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Abstract

Lipids are essential cellular components forming membranes, serving as
energy reserves, and acting as chemical messengers. Dysfunction in lipid
metabolism and signaling is associated with a wide range of diseases includ-
ing cancer and autoimmunity. Heterogeneity in cell behavior including lipid
signaling is increasingly recognized as a driver of disease and drug resistance.
This diversity in cellular responses as well as the roles of lipids in health
and disease drive the need to quantify lipids within single cells. Single-cell
lipid assays are challenging due to the small size of cells (~1 pL) and the
large numbers of lipid species present at concentrations spanning orders
of magnitude. A growing number of methodologies enable assay of large
numbers of lipid analytes, perform high-resolution spatial measurements, or
permit highly sensitive lipid assays in single cells. Covered in this review are
mass spectrometry, Raman imaging, and fluorescence-based assays including
microscopy and microseparations.
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1. INTRODUCTION

Lipids are a diverse group of organic compounds and can be best defined as molecules that are
soluble in nonpolar organic solvents but insoluble in water (1). They can be hydrophobic (typi-
cally nonpolar) or amphiphilic (a hydrophilic head group at one end and a hydrophobic region
at another). For example, phospholipids (PLs) possess one or more phosphate groups in addition
to long acyl chains enabling these molecules to align as a bilayer (or two mated monolayers) and
form cellular membranes, with the hydrophobic acyl chains facing each other and the hydrophilic
phosphate-bearing regions facing the aqueous environment. This bilayer membrane then acts as
a barrier surrounding the intracellular constituents and creating a barrier to the extracellular en-
vironment. Lipids also provide a multitude of essential biological functions, for example, acting
as signaling molecules, providing energy storage, localizing interacting proteins, and generating
bioactive metabolites. Lipids in eukaryotic cells can be classified in many ways, with eight cate-
gories developed by the International Lipid Classification and Nomenclature Committee being
the most commonly used (2). These lipid categories are fatty acyls, glycerolipids (GLs), glyc-
erophospholipids (GPLs), sphingolipids (SLs), saccharolipids, polyketides, sterol lipids, and prenol
lipids. Fatty acyls include fatty acids (FAs), fatty alcohols, aldehydes, and esters and often act as
building blocks for complex lipids such as eicosanoids, which act to regulate inflammation. Cellu-
lar and organelle membranes are formed from GLs and GPLs. However, some members of these
lipid groups such as GLs and free fatty acids (FFAs) act as signaling molecules to regulate energy
homeostasis, insulin secretion, gene expression, cell survival, and cell proliferation (3). Members of
the SL family such as ceramide, sphingosine, and their metabolites play a role in signal transduc-
tion pathways, while other SL members direct protein sorting, mediate cell-to-cell interactions,
or form signaling hubs (lipid microdomains and rafts) (4). Members of the remaining four lipid
categories (saccharolipids, polyketides, sterol lipids, and prenol lipids) play diverse roles including
participation in lipid bilayers, biosynthetic pathways, and signaling pathways, as well as antioxi-
dant functions (1). Considering these varied roles of lipid categories, cellular health and function
clearly are greatly dependent on lipid metabolism and lipid environment.

Not surprisingly, cellular lipid metabolism is a complex network with an interplay of the var-
ious members of the lipid classes, the participation of large numbers of enzymes, and locations
throughout a eukaryotic cell [organelles, membranes, and lipid droplets (LDs)]. Alterations in this
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interconnected network can lead to significant consequences for the cell, organ, and/or organ-
ism. Dysfunction in lipid metabolism and handling is associated with many diseases, including
cancer, cardiovascular disease, diabetes, autoimmunity, and neurodegeneration (5-9). Cancer cells
particularly are adept at highjacking lipogenic and lipolytic pathways to support their prolifera-
tion and survival (10). For example, both breast and pancreatic cancer cells alter triacylglycerol
FA levels by enhancing the activity of acid synthase, which is a key lipogenic enzyme in cancer
pathogenesis and a well-known cross-talk node in several cancer-related networks (11). Several
inflammatory and autoimmune diseases such as systemic lupus erythematosus, atherosclerosis,
fatty liver disease, and cardio-metabolic disease are associated with impaired lipid metabolism of
FFAs, triglycerides (T'Gs), lipopolysaccharides, and cholesterol esters (12, 13). In all of these dis-
eases, the behaviors of single cells and/or their clonal progeny have profound impact on disease
progression and outcome. Understanding the cellular and molecular mechanisms at single-cell
resolution using multi- or transomics approaches reveals information on cellular heterogeneity
and progression of disease pathogenesis. This cell-to-cell heterogeneity extends to the informa-
tion flow through lipid signaling and metabolic pathways. For example, accumulation of FAs is
correlated with the initiation of pancreatic ductal adenocarcinoma, and intracellular heterogene-
ity in FA distribution results is associated with metastasis, which has a 5-year survival rate of only
9% (14). Similarly, in metabolomic diseases, heterogeneous thermogenic capacity of a subpopu-
lation of mature adipocytes, called beige adipocytes, can result in obesity and diabetes (15). Thus,
understanding lipid handling at the single-cell level is critical to revealing intracellular as well as
intercellular heterogeneity and the impacts to human health and disease processes.

Lipids are more challenging to assay than other cellular constituents such as ribonucleotides
and proteins primarily due to their lack of repeating residues, high molecular complexity, hy-
drophobicity, tendency to aggregate, and propensity to bind to surfaces. Nevertheless, a number
of analytical methodologies such as thin-layer chromatography (TLC), high-performance liquid
chromatography (HPLC), gas chromatography, and mass spectrometry (MS) have been suc-
cessfully applied to build the field of lipidomics, providing insights into the diversity of lipid
species in humans and their roles as building blocks, signaling agents, structural supports, en-
ergy storehouses, and temperature regulators. Importantly, enzymes within many lipid synthetic
or metabolic pathways, for example, phosphoinositide 3-kinase and sphingosine kinase (SK), have
become pharmaceutical targets with a goal of modulating disease pathways and further driving
the need to understand these important molecules (16). The vast majority of experimental work
related to lipid pathways has been performed on bulk tissue specimens or pooled cell lysates due
to the ease in extracting intracellular products to provide a large sample size. Only recently have
analytical methods achieved the sensitivity and specificity need to assay lipids from a single mam-
malian cell of picoliter volume. One ongoing analytical challenge is the wide range of lipid analyte
concentrations within a cell; for example, plasma membranes are enriched in cholesterol, phos-
phatidylserine, and sphingolipids, while the endoplasmic reticulum is deprived of these lipids.
In addition to this heterogeneous lipid distribution between membranes, the distribution of lipids
varies across the membrane bilayer. This aspect demands high dynamic range, excellent sensitivity,
and spatial resolution from an analytical assay, which in practice means that most analytical meth-
ods target a subset of cellular lipids. Lipids are also found in a range of cellular subcompartments
and in varying states, for example, insoluble aggregates, membrane incorporated, and protein
bound, making some lipids readily accessible for analytical assays while other lipids have yet to
be assayed from single cells. Innovations in a number of analytical tools (MS, microscopy, Raman
spectroscopy, chromatography, electrophoresis, and fluorescent probes) now enable a plethora of
lipids to be quantified from single cells; however, lipidome characterization in these ultrasmall
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samples remains far from mature. This review focus on recent developments in single-cell lipid
assays including the method’s working principles, advantages, limitations, and applications.

