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Abstract

Efforts to combine theory and experiment to advance our knowledge of
molecular processes relevant to biophysics have been considerably enhanced
by the contribution of statistical-mechanics simulations. Key to the under-
standing of such molecular processes is the underlying free-energy change.
Being able to accurately predict this change from first principles repre-
sents an appealing prospect. Over the past decades, the synergy between
steadily growing computational resources and unrelenting methodological
developments has brought free-energy calculations into the arsenal of tools
commonly utilized to tackle important questions that experiment alone has
left unresolved. The continued emergence of new options to determine free
energies has also bred confusion amid the community of users, who may
find it difficult to choose the best-suited algorithm to address the problem
at hand. In an attempt to clarify the current landscape, this review recounts
how the field has been shaped and how the broad gamut of methods available
today is rooted in a few foundational principles laid down many years ago.
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Three examples of molecular processes central to biophysics illustrate where free-energy calcula-
tions stand and what are the conceptual and practical obstacles that we must overcome to increase
their predictive power.
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1. INTRODUCTION

Complete understanding of molecular processes often requires a close examination of the behav-
ior of their associated free energies. Owing to their ubiquity in the cell machinery, many of these
processes have important ramifications in various aspects of biophysics, but also in rational drug
design. For this reason, predicting their feasibility by means of theoretical tools is eminently de-
sirable. Over the past decades, considerable progress has been made in the determination of free
energies by employing numerical simulations, based on the fundamental principles of statistical
mechanics. Although these advances can be ascribed in part to the rapid growth of commonly
accessible computational resources, most notably the emergence of fast and inexpensive graph-
ics processing units (GPUs), progress has been facilitated first and foremost by the development
of a gamut of methods that have increased the level of efficiency and reliability of free-energy
calculations. This progress, however, has come at a price. Navigating through the maze of meth-
ods available has become increasingly difficult—especially for the novice practitioner—and so has
grasping the conceptual relationships between these methods, the confines of their applicability,
and both their suitability and computational efficiency for a given practical problem. The objec-
tive of this review is not to provide a superficial account of the behemoth body of work published
in recent years, but instead to recapitulate the milestoning main developments that have shaped
the field of free-energy calculations. Rather than focusing on their theoretical underpinnings, this
review aims to guide the choice of the most relevant method to tackle each problem,most notably
for the description of molecular processes. Tracing the roots of the many algorithms available
in academic and nonacademic simulation packages—as well as understanding how the methods
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that they lean upon are related—is crucial to achieving this goal. After recapping in Section 2
the ontological concepts of free-energy calculations, most prominently the idea of a rare event,
which have driven their development, the different families of methods will be presented in an
arbitrary classification that, nonetheless, accounts for their common ancestors. I then discuss how
the methodology can be used to describe three molecular processes—host–guest recognition and
association, permeation, and conformational transitions—showcasing the frontiers reached in this
research area. The review closes by outlining the remaining theoretical and practical obstacles, as
well as the novel directions being explored to overcome them.

2. BACKGROUND

Why do we turn to free-energy calculations? Since the seminal simulation of Alder &Wainwright
(5) in 1957, molecular dynamics (MD) (64) has been employed to investigate chemical objects of
increasing complexity (1, 59, 147, 162, 176). A giant step made 20 years later, the simulation of the
bovine pancreatic trypsin inhibitor using a simple potential energy function, paved the way for
the investigation of the intricate machinery of the cell in numerical experiments (129). With the
prospect of tackling complex molecular processes by means of computer simulations came also the
realization that capturing rare events would require more than unbiased, brute-force simulations.
In this case, the notion of a rare event ought to be understood from a numerical perspective,
given that the timescales spanned by the molecular processes at hand, as observedmacroscopically,
largely exceed those amenable toMD. In spite of the extraordinary dilation of time- and size scales
made possible in recent years by the deployment of high-performance computing, the yawning
gap between these timescales still constitutes a significant obstacle that has hitherto hampered
more theoretical discoveries of biophysical relevance.

2.1. Rare Events and Quasinonergodicity

To fully grasp the concept of a rare event from the standpoint of computer simulations, I invoke
the ergodic hypothesis, which stipulates that the time averages of some macroscopic variables
coincide with their ensemble averages. Said differently, I assume for the molecular processes
that I consider that, in the limit of infinite sampling, all possible microstates compatible with
the conservation laws are accessible to the chemical objects of interest. Unfortunately, owing
to the finite length of computer simulations, a molecular process that is assumed to be ergodic
may appear somewhat nonergodic as a result of incomplete sampling of phase space. Under
these premises, the outcome of the simulation—most notably the statistical averages—reflects
a pronounced dependence on the initial conditions. This shortcoming, which stems from the
slow diffusion of the molecular processes at play and the insufficient volume of phase space
sampled to guarantee reliable statistical averages, is referred to as quasinonergodicity. In many
molecular processes relevant to biophysics, quasinonergodicity arises from high free-energy
barriers separating distinct volumes of phase space; these barriers are often insuperable over
finite computer simulations or crossed so rarely that the estimated statistical averages are, for all
intents and purposes, physically meaningless. Transitions between these volumes of phase space
may, therefore, be seen as rare events that are unlikely to occur over the timescales amenable
to brute-force MD. Interestingly enough, the same regions of phase space may be connected by
narrow, low-energy corridors, but such entropy bottlenecks are equally rarely sampled and, thus,
also contribute to quasinonergodicity. At the microscopic level, the significant time span of the
molecular processes of interest—making them rare events from a computational standpoint—is
rooted in very slow, often entangled degrees of freedom (DOFs) in the chemical objects at play.
Thorough sampling of the inherently multidimensional free-energy landscape, encumbered by
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large barriers, therefore requires exploration of alternate avenues apart from brute-force MD.
Free-energy calculations (34, 120) have emerged as an essential tool to achieve this goal and are
metaphorically viewed as computational tweezers that act surgically on the relevant DOFs, along
which sampling is performed in a preferential fashion. At this juncture, it is interesting to note
that turning to such strategies, referred to as importance sampling, is aimed not just at improving
the statistical-average estimates introduced above, but also, perhaps first and foremost, at probing
phenomena otherwise inaccessible to brute-force MD, even on specialized computers (163, 173).
In a nutshell, the objective is to tackle, in realistic biological objects, molecular processes that
span the typical μs-to-s biological timescales without the explicit need of μs-to-s-long computer
simulations. In the next section, I discuss how achieving this objective is feasible in practice.

