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Abstract

Cellular membranes self-assemble from and interact with various molecu-
lar species. Each molecule locally shapes the lipid bilayer, the soft elastic
core of cellular membranes.The dynamic architecture of intracellular mem-
brane systems is based on elastic transformations and lateral redistribution of
these elementary shapes, driven by chemical and curvature stress gradients.
The minimization of the total elastic stress by such redistribution composes
the most basic, primordial mechanism of membrane curvature-composition
coupling (CCC). Although CCC is generally considered in the context of
dynamic compositional heterogeneity of cellular membrane systems, in this
article we discuss a broader involvement of CCC in controlling membrane
deformations. We focus specifically on the mesoscale membrane transfor-
mations in open, reservoir-governed systems, such as membrane budding,
tubulation, and the emergence of highly curved sites of membrane fusion
and fission. We reveal that the reshuffling of molecular shapes constitutes
an independent deformation mode with complex rheological properties.
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This mode controls effective elasticity of local deformations as well as stationary elastic stress, thus
emerging as a major regulator of intracellular membrane remodeling.
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1. INTRODUCTION

The pace of life of eukaryotic cells can be seen through intracellular membrane dynamics, contin-
uous and rapid remodeling of the endomembrane system.One of themajor remodeling cascades is
dedicated to functional membrane recycling, the basis of cellular homeostasis. The recycling, car-
ried by small vesicular carriers, enables prompt delivery and removal of protein and lipid species to
and from larger endomembrane subsystems. Synaptic membrane recycling takes less than 1 s dur-
ing nerve impulse transmission (30, 144, 145), and the recycling of the whole surface membrane
of a motile cell takes only 4 min (1, 51, 135).Membrane shuttling between intracellular organelles
also can be extremely fast (59). Variations of membrane composition during the formation of a
vesicular carrier can be quite dramatic, as these vesicles are tightly packed with accessory proteins
and cargo (97, 110, 118, 146). Likewise, demixing of membrane species is characteristic for bud-
ding of enveloped viruses tightly packed with viral membrane proteins and thus excluding most
of the host proteins (27, 115). Finally, a vesicle carrier is severed from the parent membrane by
dedicated protein machinery, which organizes a membrane fission site with distinct protein and
lipid compositions (118). In this article, we discuss how the compositional changes couple to local
membrane deformations, rather than creating an additional energy barrier, enabling minimiza-
tion of energy barriers and ensuring speed and reversibility of the deformations, imperative for
fast membrane recycling.

Formation of vesicular compartments is generally associated with the self-assembly of a curved
protein layer, an external coat, or an internal lining on the parent membrane (38, 47). Although
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such proteins encode vesicular geometry in their self-assembly patterns, they also sense membrane
curvature, as the onset and development of the polymerization process depend on the curvature
(94, 150). This curvature effect is due to elastic resistance of the lipid bilayer to bending: Coat
self-assembly is easiest when membrane geometry coincides with that of the coat. To enforce
membrane bending, coats rely on local curvature creators, such as auxiliary proteins and/or evolu-
tionarily conserved protein domains coupled to membrane curvature (54, 72, 153).These domains
both generate the curvature and sense it, as the curvature affects their membrane partitioning (54,
86). As coats, they have a preferred membrane curvature that matches their molecular geometry
and optimizes their interaction with lipids (3). They migrate, or sort, toward similar curvatures
in membrane curvature gradients, facilitating the formation of curved membrane domains (12,
83). Similar curvature-driven sorting has long been associated with the curvature-generating ca-
pacity of lipids (9, 23). The curvature-composition coupling (CCC) then is immanent in various
components of the protein machinery driving the formation of vesicle carriers. CCC introduces
elements of self-organization and mechanosensing into the formation of vesicular carriers, mak-
ing it a stochastic process driven by various mechanical and environmental cues, with membrane
curvature playing a key role in organization (43, 86, 105, 149).

The essence of CCC can be found in the dynamic adjustment of membrane composition dur-
ing deformation, generally via molecular exchange with a reservoir or between membrane parts
of different curvatures. Such an exchange is engrained in most of the membrane deformations
in the cell. Cellular membranes rarely deform as a whole. Generally, a small membrane patch
is transformed, remaining in connection with a relatively static parent membrane. The multicom-
ponent parent membranes, along with cytoplasmic pools of proteins and lipids, provide reservoirs
of molecular species for the deforming patch. CCC not only facilitates membrane deformation
by a coat but also constitutes an entirely new mechanism of membrane morphogenesis. In the
extreme forms of CCC, protein curvature creators could spontaneously demix, leading to coat-
free membrane morphologies (109, 117, 129). Although such a strong CCC might constitute a
stand-alone mechanism of membrane morphogenesis in minimal biomimetic systems or primor-
dial membrane compartments, it was also implicated in ultrafast endocytosis triggered by changes
in plasma membrane tension (117).Weak CCC, in turn, affects the elastic parameters of the mem-
brane, reducing its compliance to bending due to the additional degree of freedom enabled by
CCC during bending deformations (10, 128). This effect has long been known for cosurfactants
exchanging between the monolayer and the bulk phases (65, 73) and is generally associated with
dynamic membrane inhomogeneity (40, 88). The coupling of membrane deformation to both
rotational and translational mobilities of anisotropic molecules leads to further membrane soften-
ing (39, 40). Whereas CCC for proteins might be impeded in crowded membrane systems, lipid
migration is less restricted, especially during local, nanoscale membrane deformations. Hence,
lipid CCC might emerge as a universal organizer and mechanical regulator of such deformation,
with the local tuning of lipid composition playing a specific role in membrane fusion and fission
(41, 118).

In this article,we discuss these emergent roles of CCC in local mesoscopicmembrane deforma-
tions.We review the thermodynamics of local deformations of multicomponent lipid membranes
and discuss the role of the membrane reservoir inherent to such systems, the reference states
for the deformation, and the renormalization of the apparent mean curvature bending rigidity
modulus and lateral tension of the membrane by CCC. Furthermore, using a simple model of a
cylindrical lipid membrane nanotube (NT) connected to a planar membrane reservoir, we show
that weak CCC can be considered an independent deformation mode controlled by the mani-
fold of lipid shapes presented in the membrane. We support the theoretical analyses with experi-
mental results obtained by multiple groups analyzing CCC from different perspectives, including
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membrane curvature and topology sensing by individual protein and lipid molecules, molecular
sorting in membrane curvature gradients, and membrane softening by proteins and lipids. We
conclude by discussing the rheology of CCC and its effect on membrane viscoelasticity.

2. CCC IN RETROSPECT: FROM EARLY IDEAS
TO SINGLE-MOLECULE ANALYSES

The coupling between membrane shape and composition was first invoked to explain the pe-
culiar geometry of erythrocytes (26, 33, 83, 133, 134). Membrane morphogenesis was linked to
the ability, then hypothetical, of individual protein molecules to generate molecular-scale mem-
brane curvature. Collective protein action transpires as a mesoscale curvature function of the local
protein concentration. Nonuniform protein distribution over a membrane creates complex mem-
brane shapes, such as that of erythrocytes (83). Stationary shapes were found at the membrane
energy minima, considering the elastic energy of membrane bending and the entropic losses due
to protein demixing from the reference uniform planar state (26, 83). In the energy minimiza-
tion, membrane curvature and composition change self-consistently, resulting in local coupling
between them (83).

