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Abstract

Force transmission through the actin cytoskeleton plays a central role in
cell movements, shape change, and internal organization. Dynamic reorga-
nization of actin filaments by an array of specialized binding proteins cre-
ates biochemically and architecturally distinct structures, many of which are
finely tuned to exert or resist mechanical loads. The molecular complexity
of the actin cytoskeleton continues to be revealed by detailed biochemical
assays, and the architectural diversity and dynamics of actin structures are be-
ing uncovered by advances in super-resolution fluorescence microscopy and
electron microscopy. However, our understanding of how mechanical forces
feed back on cytoskeletal architecture and actin-binding protein organization
is comparatively limited. In this review, we discuss recent work investigating
how mechanical forces applied to cytoskeletal proteins are transduced into
biochemical signals. We explore multiple mechanisms for mechanical sig-
nal transduction, including the mechanosensitive behavior of actin-binding
proteins, the effect of mechanical force on actin filament dynamics, and the
influence of mechanical forces on the structure of single actin filaments. The
emerging picture is one in which the actin cytoskeleton is defined not only
by the set of proteins that constitute a network but also by the constant
interplay of mechanical forces and biochemistry.
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ORGANIZING THE ACTIN CYTOSKELETON

Perhaps the most commonly discussed protein in descriptions of cell shape change, movement,
and force generation is actin. For decades, researchers have imaged the actin cytoskeleton using
fluorescent labeling, typically fluorescently labelled phalloidin (66) or fluorescent fusions to actin-
binding proteins (11, 79), to observe and classify a range of subcellular architectures. With the ad-
vent of super-resolution optical microscopy and improvements in electron microscopy techniques,
the field is beginning to uncover just how broad a range of beautifully complex and distinct actin
structures exist (3, 12,29, 96). So striking are the architectural differences between parts of the actin
cytoskeleton that architecture has become dogma for descriptions of the actin cytoskeleton and
whatit does in cells—stress fibers that contract, filopodial bundles that poke, and branched (or den-
dritic) networks that push. Adding to the underlying complexity belied by these simple descriptions
are their inherent dynamics and ability to rapidly reorganize in response to external stimuli (69).

A perplexing and persistent question is why actin structures that all share the same common
cytoplasm and pool of subunits are so distinct. One answer is that actin filaments interact with
different sets of ancillary nucleation-promoting and actin-binding proteins that endow the struc-
tures with their unique architectural plasticity. In this framework, it becomes easy to view actin
as a passive structural element interacting with different crosslinking, bundling, and branching
proteins to assemble different structures in an almost Lego brick—type manner. This, of course, is
a dramatic oversimplification given the role of actin networks in cell shape change and migration,
where they must sense, transduce, and generate mechanical forces.

One intriguing possibility is that actin filaments are active sensors of mechanical tension rather
than passive building blocks. In 2011, Hayakawa et al. (39) used optical tweezers to apply me-
chanical tension across single actin filaments and reported that the actin-severing protein cofilin
binds to and severs actin filaments in a tension-dependent manner. In 2012, a review by Galkin
et al. (32) elegantly discussed the concept of actin filaments as tension sensors and speculated on
possible mechanisms for this process. Since this work, however, there has been relatively little
further direct evidence of actin filaments sensing mechanical tension and feeding back on protein
binding, beyond a few examples, including the actin-binding protein cofilin (38, 39). In addi-
tion, it has been difficult to connect the existence of polymorphic structural states of F-actin with
variations in mechanical load, primarily because of the challenge of combining high-resolution
electron microscopy imaging with precise control of the mechanical load on an actin filament (30,
32, 33). Several studies have indicated that the conformational state of actin is polymorphic and
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Table 1 Estimation of filament-level forces in different actin structures

Actin structure

Lamellipodium Stress fibers Cortex Filopodia
Characteristic actin-binding Arp2/3, capping Myosin, Myosin, Arp2/3, Formins, fascin
proteins protein, cofilin o-actinin formins, x-actinin,

filamin

Force action on actin Compression Tension Tension Compression
Force magnitude 50N (77) 1-10 nN (57) 400 pN (89) 10 pN (53)
Filament density estimate 50-250 per micron 30 per fiber 100-nm mesh size 10-30 per filopodia
Estimated filament level load (pN) | 0.2-10 ~10-100 20-40 0.3-5

feeds back on binding protein affinity, but the role of mechanical forces on actin in this context
remains elusive (45, 49, 50, 80, 82).

