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Abstract

Directed evolution is a form of artificial selection that has been used
for decades to find biomolecules and organisms with new or enhanced
functional traits. Directed evolution can be conceptualized as a guided
exploration of the genotype–phenotype map, where genetic variants with
desirable phenotypes are first selected and then mutagenized to search the
genotype space for an even better mutant. In recent years, the idea of apply-
ing artificial selection to microbial communities has gained momentum. In
this article,we review themain limitations of artificial selectionwhen applied
to large and diverse collectives of asexually dividing microbes and discuss
how the tools of directed evolution may be deployed to engineer commu-
nities from the top down.We conceptualize directed evolution of microbial
communities as a guided exploration of an ecological structure–function
landscape and propose practical guidelines for navigating these ecological
landscapes.
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Artificial selection:
the process of
intervening in the
natural reproduction
cycle of organisms to
favor those individuals
that exhibit desirable
traits

Directed evolution:
an iterative process of
randomization and
selection that is used
to engineer biological
systems from the top
down

Fitness landscape:
the map between the
genotype of a gene or
organism and its
phenotype or fitness
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DIRECTED EVOLUTION OF ORGANISMS AND BIOMOLECULES

Evolution has given shape to all forms of life, and humans have harnessed its power for millen-
nia. Our ancestors learned to domesticate animals, plants, and a wide range of microorganisms
by artificial selection long before they were aware of evolution itself (27, 92). The revolution in
our understanding of evolutionary biology, genetics, and molecular biology in the nineteenth and
twentieth centuries, together with the development of novel genomic and molecular technologies
(1, 31, 100, 102, 115), has allowed us to extend artificial selection beyond animal and plant do-
mestication and learn how to direct the evolution of biomolecules (12, 48), genetic circuits (126),
microorganisms (80), and viruses (16) to improve their phenotypes and even to invent new ones
(48, 81). Amajor advantage of using directed evolution to engineer biological systems from the top
down, as opposed to engineering them from the bottom up, is that the latter works with already
known parts and traits, whereas the former does not require any a priori knowledge of the mech-
anisms responsible for the desired function; thus, directed evolution may allow us to find entirely
new pathways and mechanisms encoded in hitherto unexplored regions of the genotype space.

Beyond its practical utility, directed evolution can also lead to profound insights into funda-
mental biological principles. For instance, directed evolution in vitro and in silico has revealed
principles of organization of genetic and metabolic networks (11, 34, 125, 126), and it has been
instrumental to our growing understanding of the mapping between genotype and phenotype in
biomolecules (14, 89, 108), metabolic pathways (79), and other cellular traits (115). In turn, as our
understanding of the genetic basis of adaptation has improved, it has enabled us to design more
efficient strategies and methods for directed evolution (1, 6, 7, 64, 89, 102, 128).

The genotype–phenotype map (often referred to as the fitness landscape in the context of di-
rected evolution) is defined as the relationship between the DNA sequence of a gene (or a higher-
level functional unit, such as a pathway or genetic network) and the magnitude of the quantitative
trait(s) it codes for in a given environment. Directed evolution can be conceptualized as a guided
exploration of this genotype–phenotype map in search of genotypes with improved or novel
functions (89, 108). Traditionally, directed evolution starts by first generating a library of genetic
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variants (74). All variants are then scored for the phenotype under selection, and those that are
closer to the desired value (referred to below as the fittest) are chosen for reproduction. From this
selected group, a new generation of genotypic variants is created through random mutagenesis or
recombination (74). This two-step process is generally applied iteratively for as many rounds as
needed. In recent years, several techniques have been developed that increase the throughput of
the process and reduce human intervention (31, 115), but the fundamental evolutionary process
remains the same (64, 90).

ARTIFICIAL SELECTION ABOVE THE ORGANISM

Given the growing appreciation of the many important roles that groups of individuals (popula-
tions, communities, and ecosystems) play in natural and technological processes (13, 49, 57, 63,
69, 72, 84, 97, 110, 120), it has been proposed that artificial selection may also be applied above
the level of the organism to engineer community-level functions from the top down (25, 72, 104).