2. MASS SPECTROMETRY OF LIPID ANALYSIS IN SINGLE CELLS

Because MS possesses high sensitivity and specificity and does not require labels or probes to
detect analytes, it has been widely exploited for single-cell analysis, including the assay of lipids.
MS offers a nontargeted assay approach to identify unknown lipids, and assays do not need to
focus on a preidentified lipid species. Single-cell mass spectrometry (SCMS) can be performed
using different desorption/ionization techniques and sampling environments, adding to the versa-
tility of MS. Desorption/ionization strategies include matrix-assisted laser desorption/ionization
mass spectrometry (MALDI-MS), secondary-ion mass spectrometry (SI-MS), and electrospray
ionization mass spectrometry (ESI-MS) (17). Methods requiring that the sample be placed under
a vacuum (MALDI-MS and SI-MS) are highly sensitive, with a 50-attomol limit of detection and
high spatial resolution of sub-50 pm, but do require sample processing (fixation and dehydration)
and may suffer from unwanted spatial distortions or chemical reactions. In contrast, ESI-MS is
performed on cells in an ambient environment with minimal sample preparation (18-20). The
cellular contents can be introduced directly into the mass spectrometer or using a transfer device
such as a capillary. More recently, laser microbeams have been used to dissect single cells to pro-
vide spatial resolution, albeit at a reduced sensitivity (21, 22). MALDI imaging mass spectrometry
(MALDI-IMS) is increasingly popular, displaying a subcellular spatial resolution of 25-50 pm?
pixel size (23). Comprehensive reviews on SCMS are available, although they are focused largely
on protein-based assays (24). This section highlights the latest SCMS techniques in lipidomics as
well as their advantages, limitations, and opportunities (Figure 1).

2.1. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

Laser desorption/ionization MS techniques for single-cell lipid measurements have evolved
greatly in recent years, particularly with the development of MALDI-MS for whole cell and
subcellular lipid assays (23, 25). In MALDI-MS, a sample precoated with an energy-absorbing
matrix is irradiated by a laser beam, and energy absorbed by the matrix is then transferred to the
sample, facilitating sample desorption and ionization (Figure 14). Ionized sample constituents
enter the mass spectrometer, followed by measurement of their mass-to-charge (#2/z) ratios. The
matrix choice typically depends on the analytes to be assayed so as to optimize energy transfer,
and a variety of different matrices have been employed successfully for lipid measurements
by MALDI-MS including o-cyano-4-hydroxy cinnamic acid, 2,5-dihydroxybenzoic acid, and
9-aminoacridine (26).

The MALDI process is typically coupled to a time-of-flight (TOF) mass spectrometer pro-
viding access to a wide ion mass range (#2/z) from as low as 100 Da to more than 500 kDa but
with a lower linear mass resolution of only >5,000 FWHM. An asset of MALDI is the ability to
couple to other MS detectors, for example, tandem MS (MS/MS) for structural characterization
or Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS) for high-precision
measurements enhancing MALDI capabilities and applications in single-cell lipidomics. However,
initial applications of MALDI-MS for lipid-based assays were low in spatial resolution, sampling
the entirety of a cell, and often applied to a large cell type such as an oocyte (27). A wide range of
lipids including sphingomyelins (SMs), phosphatidylcholines (PCs), and T'Gs were quantifiable,
revealing important insights into membrane lipid compositions under various environmental con-
ditions and at various developmental stages of an embryo. Although these measurements provided
significant advancements in knowledge, a challenge was that only the most abundant lipids were
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Figure 1 (Figure appears on preceding page)

Mass spectrometry assay of lipids in single cells. Schematics describe the working principles of (#) matrix-assisted laser desorption/
ionization mass spectrometry (MALDI-MS), (b) electrospray ionization mass spectrometry (ESI-MS), and (¢) secondary-ion mass
spectrometry (SI-MS). (d) A549 cells combined with a 9-aminoacridine matrix were examined by MALDI imaging mass spectrometry.
Pixels positive for PC(36:2) are marked with yellow numbers, and the cell count in every pixel is marked with white Roman numerals in
the microscopy image. (¢) The schematic demonstrates the use of a single-probe ESI to assay for phosphatidylcholines (PCs),
sphingomyelins (SMs), diglycerides (DGs), and triglycerides (T'Gs) in single HeLa cells. (f) The schematic shows the assay of a single
cell by SI-MS. A Bi3 ™ liquid metal ion gun was used to scan across the cell to acquire an XY image, while Ar3s0o™ was used to obtain
depth or Z profiles. (g) The total and average MS signal intensities for PC(36:2) from the extracted pixels in panel d are shown.

(h) Displayed are the mass spectrometry data obtained in a mass range from /2 560 to m/z 750 for the experiment shown in panel e.
(?) Data are shown demonstrating the fragment ions obtained from SM (CsH;s5*NPO4%) when a cell was imaged at submicrometer
resolution by time-of-flight SI-MS, as depicted in panel f. Panels 4 and g adapted with permission from Reference 33. Panels ¢ and /
adapted with permission from Reference 39; copyright 2014 American Chemical Society. Panels fand 7 adapted with permission from
Reference 57; copyright 2017 Elsevier.
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detectable, with many rare species (important in cell signaling) undetectable due to their low abun-
dance; for example, even with an attomole detection limit, only the most abundant lipid species
are detectable (28). These applications, however, pointed the way for improved instrumentation
and methods to enhance spatial resolution, throughput, and sensitivity.

Improved sample preparation protocols, laser illumination strategies, and image processing and
reconstruction methods have enabled significant increases in spatial resolution, throughput, and
multicomponent analysis. Cell lyophilization applied to large cell types such as neuronal ganglion
cells opened the door to subcellular sampling of cells with assay of membrane phospholipids such
as PCs, which could be detected with different profiles in a neurite versus a neuronal cell body (29).
While results from this work provided preliminary understanding of neuronal lipid metabolism,
the large laser spots used for MALDI-MS still yielded poor sensitivity and spatial resolution. The
use of overlapping laser spots to oversample as well as complete sample ablation at each laser
beam location enabled resolutions greater than that of the microbeam diameter but created tissue
distortions such as analyte delocalization, ultimately limiting this strategy. Improvements in both
sensitivity and spatial resolution were achieved by positioning the laser behind the sample and
irradiating from the sample backside (30). This geometry reduced the working distance between
the sample and optics, enabling a submicron laser beam spot on the sample and a submicron to
micron spatial resolution during imaging. In this proof-of-concept work, the distribution of intact
lipids at a single 72/z 782 was imaged in cultured human embryonic kidney and colon cancer cells.
Spatial resolution and sensitivity also have been enhanced by optimizing sample preparation, mea-
surement parameters, and computational image reconstruction combined with more traditional
instrumentation to image a range of lipids [PCs, SMs, diglycerides, phosphatidylethanolamines
(PEs), phosphatidylinositols, and/or T'Gs] at cell-sized resolution (5-10 pm) (23, 31).

Three-dimensional MALDI-IMS has also been developed by stacking and reconstructing tra-
ditional 2D MS images into 3D images (25). A variety of strategies have been developed to enhance
the rate of lipid analysis in single cells to enable large numbers of cells to be assayed. The use of
a laser for sample desorption/ionization provides a speed advantage due to both the ability to
rapidly scan the beam and the very short pulse durations (<1.1 ns). Placing cells into microwell
arrays to preposition cells at known locations resulted in 40% single-cell capture efficiency, which
when followed by MALDI-IMS enabled the assay of 12 lipid species in single cells by extracting
relative signal intensity data from every pixel in the images over several minutes (32, 33). Inte-
gration of cell-recognition software with automated instrumentation permitted cells randomly
located on a slide to be sequentially examined by MALDI-MS with assay of up to 30,000 cells
(34). A feature of MALDI-IMS is the ability to combine MS with other analytical methods, for
example, optical microscopy (fluorescence or bright-field), to create information-rich data sets
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as well as to coregister the MALDI-MS data with known histologic structures (35). While these
methods have improved spatial resolution and analytical throughput, the performance of MALDI-
IMS remains focused on high-abundance lipid species, particularly when combined with TOF or
quadrupole-based detection (<12 lipid species or features).