In this review, we discuss the broader concept of mechanical regulation of the actin cytoskeleton
and the multiple modes of action of this process. To elucidate whether forces at the level of a single
actin filament could be relevant for larger-scale cytoskeletal regulation, we first collect estimates
of the mechanical load on actin filaments in different cytoskeletal structures from recent literature.

MECHANICAL LOADING OF THE ACTIN CYTOSKELETON

Different actin structures appear to be used for defined mechanical tasks, such as the generation
of protrusion forces that push against obstacles or contractile forces that pull on a substrate.
To explore the potential role of mechanical forces as regulators of protein organization, we first
consider the actin filament organization and mechanical loads felt by individual filaments within
these structures in this section.

Most of the insights that we have into the structure of polymerized actin filaments comes
from electron microscopy image data (30, 33), which show that filaments are double-stranded,
right-handed helices with an average pitch of 36 nm (30). In a cellular context, filaments assem-
ble into higher-order structures, including dendritic networks, branched networks, bundles, and
meshes through their interaction with a vast set of actin-binding proteins (6). Because different
actin structures all share a common pool of biochemical constituents, competition among actin
structures balances and regulates the assembly of different structures (2, 15, 34, 59, 69). Several
recent reviews have discussed actin biochemistry, its filament-forming kinetics, and the biochem-
ical composition of different actin networks (6, 76), and we summarize some of the key molecular
and architectural components of the cytoskeleton in Figure 1 and estimate single-filament forces
in these structures in Table 1.

Single-Filament Forces in Compressed Actin Structures

At the leading edge of migrating cells, the lamellipodium is a thin (50-150 nm), protrusive actin
structure (98) (Figure 1). Actin filaments within the lamellipodium are nucleated in close proximity
to the plasma membrane by the Arp2/3 complex and its associated activating factors (62). When
imaged using electron microscopy, lamellipodial actin networks appear as interweaving dense
filament networks pressed with filament barbed ends at steep angles to the membrane plane. Since
the plasma membrane itself is under tension (22), addition of actin monomers to filament ends in
contact with the membrane exerts a force that displaces the membrane and compresses the network
(75). Several studies have aimed to quantify the capability of branched actin networks to push
against an external barrier and drive the cell forward in cell culture (72, 77) and in reconstituted
systems (5, 62a, 74a). Considering a membrane with a line tension of ~100 pN/um (71), a filament
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Figure 1

The actin cytoskeleton defined by architecture. The actin cytoskeleton consists of several architecturally
distinct regions that can be observed with optical microscopy (right) and at the ultrastructural level with
electron microscopy (boxes). Different actin architectures can be observed within a common cytoplasm and
have distinct biochemical compositions. We have highlighted a few examples of proteins contained within
these different structures and the density and organization of actin filaments within them.

network density of a hundred filaments per micrometer (considering the lamellipodium to be a
largely two-dimensional structure) (35), and pure orthogonal compression, we estimate the average
compressive force per filament to be on the order of 1 pN within this structure.

In some cell types, the lamellipodium is interceded by periodic bundles of actin filaments
between the dendritic regions that form into filopodial protrusions (87) (Figure 1). Filopodia
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contain aligned actin filaments that are nucleated by various formins, including Daam1 (47), and
crosslinked by the actin-binding protein fascin (1). Filopodia are highly dynamic structures and
have been reported to produce both protrusive and contractile forces (7). Forces on filopodia
have been measured using optical traps and found to be on the order of 1-10 pN (53). For a
filament density of 10-30 filaments per bundle, the compressive force on an actin filament is on
the order of ~0.5 pN. While the average protrusive forces generated by growing actin filaments
in the lamellipodium and filopodia are relatively small, larger forces have been reported for actin
protrusions such as podosomes. Recently, Labernadie et al. (56) used a combination of cells grown
on a thin, deformable Formvar sheet and atomic-force microscopy to measure the protrusive
forces generated by podosomes. The authors measured the indentations generated by podosomes
in the Formvar sheet that had a calibrated stiffness, and calculated the average force generated
by a podosome to be 94 nN. This is significantly larger than the protrusive forces reported for
lamellipodia and filopodia, perhaps reflecting the complex architecture of actin filaments (8, 61)
and composition of this structure (Figure 1).