Conditions for Artificial Selection: Heritability and Variation

Artificial selection can, in principle, be applied to any level of biological organization, provided
that the evolving units exhibit phenotypic variation along the axis of selection, and that a substan-
tial fraction of this variation can be reliably passed from parents to offspring (66) (Figure 1a).
Selection can be very efficient at the organismal level, as organisms fulfill both criteria: The phe-
notypes of an organism are (at least in part) determined by its genotype, which is either partially
or entirely passed from parent to offspring. This ensures that many phenotypes have a heritable
component upon which selection can act.Whether the conditions that are required for natural se-
lection [which, in addition to the two mentioned above, include that phenotypic differences must
be associated with fitness differences between the replication units (66)] are met by any supra-
organismal entities in nature has remained controversial. However, there is solid empirical and
theoretical evidence that those conditions can be met under artificial selection conditions (15, 26,
40, 43, 65, 111, 113, 114, 118, 119, 123).

Artificial Selection of Populations and Small Synthetic Communities

The idea that groups of organisms could respond to group-level selection was originally tested in
small animal populations (111, 112) and two-species communities (40, 43). In these experiments,
the selection units were populations containing N ∼ 10 genetically diverse, sexually reproducing
animals (belonging to the flour beetle Tribolium genus), which interacted exclusively with one
another but not with individuals from other populations. These populations were scored for an
emergent trait that was a property of the entire group, such as the total number of adult animals in
the population after approximately 40 days of incubation. The best-performing communities (i.e.,
the parental groups) were then selected and used as the genetic stock to breed a new generation
of groups (i.e., the offspring groups) (Figure 1b,c). As controls, some of these studies established
random selection lines (where the populations selected for reproduction were chosen randomly,
without regard for their phenotype), as well as no-selection lines (where all parent populations
were selected for reproduction, and each seeded exactly one offspring population) (Figure 1d,e).

To generate an offspring group, these studies employed two different strategies. One repro-
duction strategy was called the propagule method (43). In this method, a small (N ∼ 10) random
subset of individuals from the selected parental population was introduced into the new habitat,
acting as the inoculum for the offspring population (Figure 1b).The second reproductionmethod
is referred to as the migrant pool method (43). It consists of pooling together all of the animals
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Figure 1

Methods of top-down engineering above the individual organism. (a) Any biological system can be subject to artificial selection as long
as it exhibits variation along a trait of interest (z), and that trait is heritable, i.e., can be reliably passed into descendants derived from it
in a subsequent generation. (b) Typical workflow for an enrichment approach to engineering communities from the top down. Multiple
enrichment communities are set up by inoculating habitats from a species pool. Typically, the environment is selective for the desired
function. The enrichment communities can be stabilized by serial passaging. Then, a severe bottleneck (dilution-to-extinction) is
applied to subsample from the stable communities and find simpler communities that maintain the function, and the best among those
is selected. (c–d) A depiction of the two main methods of artificial population-level selection, representing their original application in
animal populations (40, 43, 111, 112). The methods shown are (c) the propagule method and (d) the migrant pool method, together
with (e) a random selection control and ( f ) the no-selection control.

from the selected parental populations and then selecting a small random subset (also N ∼ 10)
from that pool to seed an offspring population in a new habitat (Figure 1c).

All of these experiments found a robust directional change in the mean phenotype of the pop-
ulation of populations (referred to below as the metapopulation) in response to selection at the
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population level. Indeed, the metapopulations in these experiments fulfilled the two conditions
that are required for artificial selection to work. First, the authors found a significant between-
population variation in the phenotype under selection due to the combination of small, genetically
diverse populations and sexual recombination. Second, follow-up studies also demonstrated that
this variation had a heritable component, stemming from interactions between specific combina-
tions of genotypes, which were directly responsible for the population-level trait under selection
(e.g., the number of adult individuals) (41, 43).

Artificial Selection of Microbial Communities and Ecosystems

In the early 2000s, artificial selection above the organismal level was extended from populations
and small pairwise communities to entire microbial ecosystems. In a landmark set of studies (103,
104), Swenson and coworkers adapted the propagule and migrant pool strategies to select for
microbial ecosystems with high scores in three emergent community-level traits: (a) the pH of
the aquatic medium on which the ecosystems were growing; (b) the collective degradation of 3-
chloroaniline, a water contaminant; and (c) an indirect microbiome phenotype, such as the above-
earth biomass of the plants on which those communities had been inoculated. Although these
experiments were promising, the effect of selection was modest compared to the robust and large
responses observed in animal populations (40, 43, 111, 112).