One reason for the limitation of MALDI-IMS to high-abundance lipids in single cells is the
low mass resolution of the TOF detectors, which ensures that low-abundance species are over-
shadowed by all of the highly abundant lipids. FTICR-MS offers both high mass resolution and
high mass accuracy, enabling the detection of larger numbers of lipid species compared with those
from other MS detectors. When combined with MALDI, these assets are retained along with the
MALDI advantage of high single-cell analysis rates; for example, heterogeneous liposaccharide
distributions were measured in >100 RAW 264.7 cells on a timescale of hours using FTICR-MS
(36). Up to 670 ions in the lipid mass range could be detected in large numbers of single cells with
excellent throughput (100s of cells/h) (34-37). As another example, up to 500 lipid features were
detected within 30,000 rodent brain cells, from which 101 significantly distinct cell clusters could
be correlated with neuronal or astrocytic lipid markers. Due to the high mass resolution, impres-
sive chemical details were possible, with the most common lipids identified as [PC(32:0)+H]" and
[PC(34:1)+H]" in 98.9% and 89.5% of cells, and with [PC(34:1)+K]* and [PG(40:2(OH))+Na]*
present in <1% of cells (34). To achieve the needed sensitivity, spatial resolution was limited to
the size of a cell or larger (25-100 pm) in these studies. A challenge was the need to use reference
data banks for lipid identification, since tandem MS is not possible on these small-scale samples.
However, the ongoing construction of high-quality lipid databases will address this drawback in
the future. Finally, the high cost of FTICR-MS will likely limit this technology to core facilities
and centers at large institutions.

2.2. Electrospray Ionization Mass Spectrometry

ESI-MS is a low-energy ionization method that yields minimal fragmentation of analytes. In ESI,
charged droplets of analyte solution are produced at the outlet of a capillary tip and are accel-
erated under an electric field toward the MS detector (Figure 15). Application of a drying gas
or heat progressively evaporates the solvent into charged ions, allowing the analyte to enter the
gas phase prior to the MS inlet. ESI possesses high ionization efficiency and is readily coupled
to chromatographic devices for sample separation prior to MS analysis, but it does yield more
complex spectra than MALDI with multiply charged species (38). Sufficient volume and quantity
of sample is required to accommodate sample loss in the chromatographic step, making assay of
single-cell contents challenging. The complex makeup of biologic samples can lead to matrix ef-
fects or ion suppression, reducing the accuracy and precision of the MS analysis. Finally, ESI-MS
is challenging to integrate with other cellular analysis methods such as microscopy. A plethora of
technologies have been developed in recent years to overcome these challenges including nano-
ESI, desorption ESI (DESI), laser ablation ESI, probe ESI, and capillary ESI (39-43). We cover
a subset of ESI-MS techniques in this section: Perhaps the most applicable strategy to single-cell
lipid assays is nano-ESI, a derivative of ESI tailored to accommodate small volume samples with
limited analyte concentrations.

Nano-ESI uses an emitter tip with a typical internal diameter of approximately 1 pm, employs
low solvent flow rates of 20 to 40 nL. min~! (compared with EST’ typical rate of 100 pL min~'),
involves reduced sample consumption and improved detection sensitivity, does not require a dry-
ing gas or heating, and applies a high voltage of 1-2 keV for ionization to form an electrospray.
A chromatographic step is not required as a first stage for nano-ESI, so samples can be directly
injected into the MS detector (eliminating sample loss on a separation column). The dilute sample
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(~0.5 to 5 pmol/mL) also minimizes matrix effects. Together, these features provide a high ioniza-
tion efficiency and high signal-to-noise ratio relative to that of standard ESI. A convenient aspect
is that the nanotip (most often a pulled capillary) can serve as both a collection device for the cell
contents as well as the nano-ESI tip. Precision spatial movement of the nanotip by a micromanip-
ulator is required to precisely collect the cell or its contents. Nano-ESI can be mated with other
analytical methods, for example, microscopy and patch clamp. A significant advantage of nano-ESI
is the ability to sample and analyze single cells from within intact tissue slices or organs, providing
a more physiologic output than that obtained from disaggregated, isolated cells (44). A variety
of capillaries, probes, patch-clamp pipettes, and microfluidic devices under manual or automated
operation have been used to collect single cells or their contents as well as to function as the nano-
ESI tip (39, 44-48). When a chromatographic step is not coupled to nano-ESI, a lipid extraction
step is often incorporated to enhance lipid introduction into the nano-ESI instrument. Many ex-
traction strategies have been employed successfully including preaddition of solvent around the
cell just prior to cell sampling, inline addition of solvent as the cell or cell lysate flows toward
the emitter tip (46, 49), use of a dual-barrel capillary to introduce solvent through one barrel as
a cell is loaded into the other barrel, and other strategies (39, 50). Cell lysis (and lipid solubiliza-
tion) during whole-cell collection is accomplished by using the sampling tip and lipid extraction
solvent, by incorporating ultrasonic lysis (45), or by addition of inline filters with cell-puncturing
spikes (zinc oxide nanothorns) (46). Nano-DESI takes this step to the next level by using a second
solvent-carrying capillary for lipid extraction, forming a liquid bridge connecting to the emitter
capillary (51). An alternative version, IR-MALDESI, is, as the name implies, a hybrid of MALDI
and ESI using an infrared laser to ablate biological samples, followed by ESI (52).

Nano-ESI and its various forms are also compatible with subcellular sampling, depending on
the exact sampling strategy, with a resolution of ~10-100 pm (47, 49). Cytoplasmic sample col-
lection using a patch-clamp pipette could, in theory, leave a cell alive after sampling and viable for
other assays (although sensitivity will be a challenge) (47). Throughput has been enhanced (520
lipid features from 30,000 cells and 38 cells/min) by automated movement and positioning of the
cell-collection tip, extraction steps, and incorporation of label-free flow cytometry and microflu-
idics for cell queuing into the emitter tip (20, 53, 54). Nano-ESI has been applied to detect lipids
in a wide range of mammalian cells (HeLa cervical cells, liver cells, white blood cells, breast cells,
neuronal cells, and others) (39, 44-48) and subcellular components (LDs) (49); however, the ma-
jority of lipid analytes detected in cells have been the abundant species such as PCs, PLs, PEs, and
phosphatidic acids (PAs). Despite the theoretical advantages of direct injection methods, utilizing a
pre-ESI separation step has yielded very high performance. Coupling nanoflow liquid chromatog-
raphy with nano-ESI enabled detection of 236 lipids from four lipid classes (SLs, sterol lipids, GLs,
and GPLs) in healthy and diseased mammalian hippocampal slices, providing an improved under-
standing of lipid homeostasis in brain disease (47). Others have used a bulk preseparation step,
selectively isolating PLs by incubating a single-cell lysate with TiO,-coated Fe; O4 nanoparticles
followed by elution from the beads and assay by nano-ESI (55). This strategy permitted detection
of 18 different PLs with limits of detection of ~0.01 pg/L in the MS/MS spectra.