The coupling originates from the dependence of the interaction energy between the protein
molecule and the membrane on the membrane shape, defined by the principal curvatures of a
reference membrane surface, c1 and c2. The energy difference drives the protein redistribution in
the membrane curvature gradients. Without knowing molecular details, Leibler (79) first mod-
eled the linear elastic coupling to the mean curvature J = (c1 + c2)/2. The energy density �ϕJ
was proposed, where � is the coupling constant and ϕ is the membrane (its reference surface) area
fraction occupied by the protein (79). � is explicitly linked to the curvature generation activity of
the protein. It can be shown that� = −kJp, where k is the mean curvature bending rigidity modu-
lus and Jp is an approximation of the local membrane curvature intrinsic for the protein (9, 28, 79),
for example, reflecting the shape of its membrane-interacting surface (86, 123). The CCC energy
density becomes −kϕJpJ, illustrating that protein curvature generators migrate toward their in-
trinsic membrane curvatures. As Jp is an elusive parameter, its mean-field analog, the spontaneous
curvature Js = ϕJp, was introduced (83). At a given protein coverage Js defines the reference state
for the mean curvature bending, the state characterized by the vanishing mean curvature bending
moment in a free-standing membrane patch uniformly covered by the protein (71, 74).

Following the early theoretical analyses, CCC, often termed protein sorting, has been demon-
strated experimentally for protein and lipid species. Strong CCC was associated primarily with
proteins implicated in membrane remodeling (16, 54, 89, 119). Their sorting was detected in min-
imal membrane systems containing well-defined synthetic lipid membrane templates and purified
proteins, such as annexin B12, amphiphysin, endophilin, reticulon, and IRSp53 (37, 77, 101, 117,
128, 150). In vitro reconstruction of CCC has been instrumental for the mechanistic analyses of
this phenomenon. CCC was further associated with conserved protein domains coupled to mem-
brane curvature via their shapes and membrane insertion motifs (86, 153). Sorting of crescent-
shaped Bin/Amphiphysin/Rvs (BAR) domains, omnipresent in membrane-remodeling proteins
(119), toward positive or negative membrane curvature was correlated with their curvature gener-
ation activity (11, 21, 50, 119, 154). Amphipathic helices (AHs), creators of extremely high positive
Js (25), drove protein sorting toward positive membrane curvature (28, 35, 68). The preferential
partitioning of AHs into highly bent lipid monolayers was associated with the packing defects
produced by extreme bending (5). As similar packing defects are generated by cone-shaped lipid
species packed in a planar lipid monolayer (5), we argue below that CCC might account for the
defect action as well.
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Although strong coupling to membrane curvature might require specialized protein domains,
any individual molecule in a heterogeneous lipid bilayer generally produces local deformations.
The associated stress could be strong enough to support CCC. Such CCC, virtually unrelated to
membrane remodeling processes in the cell, was detected for transmembrane proteins (2, 130),
membrane-bound nanoparticles (112), and colloids (80). The general ability of peripheral mem-
brane proteins to discriminate membrane curvature might be relevant for regulating spatial pro-
tein distribution in bacteria (102).

The CCC for lipids is important for our analysis in this article. Though generally weaker
than that of proteins (69, 137), CCC was demonstrated experimentally for several lipid species of
physiological importance, including dioleoylphosphatidylethanolamine (DOPE), cardiolipin, and
lysolipids (9, 14, 17, 69). Coarse-grained modeling of lipid CCC confirmed the existence of the
coupling (7, 32, 36). Lipid sorting is substantially enhanced in large gradients of membrane curva-
tures typical for structural intermediates of membrane fusion and fission (9, 70, 90). Accordingly,
the lipid CCC was implicated in the regulation of membrane fission in the cell (96, 116). Demix-
ing lipid species in weaker curvature gradients generally requires auxiliary driving forces coming
from, for example, lipid phase separation (55, 107, 127, 148) or protein cosorting (109). Experi-
mental detection of these driving forces suggested that CCC for lipids, as well as for proteins, can
go beyond the linear coupling to mean membrane curvature outlined above.

Different CCC mechanisms were already considered in the early models of coupling. If the
lipid and the protein species have the same Js, for example, in a planar lipid bilayer containing
protein species with Jp = 0, demixing can still be produced by a mismatch between the protein
and lipid rigidity �k (83). The corresponding energy density is proportional to �k(J)2, such that
protein molecules are driven into or out of curved membrane parts depending on the sign of �k.
The rigidity difference underlies lipid sorting associated with fluid phase separation (107, 138).
Beyond the mean membrane curvature, linear coupling to deviatropic curvature (c1 − c2)/2 was
proposed for anisotropic molecules oriented in the membrane plane (19, 39, 40, 76). Sensing of
deviatropic curvature by anisotropic membrane inclusions and peptides was documented in exper-
iments (77) and simulations (49, 143). These results imply that protein molecules can discriminate
membrane shape (e.g., distinguish a sphere from a cylinder of the same J) (77).

Membrane shape sensing implies strong local interactions, as not only translational but also
rotational entropy of a molecule is diminished if the molecule is confined in a membrane part
with certainmean and deviatropic curvatures.Accordingly, recent analyses demonstrated theCCC
power at the single-molecule level (31, 49, 147). Single-molecule CCC is expectedly small for
lipids, yet it could be detected as the difference in the residence time of lipid molecules in curved
and flat membrane parts (31) (Figure 1a). The coupling is predictably stronger for proteins (e.g.,
for small oligomers of Dynamin1), creating substantial local membrane curvature (10). Although
sensing ofmembrane curvature byDynamin1 was associated with its helical oligomerization (108),
small subhelical Dynamin1 oligomers show pronounced CCC, seen as preferential partitioning
into highly curved membrane NTs (Figure 1b). Importantly, membrane curvature sensing by
protein molecules might show cooperativity (63), due either to lateral interactions between the
proteins or to membrane-mediated feedback.