These studies were followed by a handful of additional artificial microbiome selection ex-
periments, all of which adopted similar protocols and selection strategies. Using a migrant pool
method, Panke-Buisse et al. (75, 76) artificially selected for soil microbiomes that induced either
early or late flowering in various genotypes of Arabidopsis thaliana and Brassica rapa. This exper-
iment found a strong and statistically significant relative difference between the mean flowering
times ofmicrobiomes that were selected for early versus late flowering.However, both lines drifted
over time and flowered later than the starting (nonselected) microbiomes. In a later study, Blouin
et al. (15) used an experimental design with multiple artificial selection (as well as random selec-
tion) lines and selected for lowCO2 emission in aquatic ecosystems.The amount of respirationwas
lower in the artificially selected lines than in the random controls. In both, however, the amount
of CO2 produced declined over time. More recent studies have attempted to select microbiomes
that degrade extracellular polymers (18, 121), protect plants against drought (55, 71), alter the de-
velopment of animal embryos (8), and facilitate the growth of a species that could not grow on its
own (18).We believe that it is fair to say that success has been mixed (some experiments succeeded
while others failed or were inconclusive) and generally modest.

What Limits the Success of Artificial Selection at the Community Level?

As we discuss above, artificial selection at the community level requires that communities exhibit
variation on the selected trait, and that this trait is reliably passed from parent to offspring com-
munities. With regard to the heritability of community-level traits, the method used to generate
offspring communities from their parents is therefore critical (83). Due to the success of the
propagule and migrant pool strategies in animal populations, both methods have been universally
adopted in all microbial community-level selection studies of which we are aware. There are,
however, important quantitative differences between animal populations and microbial communi-
ties. First, microbial communities are generally several orders of magnitude larger. A conservative
estimate of the number of bacterial cells that were used to inoculate each generation in previous
experiments is N ∼ 106, and the actual number is likely to have been several orders of magnitude
higher (19). This large inoculum size could limit the power of stochastic sampling to generate
large between-population variation,which is a critical factor on which selection acts (19). In animal
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populations, sexual reproduction and a genetically diverse starting pool of animals also ensured a
high between-population variation (Figure 1b). By contrast, most microbes reproduce asexually
(despite the potential for horizontal gene transfer), and recombination is generally rare, diminish-
ing the potential to generate novel genotypes using standing genetic variation alone. Stochasticity
and selection are both needed for an efficient exploration of the adaptive landscape (122).

With regard to between-ecosystem variation, Blouin et al. (15) discussed the conflict that ex-
ists between this variation and selection. As discussed above, selection runs on phenotypic vari-
ance. Yet, as selection proceeds, it will exhaust this variance, as it will inevitably eliminate alleles
and species from the metapopulation (Figure 2a). In the absence of mechanisms that regener-
ate between-community variation (discussed in more detail below), we should expect diminishing
returns in artificial selection: The amount of heritable variation should decrease with every se-
lection round, leading to an ever-weakening response to selection. Regenerating this variation is
thus critical if we want artificial selection to be successful beyond the first few rounds. Below, we
address how this variation may be replenished (Figure 2a).

A second important limitation of artificial selection at the level of communities or ecosystems
is the inherently dynamic nature of these systems. In most artificial selection experiments, selec-
tion is applied to communities that are grown in serial batch mode (Figure 2b). In the absence of
selection, serial batch culture starts by seeding a habitat with individuals coming from a previous
batch (the parental batch) and continues by letting this new batch grow in an environment that is,
in principle, identical or at least as similar as possible to the one in the previous generation. At the
end of the batch-incubation time t, cells are again randomly drawn from the offspring batch to
inoculate yet another habitat and continue the process (Figure 2b).Within each batch incubation,
all species grow and undergo an ecological succession (24, 29, 33) (Figure 2c). These successions
are not necessarily identical between parent and offspring batches, and neither are their compo-
sitions at the end of their respective batch incubations (Figure 2c). As we discuss below, and as
has been demonstrated elsewhere (19), this generational instability can have detrimental effects
on heritability and severely limit the success of ecosystem-level selection in multispecies consortia
(see the section titled Appendix: The Structure–Function Landscape).

