020 14:55

factors, which require either patient-specific modeling or in vivo imaging of the flow. At the same
time, deterministic CFD models in which aneurysm stability is predicted solely by hemodynamic
factors are oblivious to clinical data. There is a general consensus that a comprehensive clinical
tool predicting a risk of aneurysm rupture has to incorporate clinical, morphological, and biome-
chanical factors and deliver a probabilistic risk assessment rather than a deterministic answer on
a patient-specific basis. A small number of studies performed statistical analyses that combined
hemodynamic indices with aneurysm location and morphology (14, 62, 69, 70, 108, 119). In a
prospective longitudinal study of almost 200 UIAs, Ramachandran et al. (14) compared aneurysm
geometry (size and shape), multiple hemodynamic metrics, and pressure-induced wall tension
computed from image-based models and found that image-derived biomechanical factors were
not significant in differentiating stable and unstable aneurysm populations. In a couple of studies
featuring sufficiently large cohorts of stable and unstable aneurysms, statistical methods ranging
from regression analysis to deep learning algorithms were trained on these comprehensive data
sets (69, 108). The largest of these studies, by Detmer et al. (108), considered 1,631 aneurysms
in 1,061 patients with 492 aneurysms ruptured. Following an evaluation of the contributions
of 22 hemodynamic and 25 morphological parameters, the final statistical model retained 11
hemodynamic and 12 morphological variables as well as aneurysm location and patient age and
gender. This model was then tested on a subset of aneurysms excluded from the training data
and was shown to discriminate between ruptured and unruptured aneurysms with an AUC (area
under the curve) of 86%. These impressive results illustrate the potential of image-based CFD
models in risk stratification of cerebral aneurysms; however, a limitation of this study is that it
was based on single-time-point data rather than longitudinal studies of cerebral aneurysms. The
aneurysms considered stable at the time of the study may have ruptured later on, potentially
affecting the predictive capabilities of the statistical model.Note that a longitudinal study of UIAs
has an intrinsic selection bias since high-risk aneurysms are always treated rather than monitored,
with the exception of cases when intervention is not feasible or is rejected by the patient.

2.3.2. Modeling postoperative flow dynamics in cerebral aneurysms. In addition to eluci-
dating the role of biomechanical factors in aneurysmal disease initiation and progression, patient-
specific modeling provides a unique framework for analysis of postoperative hemodynamic con-
ditions, which cannot be imaged a priori. A few studies have modeled the postoperative flow fields
that would result from surgical treatment of complex cerebral aneurysms (42, 89, 120, 121). In
this framework, preoperative image data are used to construct a patient-specific CFD model that
is then modified according to the proposed intervention. Some of these studies considered indi-
rect surgical clipping of fusiform aneurysms of the basilar artery, which are not amenable to direct
clipping or coiling due to possible occlusion of pontine perforators or distal branches (28). The
surgeries aimed to reduce the flow through the basilar trunk, thus decreasing hemodynamic forces
acting on the aneurysmal wall and inducing intra-aneurysmal thrombus layering, in the hope that
this may prevent aneurysm rupture. The flow was reduced by surgical clipping of a supplying ver-
tebral artery or proximal basilar trunk, accompanied by a middle cerebral to posterior cerebral
artery bypass to ensure retrograde filling of the distal basilar territory (122). Alternative surgi-
cal scenarios were simulated for a small group of patients in order to predict intra-aneurysmal
regions prone to postoperative thrombus deposition, thereby indicating interventional options
likely to cause complications (42, 89, 120, 121). Even though only one of the simulated surgical
scenarios could be implemented, in most cases CFD-predicted regions of thrombus deposition
matched those observed following the procedure. The limitation of this modeling approach was
the inability to account for altered cerebral flow distribution following the intervention.
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Image-based CFD models have been demonstrated to predict flow fields resulting from en-
dovascular interventions such as aneurysm coiling and deployment of FDs. CFD modeling of the
flow following coiling or FD placement involves modeling these devices in addition to the flow.
A realistic finite-element model of embolic coils developed by Babiker et al. (123) showed that
posttreatment flow conditions depend on variations in packing density and the shape of the coils.
In addition to drastically increased computational cost due to resolving endovascular device ge-
ometries and surrounding boundary layers, numerical simulations depend on reliable prediction
of the device position and orientation relative to the vascular geometries. A virtual deployment
of coils and FDs can be simulated prior to flow modeling (124–129); alternatively, these devices
could be modeled using a porous medium approach (130, 131). In the virtual stenting approach, a
generic FD mesh generated along a vessel centerline is computationally expanded until it reaches
the luminal surface; the wires of an FD are then constructed on the resulting surfaces (126). The
porous medium approach reduces computational cost and generally agrees with simulations re-
solving device geometries, as well as with postoperative clinical data; however, the key limitation
is that permeability variations caused by bending and interaction with arterial walls cannot be
inferred without modeling or imaging patient-specific device orientation (131).