2.2. Progress Variable, Reaction Coordinate, and Transition Pathway

The theory that underlies free-energy calculations was developed a long time ago. Considering,
however, the computational limitations when the methodology was originally introduced, numer-
ical applications at that time are understandably scarce (130). In many respects, the foundations
for what would become standard methods for the determination of free-energy differences were
laid by Kirkwood (111). These methods, which were developed from either perturbation the-
ory or thermodynamic integration (TI), have one common denominator, namely, the notion of
order parameter. In his derivation of integral equations for liquid state theory, Kirkwood recon-
ciled statistical mechanics and the concept of degree of evolution introduced by De Donder (49)
for chemical reactions. The notion of order—or generalized-extent—parameter was employed to
describe progress in the transition between two suitably characterized thermodynamic states, or
volumes of phase space separated by a free-energy barrier, and help determine the free-energy
difference between them.

To a large extent, the idea of order parameter, which I denote ξ (x), is akin to that of reaction
coordinate (RC), which is best described as an application defined on the configurational space,
indexing the transformation of interest. Said differently, it is a high-dimensional mathematical
construct that measures the transition of the chemical object of interest in configurational space.
In practice, under the assumption of timescale separation, ξ (x) is modeled as a low-dimensional
subset of collective variables (CVs; also known as course variables), presumed to capture all of the
slowDOFs of themolecular process at hand.As a corollary, it is expected that theDOFs not specif-
ically embraced by the subset of CVs are fast ones. Much of the success of importance-sampling
simulations (34, 120), therefore, rests upon our intuition in identifying the relevant DOFs and
ability to build a suitable low-dimensional CV space. Failure to model the RC in complex chem-
ical objects and, thus, erroneous description of the underlying dynamics generally stem from an
overly reductionist view of the CV space. Even if we are not interested in the dynamics of the
molecular process, an ill-advised choice of CVs is not innocuous and may result in extremely poor
convergence of the free-energy calculation. In other words, although free energy is, indeed, a state
function, the determination of which does not depend on the path chosen—and, by construction,
in what CV space this path has been established—leaving out important slow DOFs in the CV
space may have critical consequences for the efficiency of the computation.

A variety of methods have been devised to identify the relevant CVs associated with transitions
in configurational space (3, 13, 28, 30, 146, 149, 177, 190). However, several of these approaches
require very long and, thus, costly MD simulations to infer meaningful information. Such is the
case for simulations utilized inMarkov state models (21, 36).The applicability of these approaches
has generally remained limited to small molecular objects, notwithstanding spectacular undertak-
ings marshaling considerable resources only available in the context of distributed computing
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(205). A useful concept associated with transition-path theory (18, 195) that can be used to probe
the relevance of the chosen CV subspace is the committor (19, 141), i.e., the commitment prob-
ability that a trajectory spawned from a given initial condition will reach target state B before
crossing reference state A. In the vicinity of states A and B, which are metastabilities of the free-
energy landscape, the committor approaches 0 and 1, respectively.The transition region is foliated
into isocommittor surfaces crossed by reactive trajectories. The most probable transition pathway
(MPTP) connects state A to state B through the mean values of the corresponding transition flux
densities (194), and an optimal CV would have a committor of 1/2 at the transition state.

3. CALCULATING THE FREE ENERGY

In a very broad sense, free-energy calculations of molecular processes can be dichotomized
in terms of geometrical and alchemical transformations in configurational space (31, 34, 45).
Whereas alchemical transformations lean on the malleability of the potential energy function to
navigate between two distinct chemical states, geometrical transformations act directly on the spa-
tial coordinates to modify the positional, orientational, and conformational states of the chemical
objects at play. Traditionally, alchemical transformations have often been associated with either
free-energy perturbation (FEP) (208) or TI (111) calculations, whereby the reference state is pro-
gressively alchemized into the target one by altering the potential energy function or specific
terms thereof (71, 107). Democratization of free-energy calculations in recent years has been ac-
companied by the development of legions of algorithms that have contributed to improving both
the computational efficiency and the reliability of the methodology but, at the same time, breed
confusion amid the community of users. While the tools commonly employed to perform al-
chemical transformations have remained limited and overall unchanged, barring enhancements
to augment their accuracy (4, 35, 37, 100, 102, 108, 164, 165), the same cannot be said for ge-
ometrical transformations (27, 47, 48, 67–69, 87, 88, 97, 99, 115, 122, 138, 142, 144, 159, 198,
203, 204), for which seemingly similar approaches can lead to drastically different results. In a
broad sense, geometrical transformations can be carried out by means of a variety of approaches
that can be categorized into four classes (see Figure 1) based on (a) probability distributions and
histograms, (b) perturbation theory, (c) nonequilibrium work realizations, and (d) gradient-based
methods. Owing to the resemblance of some of the numerical schemes belonging to these differ-
ent categories to their conceptual common denominators, and to the possibility of interweaving
them, this categorization is somewhat arguable and, thus, not unique.