2.3. Secondary-Ion Mass Spectrometry

Traditional SI-MS employs a high-energy primary ion beam (Art, O**, N**, and others) to bom-
bard the sample surface, releasing charged secondary ions that are then directed into an MS
detector (56) (Figure 1c). Like MALDI, SI-MS is performed under a vacuum, requiring sam-
ples to undergo chemical or high-pressure/freezing fixation prior to analysis. Since the ion beam
can be focused to a tight spot (and is not diffraction limited) the spatial resolution is exceptional at
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a sub-50-pum range with a depth of approximately 20 pwm (57). While the ion beam efficiently lifts
oft sample, providing excellent sensitivity, the high-energy beam also fragments sample molecules
into a size range of hundreds of daltons, making data interpretation more challenging than low-
energy ionization methods such as MALDI and ESI. However, since the ion beam removes the top
layer of sample, 3D imaging is possible by sequential XY scanning. To improve SI-MS compati-
bility with single-cell lipid imaging, recent work has focused on several technological innovations:
application of low-energy cluster-ion beams with or without an energy-absorbing matrix, opti-
mization of fixation strategies, and enhancement of 3D imaging methods using sample labeling
methods. The recent development of cluster ions as the primary beam in SI-MS enables sample
surface sputtering at low energy with less sample damage and release of higher molecular weight
sample molecules including intact lipid molecules (57, 58). For example, Cs™ SI-MS has been
applied to image cells and assay lipid composition of the plasma membrane followed by assay of
lipids within the cytosol of the same single cell (59). Using Auz?* as the cluster ion, breast cancer
stem cells were demonstrated to have different FA content than non-stem cells (60). Enhanced and
validated preservation strategies including plunge freezing in ethane to eliminate sample fracture
and characterization of glutaraldehyde-based fixation and the impact on lipids have also advanced
single-cell lipid assays by tandem SI-MS (61). Ionic liquids have been applied to samples to per-
form matrix-enhanced SI-MS, enhancing the sputtering/ionization efficiency and chemical signals
attainable from single cells with quantification of PC lipids in neuronal cells (62).

Powerful variants of SI-MS such as multi-isotope imaging MS (MI-MS) use stable isotope
labeling of cells and a scanning ion beam to quantitatively image the distribution within cells of
a stable isotope such as 1*C. These advances enabled a better understanding of the mechanism of
long-chain FFA transport across an adipocyte’s cell membrane (28). Using MI-MS, the localization
of intact lipid species such as PCs across the surface of single neurons as well as colocalization with
vitamin E and cholesterol was assessed (28). Another innovative variant of SI-MS is nano-SI-MS,
which uses a high-energy focused beam to achieve a spatial resolution down to ~50 wm and is
suitable for detecting small (mainly monoatomic and diatomic) ions (63).

3. RAMAN-BASED TECHNOLOGIES

When light impinges upon a molecule, the light can be scattered elastically, that is, without a
change in energy (Rayleigh scattering), or inelastically, that is, with a change in energy (Raman
scattering) (64-66). In Raman scattering, the energy from the photon initiates a vibrational change
in the molecule and a subsequent scattered photon, which can be lower in energy (Stokes scatter-
ing) or higher in energy (anti-Stokes scattering) than the incident radiation. The energy difference
is characteristic of the excited chemical bond, leading to insights into the molecular species illumi-
nated (64, 67, 68). Due to the high concentration and/or strong scattering from a number of bonds
(e.g., C-H, C-C, C=C) commonly found in organic molecules, Raman scattering has emerged
as a powerful tool for cellular imaging (64, 65, 69). Each chemical bond possesses a characteristic
vibrational mode or Raman shift; for example, the C-H wave number lies in the region of 2700-
3100 cm ™!, while C-H, is in the 1400-1500 cm~! range, C-C is in the 600-1300 cm ™! range, and
C=Cis in the 1640-1680 cm~! range (70). Because Raman scattering is based on a vibrational res-
onance, Raman-based imaging is not affected by photobleaching nor sensitive to the surrounding
environment (as in the case of fluorescence). The infrared wavelengths typically used for cellular
Raman imaging confer high sample penetrance with reduced photodamage. In particular, Raman
scattering has been used to image a wide range of molecules in cells such as lipids, proteins, and
DNA. Raman spectra can be acquired within seconds, especially with the newer Raman meth-
ods, due to the high total concentration of biological molecules in cells. Lipids in particular, with
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their large number of CH, groups, are well suited for Raman imaging (64, 65, 69, 70) and can
be assessed in living or fixed single cells with high contrast and high resolution in a label-free
and nondestructive manner (68). However, a challenge for all Raman-based methods in imaging
biological samples is the complex mixture of molecules present with similar vibrational modes,
making the identification of specific molecular species quite challenging and the detection of low
concentration species impossible. Nevertheless, Raman microscopy has emerged as a powerful
tool for biological imaging to advance our understanding of the mechanisms behind physiological
and diseased states.

Raman imaging of lipids within single cells typically employs either spontaneous Raman scat-
tering, stimulated Raman scattering (SRS), or coherent anti-Stokes Raman scattering (CARS),
although other strategies are possible (64, 65). With spontaneous Raman-based microscopy, a sin-
gle laser beam illuminates the biological sample, exciting molecules to a higher vibrational state,
followed by light emission at a longer wavelength (Figure 24). Due to the very small scattering
cross section (~1073* cm? sr~!) for spontaneous Raman scattering, light emission is weak (~1/10'6
that of fluorescence), resulting in long imaging times (many minutes/image) with use of high-laser
powers even for high concentration analytes such as cellular lipids. The high required illumination
intensities also yield significant background in the form of sample autofluorescence and Raleigh
scattering. SRS and CARS address many of these challenges, providing stronger signals with lower

a Spontaneous Raman b Stimulated Raman C Coherent anti-Stokes
scattering scattering Raman scattering
— Electronic

excited state

Virtual states

wp | ws

Vibrational state
Ground state

Figure 2

Raman imaging of single cells. (#—) Schematics demonstrating the energy level diagrams in Raman imaging.
(@) Spontaneous Raman scattering. The straight line (green) indicates the pump beam at wp, and the curved
line (red) denotes the scattered light at a longer wavelength wg. () Stimulated Raman scattering (SRS). Two
lasers, a pump (wp) and a Stokes beam (ws), impinge upon a sample, with stimulated emission occurring
when Aw(Aw = wp — ws) equals a molecular vibration frequency. (¢) Coherent anti-Stokes Raman
scattering (CARS). In CARS, a pump (wp) and a Stokes beam (wg) illuminate the sample, and when wp — wg
matches the molecular vibration frequency, an anti-Stokes signal at 2wp — ws = w,g is generated.

(d) Distribution of lipids (1420-1460 cm ™) in a pulmonary cell obtained by spontaneous Raman imaging.
(¢) An SRS image showing the concentration of cytoplasmic membrane lipids in live melanoma cells.

(f) A CARS image of a neuronal cell. The purple color shows CH, bonds, while the green color is the
plasma membrane dye, Ap3-SFG. Panels z— adapted with permission from Reference 65. Panel d adapted
with permission from Reference 95. Panel e adapted from Reference 123 (CC BY-NC-ND 4.0). Panel f
adapted with permission from Reference 136; copyright 2020 American Chemical Society.
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background noise. For SRS, two laser beams (pump and Stokes beams) are incident on the sample.
When the frequency difference between the two beams matches a molecular vibration, stimulated
excitation of the vibrational transition occurs with an intensity loss at the scattered pump wave-
length and an intensity gain at the scattered Stokes wavelength (Figure 2b). Measurement of this
energy gain/loss can then be accomplished, albeit with sophisticated equipment. An advantage
of SRS is the proportionality of the signal to molecular concentration and the spectral match to
spontaneous Raman scattering. CARS, which can be accomplished using a multitude of strate-
gies, also employs two beams (pump and Stokes), but in this instance, molecules are stimulated
while in their vibrational state, yielding a higher-energy emission (anti-Stokes shifted) (67, 71)
(Figure 2¢). CARS provides fast, high-sensitivity measurements due to emission at a shorter wave-
length (with facile spectral separation from longer-wavelength sample autofluorescence). CARS,
however, requires high-intensity beams, which can lead to multiphoton absorption and material
damage. The required complex instrumentation also requires careful beam synchronization. A
number of compound microscopes that combine Raman imaging with traditional optical micro-
scopes have demonstrated added value to that of Raman imaging alone (72-78). These compound
microscopes incorporate Raman imaging with bright-field, fluorescence, or confocal microscopy
to provide simultaneous information on lipids and other cellular constituents such as proteins,
including their relative spatial locations (75, 79-84). As an example, SRS combined with confocal
fluorescence microscopy enabled high-speed multicolor imaging, providing insights into LD bi-
ology and other markers associated with these LDs at the single-cell and even the subcellular level
(79, 81-83). All Raman imaging methods now can be configured to read out continuous spectra,
for example, hyperspectral Raman images, enabling a greater characterization of the complex lipid
mixtures within cells (85-89). Comprehensive reviews with a sole focus on Raman microscopy are
available, and this section highlights spontaneous Raman scattering, SRS, and CARS with a focus
on their advantages, limitations, and opportunities in the measurement of lipids in single cells (84,
90, 91) (Figure 2).