Artificial Selection as Top-Down Engineering

In the first paper on artificial ecosystem selection, Swenson et al. (104) advanced the idea that
artificial selection could be used to engineer microbiomes from the top down. However, the main
goal of this and other previous studies was not so much to engineer ecosystems but to demonstrate
the feasibility of ecosystem-level selection and to study its fundamental limits. Perhaps for this
reason, most studies have focused on the directional response of the mean function to selection,
generally by comparing it to a random selection control, and none of the microbiome selection
experiments of which we are aware has included a no-selection control. A no-selection control
is, in essence, an exercise in ecological prospecting (18): One sets up a diverse set of enrichment
communities; lets them stabilize without mixing; and, in the end, chooses whichever has the most
desirable trait. In the absence of sexual recombination, the advantages of selection over ecological
prospecting are not obvious, and therefore, ecological prospecting represents a benchmark
against the success of a selection strategy. Importantly, the ultimate goal of artificial selection
as a means of top-down microbiome engineering is not to improve the mean function in the
metacommunity, but instead to find a microbiome that is fitter than the best of those with which
we started (19). As we discuss above, directed evolution at or below the organismal level seeks
to find optima in the genotype–phenotype space. In what follows, we argue that the directed
evolution of microbial communities can similarly be conceptualized as a guided exploration
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Limitations of artificial selection at the level of communities. (a) Schematic illustrating the conflict between heritable variation and
selection. As the top-performing communities get selected, the worst-performing communities get purged from the metacommunity,
and as a result, Fmean increases, and the amount of heritable variation decreases over generations (G). After multiple rounds of selection,
and without any novel variants being introduced, the heritable variation is exhausted, and selection has nothing upon which to act.
Variation can be replenished by, for instance, introducing migrants from a species pool, which may allow communities to reach new
function peaks (Fmax). (b) Microbial community growth in serial batch culture (without selection). Communities are initially seeded
from a highly diverse species pool into a new habitat (infant community) and then allowed to grow for an incubation time t (at which
point they are an adult community). Without selection, a small and random fraction of the cells from the adult community are
inoculated into a new habitat, forming a new infant. This growth and dilution process is repeated multiple times. (c) Within each batch
incubation, the species undergo an ecological succession as they grow and interact with each other. After multiple rounds of serial
passage, communities reach a generationally stable equilibrium, which is seen when the species abundance vectors X during (and at the
end of ) the ith and all subsequent incubation periods are identical, i.e., when Xi(τ ) = Xi+j(τ ) for all τ ε (0,t) and j ≥ 1.Without such
generational stability, community heritability is very low, and the success of ecosystem-level selection at the level of communities is
strongly reduced.

of an ecological structure–function landscape: the map between community composition and
community function (see the section titled Appendix: The Structure–Function Landscape).

DIRECTED EVOLUTION AS A GUIDED EXPLORATION OF THE
ECOLOGICAL STRUCTURE–FUNCTION LANDSCAPE

Before we describe how directed evolution may help us explore the ecological structure–
function landscape in search of communities with optimal traits, it is important to clarify what
we mean by the ecological structure–function landscape and in what ways it differs from the

www.annualreviews.org • Directed Evolution of Microbial Communities 329



Generational
stability: a state
reached by serially
passaged batch
cultures where the
ecological successions
in successive batches
converge to be
identical

genotype–phenotype map. This will help us better appreciate the differences that exist between
directed evolution above and below the organismal level.

The Dynamical Ecological Structure–Function Landscape
of Microbial Communities

Much like a fitness landscape is a map of genotypes and phenotypes, the ecological structure–
function landscape is a map between community composition (i.e., the vector of abundances of
all taxa in the community) and the traits (or functions) of the community (see the section titled
Appendix: The Structure–Function Landscape). The idea that community composition impacts
emergent or collective community functions is an old one in ecology (67, 85, 106, 107, 117).
In recent years, the structure–function landscape of microbial communities has been explicitly
formalized (45–47, 94, 95) and combinatorially explored (10, 28, 32, 45–47, 52, 54, 58, 94, 101)
by mapping numerous different combinations of bacteria with one or more of their quantitative
collective-level properties.

Perhaps the biggest practical difference between fitness landscapes and ecological structure–
function landscapes is that, as described above, community composition changes within a batch,
from the moment of inoculation to the point of harvesting. Moreover, the successional dynamics
within a batch are not necessarily the same in the parent as in the offspring community, even in
the absence of group-level selection (19). This means that the state of the community, which is
defined by the vector of species abundances at the end of the batch incubation X, will change over
generations, even when no artificial selection is applied (Figure 2c). Eventually, the communities
may converge to a state of generational stability, which can be represented as a fixed point in their
dynamical landscape (Figure 3a).