Although CCC can occur on nondeformable supported membrane templates in the form of
pure curvature sensing (17, 63, 136) on soft, deformable membranes, CCC is intrinsically coupled
to the generation of membrane curvature (12). Intuitively, CCC-driven accumulation of protein
curvature generators on an appropriately curved membrane patch would increase the patch cur-
vature. In fact, at high protein concentrations this positive feedback can trigger instability and
phase-transition-like processes, where protein demixing leads to membrane shape transforma-
tions (66, 101, 117, 120, 122, 140, 152). Although these results are in line with earlier predictions
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Figure 1

Experimental measurements of membrane curvature sensing by single molecules. (a) The schematic (top)
shows the formation of a supported lipid bilayer (blue) containing flat and highly curved parts due to
incorporated nanoparticles (brown). Two fluorescence microscopy images (bottom) show the trajectories of
single fluorescently labeled lipid (1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine) moving over the
flat part of the SLB (flat) and over or near the curved part (curved; black dot). The bar chart shows that the
trajectory’s steps are smaller at or near the curved parts of the SLB, indicating preferred lipid partitioning to
positively curved lipid monolayers. Panel a adapted from Reference 31. (b) Quantification of binding of small
Dyn1-mEGFP oligomers (4–12mers) in an NT–SLB system. Lipid NTs were formed directly over flat SLB
by the rolling technique (46). The protein oligomers (green) were seen bound to the NTs (blue arrow) and to
SLB nearby (light blue arrow). The oligomer fluorescence intensity was used to determine the number of
Dyn1-mEGFP monomers in the oligomers. The boxplot shows that the oligomer concentration was higher
on the NT than on the SLB, in agreement with the positive membrane curvature sensing that is encoded in
the arc-like architecture of small Dyn1 oligomers (104). Abbreviations: Dyn1, Dynamin1; mEGFP,
monomeric enhanced GFP; NT, nanotube; SLB, supported lipid bilayer.

about the morphological power of CCC (83), they also reveal that membrane transformations
are generally described by a nonlinear CCC (12, 152). Yet the instabilities leading to the shape
transformations could appear in linear CCC owing to related membrane softening.

It was noted in the original treatment of the linear CCC that coupling between the mean
membrane curvature and composition leads to the decrease of the apparent bending rigidity of
the membrane �k = �2/γ , where γ characterizes osmotic compressibility of the (diluted) protein
solution in the lipid film (79). Coupling to deviatropic curvature causes a similar softening effect
(40). As k approaches zero, soft deformation modes emerge, leading to membrane shape insta-
bility (40, 79). Far from such instabilities, the reduction of k associated with the coupling of the
membrane composition to the mean curvature of the membrane, also termed mean-curvature-
composition coupling (mCCC), was detected experimentally for proteins (37, 114, 128) and lipids
(9, 58). Softening due to dynamic reorientation of a peptide in membrane undulations, evoking the
deviatropic coupling, was also observed (93). The decrease of k ranges frommoderate (∼30%) for
lipid species to high (∼85%) for membrane-inserting proteins. Such changes in k substantially
alter the energetics of membrane deformations. Near instability points even small changes in
k can trigger membrane remodeling, indicating that weak mCCC might critically affect mem-
brane transformations during membrane fusion and fission (116).

The examples above highlight the complexity of the effects of CCC on membrane elasticity,
mechanical stability, and membrane behavior under curvature stress in general. This mechanical
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side of CCC is somewhat overlooked compared with its role in molecular sorting and lateral
self-organization of cellular membranes. In the next sections, we discuss in detail how CCC,
particularly mCCC, affects bending elasticity, lateral tension, and the overall mechanics of the
bending deformations of lipid and proteolipid membranes. We use linear mCCC as a prototype
to describe the thermodynamics and basic molecular mechanisms of the softening effect in a
multicomponent open membrane system.

3. THERMODYNAMICS OF MEMBRANE DEFORMATION
IN MULTICOMPONENT OPEN MEMBRANE SYSTEMS

The thermodynamics of CCC has been extensively analyzed (12, 128, 138, 141). Here we follow
conventional treatments to obtain simple analytical expressions for the changes to lateral tension
and mean curvature bending rigidity of the membrane caused by mCCC. We first consider a
homogeneous multicomponent lipid monolayer in contact with a reservoir, the most basic setup
for the mCCC analysis (73). For an isothermal deformation, the differential of the Helmholtz free
energy for the monolayer containing N lipid species (74, 84) is

dFm =
N∑
i=1

μidni + σdA+ Aτdj + Ak̄dkG. 1.

The right-hand side of Equation 1 includes the energy changes due to the changes in
membrane composition (dni) and area (dA) via exchange with a reservoir, as well as the energy
of membrane bending parameterized by the mean ( j = (c1 + c1)/2) and Gaussian (kG = c1c2)
curvatures. The corresponding intensive variables are the chemical potentials (μi), lateral tension
(σ ), mean curvature (τ = 1

A
∂Fm
∂ j ), and Gaussian curvature (k̄ = 1

A
∂Fm
∂kG

) bending moments (24, 74).
The energy depends on the extensive variables as

Fm =
∑

μini + σA. 2.

To find how each chemical potential changes with deformation, we must uncouple the contri-
butions of different lipid species to the deformation energy. In general, such uncoupling is com-
plex, as it involves different reference states for different deformation modes (74, 84). To proceed,
we make several common simplifications.We assume j−1 is much larger than the lipid monolayer
thickness and consider deformation of the pivotal plane, where all lipid species have a fixed area
a, with themonolayer areaA = a

∑
ni.The fraction of themonolayer (pivotal plane) area occupied

by the ith component is ϕi = ni∑
ni
, with

∑
ϕi = 1.We also omit the Gaussian curvature term in the

general analysis and discuss the role of Gaussian and deviatropic curvatures separately.With these
assumptions, Equation 2 could be solved straightforwardly for a two-component system, yielding
the chemical potentials as the function of j (73).

For the multicomponent monolayer, a renormalized chemical potential,

μ̃i = μi + σa− a
∫

τdj − A
∫

∂τ

∂ni
d j, 3.

is introduced. The corresponding function F̃m = Fm − A
∫

τdj has the total differential

dF̃m =
∑

μ̃idni, 4.

with the integrals in Equations 3 and 4 taken from the same lower limit, which is generally asso-
ciated with the reference membrane geometry, as μ̃i depends only on ni and can be calculated for
arbitrary σ and j. Hence, Equation 3 is used to link the reference and arbitrary states.
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3.1. The Reference State for Lipid Monolayer Bending

The reference state is defined as a minimum of the bending deformation energy, with infinitesimal
bending of the membrane requiring no work. It follows from Equation 1 that at the absolute
reference state τ , k̄ and σ have to equal zero. The existence of the absolute reference state, where
all deformation moments vanish, depends on the coupling between the deformation modes (e.g.,
bending and stretching/compression modes) (74). The reference state for the mean curvature
bending (splay deformation) considered here is defined by τ = 0. The corresponding geometry
can be found in the linear elastic approximation (57):

τ = k(ϕ1, . . . ,ϕN )[ j − js(ϕ1, . . . ,ϕN )]. 5.

This approximation remains valid until extremely high curvatures, as seen in experiments and
simulations (45, 52, 125). However, as discussed in the literature (22, 52, 62), a higher-order ex-
pansion of τ ( j) might still be needed if the monolayer curvature differs significantly from js. In
Equation 5 js is a single parameter characterizing the reference (spontaneous) monolayer state
(71).We assume the additivity of js ,i so that js = ∑

js,iϕi, where js ,i is the spontaneous curvature of
a lipid monolayer made of the ith component (25, 71, 83). With known exceptions (20, 34, 126),
including cholesterol and lipid mixtures with a large mismatch of the lipid tail length, js ,i behaves
as a robust molecular characteristic independent of the monolayer composition. The additivity of
js ,i further indicates that js does not depend on the rigidities of the membrane components as in a
series of elastic springs. Accordingly, k can be found using a simple Hookean law 1

k = ∑ ϕi
ki
, where

ki is the bending rigidity modulus of a lipid monolayer made of the ith component (83). Defined
as such, k is dominated by the softest membrane component. Stiffer constituents (e.g., proteins)
transpire only at high membrane coverage. Equation 5 assumes that individual components affect
the reference state only via their js ,i. This degeneracy vanishes if additional interactions between
membrane components or between components and the curvature field, effectively linking k and
js, are introduced. We discuss such interactions, as well as the coupling between two monolayers
in the bilayer, in Sections 3.6 and 3.4, respectively.