3.1. Spontaneous Raman Imaging

Spontaneous Raman spectroscopy has enabled lipid assays in single cells and has many advantages
relative to the newer Raman imaging methods, including simpler instrumentation with a single
laser that is readily focused to submicron spot sizes easily scanned across a sample. This approach
enables a typical imaging spatial resolution in the range of ~0.3-0.6 wm (92, 93). A strength
of Raman spectroscopy in lipid analysis is the ability to assess the degree of lipid unsaturation
as well as the ratio of cis/trans isomers in lipid samples (94). The emission spectral resolution is
typically in the range of ~1.5-3 cm™! (92, 95-97). The collection of spectra at each image pixel
provides high-value chemical information but can require up to 1 s/pixel, yielding long times
to image entire samples (92, 98-100). The availability of commercial microscopes (WITec and
Renishaw, for example) that combine spontaneous Raman scattering and confocal microscopy also
make the technology accessible to nonexperts. Due to the inherently weak signal of spontaneous
Raman scattering and the complex nature of cellular structures, the method generally focuses
on organelles with high lipid concentration such as LDs or incorporates Raman labels such as
deuterated- or alkyne-labeled compounds to enhance analyte detectability.

The combination of spontaneous Raman scattering with other microscopy methods such as
confocal or atomic force microscopy, and even other Raman techniques, has emerged as a critical
enabler to measure lipids within LDs and other subcellular organelles (72-78, 80, 101-103). A
number of studies have combined Raman and fluorescence microscopy with fluorescent lipid
probes such as Nile Red, Oil Red O, ReZolve-L1™, or BODIPY 493/503 with Raman imaging
to label lipids, especially LDs, directly enhancing sensitivity, lipid characterization, and spatial
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precision (98, 104, 105). Another example of the advantages of compound microscopes is the
spatial targeting of Raman measurements to fluorescently labeled organelles (mitochondria or
endoplasmic reticulum) for fast, efficient, subcellular measurements as opposed to the time-
consuming imaging of an entire cell (80). This approach, termed micro-Raman assay, has enabled
assay of the lipid unsaturation, cis/trans isomer ratio, sphingolipids, and cholesterol levels in
live cells. Another compound system has been demonstrated to acquire Raman hyperspectral
images with a 4-min temporal resolution followed by comparison of the Raman data with that of
quantitative phase microscopy to distinguish living cell types (72).

Cellular constituents have little Raman scattering between 1800 and 2800 cm™!, also known as
the silent region. Raman tags with spectra in this region have been developed to track intracellular
molecules without interference from the Raman signal of the endogenous cellular components
(104, 106-108). Commonly used tags such as alkynes, nitrile, and deuterium provide a strong
Raman scattering peak in the silent region and have facilitated identification of organelles or spe-
cific molecules within the complex cellular environment (104). A series of alkyne-tagged coenzyme
Q analogs labeling the mitochondria permitted visualization of the spatial location of this Ra-
man tag (109). An alkyne-tagged cholesterol labeled LDs in a liver cancer cell line, yielding the
molecular identification of as many as seven different constituents of LDs, as well as the spectral
isolation of three structurally different lipid species (110). Falcarinol, an anti-inflammatory poly-
acetylene that naturally scatters in the silent region, has been used to investigate cellular changes
resulting from induced endothelial dysfunction (111). Deuterium is also commonly used as a
Raman tag to visualize lipids (112, 113). Advances in the understanding of lipid physiology cre-
ated through the use of deuterium tags include the visualization of lipid translocation between
endocytic vesicles and LDs in macrophages (114), intracellular lipid metabolism in macrophages
(113), time-dependent investigation of FA distribution in macrophages (115), and the quantifica-
tion of stearic acid uptake and accumulation in LDs of cat oocytes (116). One recent innovation
incorporated H-alkyne and D-alkyne labels into long-chain FA probes to distinguish between two
structurally similar small molecules in living cells (117).

3.2. Stimulated Raman Scattering Imaging

SRS is a nonlinear optical process for which the scattered signal is generated at the focal plane of
the sample, enabling intrinsic 3D sectioning by scanning in the x, y, and z axes with submicron to
micron spatial resolution (65, 70). SRS is characterized by a low background (orders of magnitude
lower than spontaneous Raman scattering), because a nonresonant signal is not present; that is,
when the frequency difference between the pump and Stokes beams does not match a vibrational
transition, then no energy exchange occurs between the scattered signals. This translates into
detection limits of greater than ~0.1 mM (often tens of mM) depending on the molecule.
High-speed imaging of entire samples (ms/pixel) is possible, especially when measuring at a
single wave number. Since an intensity difference is the measured signal riding on the pump and
probe Raman-scattered photons, optical modulation (>2 MHz) and phase-sensitive detection are
needed to differentiate the scattered signal from the incoming excitation beams. This requires
sophisticated instrumentation (in addition to the lasers), such as a lock-in amplifier to detect
the stimulated Raman loss or gain, but does enable the measured signal to be of high intensity
relative to that measured for spontaneous Raman scattering or CARS (65, 70). Although low in
magnitude relative to other Raman methods, SRS does have a background that is of complex
origin and thus is challenging to mitigate; however, frequency modulation of the incident light
can be employed to minimize this background (118). Other innovations such as hyperspectral
SRS enable imaging over a range of wave numbers (300 cm™!) at each pixel to obtain detailed
spectral information. The collection of Raman spectra permits deconvolution of overlapping
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Raman signals due to the presence of multiple molecules. This analysis is particularly useful in
reconstructing lipid types in an imaged sample (85, 119, 120). Moreover, hyperspectral imaging
in combination with broadband imaging offers an imaging range as great as 600 cm™~! with a fast
speed of ~8 ps/pixel (85). A major application of SRS lipid imaging in single cells has focused on
LDs and other high-concentration lipids due to the poor sensitivity relative to other methods,
for example, mass spectrometry or fluorescence microscopy (121-124).