It is pertinent to ask at this point whether a generationally stable state of reproducible suc-
cessions is ever to be expected. Early work proposed that community assembly might be chaotic,
so that communities that are seeded with slightly different initial compositions (due to unavoid-
able random sampling) would diverge in both composition and function over time (104). Enrich-
ment experiments with multiple replicates [which are the equivalent of a no-selection control in
artificial selection experiments (19, 111)] have found, however, that community assembly is not
chaotic (30): Replicate habitats that were seeded from the same inoculum generally adopted a
discrete set of alternative (generationally) stable states (30, 39). These experiments have mapped
the basin of attraction of stable states in self-assembled communities and even found stochastic
transitions among them (30, 109). Other studies with synthetic or bottom-up communities have
similarly found evidence of dynamical multistability in microbial communities (4, 20, 23, 36). Be-
cause different stable community states contain different species, they may also differ in a range of
community-level properties and functions (37). These studies, along with related theoretical work
(26), support the idea that the structure–function landscape is more than a convenient metaphor
and that, despite its limitations (see the section titled Appendix: The Structure–Function Land-
scape and above), it is a practical and useful tool to help us think through the process of directed
evolution of biological systems above the organism.

Directed Evolution of Microbial Communities: Methods to Explore
the Ecological Structure–Function Landscape

At the community level, directed evolutionwould start by creating a library of generationally stable
communities that differ from each other in the collective, community-level trait under selection.
The fittest community is then selected and used to generate a new library of proximal composi-
tional variants. Those variants are propagated by serial batch culture until they are generationally
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Figure 3 (Figure appears on preceding page)

Directed evolution as navigation of an ecological structure–function landscape. (a) In this schematic, for simplicity, we project the
community function over an ecological space defined by the abundance of just two species (i and j). The depicted ecological dynamics
are multistable, and communities converge to one of three different attractors (stable points), colored by red, yellow, and blue circles.
This ecological landscape can be navigated through an iterative process of perturbation, stabilization, ranking, and selection. (b–f ) Six
different methods to create a library of compositional variants of the selected community. The methods shown are (b) coalescence,
(c) bottleneck, (d) migration from a pool, (e) species knockin, and ( f ) species knockout. (g) Altering resource concentration may also be a
way to change the fitness of different species within the community and, therefore, to change the composition of generationally stable
communities (60).

stable, and the fittest among these is again selected so that the process can be iterated as many
times as needed (Figure 3a). A key step in the development of directed evolution for protein and
network engineering has been the invention of methods for gene diversification, which enable the
exploration of the fitness landscape of the system under selection (74). If we wish to apply directed
evolution to microbial communities, we should similarly ask how exactly we can generate a library
of compositional variants of a selected community. Many ideas and methods have been already
tested empirically in enrichment-based approaches for the top-down engineering of microbial
communities (22, 38, 56, 60, 62, 77, 127). Below, we discuss these and a few other possibilities (19).

Horizontal gene transfer and mobile elements.Mobile elements can create new strains whose
contribution to community-level functions may differ from those of their ancestor (Figure 3a).
This suggests that adding mobile elements (e.g., bacteriophages and plasmids) to different com-
munities in a metacommunity may stochastically lead to the appearance of new strains in the
community and, therefore, to between-community variation in function. In a recent study,
Quistad et al. (78) transplanted mobile elements from one community to another, and this process
led to genetic changes (e.g., amplification of genes involved in nitrogen metabolism) in the re-
cipient species. These genetic changes were associated with functional changes at the community
level (e.g., biochemical rates of ammonification), demonstrating that stimulated species-level evo-
lution can be a means to create compositional and functional variants of a successful community.
More targeted tools to deliver plasmids to a stable microbiome by horizontal gene transfer have
been developed in recent years (91).

Coalescence. A library of variants of the selected community may also be created by coalescing
the selected, stable community with each of the nonselected ones (68, 86, 87, 99) (Figure 3b).
Multiple theoretical and empirical lines of evidence show that mixing two communities together
produces a new offspring community that resembles both of its parents both in composition and
function (99, 105).

Horizontal migration. Randomly sampled species from one or more natural species pools could
be added to the community to generate proximal variants (Figure 3c). These invasive species may
displace some of the resident taxa or augment the community by fixing without driving others
extinct (61).Even those species that do not fixmay, in principle, push a community to an alternative
state (4).

Selective knockins. Species that are deemed to have a beneficial effect on the selected function
can be selectively added one at a time to the community, thus generating a library of compositional
variants (Figure 3d). To ensure that this added species will not be outcompeted by the resident
species, an exclusive metabolic niche (i.e., a nutrient that the added species may utilize but that
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most members in the invaded community do not) could be supplied together with the added
species (96).