We now find how the chemical potentials of membrane components change with the defor-
mation from the reference state to an arbitrary state of curvature j and tension σ . In the refer-
ence stateμi( js, σ = 0) = μ∗

i + kBT lnϕi, whereμ∗
i corresponds to a single-componentmonolayer.

From μ̃i( js, σ = 0) = μ̃i( j, σ ) (Equation 3) we obtain

μi( j, σ ) = μ∗
i + kBT lnϕi − aσ + a

∫ j

js
τdj + A

∫ j

js

∂τ

∂ni
d j. 6.

Of note, Equation 6 does not rely on linear elastic approximation, so js and τ ( j) can be rede-
fined to include nonlinear elastic contributions and extra coupling terms. Additional integrands
can also be included to account for independent (e.g., saddle-splay) and mixed deformation modes
(as discussed in Section 3.7). Finally, Equation 6 indicates that the lateral tension can be linked
to the reference geometry, for example, via connecting the reference monolayer to a reservoir
containing the lipid mixture of interest.

3.2. Reservoir Tension

Introduction of a reservoir(s) is appropriate for mimicking cellular membrane deformations.
Pulling long membrane cylinders (tethers) from cellular membranes revealed that they are
connected to relatively large sources of membrane material that maintain the membrane tension
constant during tether elongation (60, 103, 132). Membrane folds, buds, budded microdomains,
and membrane parts adhered to cytoskeleton all can contribute to buffering the tension during
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deformation (6, 78). Apart from membrane subsystems, the cytoplasm makes a large reservoir
of peripheral membrane proteins. In the endoplasmic reticulum, lipid droplets can function
as reservoirs linked to membrane tension changes (15, 91, 111). Similar bulk lipid reservoirs
containing lipid solution in nonpolar organic solvents have been widely used to create biomimetic
lipid bilayers in vitro, such as black lipid membranes (BLMs) (29, 139) and droplet interface
bilayers (DIBs) (13). In these systems the membrane lipid composition is generally assumed to
be similar to that of the reservoir mixture, due to empirical tests (e.g., phase separation) (61) or
to independent partitioning of lipids into oil–water interface in diluted regimes (98, 131). The
exchange with bulk micellar lipid reservoirs provides another means for controlling monolayer
composition and creating asymmetric DIBs (13).

Though for local membrane deformations the most readily available reservoir is the parent
membrane, its composition is also dynamically adjusted via molecular exchange with available
reservoirs. Hence, unlike in preassembled closed membrane systems, such as giant unilamellar
vesicles (GUVs), mCCC is applied to every membrane geometry in the system. Accordingly, we
assume that the composition of the reference monolayer is defined by a set of reservoirs, with
the chemical potentials of the membrane component in the reservoir μr

i remaining fixed during
manipulations (extension and bending) of themonolayer.The associated lateral (reservoir) tension
σ0 of the reference monolayer can be defined from Equation 6: μi( js, σ0) = μ∗

i + kBT lnϕ0
i − aσ0.

As at equilibrium, μi( js, σ0) = μr
i , it follows that

σ0 = 1
a
(μ∗

i + kBT lnϕ0
i − μr

i ), 7.

where the superscript in ϕ0
i indicates that the reference monolayer is in equilibrium with the

reservoir. The lateral tension here is defined at the pivotal plane of the monolayer and, as such,
does not depend on external forces or moments. We also neglect the effect of the external forces
on membrane undulations. We assume that σ0 is moderate to large [in the range of 0.01 to
1 mN/m, with the higher values typical for BLM and DIB systems and the lower values reported
for the tubular endoplasmic reticulum (142)]. At such lateral tensions the effects of thermal-driven
membrane undulation are minimal.

3.3. Lipid Monolayer Softening by CCC

We can now calculate the free energy density for the uniformly curved monolayer connected
to the reservoir. Substituting Equations 6 and 7 into Equation 2 and subtracting the reservoir
contribution, we recover a familiar form for the free energy density (w) (12, 23):

w =
(
Fm −

∑
μr
i ni

)
/A = σ0 + kBT

a

∑
ϕiln

ϕi

ϕ0
i

+
∫ j

js
τdj. 8.

The three parts of the right-hand side of Equation 8 illustrate the sequence of the mono-
layer formation: (a) pulling the reference monolayer of the necessary area from the reservoir, (b)
changing its composition at a fixed curvature via exchange with the reservoir, and (c) bending the
monolayer at a fixed area and composition. For a linear elastic monolayer (Equation 5) the last
integral in Equation 8 becomes

wbend =
(∑ ϕi

ki

)−1(
j −

∑
js,iϕi

)2
/2. 9.

With the deviation of the concentrations from their reference values δi = ϕi − ϕ0
i assumed to

be small, we obtain from Equations 8 and 9

w = 1
2
km

(
j − js,0 −

∑
js,iδi

)2
+ kBT

2a

∑
δ2i + σ0, 10.
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where k−1
m = ∑

ϕ0
i k

−1
m,i is the bending modulus of the reference composition. Minimizing

Equation 10 over δi and expanding to the second order in δ j, we obtain (128)

w = 1
2
keff ( j − js,0 )2 + σ0, 11.

where

k−1
eff =

∑
ϕi,0k−1

m,i +
∑

ϕi,0
a

kBT
( js,i − js,0 )2 = k−1

m + k−1
e 12.

is the effective bending modulus of the bilayer. Equation 12 is the key to understanding mem-
brane softening via mCCC. Its right-hand side might be associated with two Hookean springs in
series, with the spring constants km and ke. The first constant is the mean curvature bending mod-
ulus km, the material parameter defining elastic resistance for deformation with a fixed membrane
composition (e.g., uniform bending of the whole membrane) (see Equation 10). The second con-
stant, ke, defines the mCCC contribution, which diminishes km to keff during local and nonuniform
deformations. During such deformations, the total stress is distributed between the two springs
as km/ke. We come back to this analogy in Section 4.1. Here we emphasize that, for stationary
deformations, keff is the mean curvature bending modulus keff = 1

A
∂2F
∂ j2 (74).

For a two-component monolayer with j1 = 0, j2 �= 0, Equation 12 reduces to the mCCC for
the second component (12, 28, 128, 141):

keff = k

1 + k j22aϕ2(1−ϕ2 )
kBT

. 13.

For small ϕ2 Equation 13 yields �k ≈ − k2 j22
χ

, with χ = kBT
aϕ2

, an expression well known for the
softening effect in two-component membrane systems (e.g., 55) and also identical to an expression
from the earliest linear mCCC model (79) (see Section 2). We next construct the lipid bilayer
membrane from two monolayers governed by different reservoir systems [e.g., by different bulk
reservoirs as in asymmetric DIB setups (13)].