Exciting advances are underway in SRS imaging of single cells. For example, customized equip-
ment paired with new computational tools enables the measurement of protein mass, lipid mass,
and water content in the same single cell with 3D resolution, permitting internal comparison of
concentrations (123). This system provided a sensitivity of ~0.015 g/mL and a spatial resolution
of 1.18 and 1.90 pm in the lateral and axial dimensions, respectively. Hyperspectral SRS imaging
has been used to identify lipid content differences in cancerous cells versus normal cells to under-
stand fundamental differences in the lipid biology of these cells (81, 119, 120). Even LDs within
the two types of cells were observed to have distinct lipid signatures (120). A growing trend is the
integration of SRS with other types of imaging methods, for implementing either instrumentation
or sample preparation strategies (79, 122, 125-128). For example, expansion microscopy, a type
of sample preparation that expands a sample along all axes so that the sample can be imaged in
finer detail, has been used to prepare samples for hyperspectral SRS. This combination provided
nanoscale spatial resolution of endogenous lipids (and other molecules) within a sample (126). SRS
has been combined with fluorescence microscopy to yield a high-speed multiplexed imaging sys-
tem with a temporal resolution of seconds that can track the dynamics of LDs in living cells (79).
Notably, this system offered 20-color vibrational contrast with the ability to be increased to 26
colors, creating a powerful tool to investigate intracellular molecules. Because this compound in-
strument is also applicable to molecules other than lipids, single-cell multiomics becomes possible
on a single platform. The use of Raman-active probes including photoactivatable probes further
expands the utility of SRS imaging (82, 83, 106, 129, 130). Multicolor photoactivatable alkyne
Raman reporters using cyclopropenone caging have been applied to image and track live cells
(130). These light-activatable probes are relatively small compared with fluorescent probes and
minimally perturb cellular physiology. The probes can be multiplexed with other methods pro-
viding multicomponent imaging while measuring cellular dynamics, for example, simultaneous
imaging of mitochondria, lysosomes, and LDs.

3.3. Coherent Anti-Stokes Raman Scattering Imaging

As with SRS, CARS is a nonlinear optical process with submicron spatial resolution when applied
to imaging single cells. The signal of CARS is up to 5 orders of magnitude stronger than that of
spontaneous Raman scattering, and it is highly effective for detection of lipids (131). Compared
with SRS, CARS has a simpler signal detection system since the emitted signal is at a different
energy than that of the pump/probe scattered photons and so signal detection requires only spec-
tral filters (64, 69, 91, 119). But CARS typically has a poorer signal-to-noise ratio compared with
SRS, and the CARS signal is not proportional to analyte concentration (unlike the SRS signal),
making CARS more challenging in terms of analyte quantification (84, 91, 119). CARS possesses
an acquisition time 2 orders of magnitude lower than SRS (90). Although CARS and SRS both
permit nondestructive imaging in a label-free manner, both methods can induce significant pho-
todamage due to the high peak powers of the picosecond or femtosecond lasers. Like SRS, spatial
resolutions in the hundreds of nanometers are achievable with CARS (65). These attributes have
enabled CARS to have a tremendous impact on the field of single-cell lipid measurements, par-
ticularly in the dynamics of LDs (132-134). For example, recent technological innovations have
enabled high-speed, submicron visualization of LD movements within single cells (132).
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Enhancements in CARS instrumentation have yielded additional advances in multiplexed and
hyperspectral imaging at high spatial resolution to enhance analyte identification in single cells,
as well as the integration of CARS with other microscopy methods for multimodal imaging (86—
89, 131, 135-141). As an example, hyperspectral CARS has been applied to assay lipids, proteins,
and DNA in single osteosarcoma cells and to track their concentration changes over time during
mitosis. A similar methodology was used to quantify lipid concentration and composition in indi-
vidual LDs in living cells over time when supplied with a medium possessing different FAs (142).
Multiplexed CARS permitting imaging over a range of wavelengths (or vibrational energies) and
combined with fluorescence microscopy has enabled tracking of lipid storage in LDs versus the
endoplasmic reticulum before and after receptor (TrkB) stimulation in living single colorectal cells
(135). Other CARS advances include the use of more than two lasers to access a broader range of
Raman bands, for example, broadband CARS (143), probing a wavelength range of >3000 cm™!
with a resolution of <10 em™! for assay of lipids in single murine pancreatic duct cells. Another
compound microscope example is the integration of sum-frequency generation (SFG) imaging
with CARS (136). In this instance, SFG imaging of an exogenously added dye enabled selective
visualization of the plasma membrane of cells coupled to CARS-based visualization of cellular
lipids in single neurons.

4. FLUORESCENCE-BASED TECHNOLOGIES

Fluorescence involves the absorption of a photon with excitation of a molecule from a ground
electronic state into a higher energy electronic state (first or second excited singlet state). Energy
then is dissipated by internal conversion with return to the lowest excited singlet state. Return to
the ground state can occur by emission of a photon (fluorescence) now at a lower energy than that
originally absorbed (144). Fluorescence-based measurements offer many advantages including
high sensitivity and proportionality of fluorescence intensity to fluorophore concentration. The
unique spectral properties of a fluorophore confer specificity in fluorophore identification as well
as enabling multiplexed assays using multiple fluorophores. Additionally, a large number of fluo-
rophores with a wide range of emission and excitation spectra are available. Fluorescence-based
detection is compatible with a wide range of assay types often using simple, robust instrumenta-
tion. Fluorophores are readily conjugated to other molecules using a variety of chemistries. Major
limitations of fluorescence-based measurements include fluorophore photodegradation or loss
over time, environment (pH, solvent, etc.) sensitivity of the photon emission energy, and poten-
tial for quenching (return to ground state without fluorophore emission). Since cellular lipids are
not typically fluorescent, a strategy to incorporate a fluorophore into the assay, that is, a labeling
strategy, is also required. This section focuses on microscopy methods and microseparation tech-
niques that use fluorescence as a component of the lipid detection strategy, with a focus on the
quantification of the lipid species and lipid metabolic pathways in single cells.

4.1. Fluorescence Microscopy

Fluorescence microscopy of lipids offers significant advantages over other methods including the
ease of accessibility and a wide range of available microscopy methods, for example, confocal,
two-photon, light-sheet, and super-resolution microscopes. Fluorescence microscopy typically
achieves high sensitivity to measure very low concentrations (nanomolar) of cellular lipids with a
high signal-to-noise ratio and excellent spatial resolution (often submicron). Fluorescence labeling
can be accomplished by using prelabeled lipids added to the cells, staining by immunofluores-
cence methods, employing lipid-binding or reactive fluorophores, or applying other strategies.
These labeling methods, while highlighting the desired lipids, may also increase background noise
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Fluorescence microscopy-based measurement of lipids. Schematics show the principles of (#) dyes that partition into lipids,

(b) antibody-based lipid probes, and (c) clickable lipid probes. In panel 4, the red and green ovals represent fluorophores of different
wavelengths present in different membrane regions. In panels & and ¢, the green star depicts a fluorescent molecule placed onto an
antibody or added via a click reaction. (d) Confocal laser scanning image of lipid droplets in preadipocyte cells stained by a
solvatochromic probe. (¢) Immunofluorescent staining of PtdIns(4,5)P, in HeLa cells. (f) The location of phospholipase D activity was
highlighted by adding a clickable substrate to cells. The product formed was made visible using a clickable fluorophore. Panel ¢ adapted
with permission from Reference 4; copyright 2022 American Chemical Society. Panel 4 adapted with permission from Reference 154;
copyright 2022 American Chemical Society. Panel e adapted with permission from Reference 172. Panel fadapted with permission
from Reference 182; copyright 2017 American Chemical Society.

through nonspecific staining. Additionally, the reagents are critically dependent on their design for
specificity as to the molecules labeled (with either high or low specificity possible). The methods
frequently require the addition of exogenous reagents to cells, so the probes must be membrane
permeant or the cells fixed to allow probe access to intracellular lipids. Another strategy is genetic
engineering of cells to express protein constructs tagged with a fluorescent protein. In this section,
we present three different fluorescence strategies to assay lipids in single cells: lipid partitioning
reagents, lipid binding proteins, and functionalized lipids (Figure 3).