In order to assess the efficacy of the FD treatment, intra-aneurysmal hemodynamic conditions
prior to and following the procedure must be compared. Changes in the intra-aneurysmal ve-
locities, flow rates, and viscous energy dissipation, as well as a decrease in WSS and an increase
in flow residence time, provide quantitative measures that predict the likelihood of successful
aneurysm embolization following FD placement. Cebral et al. (132) indicated that an increase
in intra-aneurysmal pressure following FD treatment may cause aneurysm rupture. Paliwal et al.
(133) simulated preoperative and postoperative flow fields in 15 cerebral aneurysms and compared
the hemodynamic changes resulting from FD treatment with observed clinical outcomes. The re-
sults computed for successful and unsuccessful embolization cases (Figure 3) showed a similar
50% reduction in intra-aneurysmal velocities; however, the reduction in vortex core lines and the
energy loss were 38.2% and 42.9%, respectively, for successful cases and approximately 10% each
for unsuccessful cases. A detailed CFD study by Mut et al. (134) investigated the relation between
flow changes and posttreatment occlusion time in 23 aneurysms. A statistical analysis of multiple
flow metrics found significant differences in postoperative velocities, inflow rates, and shear rates
between aneurysms that were completely occluded 3 months after treatment and those that re-
mained partially patent 6 months after treatment. Interestingly, this study showed that aneurysm
occlusion time is determined by postoperative flow conditions immediately after FD placement,
rather than by the difference between the pre- and posttreatment flows in the same lesion. Mod-
eling flow alterations resulting from FD deployment can assist surgical planning by providing
information on the appropriate length and positioning of the device, evaluating whether a nested
FD construct is needed to increase resistance to the flow, and predicting the outcome of the pro-
cedure. Moreover, CFD simulations enable evaluation and optimization of the design of novel
FDs (128, 135).

3. BRIDGING THE GAP BETWEEN CLINICAL PRACTICE
AND PATIENT-SPECIFIC MODELS

Although image-basedmodels are capable of providing expansive data quantifying patient-specific
hemodynamic conditions and forces, cerebral aneurysm modeling remains a research approach
rather than a clinical tool for evaluation and treatment of these lesions. While numerous reports
on CFD modeling conducted for large cohorts of patients have been published in biomedical,
imaging, and clinical journals and presented at scientific meetings, the translational value of these
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Figure 3

Local hemodynamics before and after flow diverter device treatment in representative successful cases, along
with clinical images before treatment and at 12-month follow-up. Figure adapted from Reference 133,
courtesy of Dr. Hui Meng.

studies remains controversial. Among the various reasons why the quantitative approach is not
readily adopted by clinical community, the following are the most important in our opinion: the
challenges in conducting state-of-the-art modeling in clinical settings, the quantification of un-
certainty of the modeling results, the controversy regarding exact mechanisms linking local hemo-
dynamics and aneurysm vascular biology, and, finally, the lack of clearly defined indices that could
be used for making clinical decisions. We address each of these shortcomings in the subsections
below.