Single-Filament Forces in Tensed Actin Structures

Stress fibers are perhaps the clearest example of actin structures under tension. Directed motion
of the myosin motor heads within these aligned bundles of actin generates a tensile load within
the fiber (2, 44, 51, 52). The tensile force in stress fibers is clearly apparent upon laser dissection,
where large scale recoiling of the fiber can be observed (51, 55). Since a single myosin exerts
roughly 3—4 pN of tensile force (27), we expect the tensile force applied to a stress fiber bundle to
be in the range of 100 pN to 1 nN, depending on the number of myosin motors acting on the fiber
and the fiber width. Consistent with this estimate, the native tension in contractile stress fibers of
cells plated on raised micropatterns was measured to be several nanonewtons (57). Considering
a filament density of roughly 30 filaments per fiber, the force per filament is on the order of
~10-100 pN.

Most of the actin structures that have been discussed thus far are prominent in either highly
migratory or strongly adherent cells. Cortical actin networks are present in most cell types and
play a particularly important role during cell division. Rounded mitotic cells have a thin layer of
short crosslinked actin filaments just beneath the plasma membrane (83). This shell of actin is
approximately 200 nm to 1 um thick, with a mesh size between filaments on the order of 100 nm
and a rich biochemical composition of crosslinkers, motor proteins, and actin nucleators (9, 17,
70, 83) (Figure 1). The actin cortex has a central role in generating the contractile forces that are
required to separate two daughter cells during cytokinesis. Here, activation of the small G-protein
Rho activates myosin contractility to generate tensile forces at the cleavage furrow (86, 95). Actin
crosslinking proteins couple the forces generated by myosin motors on individual filaments into
network-level deformations. Thus the connectivity between filaments and maintenance of cortical
architecture plays an important role in the generation of cortical tension (16, 17, 83, 89). Values
for tensile load in the cortex are on the order of several hundred piconewtons per micron (89). An
estimate of the number of filaments on this length scale can be made from the mesh size in the
cortex, yielding a filament-level tension in the tens of piconewtons range.

Toward Direct Measurements of Single-Filament Forces

The estimates of mechanical loading of actin structures presented here is confounded by the
assumptions of equal load sharing by actin filaments and homogeneous architecture. The
measurement of forces on the cytoskeleton with atomic-force microscopy (16, 77), micropipette
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Methods to measure intracellular forces based on optical microscopy. Few methods exist to measure intracellular cytoskeletal forces.
Because of the small length scale needed to probe forces on the cytoskeleton, a few optical approaches have been developed. Most of
these are based on Forster resonance energy transfer (FRET) pairs (#) inserted into actin crosslinking proteins or (b) attached to actin
monomers within filaments. Tension within the cytoskeleton results in changes in distance and orientation between FRET pairs or
quenched dyes, causing changes to fluorescent output that can be measured directly.

aspiration (16, 84), and micropillars (88) provides valuable information on the bulk forces on each
of these structures but averages out the finer details of forces on filaments within that structure.
In fact, there are presently no direct measurements of forces on individual actin filaments within
cells at the microstructural level. This is primarily due to the lack of appropriate experimental
measurement techniques.

Interestingly, super-resolution microscopy has been used to reveal a rich landscape of actin
microstructures (29, 96). Actin asters are structures found in the cell cortex but are not necessary
for maintaining cell mechanical properties, indicating that distribution of mechanical load is not
necessarily equal among all filaments. To address this problem, attempts have been made to
develop fluorescent probes that report on the forces on the actin cytoskeleton that would report an
ultrastructural-level force (36, 67, 68, 85) (Figure 2). Most of these examples are based on Forster
resonance energy transfer (FRET) pairs that decrease in FRET as fluorophores become spaced
apart (28). FRET modules have been inserted into actin crosslinkers such as filamin and x-actinin
so that tension across these actin crosslinkers results in a change in FRET efficiency (Figure 24).
In the context of forces across single actin filaments, FRET measurements are more difficult. The
small size of changes that occur to actin filament structure means that more sensitive techniques
are needed, such as polarization FRET or FRET using chemical dyes with high fluorescence
output (68) (Figure 2b). While technical limitations have prevented their widespread use in cells,
these or related strategies would help provide a more detailed understanding of the mechanical
forces at the single-filament level in different actin networks.