3.1. Probability Distributions and Histograms

In the late 1960s, several innovative strategies emerged to palliate the shortcomings of Boltzmann
sampling when determining the free-energy difference between two distinct states of configura-
tional space.One of themost influential ideas—the conceptual groundwork for several free-energy
methods—is the energy-distribution formalism. In this formalism, the free-energy difference is
represented in terms of a one-dimensional integral over the distribution of potential-energy dif-
ferences between the two states, weighted by either the unbiased or the biased Boltzmann factor
(130). Relying on the introduction of a progress variable, Valleau &Card (182) proposed to build a
chain of configurational energies bridging the reference and the target states.Multistage sampling,
in essence, stratifies the reaction pathway to split the total free-energy change into a sum of free-
energy differences between intermediate states, the low-energy regions of which overlap much
better than those of the end states. Fifty years later, stratification remains commonly employed as
a variance-reduction strategy (120). Closely related to stratification is the problem of finding the
optimum free-energy difference between two canonical ensembles on the same configurational
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space, which Bennett (15) addressed by developing the acceptance ratio estimator corresponding
to the minimum statistical variance. It is noteworthy that the so-called Bennett acceptance ratio
(BAR), which predates the routine use of simulations aimed at predicting free-energy differences,
has been broadly employed in bidirectional FEP calculations (150) as a more accurate estima-
tor. The popularity of BAR is due to its ability to supply reasonable estimates of the free-energy
difference, even if the overlap between the ensembles is suboptimal. The method has been gen-
eralized in a multistate form [multistate BAR (MBAR)] harnessing the statistical data accrued in
all intermediate states (164), reducing to BAR in the limit of two distinct states. A related idea
to improve the reliability of free-energy estimates consists of sampling the reference ensemble
in a sufficiently broad fashion to collect enough data from the low-energy regions of the target
ensemble. This central idea constitutes the foundation of umbrella sampling (US) (178), which
introduces a non-Boltzmann weighting function into the simulation and subsequently removes it
to supply the unbiased probability distribution, from which the free energy is inferred. One of the
difficulties raised by US is the design of biases that effectively improve sampling uniformity. The
difficulty of guessing these biases, especially for qualitatively new geometrical transformations,
explains why the name US and the concept of stratification are often conflated. Probably because
they are most efficient when combined, the distinction between them has been lost (160) to the
extent that, nowadays, US is generally construed as an approach wherein the reaction pathway is
divided into a large number of mutually overlapping regions, and wherein sampling is confined by
means of harmonic potentials and sufficiently narrow to obviate the need of an umbrella potential
to ensure sampling uniformity. The complete probability distribution along ξ (x) and, thus, the
free energy are commonly recovered in an iterative and statistically optimal fashion using tools
like the weighted histogram analysis method (WHAM) (114). It is worth noting the connection
between WHAM and MBAR, the latter being a zero-width-bin version of the former. Still, US
has shortcomings that are often difficult to diagnose, prompting the development of several im-
provements such as modifying the biases adaptively (11), learning the topology of the free-energy
landscape (198), or introducing nonequilibrium (128).

3.2. Perturbation Theory

Nearly 20 years after the trailblazing work of Kirkwood (111), Zwanzig (208) followed a pertur-
bative route to free-energy calculations, demonstrating how the physical properties of a molecule
may change upon addition of a rudimentary form of an attractive potential. The high-temperature
expansions established by Zwanzig for simple, nonpolar gases form the theoretical ground of the
widely popular FEP approach, commonly utilized for the determination of free-energy differences
(31, 34, 112). It is noteworthy that the significance of FEP was appreciated much earlier. In fact,
Landau (116) included a simple derivation of the perturbation equation in the first edition of his
popular textbook on statistical mechanics.Widom (197) established the potential distribution the-
orem, which is closely related to FEP and can be employed to estimate excess chemical potentials
from random insertions of a test particle (196). To a large extent, particle insertion can be seen
as a special case of perturbation theory. Practical application of FEP had to wait, however, for the
advent of computer architectures endowed with sufficient power to tackle realistic and chemically
relevant assemblies of molecules. Although several conceptual ideas for the determination of free-
energy differences can be found in earlier, seminal contributions (152, 174, 191), the first concrete
application of free-energy calculations is due to Jorgensen&Ravimohan (107), who chose the per-
turbative route to estimate the relative solvation free energy of methanol and ethane. Toward this
end, they devised an elegant paradigm whereby a common topology is shared by the reference and
the target states of the transformation. Following a similar strategy, Jorgensen (105) pioneered the
estimation of pKas of simple organic solute in aqueous environments. It is instructive that, barring

www.annualreviews.org • Free Energy Methods and Molecular Processes 119



remarkable examples (12), these pioneering efforts overall elicited at first only moderate enthusi-
asm, even though they are viewed today as the turning point for free-energy calculations, paving
the way for many challenging applications and advancements that brought themethodology to the
status of being predictive. In stark contrast with other classes of methods, most notably those that
rely on the estimation of the gradient of the free energy, FEP benefited from far fewer develop-
ments, focusing primarily on alternatives to the exponential estimator (15, 164) or the possibility
of encapsulating several target states in a single simulation by finding the most suitable reference
state (37). Assuming a force field of appropriate accuracy, FEP calculations have proven in recent
years capable of supplying the expected answer for a variety of problems (44, 45, 85, 108).

3.3. Nonequilibrium Work Realizations

Another avenue for the exploration of rare events spanning timescales not amenable to MD con-
sists of driving the molecular process out of equilibrium. In a nutshell, steered MD (SMD) (98),
also known as force-probeMD (81), rests on the application of an external force along an arbitrary
direction ofCartesian space,which results in drifting. In contrast with free-energy calculations car-
ried out at thermodynamic equilibrium, SMD utilizes either a constant or a time-varying force,
responsible for marked deviations from equilibrium conditions. Constant-velocity SMD mimics
the action of a mobile cantilever akin to that acting on a substrate in atomic-force microscopy
(AFM). In practice, a subset of atoms is tethered harmonically to a point moved at constant ve-
locity along an arbitrary direction, which can be viewed as a surrogate RC model. Until recently
(7), the timescales spanned by constant-velocity SMD were approximately 103–106 times shorter
than those common in AFM. In other words, to cover reasonable stretches of the reaction path-
way, SMD must resort to high pulling speeds, e.g., 103 m/s, generating a significant amount of
irreversible work, often difficult to relate to equilibrium properties. Yet with the groundbreaking
identity established by Jarzynski (99) came the promise of reconciling ensembles of nonequilib-
rium realizations with the free-energy change underlying a molecular process at equilibrium.
A theoretical framework (144) associating SMD simulations with the Jarzynski identity and its
maximum-likelihood extension (46, 126) and combining the statistical data accrued in forward
and backward pulling realizations showcases the potential of the methodology. Notwithstand-
ing its theoretical appeal, this route to the estimation of free-energy differences raises several
concerns. First, the high-pulling regime in constant-velocity realizations is liable to distort the
reconstructed free-energy landscape by artificially introducing ruggedness, a phenomenon mag-
nified when pulling of the substrate is significantly faster than the relaxation of its environment.
Second, the abundant generation of irreversible work rooted in the high-pulling-speed regime im-
poses very large numbers of realizations to ensure convergence of the Jarzynski identity. Even with
the aid of cumulant expansions (144), acceptable convergence is reached only at the price of per-
forming the pulling experiments in a near-equilibrium regime. The considerable computational
effort incurred in these numerous realizations naturally calls into question the impetus to turn to
nonequilibrium work experiments when free-energy methods at thermodynamic equilibrium can
deliver possibly more reliable results at a much lower cost.