3.4. CCC Effects on the Effective Bending Rigidity and Lateral Tension
of Multicomponent Membranes

Making a bilayer from two different monolayers transforms Equation 11 into

Wb = 1
2
Keff ( j − Js,0 )2 + �0, 14.

where the monolayer bending rigidities (Equation 12) amount to

Keff = (keff )m1 + (keff )m2, 15a.

the spontaneous state is defined from the bending moment balance as

Js,0 = (keff )m1( js,0 )m1 − (keff )m2( js,0 )m2
(keff )m1 + (keff )m2

, 15b.

and the bilayer lateral tension becomes

�0 = (σ0)m1 + (σ0)m2 + 1
2

(keff )m1(keff )m2
(keff )m1 + (keff )m2

(( js,0 )m1 + ( js,0 )m2)2. 15c.

As both monolayers are free to exchange material with reservoirs, their area and composition
are not fixed, so no area coupling between the monolayers exists (113).The spontaneous curvature
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Figure 2

Membrane NTs connected to a reservoir GUV are widely used for quantitative analysis of CCC. (Top)
The schematic shows an NT pulled from a GUV reservoir containing transmembrane protein (voltage-
dependent K+ channel KvAP) (2). The GUV is held by a micropipette with negative hydrostatic pressure
(�P) inside. The NT is pulled from the GUV by a microbead controlled by optical tweezers. (Bottom) The
fluorescence microscopy image shows the membrane fluorescence coming from a lipid probe (red) and
fluorescently labeled KvAP (green). Note that the green fluorescence prevails in the NT, indicating
curvature-driven accumulation (sorting) of KvAP in the NT. Figure adapted with permission from
Reference 2. Abbreviations: CCC, curvature-composition coupling; GUV, giant unilamellar vesicle; NT,
nanotube.

of the bilayer (Equation 15b) is not zero unless themonolayers are connected to the same reservoir,
as in the BLM systems. As Js ,0 is different from the spontaneous curvature of each monolayer, the
tension (Equation 15c) is higher than the sum of the monolayer tensions, indicating hidden stress.
For a symmetric bilayer, the stress (the last part on the right-hand side of Equation 15c) takes
a familiar form, 1

2Keff (Js,0 )
2, associated with packing of lipid species with nonzero Js into planar

membrane monolayers (74, 81, 82). However, in closed preassembled systems (such as GUVs
or supported lipid bilayers), the stress is 1

2Km(Js,m )
2, defined by Km, the material parameters of

the bilayer. The stress can be completely alleviated by bending to J = Js ,m. In contrast, with the
reservoir the stress at Js ,0 is minimal and cannot be diminished by deformation. This stress is
intrinsic to monolayers and is ignored when the membrane is considered a single-layer system.

Next, we analyze how mCCC affects membrane systems containing differently curved parts,
that is, systems with internal curvature gradients. We resort to the widely used membrane NT
system (8, 42, 100). The NTs are highly curved membrane cylinders pulled by an external force
from a large, low-curved parent membrane, such as a GUV or BLM (42, 46) (Figure 2). The NT
energy is generally expressed through the tension of the planar part (�p) and the bending modulus
of the NT membrane. With the reservoir-controlled parent membrane (the BLM system), the
energy becomes

WNT = 2πL
J

(
1
2
KeffJ2 − Keff JJs,0 + �p

)
− f L, 16.
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Figure 3

Changes in membrane elastic parameters by proteins and lipids with nonzero spontaneous curvature. (a, i) Decrease of the effective
bending rigidity (keff) and (ii) the increase of lateral tension (σ p) of lipid membranes containing DOPE (9, 10). The solid and dashed
lines show the tension increase calculated using Equation 17 (�σ = 1

2Keff J
2
s,0; solid line) or its modified version (�σ = 1

2KmJ2s,0; dashed
line). (b) Decrease of effective bending rigidity as a function of the membrane coverage by ENTH; keff was measured as described in
Reference 10. (c) Effective membrane rigidity (keff) decreases with the bulk concentration of the Sar1p GTPase implicated in membrane
remodeling in COPII vesicle transport. Panel c adapted with permission from Reference 114. Abbreviations: COPII, coat protein
complex II; DOPE, dioleoylphosphatidylethanolamine; ENTH, epsin N-terminal homology domain.

where L is the NT length, f is the pulling force, and �p is further augmented with respect to �0,
reflecting the monolayers’ bending from the reference state to the (quasi)planar state:

�p = �0 + 1
2
Keff J2s,0 = (σ0)m1 + (σ0)m2 + (keff )m1(( js,0 )m1)

2

2
+ (keff )m2(( js,0 )m2)

2

2
. 17.

Minimizing Equation 16 over J and L, we obtain

rNT = 1
J

=
√
Keff
2�p

f = 2π
(√

2Keff σb,p − Keff Js,0
)

. 18.

The ratio of Keff to σp defines the radius and the pulling force of a multicomponent NT. Sub-
stitution of Keff → 2km and �p → 2σo produces the well-known equations for single-component
NTs (106).

Equation 18 summarized the effects of mCCC on the effective bending rigidity and lateral
membrane tension in theNT system.TheNT systemwas instrumental in confirming these effects
experimentally. For pure lipid NTs made of cone-shaped DOPE ( js ,DOPE is high, approximately
0.4 nm−1) (44) and in cylinder-shaped dioleoylphosphatidylcholine (DOPC) ( js ,DOPC is low, ap-
proximately 0.01 nm−1) (44) lipids, the measurements of keff via quantitative NT expansion by
electric field revealed that keff decreased with the increase of DOPE concentration in the reser-
voir (9, 10) (Figure 3a, subpanel i). In agreement with Equation 13, keff is minimal at ϕDOPE ∼ 0.5
(P.V.Bashkirov&V.A.Frolov, unpublished data) when themixing entropy peaks, enablingmaximal
softening. Curiously, tension also grows as predicted by Equation 17, indicating that the hidden
stress is controlled by Keff (Figure 3a, subpanel ii). Similar membrane softening with the epsin
N-terminal homology (ENTH) domain ( js ,ENTH ∼ 1 nm−1) (28) on one of the reference molecules
was observed in mCCC research (129) (Figure 3b). For the NTs containing protein species, the
decrease of the bending rigidity modulus due to mCCC could be detected via pulling force mea-
surements by optical tweezers, with Keff calculated using Equation 18, from linear regression of
f on √

σb,p (128) or f rNT on rNT (37, 114).
The softening effect was also detected with membrane models other than NTs, for example,

by analyzing alternations of the thermal undulations of GUVs by pore-forming peptides (18, 95)
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(Figure 3c) or lysolipids with high positive js (58, 87). Nevertheless, mechanistic interpretation of
the softening effect might be ambiguous, as the addition of a new membrane component also af-
fects thematerial parameterKm.Though at low ϕi the effect is small, at higher ϕi Km can be layered,
as observed with detergents, small solutes such as short alcohols, and pore-forming peptides (65,
92, 95). The reduction of Km was associated with a hydrophobic and geometric mismatch between
the membrane components, causing membrane thinning (95, 151) and bulk structural alterations
that led to changes to the transbilayer pressure profile (43). In general, CCC-related membrane
softening can be distinguished from Km reduction by its rheological properties or via correlative
analysis of the softening and redistribution of proteins in membrane curvature gradients.