MECHANICAL REGULATION OF THE ACTIN CYTOSKELETON

In the previous section, we provided estimates of the mechanical load per filament in a variety of
different actin structures. There is a clear link between actin network architecture and mechanical
loading of filaments, consistent with a specific mechanical role existing for different networks in cell
physiology. In this section, we highlight what the downstream effects of these mechanical-loading
conditions are on cytoskeletal regulation, including actin filament conformation, polymerization
kinetics, and protein binding.
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Actin Filament Conformation and Force Feedback

The textbook picture of an actin filament is that it is a double-helical polymer with an angular
twist of ~167°, ~9-nm width, and ~27.6-A rise/subunit (32, 33). However, it is unclear whether
these values are fixed and depict the static state of an actin filament or they are a snapshot of an
ensemble of conformations (30, 32). A high-resolution actin structure by Galkin etal. (33) supports
the notion of filament structural polymorphism and shows that flexibility in subdomain 2 of actin
monomers could be at the origin of the various structural states. Binding of regulatory proteins to
actin filaments has been shown to drive changes in the filament conformation, further supporting
the idea that actin filaments are not structurally static (65). Proteins containing calponin homol-
ogy domains have been shown to modulate filament conformation by rearranging monomeric
subdomain positions. Fimbrin’s actin-binding domain 2 (ABD2) stabilizes actin filaments and
reduces their structural variability (31, 37). Similarly, calponin has been shown to drive rearrange-
ment of subdomain 1 toward subdomain 3 when bound to tropomyosin-decorated filaments
(43).

The actin-severing protein cofilin has been extensively studied for its effect in increasing fil-
ament flexibility. In fact, cofilin has been demonstrated to change the filament crossover length
from 365 A to 270 A by changing the subunit angular twist (65). This increase in twist is further
manifested in anisotropy measurements that revealed a decrease in torsional rigidity of cofilin-
decorated filaments (78). Flexural rigidity has also been shown to decrease by more than 75%,
corresponding to a reduction in filament persistence length from 9.8 pm down to 2.2 pum (63).
These flexural rigidity changes induced by cofilin binding are believed to be central to its sever-
ing mechanism (25, 63, 64). Given the cooperative nature of cofilin binding to filaments, local
structural changes to the filament could propagate outside of the cofilin—actin binding interface.
Umeki and colleagues (92) and Ngo and colleagues (73) showed that a cofilin—actin fusion protein
allosterically induces conformational changes to the actin filament that propagated over several
subunits. The conformational changes to the actin filament then were shown to feed back on
the binding affinity of both cofilin and myosin. Changes in conformations of an actin filament
have been observed not only with side-binding proteins but also with actin nucleators. Formin-
nucleated filaments are thought to exhibit an increase in flexibility that is reduced under the
stabilizing effects of tropomyosin and myosin binding (74, 90, 91).

Do actin filaments change conformational state under mechanical tension (Figure 3)? Shi-
mozawa & Ishiwata (85) provided one piece of evidence supporting structural rearrangement of
stabilized filaments under mechanical load. Using labeled actin as a probe, they showed that the
fluorescence intensity can decrease by 6%, independent of photobleaching effects, when the fil-
ament is tensed beyond the minimal straightening force (~5 pN). A second piece of evidence
comes from Hayakawa et al. (38, 39), who showed that tensile forces of up to 30 pN applied to
a single filament in vitro decreased cofilin severing activity. Scratching assays of a tethered actin
mesh further demonstrated a bias in cofilin binding to relaxed filaments. A third piece of evidence
comes from the finding that force on a filament increases the affinity of myosin II motor domain
to the filament (93). Preferential binding to stretched filaments was observed under physiological
changes to contractility and when external perturbations were applied. Uyeda et al. (93) proposed
a positive feedback loop model where mechanical perturbations and myosin II binding increase
tension in actin filaments, locking them in a stable structural state to which myosin II favorably
binds. In contrast, the myosin I motor domain did not show an increase in localization (93). Bias
in protein binding to a mechanical state of actin structures has also been observed with actin nu-
cleators. Risca et al. (80) found that curvature biases branch formation through Arp2/3-mediated
nucleation through a shift in the bending fluctuation spectrum resulting from applied tension.
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Figure 3