3.1. Conducting Modeling Studies in a Clinical Setting

The first challenge is that patient-specific modeling requires highly specialized software tools for
medical image processing, 3D modeling of vascular anatomy, numerical solutions of the govern-
ing equations, and postprocessing of the results. As described above, few open-source platforms
have been designed specifically for comprehensive image-based flow analysis (94, 95); thus, many
research teams are either developing their ownmodeling tools or using various combinations of in-
house scripts and commercial software packages.Regardless of themodeling approach, generating
image-based CFD models and analyzing the resulting data require highly proficient researchers
specifically trained in this interdisciplinary field. We note that it typically takes a couple of years
for biomedical graduate students to reach the level of expertise required to conduct reliable CFD
simulations of cerebral aneurysm hemodynamics. While rapid progress in machine learning al-
gorithms is posed to automate image segmentation (136, 137) and dramatically reduce modeling
time and cost, knowledge of flow physics and cardiovascularmechanics will likely remain necessary
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for patient-specific hemodynamic analysis. Since it is impractical to train medical practitioners in
advanced CFD modeling and implausible that each medical center will keep on staff a model-
ing expert, the remaining alternative is to use cloud-based computing to conduct flow analysis
at dedicated centers. In this paradigm, implemented by HeartFlow, Inc. (138), medical imaging
data acquired for a patient are securely transferred to a dedicated server, at which point a team
of modeling experts carries out numerical simulations. A report summarizing the computational
results is then returned to the clinic. In order to conduct studies on large cohorts of patients, it is
crucial to develop fully automated methods for converting imaging data to geometric models for
CFD simulations. Seo et al. (139) developed a highly automated modeling framework based on a
level-set segmentation of 3D angiograms and an immersed boundary CFD solver and used it to
compute the flow in several cerebral aneurysms. Cartesian grids allowed these authors to avoid
meshing luminal surfaces and could be easily refined to improve the resolution in smaller vessels.
Adopting deep learning algorithms for image segmentation will allow further reduction of the
modeling time and automated elimination of image artifacts, as evidenced by innovative studies
applying neural networks to CTA data and 3D angiograms of cerebral arteries (136, 137, 140).

3.2. Uncertainty Quantification of Image-Based Computational Fluid Dynamics

The second challenge is quantifying the uncertainty of the hemodynamic metrics predicted by
numerical simulations. The sources of error are described above in Section 2.1; here, we reiterate
that even though typical CFDdata contain specific values, it is crucial to determine the uncertainty
of these results and treat them as a sample taken from a range of possible values. Uncertainty
quantification (UQ) for patient-specific flow simulations is at the cutting edge of cardiovascular
modeling research, with recent studies considering UQ for CFD models of different vascular
territories (141–144). As mentioned above, several CFD challenge studies have investigated the
variability of image-based CFD models in cerebral aneurysms and provided the groundwork for
developing future modeling guidelines (79, 81–83).Two comprehensive recent reviews specifically
evaluated state-of-the-art CFD modeling practices applied to cerebral aneurysms and provided
recommendations for reliable simulations of intra-aneurysmal hemodynamics (78, 84). In addition
to uncertainty due to medical image resolution and noise, modeling assumptions, and numerical
approximations, there are confounding factors such as patient genetics and clinical history that are
typically not accounted for in the computational analysis but could affect an outcome predicted
by a model. Another important consideration is the variability of cardiovascular pressure and flow
rates, which depends on the patient’s physical activity, level of stress, and even position during
imaging. Flow measured while the patient is resting in a supine position in an MRI scanner can
differ substantially from flow measured during exercise or emotional stress.

3.3. Arterial Wall Mechanics and Structure: The Missing Link

A key consideration in the assessment of cerebral aneurysm stability is that while hemodynamic
forces can cause arterial wall remodeling, it is ultimately the wall itself that bulges and eventu-
ally ruptures due to adverse biomechanical or physiological factors. It is known that blood vessels
adjust to flow rate by maintaining an optimal value of WSS (103, 145). Nevertheless, prediction
of disease progression based solely on flow factors is an indirect approach to cerebral aneurysm
risk assessment. As stated above, very limited information on arterial wall structure and properties
can be obtained from noninvasive in vivo studies, inhibiting patient-specific arterial wall analysis.
Even so, computational studies based on ex vivo data provide invaluable information on aneurys-
mal wall structure and function, which may be the missing link in understanding the mechanisms
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of cerebral aneurysm growth and rupture. Pioneering research by Robertson and colleagues (71,
102) elucidated the complex interplay among hemodynamics, inflammation, and wall remodeling
in aneurysmal disease. The mechanical strength of the arterial wall is due to elastic laminae and
collagen fibers of the medial and adventitial layers (71). The aneurysmal wall does not passively
bulge out under stress, since the distensibility of collagen fibers is limited; rather, it actively grows
through collagen remodeling and muscle cell proliferation. This pathological growth and remod-
eling process is affected by blood flow and inflammation. The aneurysmal wall is characterized
by a loss of elastic laminae, resulting in excessive loading of the collagen fibers and increased wall
stiffness (102). The remodeling of collagen fibers during the aneurysm enlargement process alters
their orientation and, subsequently, the wall strength, and thus is a key factor in the aneurysm’s
vulnerability to rupture under intramural pressure (71). By testing the mechanical integrity of
wall tissue harvested from UIAs and normal cerebral arteries and analyzing the corresponding
collagen fiber architecture with multiphoton microscopy, Robertson et al. (102) discovered that
aneurysms with reduced wall strength are characterized by impaired architecture of the fiber lay-
ers. This measure can identify UIAs with increased risk of rupture; however, at present there are
no imaging tools that can noninvasively assess wall integrity in vivo.