3.4. Gradient-Based Methods

The free energy along the model RC, ξ (x), can be viewed as a potential resulting from the average
force that acts in that direction. Said differently, it is the negative of the gradient of this potential,
and is thus called the potential of mean force (PMF). In the TI formalism, the average force is
the quantity that is determined directly, prior to its integration to supply the free-energy change.
The instantaneous force acting along the model RC can be decomposed into an average force
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and a random force of zero mean, mirroring the fluctuations of all other DOFs. Seen through
a low-dimensional prism, the model RC of the molecular process at hand appears to evolve dy-
namically in its time-independent PMF, and this evolution is driven by the random force. Under
most circumstances, the latter can be safely assumed to be diffusive, thereby rendering a simpli-
fied picture of a diffusive process along ξ (x) in the PMF. Amid gradient-based approaches, the
adaptive biasing force (ABF) algorithm (39, 48) has emerged as one of the most powerful options
for mapping complex free-energy landscapes. In a nutshell, the ABF algorithm adaptively flattens
the free-energy landscape by shaving its barriers while preserving the dynamics of the molecu-
lar process of interest—in particular, the random fluctuating force. In practice, the instantaneous
force exerted along ξ (x) is evaluated at discrete values of it, and its average is updated to supply
an estimate of the free-energy gradient. The biasing force, applied once a user-defined number
of instantaneous-force samples has been accrued at the different values of ξ (x), cancels exactly the
estimated average force. In the long run, this estimate converges toward the average force at equi-
librium, yielding a Hamiltonian bereft of an average force acting along ξ (x), reflected in a quasiflat
PMF and effectively accelerated dynamics in that direction. In general, convergence to a perfectly
flat PMF is seldom achieved, but this requirement is of lesser concern for as long as sampling is
sufficiently uniform to allow the shaved barriers to be overcome in response to thermal fluctua-
tions. One of the strengths of the ABF algorithm is that it obviates the need for prior knowledge
of the free-energy landscape.

3.5. Enhancing Sampling

Most—if not all—importance-sampling algorithms (34, 120) are vulnerable to barriers in direc-
tions orthogonal to the model RC (204), emphasizing again the issues of timescale separation and
incompleteness of the CV space, which is missing crucial slow DOFs. In the case of gradient-
based algorithms, such as the ABF algorithm, quasinonergodicity is mirrored in its most usual
symptoms in an acute sampling nonuniformity, whereby instantaneous-force samples pile up at
one end of the reaction pathway. To address the shortcomings that commonly plague ABF simu-
lations, the algorithm, since its original inception, has undergone several improvements, resulting
ultimately in more cost-effective free-energy calculations better suited to specific applications
(27, 33, 40, 67–69, 87, 133, 170, 203). Most of these improvements lean on the appealing idea that
importance-sampling algorithms can be combined seamlessly to augment sampling uniformity.
Addition of enhanced-sampling schemes, in the form of boosting potentials (132, 189), multiple
copies (133), or temperature exchange (68), has proven useful to explore free-energy landscapes
encumbered with high barriers. Resorting to enhanced-sampling techniques (34, 120), in general,
and generalized-ensemble schemes (134), in particular, is not limited to the ABF algorithm and its
variants—it is also necessary, for instance, in the metadynamics (MtD) (2, 25, 148) and US (101,
168) families of algorithms. In alchemical FEP or TI calculations, in which convergence is bur-
dened by kinetic traps as one chemical species is transformed into an alternate one, sampling can
be enhanced by swapping Hamiltonians (200) or by feeding the slowest DOFs, assuming that they
can be identified, with boosting potentials (102).

3.6. How Are These Methods Related?

To assess the relative performance of different algorithms, it is often instructive to examine how
they are conceptually related. The ABF algorithm is a particular example of a broader family of
adaptive algorithms that encompasses the subfamily of adaptive biasing potential (ABP) schemes
(120). Notwithstanding their very different roots, local elevation (96), conformational flooding
(80), and MtD in its different flavors (10, 115, 183), as well as the Wang-Landau algorithm (187),
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are all members of this subfamily, the common trait of which is to penalize regions of configura-
tional space adequately sampled by means of a biasing potential depending on the occupation time
at a given value of ξ (x). In the first three of these algorithms, the biasing potential consists of a sum
of Gaussian kernels added to the Hamiltonian to flood the valleys of the free-energy landscape,
thereby forcing sampling toward marginally visited regions. Because a time-dependent potential
is determined—as opposed to its derivative—these three numerical schemes fall into the category
of ABP algorithms, which adapt the PMF or the probability distribution along the model RC. In
stark contrast, in the ABF subfamily of algorithms, the gradient of the potential is biased.Although
one might be tempted to equate the philosophies that underlie these adaptive schemes, there is
a fundamental difference between them that is often misconstrued—probability distributions are
global properties, whereas gradients are local ones (120). An important consequence of this dif-
ference is the necessity to sample over broader ranges of ξ (x) to obtain meaningful probability
distributions, which, in turn, may affect adaptation efficiency.