3.5. Sorting and Softening

The relation of sorting and softening in the mCCC context is set by Equation 10. Its minimiza-
tion over δi yields the absolute sorting coefficients, which measure deviation of the membrane
composition from the reference composition:

Sa,i = δi

ϕ0,i
= ( j − js,0 )( js,i − js,0 )a

kBT
keff. 19.

Equation 19 identifies major parameters controlling curvature-driven sorting in the linear
mCCC approximation: the average curvature frustration ( j − js,0 ), the packing stress for indi-
vidual components in the spontaneous state ( js,i − js,0 ), and keff. It shows that addition of a soft
component (or a component with high spontaneous curvature) diminishes the absolute sorting
coefficients for the rest of the components in planar geometry ( j = 0) but augments those at high
membrane curvatures. This bidirectional action might account for the large stimulation of sort-
ing (cosorting effect) of lipids by curvature-active proteins (109, 127). Equation 19 also shows that
two components with opposite js partition cooperatively, providing a plausible explanation for the
stimulating effect of DOPE, but also the curvature-induced packing defect, on the membrane
binding of AHs (5).

Equation 19 further yields the relative sorting coefficients Sr,i = �ϕi
ϕi

= ϕi ( j)
ϕi (0)

− 1, which quan-
tify the component distribution between planar and curved monolayers. For the two-component
system (Equation 13),

Sr,2 = a(1 − ϕ2)keff
kBT

j2 j. 20.

Equation 20 closely resembles equations derived for the protein sorting between the NT and
the planar parent membrane (12, 37, 128). For two-component mixtures, Equation 20 can be
straightforwardly modified to account for a larger area (ap) occupied by the protein component by
substituting a with ap. In the NT system, Sr can be measured directly with fluorescently labeled
proteins (28, 37) (Figure 2). Equations 13 and 20 are combined to find ap and j2 for a given protein
species from two independent sets of measurements (e.g., Sr and pulling force f ). For example, for
ENTH, ap j22 ≈ 1.2 was obtained from the Keff measurements (10) (Figure 3b). With ap defined
by the size of the hydrophobic insertion of ENTH (∼2 nm2) (124), js ,ENTH = 0.8 nm−1, similar
to the value obtained from the Sr measurements (28). This similarity indicates that the ENTH-
driven reduction of membrane rigidity is due primarily to mCCC. A similar comparison can be
performed for DOPE. The intrinsic curvature of DOPE obtained from the keff measurements
(Figure 3a), 0.4 nm−1, closely resembles that directly measured for stress-free DOPEmonolayers
in the hexagonal (HII) mesophase (44). Again, the correspondence between the intrinsic value and
the value obtained from Keff measurements confirms that Keff reduction is driven by CCC.
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We highlight one important feature of CCC-related softening: In the leading order, the
effect does not depend on the sorting direction. That is, the addition of a molecule with positive
spontaneous curvature, such as an AH, to either the internal, negatively curved NT monolayer
or the external, positively curved NT monolayer should universally cause Keff reduction and NT
constriction (Equation 18). In particular, this softening effect might contribute to AH-driven
membrane constriction and fission observed experimentally (85).

In summary, despite its simplicity, the linear mCCC model has generated several experimen-
tally testable predictions about the effects of CCC on membrane deformations. However, the
model has obvious limitations. Some of these have been mentioned in the text. In the following
sections, we discuss these limitations in more detail in relation to common extensions of the linear
mCCC model.

3.6. The Reference State for Bending Deformations of Proteolipid Membranes

Whereas linear mCCC developed for lipid membranes can be mapped to the protein-containing
systems (as discussed above), the definition of Js becomes more involved. As discussed in Section 2,
local interactions between proteins (membrane inclusion) and the lipid monolayer can affect the
balance of bending moments in the reference bilayer state (Equation 15b). For example, periph-
eral membrane proteins forming an elastic scaffolding on themembrane surface can be considered
as an additional elastic layer coupled to the lipid bilayer (64). To find the reference state in this
system, akin to the asymmetric bilayer (Equation 15b), the local bending moments arising dur-
ing coupling of the protein and lipid layers are to be balanced: js,0 = js,p

km,p
km,l+km,p , where km ,p and

km ,l are the bending rigidities of the protein and lipid layers, respectively, and js ,p is the sponta-
neous curvature of the protein scaffold. The elastic part of the free energy (Equation 9) becomes
wbend = 1

2 (
1−ϕp
km,l

+ ϕp
km,l+km,p )

−1( j − js,0ϕp)2. For a rigid protein (mm ,p >> km ,l), the protein behaves as

a rigid membrane inclusion, with keff ≈ km,l (1 − ϕp − km,l j2s,p
χ

) (see Equation 13 for a comparison).
In the other limit (km,p << km,l), the bending energy becomes

w = 1
2
km,l j2 + 1

2
km,pϕp( j − js,p)2 − 1

2
ϕpkm,p j2s,p, 21.

which resembles the curvature mismatch model (76, 141).
Equation 21 effectively assumes that the protein-covered fraction of the membrane area

ϕp has a different bending rigidity and is deformed independently from the lipid part (in con-
trast to the Hookean coupling assumed by Equation 12 for km ,i). Explicit descriptions of local
proteolipid interactions via a set of phenomenological interaction constants related to protein
structure, particularly to anisotropy, constitute a plausible alternative to mCCC (53). Finding a
reference state(s) for bending deformations, however, becomes a complex minimization problem
for a nonhomogeneous membrane. For anisotropic molecules whose orientation in the membrane
plane can be coupled to deviatropic curvature, the coupling renormalizes Js (39). Strong coupling
that effectively freezes out the rotational degree of freedom might lead to geometries with peri-
odically varying principal curvatures (40).

Although the reference state might be geometrically complex, js,i can still be defined para-
metrically from the sorting coefficient Sr obtained from the single molecule partitioning into
membrane parts of different geometry. The linear mCCC model is applicable in this situation,
as the first quantitative comparison with the curvature mismatch model showed (141). However,
mapping to condensed regimes is not straightforward, as the additivity of js ,i might not hold.
Overall, at high protein coverage, expansion of the mCCC model beyond the linear elastic
approximation is likely to become necessary.
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3.7. Gaussian Curvature, Entropic, and Differential Rigidity Contributions

Among the high-order contributions emerging upon such an expansion, the Gaussian curvature
contributions (kG; Equation 1) are the most discussed. Although it can be considered a topological
invariant for a special class of deformations of closed smooth surfaces, the Gaussian contribution is
considered in the heterogeneous membrane systems (e.g., when the Gaussian modulus k̄ depends
on the local membrane composition) or in the systems with boundaries, such as reservoir and
domain boundaries as well as membrane inclusion boundaries. Equation 3 can be modified to
include the energies of the saddle-splay and mixed deformations (24, 74). The corresponding
contribution to the membrane bending energy can be estimated as