Due to the variability in intra-aneurysmal hemodynamics and the mechanical properties of
the aneurysm wall, a meaningful correlation requires precise mapping of the local flow variables
and wall characteristics. Cebral et al. (146) developed a unique methodology for coregistration
of image-based CFD data with resected aneurysm specimens using in vivo marking of the tissue
with a surgical pen and subsequent alignment with 3D-printed models. This framework allowed
integration of multiple imaging and modeling modalities, including the mapping of computed
WSS distribution to intraoperative video and multiphoton microscopy data showing local colla-
gen fiber architecture (147). The most recent research by Cebral et al. (73, 147) reports on the
relationship between several hemodynamic metrics and focal wall characteristics observed intra-
operatively in 65 cerebral aneurysms. The regions exposed to recirculating flow with low WSS
and increased flow residence time were characterized by atherosclerotic and hyperplastic changes,
while inflow jets and high WSS corresponded to local thinning of the wall (73, 147). These find-
ings provide evidence for the theory linking both abnormally low and high WSS to aneurysmal
disease progression.

Recent aneurysm models in rodents elucidated the role of transmural macrophage infiltration
in disruption of wall elastic lamina and collagen, causing aneurysm formation (71). Subsequent
aneurysm growth is also influenced by a combination of abnormal WSS and continuous inflam-
mation.These results suggest that anti-inflammatory drugsmay be capable of inhibiting aneurysm
progression. Once the exact relationship between hemodynamic forces and aneurysmal wall re-
modeling is understood, patient-specific CFD models can be used to predict the risk of aneurysm
growth and rupture (71).

3.4. Translational Value of Hemodynamic Data

Finally,we consider the challenge of establishing clinically relevant hemodynamic indices and their
specific thresholds that could be used for cerebral aneurysm management in a clinical setting. A
well-known controversy in cerebral aneurysm modeling resulted from two competing theories
stating that aneurysm growth and rupture are caused by either a high or low WSS. Flow simu-
lations conducted for large cohorts of ruptured and unruptured aneurysms determined a corre-
lation between regions of elevated WSS and aneurysm rupture (72, 85, 148). The prevalence of
aneurysms in patients with arteriovenous malformations that cause abnormally high flow rates,
as well as aneurysm formation in animals following carotid ligation, confirms that elevated WSS
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is the culprit in aneurysm initiation (71). At the same time, several studies have indicated that
aneurysm progression was observed in regions where the aneurysmal wall was exposed to abnor-
mally low WSS (70, 149–152). The correlation detected between averaged WSS and the rupture
or growth status determined in these studies did not explain the underlying mechanisms causing
disease progression in regions characterized by abnormal WSS values. These confusing reports
triggered a publication (153) questioning the potential clinical value of CFD, which it spelled
out as “confounding factor dissemination,” due to modeling simplifications, a growing number of
confusing hemodynamic indices proposed as risk indicators, and the small number of cases con-
sidered in different studies. There is a consensus that bridging the gap between numerical analysis
and clinical practice will require multicenter studies of large patient cohorts using standardized
modeling framework and multivariate statistical analyses (76, 154). It is crucial to recognize bio-
logical processes driving aneurysm growth and repair that can confound biomechanical analysis.
Meng et al. (77) proposed a unifying theory, noting that highWSS combined with a positiveWSS
gradient leads to growth and rupture of small or secondary bleb aneurysms, while low WSS and
highOSI lead to growth and rupture of large atherosclerotic aneurysms.Current studies involving
hundreds of patients in which CFD results are combined with morphological data and medical
history are leading to the development of clinical tools for aneurysm risk stratification (69, 108,
155).