4. HOST–GUEST RECOGNITION AND ASSOCIATION
AND STANDARD BINDING AFFINITIES

Host–guest recognition and association is a complex problem of chemistry relevant to a variety
of fields. Protein–ligand binding is a very specific example, eminently relevant to biophysics. In
this case, the host is the protein, and the guest is the ligand. Reversible association of the binding
partners has been the object of a host of theoretical endeavors designed to predict binding affini-
ties within chemical accuracy (20, 22, 24, 50, 51, 55, 56, 73–75, 86, 90, 94, 102, 103, 106, 135, 136,
156, 157, 166, 185, 188, 199, 201). Within the confines of pharmaceutical research, determina-
tion of binding free energies from first principles has been an important goal of computer-aided
drug design (45), the focus being traditionally more on relative quantities rather than on absolute
ones. This strategy can be construed as a way of ranking congeneric lead candidates according to
their affinity toward a given target, as opposed to estimating a standard binding free energy.From a
practical perspective, this choice is guided by the computational cost incurred in the determination
of relative binding affinities between two analogous molecular compounds, which is appreciably
lower than that of absolute binding constants (34, 112, 135). In contrast, apparent agreement be-
tween relative binding free energies determined from theory and differences between absolute
quantities measured experimentally could well be fortuitous and conceal providential cancellation
of errors, rendering the diagnostic of potential discrepancies with experiment an arduous task.
Assuming a hypothetically perfect force field, the ultimate test of sampling efficacy is the compu-
tation of an absolute quantity, e.g., solvation or binding—and, likewise, assuming a hypothetically
infinitely long simulation, the ultimate test of the force field would be the same absolute quantity.

Accurate determination of an absolute binding affinity is a complex theoretical problem and
a daunting computational challenge even for a small ligand binding to a protein, let alone for
two large proteins assembling into a complex. This challenge is deeply rooted in the difficulty of
capturing the substantial change in configurational enthalpy and entropy associated with the con-
formational, orientational, and positional movements of the guest with respect to the host in the
course of their reversible binding. Furthermore, in general, little is known about the association
pathway.Whereas the bound and unbound states of the partners are well established, knowledge of
the path that connects them is at best fragmentary.With the aid of fast, possibly specialized com-
puter architectures, considerably longer atomistic simulations, capable of rendering a chronology
of association, can be performed. Restricted to protein–ligand binding, these brute-force sim-
ulations capture the molecular process at hand, from the ligand lying away from the protein to
its stable docking at the binding site of the protein (24). However informative they are, these
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simulations remain restricted to weak binders and only reflect a series of isolated events (58) from
which it is difficult to infer meaningful robust thermodynamic quantities, let alone kinetic ones.

One strategy that has proven particularly reliable for the estimation of binding affinities is com-
bining MD and importance-sampling schemes to ensure the adequate exploration of the relevant
DOFs. For many years, perturbation theory has been the mainstream approach to tackle protein–
ligand association numerically, with the assumption of small enough substrates—thus, precluding
the extension of this theory to protein–protein association. Given these premises, the ligand is
decoupled reversibly from its aqueous environment, in the unbound state, and in the protein, in
the bound state, through scaling of the relevant nonbonded interactions (34, 78, 90, 112). This
so-called alchemical route raises, however, several salient issues, chief among which is the vio-
lation of thermodynamic microreversibility of the transformation. As the ligand is progressively
decoupled from the protein environment (105), it becomes free to wander away from the binding
site, resulting in an ill-defined target state and a poor candidate for the reverse, coupling trans-
formation. Owing to the finite length of the simulation, the ambivalent definition of the standard
state is magnified by the correlation between it and the size of the cell containing the protein–
ligand complex in its aqueous environment (70). This critical shortcoming can be addressed by
introducing a series of geometrical restraints to control the movements of the substrate relative to
the protein as it is progressively decoupled (89, 90) while improving the sampling efficiency and
accelerating convergence of the simulations (184). In a nutshell, a harmonic potential is enforced
at one end state of the transformation, to tether the decoupled substrate to the binding site, and is
removed at the other end state (20, 78, 161). Enforcement of geometrical restraints on a selection
of DOFs is, however, tantamount to a loss of configurational entropy contributing to the binding
free energy, which should be accounted for in independent simulations (50, 51, 55, 90) involving
either perturbation theory or numerical integration.

Woo&Roux (199) formalized the use of geometrical restraints acting on suitably chosenDOFs
to narrow down the configurational space accessible to the binding partners as they associate and,
thus, to ensure converged configurational ensemble averages. This pragmatic strategy has fueled
the development of alternate approaches that are similar in spirit, such as funnel metadynamics
(124, 154) and attach-pull-release (86), as well as several other restraints-based schemes in connec-
tion with alchemical transformations (50, 136, 188). From a numerical standpoint, restricting the
accessible configurational space by means of geometrical restraints in the course of the physical
separation is a standard variance-reduction strategy, with the tacit understanding that the contri-
bution of the associated biasing potentials ought to be evaluated precisely at the two end states to
supply the correct, unbiased estimate of the standard binding free energy (199). Generalization
of the seminal work of Woo & Roux is embodied in the so-called alchemical and geometrical
routes (83), whereby the different contributions to the binding affinity arising from the intro-
duction of harmonic potentials acting on conformational, orientational, and positional CVs are
accounted for through alchemical free-energy calculations—either FEP or TI—and PMF calcu-
lations, respectively (see Figure 2, Supplemental Material). Although computation of a radial
separation PMF bereft of geometrical restraints can, in principle, yield valid results in the limit of
sufficient sampling (179), in practice, introduction of such restraints accelerates the convergence
of free-energy calculation by reducing the configurational space to be sampled. Yet determination
of standard binding free energies relying on elements of the geometrical route, as well as several
computational shortcuts, is not uncommon, despite an absence of formal justification (17, 56, 63,
72, 91, 93, 104, 117, 139, 145, 207). Both the alchemical and the geometrical routes have been
applied successfully to a variety of protein–ligand complexes (65). In a proof of concept (83), it
was shown that, although the two strategies yielded equally reliable free-energy estimates, com-
putation of PMFs seemed somewhat more economical compared to its alchemical counterpart. In
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Figure 2