Mechanical force transduction by the actin cytoskeleton. (#) Mechanical forces on cells are transduced by the actin cytoskeleton into
biochemical signals. These often culminate in cytoskeletal remodeling as the cell responds by changing shape. () We highlight three
main modes for mechanical force transduction by the actin cytoskeleton. (&, 7) Firstly, actin filaments themselves can be susceptible to
mechanical forces, changing conformational state under mechanical load. (4, i7) Secondly, actin-binding proteins can change
conformation under mechanical load, exposing binding sites for other proteins that were previously unavailable. (&, 7i7) Finally, the
polymerization kinetics of actin-binding proteins can be influenced by the mechanical load upon them, thus changing the network
density and growth rate. Abbreviation: ABP, actin-binding protein.
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Mechanical Changes to the Conformational States of Actin-Binding Proteins

Perhaps the most well-studied examples of mechanosensitive proteins are those that link the
actin cytoskeleton to other interfaces, such as adhesions to the cell substrate or those between
cells. In this framework, mechanical tension is generated across a protein that is anchored at
one end to a surface (i.e., the plasma membrane), and at the other end to the cytoskeleton. This
tension conformationally unfolds the protein, revealing previously unavailable binding sites for
other proteins (Figure 35, summarized in Table 2). One example of this is the focal adhesion-
associated protein talin and the actin-binding protein vinculin (21). A similar mechanism has been
shown to exist for the adherens junction protein o-catenin. Remarkably, this complex requires
force to form a high-affinity interaction with F-actin (10). This interaction was shown with optical
tweezers to depend on the unfolding of x-catenin to reveal binding sites for vinculin.
Interestingly, a similar mechanism exists for actin crosslinking proteins. The actin-binding
protein filamin displays mechanosensitive behavior in reconstituted actin gels in vitro (24) and in
vivo (46). Filamin A forms a homodimer atits C-terminus and binds to actin through its N-terminal
calponin homology domain. Mechanical force across filamin A homodimers causes changes to the
conformation of the rod2 domain that impact its affinity for ilGAP, a GTPase involved in the
regulation of the signaling protein Rac (24). In addition, myosin, x-actinin 4, and filamin B can
crosslink actin filaments and show preferential accumulation in response to mechanical load (60,
84). The changes in protein localization in response to stress were attributed to changes in binding-
protein turnover, as measured using fluorescence recovery after photobleaching. This observation
corresponded to increases in binding density during cytokinesis and in response to micropipette
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Table 2  Mechanisms of mechanical regulation of the actin cytoskeleton
Mechanosensitive Force Measurement Sample
protein response (pN) Effect method reference
Conformational change Myosin 4 Myosin step Optical tweezers | 27
of actin-binding proteins
«-Catenin 5 Unveils vinculin Magnetic 101
binding site tweezers
Talin 5 Unveils vinculin Magnetic 21
binding site tweezers
Cadherin—catenin 10 Increased Optical tweezers 10
dissociation
Filamin 15 Release of Optical tweezers 81
autoinhibition
Vinculin 30 Dissociates from Magnetic 100
catenin tweezers
Change in polymerization | Formin Bnilp 0.3 Decrease in Microfluidic flow | 20
kinetics polymerization rate
Formin mDial 3 Increase in Microfluidic flow | 48
polymerization rate
Dendritic actin - Change in network Atomic-force 5
density microscopy
Filament-level Cofilin 30 Doubled delay in Magnetic 39
conformational change severing tweezers
Myosin II - Increased affinity for | Optical 93
stretched actin microscopy
Arp2/3 - Branching bias on Single-filament 80

convex curvature

branching assay

aspiration of the cell cortex. In particular, the mechanosensitive response of myosin was shown to
be dependent on the lever arm length of the myosin molecule (60).

Force Regulation of Polymerization Kinetics

One of the most important properties of actin filaments is their ability to convert biochemical
energy into mechanical work through directed polymerization. Polymerization of actin filaments
has been found to be modulated by force in two different ways (Figure 3).