Cells possess a number of organelles such as LDs, lipid bodies, and other structures greatly en-
riched in lipid content relative to the majority of the intracellular environment. This attribute has
been capitalized on through the use of hydrophobic dyes such as BODIPY 493/503, FD13, and
Nile Red that, when added to cells, will partition into and mark these hydrophobic or other unique
microenvironments (145-158) (Figure 34). Due to the very high concentration of dye loaded
into the compartments, the signal sensitivity is exceptional, and spatial resolution of hundreds of
nanometers is attainable for detailed imaging and tracking of these subcellular structures in liv-
ing cells (152, 159). The use of molecules with differing partitioning behaviors and fluorescence
properties also enables multiple structures to be tracked over time with minimal photodamage.
Properly designed probes can report multiple attributes of the microenvironment including mem-
brane fluidity, local polarity, lipid composition, domain sizes, and temporal properties (145-158,
160). Newer probes such as PIE-1 possess high fluorescence quantum yield and photostability, fur-
ther improving upon measurement attributes for live cell imaging including imaging speed (147).
Organelle-specific probes permit imaging of the polarity and lipid order in LDs, lysosomes, Golgi
bodies, and mitochondria in the same cell (149). LD-specific probes with enhanced attributes have
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also been developed for standard or two-photon imaging with high spatial resolution but low cel-
lular toxicity (152, 158). Energy transfer between pairs of these dyes and/or other molecules can
be used to investigate the degree of order or disorder in lipid domains and lipid packing in liv-
ing cells (161, 162). For example, these types of studies have revealed that living cell membranes
comprise a mixture of both ordered and disordered lipid domains (163). While these probes have
enabled breakthrough advances in the understanding of lipid-rich subcellular organelles and their
structure, the lack of specificity of the probes in terms of labeling specific lipid species has limited
their application.

Protein-based staining reagents such as antibodies and binding domains have long been a main-
stay for protein identification or sensors in single cells and have been used with success for lipids
(164-172) (Figure 3b). Antibodies have the advantage of being easy-to-apply reagents using stan-
dard protocols and are often commercially available. However, raising antibodies against lipids
can be quite challenging due to their hydrophobic character and ubiquitous presence through-
out species (lessening their immunogenicity). Antibodies can be very specific for the targeted
molecule, but a well-recognized challenge with antibodies is that they often bind to molecules
other than the intended target. Immunofluorescence-based probes have been used most often
to assay phosphoinositide and sphingolipid location within single cells (171). An advantage of
these reagents is the ability to perform multiplexed assays by also simultaneously performing
immunofluorescence labeling of proteins, organelle markers, and other fluorescent probes with
complementary spectral properties. Genetic engineering of cells to express lipid binding domains
(subunits of a larger protein) linked to a fluorescence protein (enhanced green fluorescent protein
or others) also have found success. For example, a peptide-based sensor was developed to de-
tect anionic phospholipids in live HeLa cells, an approach that was compatible with two-photon
excitation (167).

One strategy to improve the specificity of lipid probes is to label or functionalize the lipids
themselves and then incorporate these labeled molecules into the cells to assay lipid localization,
metabolism, transport, compartmentalization, and other properties within single cells (Figure 3c).
A wide array of fluorescently labeled or otherwise functionalized (biotinylated, photoactivatable,
clickable, etc.) lipids are now commercially available (173-175). These probes have the advan-
tage of having a known molecular structure and often undergoing some but not all endogenous
metabolic reactions of the native molecule. A challenge, however, can be the efficient loading
of these molecules into cells given the poor water solubility of lipids, although carriers such as
polyamines and dispersants have been used to facilitate lipid delivery to cells (173-175). Exoge-
nous loading can lead to mislocalization of these lipids; nevertheless, the use of these functionalized
lipids has led to many novel insights into cellular lipid biology. An example is the use of BODIPY
FL Ganglioside GM1 to label, characterize, and track lipid rafts in the plasma membrane of cells
(176). Fluorescent sphingomyelin analogs also were developed to investigate the formation and
function of raft domains (175). A mitochondrial-specific photoactivatable sphingosine has been
used to show the rapid conversion of sphingosine into sphingosine-1 phosphate in HeLa cells
(174). An obstacle present for all fluorescent lipids is the presence of the bulky fluorophore that
can block binding to intracellular proteins including metabolic enzymes. A significant innovation
addressing these impediments is the development of click lipids (177-182). Instead of a bulky
fluorescent moiety, these reagents possess either a small azido group or a terminal alkyne, making
the click lipids structurally very close to the endogenous counterpart (180, 183). The fluorophore
used for detection is then added at experimental completion, enabling the click lipid to partic-
ipate in normal cellular physiology. For example, an alkyne-oleate probe was used to track FA
metabolism in cells and then clicked with an azide fluorophore (184). Azidoalcohols can be used
in the phospholipase D—catalyzed transphosphatidylation reaction to produce azidolipids that can
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then be fluorescently labeled to track the subcellular location of phospholipase D activity and PA
production (182). A related activity-based imaging strategy employs cyclooctene-containing pri-
mary alcohols to act as a nucleophile in the phospholipase D reaction, with phosphatidylcholine
providing near real-time imaging of PA production in living cells (181, 182).

4.2. Fluorescence-Based Microseparation Methods

Many separation techniques have been applied to assay single cells, including TLC, capillary elec-
trophoresis (CE), and even HPLC (4, 185-188). To date, CE is the most prevalent method used for
lipid assays in single cells, with TLC as an emerging technique. With CE, analytes are separated
in a solvent (typically aqueous) under an electric field. The dominant parameter for separation is
the charge-to-mass ratio of the analytes, although other separation strategies are possible, such
as micellar electrokinetic chromatography, which separates analytes on the basis of partitioning
into micelles while under an electric field (185). In contrast, TLC separation relies on the cap-
illary forces of an organic solvent moving through a matrix (typically silica based) and separates
analytes on the basis of their differential interactions with the matrix and organic solvent (189).
Separation techniques have common advantages in lipid analysis. The methods typically have low
background noise because the analyte is separated from other cellular material at the time of de-
tection. The separation step also provides some degree of specificity because different analytes
will possess characteristic migration times or arrival times at the detection zone. CE provides
exceptionally high resolution (peak capacities of 50-100 peaks/separation), separation efficiency
(>1 million theoretical plates), and sensitivity (<107*! mol or <1 nM in a 1-pL cell) (185). Some
CE systems have even achieved limits of detection of 1072} mol (190). Use of multiple fluorophores
with different spectral properties further increases the number of analytes that can be simulta-
neously measured in CE. As long as the analytes remain fluorescent, CE can be used to track
downstream metabolites as they form from a reporter molecule (4, 187). Single-cell lipid assays
by CE can also be fully automated and integrated with microscopy methods (185). Microfluidic-
based CE assays enable further integration and miniaturization of complete workflows. TLC, on
the other hand, offers the major advantages of low cost and ease of accessibility but possesses low
resolution and separation (189). However, both CE and TLC applied to single-cell lipid assays
have drawbacks. Measuring endogenous lipids in cell samples using CE and fluorescence is quite
difficult, because lipids are not typically fluorescent and would need to be derivatized prior to de-
tection. For this reason, both methods use a prelabeled substrate that is loaded into the cells, and
this loading step can be facile or quite challenging depending on the properties of the molecule.
Both techniques are cell destructive and consume the cellular contents, prohibiting multiplexing
of CE- or TLC-based single-cell lipid assays with additional downstream assays. Additionally, this
limitation means that, for the most part, the methods do not possess a subcellular spatial resolu-
tion. Finally, most of the demonstrated technologies for single-cell lipid assays are moderate in
throughput (<5 cells/min), at best (4, 185).