�Wb ∼ A
[∫

kG

k̄ (ϕ) dkG + 2
∫∫

∂τ

∂kG
djdkG

]
, 22.

where the integrals are taken from the reference ( js) to the current state. The contribution of
the saddle-splay deformation is on the order of ∼kGδ and that of the mixed deformation can be
estimated as AĒJKd( jkG ) (where ĒJK is the mixed deformation modulus) (24, 74). For the hetero-
geneous systems (e.g., those containing protein inclusions), the local coupling to the deviatropic
part of kG (kG = c1c2 = j2 − (c1−c2 )2

2 ) has been considered (19, 39, 40, 76). For anisotropic inclu-
sions, quadrupolar coupling ε(c1 − c2)cos(2α) is generally considered, where α is an angle between
the inclusion director and the preferred principal curvature axis and ε is the corresponding in-
teraction constant. For weak coupling, its contribution to the membrane deformation energy is
proportional to ϕiε

2(c1 − c2)2, that is, ∼kGδ (40). Although it follows that the above contributions
could be neglected in the second-order analysis of mCCC, theymust be taken into account beyond
the linear expansion of τ ( j) (Equation 5).

Local membrane softening due to diminishing of the rotational degree of freedom of the inclu-
sions is �k ∼ −ϕiε

2/kBT (40), analogous to Equation 13. This similarity suggests that membrane
softening by weakly anisotropic membrane inclusions might have, in the leading order, two inde-
pendent modes related to rotational and translational entropies. Their combined effect might be
of importance for saddle-splay membrane deformations during membrane fusion and fission (41).
Stronger molecular anisotropy complicates the interaction between the modes.

Besides modification of the bending energy contribution, beyond-quadratic (in δ j) treatment
of the mixing entropy term becomes necessary. Different lattice and thermodynamic models have
been proposed to account for instabilities and phase transitions observed in condensed protein
solutions (127, 128, 140, 152). In general, the inclusion of protein–protein interactions (e.g., pro-
tein repulsion energy) was also necessary (55, 120, 128, 140). However, for a proteolipid mixture
involving species with different ap, defining the mixing entropy becomes perplexing. Molecular
level modeling seems to be a correct way to analyze CCC in such systems.

Finally, the third-order expansion of the free energy is to be used to recover the difference in
the sorting coefficients of the molecules that have the same shape but different intrinsic rigidities
(138). In a binary system, the coupling leads to membrane softening, as keff = km − (k2 − k1)2� j2,
where (k2 − k1) is the rigidity difference (138). These effects are especially important near phase
transition points where chemical interaction betweenmembrane species facilitates demixing (152).
It follows that in the nonlinear regimes, extreme softening (keff → 0) (79) can be achieved via
a variety of pathways related to different softening mechanisms. However, further experimen-
tal assessments of critical membrane softening and associated curvature instabilities are needed
to advance our understanding of the subject.

In summary, in open multicomponent membrane systems containing molecular species of dif-
ferent elastic properties, mCCC, in its various forms, universally increases membrane compliance
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to deformation. Furthermore, mCCC enables dynamic trading of the elastic stress of molecular
deformation for the entropic stress of molecular demixing, thus facilitating both direct and reverse
deformations. In the next section, we discuss this dynamic interplay between molecular demixing
and membrane deformation.

4. MEMBRANE DEFORMATION VIA GRADUAL DEMIXING
OF MOLECULAR SHAPES

4.1. Membrane Deformation via Compositional Adjustment

We come back to Equation 12 and analyze the Hookean relation in more detail. For that, we
rewrite Equation 12 as

k−1
eff =

∑
ϕi,0k−1

m,i +
∑

ϕi,0k−1
e,i , 23.

where ke,i = kBT
a( js,i− js,0 )

2 . As with Equation 12, the right-hand side of Equation 23 can be interpreted

as a Hookean relation for a sequence of springs in which each lipid species contributes two springs
with the constants km ,i and ke ,i.The first constantmeasures the bending stiffness of the lipidmono-
layer made of the ith lipid component. The second constant measures the entropic resistance to
changing the concentration of the ith lipid component in the deforming membrane. This pure
entropic constant is completely defined by the molecular geometry of the available lipid species
and is reversely proportional to js ,i, such that lipid species with large js,i diminish keff the most. For
lipids, js is commonly associated with an effective shape of the lipid molecule in the monolayer,
with cylindrical and conical shapes corresponding to planar and curved monolayers, respectively
(43). Following Equation 23, weak demixing or reshuffling of such lipid shapes constitutes an in-
dependent deformation mode, alternative to conventional bending with a fixed lipid composition
(Figure 4a,b). To illustrate how membrane deformation can be conducted purely via reshuffling
of molecular shapes, assume that keff is dominated by the entropic contribution of a single (kth)
membrane component. With js ,k much larger than the rest of js ,i yet balanced by their sum so
that js,0 = ∑

js,iϕi = 0, the effective bending rigidity becomes keff ≈ ke,k. In this hypothetical case
using Equation 19, we obtain � j ≈ js,kδk. That is, an arbitrary (small) deformation of the planar
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Figure 4

Different deformation modes of a multicomponent lipid monolayer. (a,b) Local deformation with a fixed composition of the deforming
part (a) is compared with the similar-scale deformation achieved via curvature-composition coupling, by reshuffling of molecular shapes
(b). The area a occupied by the cylindrical (a) and cone-shaped (b) lipid species in the membrane reference surface remains constant
during the deformation. (c) Dependence of the effective bending rigidity keff on material rigidity km calculated with Equation 14 for a
monolayer composed of conical lipids with similar km ,i and opposite Js ,i (Js ,1 + Js ,2 = Js = 0). Note that with the increase of the
absolute value of Js ,i (from black to green lines), keff becomes independent of the material elasticity modulus, such that deformations
proceed via molecular reshuffling.
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monolayer constructed as described can proceed exclusively via exchanging of the kth membrane
component with the reservoir. For the planar bilayer made of two such monolayers, the deforma-
tion would effectively consist of the redistribution of the component of dominating js between the
monolayers.

The contribution of the ke (demixing) deformation mode depends on the ratio of km to ke
(Figure 4c). The addition of only 30 mol% of DOPE leads to a reduction of keff of approximately
30% (Figure 3a), showing that for lipids with oleoyl tails km and ke are comparable. Reduction of
km by the addition of an established softener, a lipid species with a polyunsaturated tail, is similar in
magnitude (99), corroborating the physiological relevance of the DOPE effect. The reduction of
keff in protein-containing membranes is much higher (10) (Figure 3b), indicating that the protein
redistribution might dominate the deformation energetics. The effect of protein demixing might
be further amplified if linked to a source of energy, such as nucleotide hydrolysis. Measurements
on GUVs revealed pronounced softening of active membrane by NTPases (4, 48). The km/ke ra-
tio also determines the amount of elastic stress stored in the membrane, for example, in a vesicle
carrier. The demixing (ke) part of the deformation energy does not contribute to the stress in
the carriers detached from the parent membranes, whereas the demixing facilitates vesicle mem-
brane deformations both before fission and after fusion. Similar regulation of the stored stress
happens while lipids are recruited from a reservoir (Equations 15c and 17). Hence, the km/ke ratio
might be considered as a measure of the regulatory action of weak mCCC on membrane defor-
mations in the cell, particularly during vesicular transport and membrane recycling. Importantly,
the km/ke ratio depends on the kinetics of the deformation, as reshuffling of molecular shapes takes
time.The speed and extent of the reshuffling depend on those of the very deformation. In the next
section, we discuss the basic rheological properties of mCCC seen in the NT system.