(a) Comparison between the alchemical (i) and the geometrical (ii) routes for the determination of the free
energy, �G°

b, that characterizes the binding of a protein (P) and a ligand (L). (b) Collective variables utilized
in the protein–protein binding free-energy calculation, illustrated in the cases of human angiotensin
conversion enzyme 2 (ACE2) (P1) and the SARS-CoV-2 receptor binding domain (RBD) (P2). (c) Potential
of mean force underlying the association of the RBD with ACE2 in the full geometrical route (dark line) and
in the absence of restraints (light line).

general, however, the alchemical and the geometrical routes are not strictly speaking interchange-
able, the former being better suited than the latter to buried substrates, albeit only when limited
to small molecular objects. Only the geometrical route appears adapted to the determination of
protein–protein binding free energies (82, 169). From the perspective of the practitioner, intro-
duction of geometrical restraints to confine the guest with respect to the host in the course of the
separation—or the decoupling of the binding partner—and estimation of their contribution to the
standard binding free energy represent a cumbersome enterprise involving significant bookkeep-
ing and computation of configurational integrals. To facilitate the determination of the binding
affinity, several tools have been developed to streamline the protocol (65), from the setup of the
free-energy calculations (66, 125, 202) to their posttreatment (66, 67).

The mosaic of developments for tackling the longstanding protein–ligand—and protein–
protein—problem with an unassailable methodology has allowed the establishment of rigorous
protocols (65, 154) for the computation of binding affinities of unprecedented reliability. How-
ever accomplished this methodology may be, it still remains vulnerable to several limitations, chief
among which is its reliance on robust structural data, most notably the interface between the host
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and the guest. Furthermore, convergence of the free-energy calculations at play is prone to be
burdened by the possibility that the substrate undergoes conformational changes upon binding
to the protein. From a computational standpoint, this shortcoming can be understood in terms
of high barriers in orthogonal space, resulting in quasinonergodicity manifested in the unlike-
lihood of the substrate to isomerize as it is either coupled or decoupled from its environment.
Importance-sampling algorithms are clearly insufficient to reflect the true conformational equi-
librium; thus, the sampling enhancements described above are necessary to address the issue of
kinetic traps (102, 200).

5. PASSIVE PERMEATION EVENTS ACROSS LIPID BILAYERS

A second fundamental molecular process is the permeation of chemical species across the biologi-
cal membrane, which encapsulates the cell. The lipids that form the membrane are densely packed
in bilayers to harbor the cell machinery and protect it from the environment while preserving ionic
concentration gradients.Although the biological membrane constitutes an effective barrier against
the spontaneous, unassisted permeation of ions and highly hydrophilic molecular compounds, pas-
sive diffusion of chemical species remains possible. The rate at which such permeation events are
observed depends on the composition of the lipid bilayer and, thus, on its physical properties.
In stark contrast with the assisted transport of molecular compounds—or permeants—across the
membrane, which proceeds through highly selective integral proteins embedded in it, the selec-
tivity of passive diffusion is rooted in the random fluctuations and intermolecular forces within
the lipid environment. From a pharmaceutical perspective, prediction of passive permeation rates
is of paramount importance, most notably for the delivery of lead candidates to their designated
intracellular target and possibly for the subsequent excretion of metabolites. The impetus for this
research comes from the likelihood that drug candidates exhibiting a strong affinity toward a given
target can eventually be discarded owing to their acute cytotoxicity, mediocre bioavailability, or
any other pharmacokinetic concern.

At the theoretical level, notwithstanding the importance of passive permeation for cell func-
tion, our mechanistic understanding of this molecular process is still largely fragmentary. To gain
valuable insight while predicting the propensity of drug candidates to spontaneously traverse the
biological membrane, experimental approaches aimed at measuring membrane permeability, like
parallel artificial membrane permeability (PAMPA) (109) or cell-based CaCo-2 assays (8), have
been utilized to train quantitative structure permeability relationship (QSPR) models (84). Al-
though they are commonly employed in industrial settings, these inexpensive models have often
proven poorly predictive, failing to supply reproducibly accurate information about passive dif-
fusion across the membranes. An appealing route to capture the atomistic detail of permeation
events while offering, in principle, a predictive picture of their underlying thermodynamics and
kinetics consists of turning to numerical simulations, most notably MD. Strictly speaking, the
membrane permeability, Pm, can be expressed as the ratio of the net flux of permeants crossing
the lipid bilayer over the difference between their concentrations on each side of the bilayer. In
other words, the rate of passive diffusion of the chemical species through the membrane possesses
a thermodynamic component through these species’ partition coefficient between the lipid and
the aqueous phases and a kinetic one through the diffusivity of the permeant as it translocates
across the aqueous interface.

Assuming equilibrium across the lipid bilayer, Pm can be defined in the framework of the
inhomogeneous solubility-diffusivity model (9, 52) and depends exponentially on the PMF, w(z),
and linearly on the position-dependent diffusivity, D(z) (see Supplemental Material). z is the
projection onto the normal to the lipid bilayer of the Euclidian distance between the center of
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Figure 3

(a) Free energy profile, w(z), and (b) position-dependent fractional diffusivity, Kα(z), underlying the permeation of ethanol across a fully
hydrated 1-palmitoyl-2-oleoylphosphatidylcholine. (c) Computational assay utilized to determine w(z) and Kα(z). The coarse variable,
z, is the Euclidian distance between the center of mass of the bilayer and that of the permeant.