For CE, the ability to measure multiple lipid metabolites from a single cell has enabled funda-
mental investigations into cell-to-cell heterogeneity in signaling behavior as well as responses to
drugs (4, 185, 186) (Figure 4a). Sphingolipids, glycosphingolipids, and phosphoinositides as well
as ganglioside metabolic pathways have been assessed in single cells by CE (185, 186, 191, 192).
For example, when cells were loaded with sphingosine fluorescein and then assayed by CE, more
than five metabolic products could be identified in cells, with sphingosine-1-phosphate fluores-
cein and hexadecimal fluorescein composing the majority of products formed. Most interesting
is that the single cells readily clustered into two groups: one group of cells with high SK activity
and one group with low SK activity (186). After loading with a fluorescent lipid, single cells can
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Figure 4

Fluorescence-based separation techniques for single-cell lipid assays. The schematics show the separation of cellular analytes using

(a) capillary electrophoresis (CE) and (b) picoliter thin-layer chromatography (pTLC). (¢) An electropherogram of the CE separation
from a single leukemia cell loaded with sphingosine fluorescein (SF) is shown. Sphingosine kinase activity was measured by quantifying
the conversion of reporter SF to downstream metabolites, sphingosine-1-phosphate fluorescein (S1PF) or hexadecenoic acid fluorescein
(HAF). (d) A single leukemic cell was loaded with 3,3’-dioctadecyloxacarbocyanine perchlorate (DiO) and 1,1’-dioctadecyl-3,3,3,3'-
tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate salt (DiD), and the cell was assayed by pTLC. Panels # and 4 adapted with
permission from Reference 195; copyright 2022 American Chemical Society. Panel ¢ adapted with permission from Reference 185;
copyright 2020 American Chemical Society.

be assayed while living, as in the prior example, or fixed and stored prior to assaying because the
lipids remain partitioned in the fixed cells (187, 192, 193). The bulky fluorophore placed on the
lipids can alter lipid location and metabolism in cells, and recent studies have used click lipids for
assay of single-cell lipid metabolism. In this strategy, termed fix and click, cells are loaded with a
clickable lipid, and after incubation for varying times with or without agonists or inhibitors, the
cells are fixed, and the click reaction is performed to create fluorescent analytes from the intra-
cellular molecules possessing the clickable moiety (4). This strategy enables the tracking of signal
pathway activity in single cells by CE using a near-native lipid substrate loaded into cells with
greater measurement fidelity.

"To overcome the throughput and cost limitations of CE, several groups have worked to improve
the rates of both serial and parallel throughput to increase the number of cells that can be assayed,
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as well as to automate and diminish instrument costs. For example, a system with a hybrid CE-
microfluidic device (Figure 4b) enabled 100 cells placed on an array to be sequentially and rapidly
assayed with a sensitivity of 1072! mol and a throughput of 3.5 cells/min (186, 191). A parallel
CE system with an array of five capillaries coupled to an array of microwells demonstrated the
simultaneous separation of ceramides and gangliosides from single cells (194). This system was
also adapted to incorporate a multicolored fluorescence detection system to further expand the
numbers of detectable analytes and simultaneously assay glycolipid catabolism and anabolism from
a single cell with detection limits of 10722 to 1072* mol (188, 192). Other innovations developed
low-cost ($130) yet highly sensitive detection systems using silicon photomultipliers (185).

In the past TLC has been viewed as a low-sensitivity method requiring large sample volumes
(1077 L) and thus not suitable for assay of a 1-pL volume cell. This is due in part to the plate-based
format (centimeters in length and width, with a depth of ~100-250 pwm) for TLC, which enables
diffusional spreading (or dilution) of analytes in three dimensions. Recent innovations in the mi-
crofabrication of arrays of miniature TLC separation lanes or picoliter thin-layer chromatography
(pTLC) have created opportunities for assay of lipids in single cells (195). Microchannels (width
~50 pm and depth ~13 pwm) were fabricated on a surface and then filled with a monolithic micro-
porous silica gel to confine the movement of analytes along the microchannels, limiting diffusion
to one dimension. These devices enable the TLC-based separation of picoliter to nanoliter volume
samples with excellent fluorescence detection limits. When single cells loaded with fluorescent
lipids, for example, a fluorescent sphingosine, were spotted at the entryway of the microchannels
and TLC was initiated, the lipid and its downstream metabolites (ceramide and sphingosine-1-
phosphate) were detectable. While the separation resolution is low (~2—4) compared with CE, the
advantages of the pTLC platform are its operational simplicity, the minimal equipment needs, and
its robustness, making the technology suitable for many applications, including single-cell assays
of lipases and lipid kinases.

5. CONCLUSION

Single-cell omics is progressing rapidly, with impressive technological developments in the past
decade in proteomics, genomics, and transcriptomics. These high-throughput technologies have
revealed fundamentally new insights into cell physiology. Given the importance of lipids in both
health and disease, understanding the full range of lipids within a single cell is increasingly critical,
as has now become possible with other cellular constituents. These attributes include not only
lipid chemical identity and spatial and temporal distribution but also the flow of signals through
the various lipid pathways. This review covers the impressive advances that have been made in
the measurement of lipids from a single cell, including innovations in mass spectrometry, Raman
microscopy, fluorescence microscopy, and microseparation methods (Table 1). These methods
are in general complementary in their properties, with some providing high spatial or temporal
resolution, excellent specificity, precise quantification, impressive sensitivity, or multiplexed lipid
measurements, yet none of the methods possess all of the desired characteristics. This is largely
due to the challenges in lipid measurement (hydrophobicity and chemical diversity) combined
with the extremely small size of a typical mammalian cell and the wide concentration range of
lipid species within a cell.

While the techniques in this review have revolutionized our understanding of the lipid com-
position and physiology within single cells, additional analytical needs in single-cell lipid assays
remain. Since many cellular samples are ultralow volume (from femtoliter vesicles to picoliter
cells) and many signaling lipids can be present at less than 1072° mol per cell, sensitivity remains a
challenge for most methods. Strategies to increase sample throughput while maintaining the ease
of sample introduction and analyte sensitivity are an opportunity ripe for innovation, especially
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Table 1 Summary of approximate lipid metrics achieved for the different analytical techniques

Specificity
Sample (molecular
Feature/technique Spatial resolution Sensitivity destruction | Ease of access identification)
MALDI-MS 1-5 pm 1071521018 moles | Yes Low-medium Excellent
ESI-MS 10-100 pwm 1071071 moles | Yes Low-medium Excellent
SI-MS 0.05-1.0 pm 10-15-1017 Yes Low-medium Excellent
moles
Spontaneous Raman 0.3-0.6 pm 1-10 mM No Medium Poor
imaging
SRS 0.1-2 pm 0.1-10 mM No Medium Poor
CARS 0.1 pm 0.1-10 mM No Medium Poor
Fluorescence 0.2-1 pm <1078 moles No High Intermediate
microscopy
Microseparation Whole cell 102! moles Yes Low-medium Intermediate
methods (~10 pm)

Abbreviations: CARS, coherent anti-Stokes Raman scattering; ESI-MS, electrospray ionization mass spectrometry; MALDI-MS, matrix-assisted laser

desorption/ionization mass spectrometry; SI-MS, secondary-ion mass spectrometry; SRS, stimulated Raman scattering.
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in pharmaceutical applications. A major barrier yet to be overcome by most of the technologies is
ease of use, since most techniques require expertise in the instrumentation and sample prepara-
tion methods. For example, the majority of instruments described are best suited to placement in
core facilities due to either cost or required expertise, creating opportunities in the future for the
introduction of simple cassettes and kits for the nonexpert to further democratize single-cell lipid
assays. There remain enormous opportunities for engineers, biologists, and chemists to develop
improved technologies, propelling the field of single-cell lipidomics to new heights and rivaling

the assays performed in the other omics fields.
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