Firstly, the force on different actin nucleators can regulate their polymerization activity. In
particular, the polymerizing activity of some formin homology proteins has been shown to be force
sensitive. In vivo, cells overexpressing formin have a larger pool of F-actin upon release of tension,
suggesting a mechanical mechanism is regulating formin-mediated polymerization of actin. This
mechanosensitive response is independent of Ca?*, Rho, and kinase signaling but depends on
profilin activity (20, 42). More directly, in vitro reconstitution assays of FH1-anchored formins
show that, in the absence of profilin, application of tensile forces slows down actin polymerization.
Meanwhile, filament elongation rates increase under tension at optimal profilin concentrations
(20, 54). Microfluidic assays have also been used to apply forces to growing actin filaments by
fluid shear (48). In this assay, the FH2 dimer conformation was sensitive to force and impacted
the elongation rate of actin filaments by this nucleation factor.
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Secondly, actin polymerization occurring against an obstacle can affect architectural and dy-
namic properties of network structure (5, 19, 72). When growth is opposed by large forces,
polymerization can stall. Prior to stall, the network growth rate and mechanical properties are al-
tered by force due to changes in the assembly rates of network components. Multiple models have
been developed to describe the force dependence of branched actin network assembly, including
the autocatalytic model (13) and several Brownian ratchet-based models (71, 71a, 71b, 75). While
each captures experimentally observed features of branched actin network assembly—tethering
of the network to the nucleation surface, reduction of monomer on-rate with force, increasing
network density with force—none fully describe the complex mechanical response of branched net-
works to applied loads. For example, the force velocity characteristics for branched networks can be
directly measured in vitro but are not well described by a single curve owing to history-dependent
effects arising from changing network density with load (5, 72, 74a). Indeed, force must be consid-
ered as a factor in all aspects of actin network assembly under load, as the alternative of a molecular
assembly process insensitive to forces actin on its constituent components is difficult to imagine.

OUTLOOK

Mechanotransduction by the actin cytoskeleton is accomplished through specialized actin struc-
tures that are built for the mechanical environment in which they function. Estimates of the forces
felt by single filaments indicate they carry on average ~1 pN of compressive load in the lamel-
lipodia and ~10-100 pN of tensile load in stress fibers, though the actual distribution of filament
loads within a network is expected to be highly variable. In addition to being organized by sets of
specialized binding proteins, actin networks appear to be regulated by mechanical forces. In this
review, we have highlighted three key mechanisms by which mechanical forces are transduced
into biochemical changes through the actin cytoskeleton. Firstly, actin filament structure can be
altered by mechanical force in ways that alter the affinity of actin binding and regulatory proteins.
Secondly, actin-binding proteins can conformationally unfold under mechanical force, revealing
binding sites for other regulatory proteins. Finally, mechanical forces can directly influence the
density and organization of actin filament networks through their interplay with actin polymer-
ization kinetics. Taken together, these mechanisms paint a picture wherein the actin cytoskeleton
actively responds to mechanical load exerted on it by shaping its composition, organization, and
function, enabling cells to sense and rapidly adapt to forces within their environment.

The implications of better understanding how actin networks use forces to regulate their
architecture and behavior extend well beyond fundamental biophysical and cell biology of the
cytoskeleton. Indeed, a range of diseases arise from mutant forms of actin-binding proteins that
may be linked to the cell’s compromised ability to properly transduce mechanical forces. Two key
examples of this are associated with actin crosslinking proteins (97). Mutated forms of «-actinin
and filamin are associated with diseases, including focal segmental glomerulosclerosis and skeletal
disorders (atelosteogenesis, skeletal dysplasia) (18, 23, 41, 58, 99). The expression of mutant -
actinin in podocytes causes truncation of cellular processes and an inability of these cells to sustain
mechanical forces (26). Mutations to the actin-binding domain of dystrophin are associated with
muscular dystrophy and protein instability (40). During development, mechanosensitive processes
associated with the actin cytoskeleton direct tissue morphogenesis (14).

Continued development of fluorescence microscopy and electron microscopy techniques—and
their extension to quantify forces in actin networks—has the potential to significantly advance our
understanding of mechanotransduction by the actin cytoskeleton in cell physiology, embryonic
development, and different pathologies. In addition, new experimental techniques, both in live
cells and in vitro, will be needed to reveal the molecular mechanisms responsible for mechanical
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regulation of actin networks and provide a more complete understanding of the often unseen, but
always felt, influence of force.
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