mass of the latter and that of the permeant (see Figure 3). As discussed below, choice of this
ad hoc coarse variable, guided by intuition, raises conceptual difficulties in the description of
the kinetics underlying the permeation event. Although determination of both w(z) and D(z) is,
in principle, amenable to MD, assuming that all values of z are adequately sampled, the often
large free-energy barriers against translocation of the permeant across the membrane makes
passive permeation a rare event from a computational standpoint. For this reason, a variety of
importance- and enhanced-sampling schemes have been employed to determine the free-energy
change and the diffusivity of the permeant as a function of z. Among the popular algorithms,
US (14, 26, 118, 155, 171), ABF (41–43, 68, 180, 181), metadynamics (76, 77), and their different
variants have been applied with varying degrees of success to the computation of w(z). Systematic
comparison of US and ABF, with and without sampling enhancement by means of multiple
copies, did not reveal any glaring advantage of preferring one algorithm over the others for
the prediction of the membrane permeability to a series of small organic compounds (118). It
ought to be mentioned, however, that persistence of hysteresis between the two sides of the lipid
bilayer, when the homogeneity of the bilayer imposes a symmetrical free-energy profile, was
observed over very long timescales, in excess of 4 μs, including for small permeants like urea.
Slow convergence of the free-energy calculation is in large measure rooted in the choice of z
as the transition coordinate, which is too rudimentary to account for the longtime relaxation
of the acyl chains of the lipid bilayer. There is still one advantage of turning to gradient-based
algorithms, like ABF, to determine w(z), namely, the possibility of reconciling thermodynamics
and kinetics at little additional cost and accessing the position-dependent diffusivity from the
PMF calculation using Bayesian inferences (38). An alternative is provided by the generalized
Langevin equation, which yields qualitatively similar results while underscoring a sensitivity
to the choice of parameters, as well as membrane defects (118). An unfortunate consequence
of the choice of z as a rudimentary order parameter is the failure of the probability of dis-
placement of the permeant over sufficiently short time intervals to obey classical diffusion.
In fact, for a variety of chemical species, the mean squared displacement along the normal to
the membrane exhibits a power-law dependence of time, which is a hallmark of long-range
spatiotemporal correlations (32). To account for this subdiffusive behavior, the motion of the
permeant across the membrane should be modeled by means of a time-fractional Smoluchowski
equation (32). A clarification is needed at this juncture—I do not suggest that, at a macroscopic
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level, drug permeation across membranes is not diffusive. I merely note that turning to the
time-fractional Smoluchowski equation is a consequence of a naive RC model and delusive as-
sumption of timescale separation. It should also be clarified that importance-sampling algorithms
combined with the inhomogeneous solubility-diffusion model do not constitute the only route
toward the determination from first principles of the membrane permeability to chemical species.
In fact, several alternate strategies, emancipated from the inhomogeneous solubility-diffusion
model, have been explored, chief among which are methods relying on global observables, such as
the crossing rate, the net flux across the membrane, and the difference in the permeant concentra-
tion on each side of the membrane. One such method is milestoning, whereby a large number of
independent, unbiased short trajectories are spawned within compartmentalized regions of phase
space to estimate individual transition rates between microstates and from whence the membrane
permeability can be inferred. To a large extent, transition-based counting approaches are a partic-
ular embodiment of milestoning, with only twomilestones coinciding with the aqueous interfaces,
as opposed to a finer discretization scheme along the permeation pathway. It is reassuring to
observe that, although they rest on fundamentally different foundations, membrane permeability
calculations relying on several crossings, on the one hand, and on the determination of a PMF, on
the other hand, can render a quantitatively similar picture of permeation events. As an example,
the permeability of a 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayer to ethanol was
8.1 × 10−1 cm/s based on a 1.5-μs ABF simulation and the fractional inhomogeneous solubility-
diffusion model (43); 0.9 × 10−1 cm/s based on a 140–ns biased-exchange MtD simulation (77);
and 1.3–2.4 × 10−1 cm/s based on crossing events and, respectively, 170 and 626 permeants (113).

6. WIDE-AMPLITUDE CONFORMATIONAL TRANSITIONS

The third molecular process examined in this review is the transition between conformational
states, which is central to a host of functions fulfilled by the cell machinery. Such spatial trans-
formations, which largely exceed milliseconds in complex biological objects, often consist of
entangled movements of broad amplitude, which is likely to thwart their exploration over re-
alistic timescales by means of atomistic computer simulations. The timescales amenable to MD,
commonly from tens of microseconds on commodity clusters to a few milliseconds on special-
purpose computers (163) and large arrays of computing nodes equippedwithGPUs, remain orders
of magnitude less than those spanned by these molecular processes. Yet observing through the
computational microscope (57, 119) the broad movements between protein domains connected
allosterically could be valuable to complement experiment and would certainly help address im-
portant biological questions, such as what happens between the binding of ATP4− to the soluble
V1-domain of a vacuolar, VOV1-ATPase (62) and the rotation of the c-ring in the membrane VO-
domain, and between rotation and the subsequent release of a proton. The difficulty of answering
such questions largely stems from conceptual and methodological obstacles rooted in the identi-
fication of the DOFs at play and their representation by a suitable set of CVs, on the one hand,
and the choice of algorithm that encourages sampling along these CVs, on the other hand. These
obstacles have admittedly limited the number of discoveries made by theory in important objects
of the cell machinery. Considering the intricacy of the molecular process at hand, envisaging its
exploration through the narrow prism of free-energy calculations alone is unlikely to be success-
ful, regardless of the numerical efficiency of the importance-sampling algorithm.Why is this the
case? As is discussed at length above, enhancing sampling to investigate phenomena spanning
long timescales is commonly achieved by defining a surrogate of the RC, ξ (x), and encourag-
ing exploration of important regions of configurational space through the variety of numerical
schemes outlined in this review (39, 48, 61, 95, 115, 175, 178, 186, 206). However astute these
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schemes might be, they remain vulnerable to timescale separation and misrepresentation of the
RC, which result in sampling nonuniformity in the direction of ξ (x). Returning to the example of
VOV1-ATPase, it is plainly impossible to infer the CVs responsible for the conformational transi-
tion between two intermediate states of a catalytic step by merely comparing with the human eye
the associated structures. The strong connection between the algorithm encouraging sampling of
important regions (34, 120) and the representation of ξ (x) necessarily impacts not only sampling
efficacy, but also the underlying dynamics. This connection naturally raises the question of what
constitutes a suitable set of CVs, or, said differently, what are the important DOFs that contribute
predominantly to ξ (x), a longstanding question that has prompted the development of a host of
approaches that cannot all be cited in this review (3, 6, 13, 19, 21, 28, 30, 61, 138, 140, 143, 146,
149, 177, 190, 192, 193). Historically, development of algorithms to model the RC—subsuming
identification of CVs—and development of sampling algorithms have been rather compartmented
research areas (34).