4. FUTURE DIRECTIONS

Enhancing the resolution of medical imaging while reducing the acquisition time will allow quan-
tification of aneurysmal flow and wall mechanics in a clinical setting (67, 68). At the same time,
patient-specific models will continue to deliver superior accuracy and, most importantly, capabil-
ities to predict postinterventional conditions on a per-patient basis. Recent developments in data
science provide an opportunity to combine imaging and modeling approaches in order to attain
superior fidelity and accuracy of the resulting quantitative data. In this framework, computational
results would complement clinical measurements by eliminating noise and image artifacts and in-
creasing the spatiotemporal resolution of the acquired data. Results predicted by computational
models would be corrected by in vivo measurements, thereby ensuring that the combined output
data represent the actual patient-specific conditions with high fidelity. When applied to cerebral
aneurysm hemodynamics, this data fusion approach could enable merging of 4D flow MRI and
CFD data in order to improve flow quantification. As discussed in the previous sections, the ac-
curacy of 4D flow MRI measurements in cerebral vessels is affected by limited spatiotemporal
resolution, the dynamic range of measured velocities, and image noise. Concurrently, CFD re-
sults can be affected by image quality and segmentation, assumptions about the proximal/distal
flow conditions, wall compliance and blood viscosity, and numerical schemes used to solve the
governing equations (78). The main challenge in eliminating the errors of either modality is in
that there is no gold standard or true velocity distribution that can be used to correct the imag-
ing or modeling results. However, these modalities have different sources of error, so it should
be possible to reconstruct the underlying velocity field by maintaining the flow features that are
common to both data sets.

Data assimilation algorithms andmethods are an active area of research.Rispoli et al. (156) pro-
posed using 4D flow MRI data as a regularization step in a CFD solver to correct the numerical
solution. An established method of blending modeling predictions and actual measurements for a
process evolving in time is the Kalman filter. Ensemble Kalman filtering has been demonstrated
to improve patient-specific CFD simulations by calibrating outflow conditions prescribed to nu-
merical solvers (157, 158). Alternatively, modal flow analysis can be used to eliminate image noise
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and increase the spatial resolution of measured velocities (159). An approach based on common
mode decomposition can be applied to combine velocity fields obtained frommultiple modalities,
such as 4D flow MRI, CFD, and PIV. The modes that are common across these modalities are
used for flow reconstruction, while the mismatched modes are assumed to represent errors due to
assigned boundary conditions or image noise. Alternatively, the flow fields obtained from differ-
ent modalities can be combined on the basis of estimates of the local uncertainty of each data set,
yielding improved velocity distributions that can then be used to calculate relevant hemodynamic
metrics.

A fashionable wave of deep learning approaches is not likely to entirely replace computational
modeling; however, in addition to recognized capabilities in automatic generation of image-based
geometries, deep learning has the potential to optimize patient-specific input parameters required
for flow solvers. In such an approach,neural networks would process a large set of parameters in or-
der tominimize the discrepancy between the numerical solution and available imaging data.More-
over, underresolved flow measurements obtained in vivo could be enhanced with Navier–Stokes-
informed deep learning algorithms. Prior knowledge of the underlying principles of flow physics,
such as the conservation of mass, momentum, and energy, can be used as a regularization in the
training of deep learning networks, allowing them to be applied even if the quantity of training data
is limited (160, 161).This novel approachmay enable accurate flow reconstruction based on in vivo
imaging, thus providing tools for reliable assessment of patient-specific hemodynamic metrics.

5. CONCLUSIONS

State-of-the-art medical imaging and modeling methods enable patient-specific flow quantifica-
tion in cerebral aneurysms; however, the translational value of acquired hemodynamic data re-
mains limited. Data assimilation techniques offer capabilities for merging in vivo imaging and
numerical modeling data or reconstructing imaging data to enhance the resulting flow fields and
ensure their adherence to underlying flow physics. Developing image-based models accounting
for complex interplay of hemodynamics, arterial wall mechanics, and vascular biology and dis-
tilling modeling data into clinically relevant indices will facilitate the application of quantitative
analysis to diagnostics and treatment of cerebral aneurysms. Multicenter longitudinal studies in
which multivariate statistical analyses are based on aneurysm location and morphology, hemo-
dynamic factors, imaged wall inflammation, and patient medical history are required to develop
comprehensive predictive models for UIA risk assessment.
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