4.2. Rheology of Molecular Shape Reshuffling

CCC, and mCCC in particular, is based onmigration of molecular species in membrane curvature
gradients. Its rheology in a random geometry is fairly complex, not least because the curvature
field is constantly changing in space and time due to CCC. Yet, in an important class of deforma-
tions, the curvature/concentration gradients are localized to a narrow boundary zone between the
uniformly deforming membrane part and the reservoir. A narrow neck between a parent mem-
brane and a budding vesicle, spherical or tubular, represents such a zone (37). In this situation, the
migration is fast and the kinetics of CCC is limited by the diffusion within such a compartment
(e.g., a vesicle or an NT). For an NT of the length L, the characteristic time of the material ex-
change with the planar reservoir (Figure 2) is tc ≈ L2

π2D , whereD is the lateral diffusion coefficient.
For a micron-long NT tube tc ∼ 1c, such that faster NT deformations involve no compositional
adjustment via CCC. In particular, the very NT formation upon the fast (∼1 ms) narrowing of
the catenoid membrane bridge driven by membrane tension (42, 66) (Figure 5a) shall proceed
at virtually constant membrane composition. Hence, the NT system enables decoupling of
the membrane deformation by a constant external force (tension) into two parts: the instant
deformation and the slower adjustment of the NT shape and composition via mCCC. Indeed, if
the NT membrane contains only a single lipid component or components of similar js ,i and km ,i

(not demixable by curvature), its radius remains constant after the collapse (Figure 5b). When
DOPE or ENTH, either of which reduces keff (Figure 3a,b), is added, the collapse is followed
by slow NT constriction due to the diffusional adjustment of the NT membrane composition
(Figure 5a,b). The extent of this additional constriction is proportional to ke of the corresponding
molecular softener. Similar diffusional relaxation of the curvature stress was seen in the pulling
force measurements upon an acute increase in the NT length (37, 56) (Figure 5c).
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Rheology of CCC during the NT deformation. (a) The upper schematic shows the fast transformation of a catenoid membrane neck
into a cylindrical NT (fast) followed by slow NT constriction due to moving of molecules into and out of the NT driven by CCC
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circles) or ENTH (blue circles), enabling mCCC. (c) Similar diffusional adjustment of the NT composition upon fast deformation (the
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Equation 13). Abbreviations: CCC, curvature-composition coupling; DOPE, dioleoylphosphatidylethanolamine; ENTH, epsin
N-terminal homology domain; mCCC, mean-curvature composition coupling; NT, nanotube.

This two-stage deformation process can be described by a simple rheological model contain-
ing km and ke springs (Equations 12 and 23), the latter in parallel with a dashpot reflecting the
slow adjustment of the NT composition to its curvature (Figure 5a). The model shows that with
mCCC, fast deformations require a bigger force to progress to a certain curvature. In turn, the
final elastic stress depends on the deformation speed: An instant deformation creates the largest
molecular strain. These smart material properties are of importance for the mechanisms gener-
ating local membrane stresses that trigger membrane fusion and fission (41, 75). Specifically, fast
and slow actions of the protein machinery mediating fusion and fission might trigger different
deformational modes leading to different reaction pathways, with and without leakage (11). The
model also points out possible CCC-related discrepancies in the bending modulus measurements
by stationary and relaxation techniques.

Besides changing the effective bending rigidity, mCCC is also dynamically linked to the forces
causing membrane bending. One force is the lateral membrane tension, which, in the refer-
ence or planar geometries, depends on the amount of hidden packing stress governed by mCCC
(Equations 15c and 17). Hidden stress values become a function of the speed of the material ex-
change with bulk reservoirs: As with the NT, fast membrane extension (e.g., by osmotic stress)
can be followed by slower correction of the membrane composition. The composition adjust-
ment might also contribute to tension propagation or equilibration of tension gradients between
different membrane compartments. Another force is membrane viscosity, a steep function of the
protein concentrations (37). CCC might cause protein accumulation, or depletion, in the bound-
ary of a deforming membrane part, thus dynamically regulating the friction drag for membrane
material fluxes through the boundary (37). The corresponding shear thinning/thickening effects
might be substantial, leading to membrane instability and fission, as was demonstrated for pro-
teins implicated in the curvature creation in the tubular endoplasmic reticulum (37) and during
endocytosis (121).

Overall, dynamic reshuffling of molecular shapes seems to provide a self-sufficient means of
controlling the extent and dynamics ofmembrane deformation. In simple cylindrical geometry, the
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reshuffling constitutes an independent deformation mode dependent exclusively on the variety of
molecular shapes present in the membrane. The mode displays interesting rheological properties,
suggesting a new dynamic link between cellularmembrane remodeling andmotility.However, fur-
ther experimental interrogation is needed to establish the role of this mode in cellular membrane
morphogenesis.

5. CONCLUDING REMARKS

The endomembrane of a eukaryotic cell is a complex and dynamic self-assembly platform deeply
implicated in the spatiotemporal coordination of multiple cellular processes. It is also a dynamic
barrier that separates cellular compartments and protects a complex hierarchy of biochemical
processes. The barrier function, fundamental for all membrane systems, is to be absolutely pre-
served during constant remodeling of the endomembrane subsystems required for their individual
functions and for their functional integration. It has been long recognized that local membrane
deformations, the foundation of intracellular membrane remodeling, are conducted in concert
with demixing and segregation of membrane components, leading to the formation of distinct
membrane domains and new membrane compartments. Quite importantly, the coupling between
membrane shape and composition, CCC, also helps preserve the barrier function, minimizing
local elastic stresses that threaten the structural stability of the lipid bilayer, the core of the mem-
brane barrier. As we revealed in this article through an analysis of the vast literature on CCC, its
elementary thermodynamics, and a few relevant experimental datasets, CCC provides a means of
dynamically regulating fundamental parameters of the membrane deformations, apparent bend-
ing rigidity and local lateral tension. The regulation is based on weak demixing of membrane
constituents of different intrinsic curvature—in other words, reshuffling of molecular shapes. As
cellular membranes generally show a large variety of shapes, their reshuffling constitutes a versa-
tile deformation mode that enables membrane remodeling with less force and less elastic stress,
thus facilitating intracellular membrane recycling. The mode contributes to both regulating the
energy barriers for membrane transformations and controlling local instabilities that lead tomem-
brane fusion and fission. Although it has long been appreciated that the abundance of molecular
shapes, specifically those of lipids, increases the morphological and topological flexibility of cellu-
lar membranes (43), we reiterate here that the shapes control various aspects of membrane remod-
eling by different, at times complex, means, in which not only the magnitude but also the variety
of the intrinsic curvature of membrane components contributes to the regulation of membrane
deformations.
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