In the context of importance-sampling strategies relying on the definition of a model RC
discretized in infinitesimal bins, as, for instance, in the ABF (39, 48) or US (178) families of algo-
rithms, current technological hurdles, notably limited access to large amounts ofmemory, preclude
sampling the CV subspace beyond a dimension of three. A practical solution to circumvent this
limitation consists of keeping theCV spacemultidimensional while sampling only around a partic-
ular pathway, represented by a curvilinear abscissa, ξ (s), function of scalar s � [0, 1]. One possible
route to identify this pathway connecting two metastable states of the free-energy landscape is
provided by the string method (127, 193). It represents ξ (s) as a chain of discrete intermediate
states, or images, in the subspace of the CVs—or, alternatively, of the Cartesian coordinates when
no obvious CVs can be identified. Its popular variant, the string method with swarms of trajecto-
ries (SMwST) (29, 143), iteratively refines a trial curvilinear abscissa on the basis of the average
dynamic local drift determined from multiple short, unbiased trajectories spawned at each node.
Convergence of the optimization is attained when the local drift at each node is zero in directions
orthogonal to the tangent of the pathway—thus, this is called the zero-drift pathway (ZDP). Con-
trary to common beliefs, the ZDP is not the MPTP, let alone the minimum free-energy pathway
(29).To ascertain whether the curvilinear abscissa supplied by the SMwST corresponds, indeed, to
the MPTP, it is critical to explore alternate ZDPs by considering distinct trial pathways, as well as
randomization schemes. TheMPTP is the ZDP that has the highest rate constant, or the shortest
mean first passage time (172), determined, for instance, using Bayesian inferences (38).

With a physically meaningful pathway that connects the conformational states of interest, the
free energy can then be mapped by encouraging sampling in the relevant regions, following the
strategies described above. US, in its different flavors, has been employed on a variety of biologi-
cal objects and molecular processes, ranging from the activation of pronto-oncogene c-Src kinase
(60, 131) to the substrate-induced conformational transition of membrane carriers (137, 138) and
of a glucose transporter (110), the opening of a pentameric ligand-gated channel (123), and the
rotary-catalysis step of the V1-domain of a VOV1-ATPase (167). Conformational changes have
also been investigated, combining path-searching methods and MtD, for instance, in the case of
G protein–coupled receptor activation (153) and of ligand-induced open-to-closed transition in
cyclin-dependent kinases (16). These simulations rest on the introduction of path-CVs (PCVs)
(23, 29, 53, 92), which allow the free energy to be determined along ξ (s). PCVs are well suited to
sampling strategies leaning on the computation of a local mean force and have been used in the
challenging example of the auto-inhibited VO-domain of a VOV1-ATPase (158) (see Figure 4).
The combination of path-searching techniques and importance-sampling algorithms is not lim-
ited to these few remarkable illustrations. Other strategies also exist, such as ABP optimization
in the CV subspace associated with unrestricted, enhanced sampling along the transition pathway
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Figure 4

(a) Free-energy profile underlying the clockwise 14°-rotation of an auto-inhibited VO-domain c-ring from a
VOV1-ATPase (c′′E108), determined along a pathway optimized using the string method with swarms of
trajectories. (b) Detail of the auto-inhibited VO-domain and its different subdomains.

(54). Notwithstanding significant efforts to decrypt these complex molecular processes by means
of computer simulations, applications to large, 105-atom-scale objects of the cell machinery have
hitherto remained scarce. This paucity of large-scale path-following free-energy calculations can
be explained, at least in part, by the considerable computer times, in excess of microseconds (158,
167), involved, on the one hand, in the identification of the transition pathway and, on the other
hand, in the determination of the free-energy change along this transition pathway. The stag-
gering computational investment magnified by the necessity of distinguishing the MPTP amid
alternate ZDPs provides an impetus for forging effective workflows and tools that are well suited
to large biological objects.

7. SUMMARY

Although it is generally accepted that free-energy calculations have come of age to help un-
derstand a variety of molecular processes relevant to biophysics, their predictive power is often
called into question, most notably for qualitatively new problems. This legitimate skepticism can
be explained, at least in part, by the conceptual and practical difficulties of bridging the gaping
divide between the phenomena observed experimentally at the macroscopic level and how we
model them at the microscopic level. Reconciling size and timescales to render a faithful picture
of the biological reality presupposes our ability to address timescale separation—and, thus, to
identify the relevant DOFs at play—which remains a major hurdle, notwithstanding access to
computer architectures equipped with hundreds of GPUs. In many instances, our intuition is not
enough, and however smart the free-energy method is, it remains plagued by quasinonergodicity
scenarios, emphasizing the need to resort to dedicated approaches to model the RC. Inclination
to skepticism can also be rationalized by an ever-expanding methodological palette and the
difficulty of making an informed choice of the algorithm best adapted to decipher the molecular
process of interest. One attractive feature of free-energy calculations lies in the possibility to
combine algorithms seamlessly to improve ergodic sampling. The sophistication of force fields
(121, 151), now able to reproduce thermodynamic quantities with unprecedented accuracy, has
created an impetus for novel ideas to overcome the last roadblocks that have hitherto hampered
the exploration of rare events. As original theoretical frameworks designed for more reliable
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free-energy estimates continue to emerge, it is also crucial to push the methodology to its
limits with challenging tests. Ten similar reviews would not be enough to quote the legion of
research articles applying free-energy calculations. Still, exercises like the SAMPL series of blind
predictions of host–guest binding affinities, pKas, and partition coefficients (79) provide a fair
account of the current state of the art and where the field is going. Similar initiatives eliciting
joint efforts in the community ought to be encouraged to craft the next generation of sampling
strategies supplying free-energy estimates with improved reliability.
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