Bottlenecking.Variants of a selected community can be generated by subjecting it to multiple
harsh bottlenecks, an approach known as dilution-to-extinction (22, 35, 53, 56, 62) (Figure 3e).
If a sufficiently low number of cells is sampled from the community during each bottleneck, then
the inherent sampling stochasticity will ensure that each of the variants will have a different com-
munity composition (56). The specific bottleneck size that will maximize functional variation be-
tween compositional variants can be determined empirically, as it is a function of the population
size (19, 53).

Selective knockouts or knockdowns. Individual species from the resident community may also
be selectively targeted for elimination or growth suppression, for instance, by narrow-spectrum
antibiotics or bacteriophages (17, 70, 73, 124) (Figure 3f ). This will create community variants
with different compositions. In addition, bacteriophages and antibiotics also represent selective
pressures that can alter the genotypic composition of communities (3, 116), presenting an addi-
tional mechanism to generate compositional variants.

Environmental pulse perturbations. In addition to adding and removing species, one may push
communities into random directions of the ecological landscape by transiently changing the en-
vironment, for instance, by altering nutrient composition; by increasing the temperature, salinity,
or pH; or through other means (Figure 3g). This will alter the fitness of all members of the com-
munity, allowing some of the rarer members to increase in abundance and some of the more abun-
dant members to decline. When the environment is returned to its normal state, the perturbed
communities may converge to a different fixed point due to either species loss or multistability.
Environmental pulse perturbations can also result in phenotypic switching in microbial popula-
tions (9).We speculate that cellular memory may allow us to push microbial communities to new
functional states even in the absence of changes in their genotypic composition.

Environmental press perturbations. Finally, whereas all of the above strategies to create com-
positional variants involve the communities jumping to a new stable state, another possibility is to
change the environment in a small but permanent way, thereby creating new stable states that did
not exist before (60) (Figure 3h).We speculate that this may allow finer control over the commu-
nity composition, as the press perturbations may be made, in principle, as small as desired, thus
potentially allowing for very small changes in species abundances (60).

Summary.The abovemethods are not exhaustive.The reader will have noticed that the twometh-
ods used in artificial selection, the propagule and the mixed pool, are also means to explore the
ecological structure–function landscape. The bottleneck method is essentially an extreme form of
the propagule method, where a very small number of cells is chosen to seed the offspring gen-
eration. As for the migrant pool method, it is also an example of coalescence, where more than
two communities are mixed in equal ratios. Both of these methods can successfully create a new
library of variants if the number of cells that is sampled is small enough (18).

Directed Evolution of Microbial Communities: Selection and Heritability
at the Community Level

After a sufficiently heterogeneous library of variants has been generated, we must reckon with the
fact that not all of the variation will be heritable. For instance, some variation may come from
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measurement error in determining the function of each community. How does this nonherita-
ble component affect selection? The community-level heritability quantifies the degree to which
community functions are passed from a parent community to its offspring. If heritability is very
low, then this means that there exists a low correlation between the parent and offspring com-
munity function. Therefore, high community-level heritability is critical for directed evolution
to work. To understand how this heritability is affected by different experimental and ecological
processes, let us first consider a metacommunity that is being passaged in the absence of artifi-
cial community-level selection (Figure 2b) until all communities are successionally stable (see the
section titled Appendix: The Structure–Function Landscape).

Let us denote by fx and fy the experimentally measured functions of a parent community and
its offspring. By assumption, both communities are in the same generational equilibrium state X∗.
The functions of both communities can be written as

fx = F(X ∗ ) + ξx,

fy = F(X ∗ ) + ξy,

where F(X∗) denotes the function associated with the equilibrium state X∗ in the structure–
function landscape, and ξ x and ξ y are uncorrelated random variables of zero mean and equal vari-
ance (σξ

2).These two variables capture the effect of small stochastic deviations in community com-
position from the true equilibrium due to drift (e.g., due to the stochastic sampling introduced by
pipetting), as well as measurement error, environmental fluctuations, and other stochastic factors.
If we regress the function of the offspring on the parent function across the entire metacommu-
nity, then the regression slope will be given by b = Cov(fx,fy)/σx2, where σx

2 is the experimentally
measured variance in the parent metacommunity. The experimentally measured variance will, in
turn, be given by σx

2 = σF
2 + σξ

2, where σF
2 represents the component of the variance that is

due to different communities in the parent metacommunity being in different equilibria, i.e., the
variance in F(X∗) over the metacommunity.

By assumption, each offspring community is fluctuating around the same dynamical equilib-
rium state as its parent. Therefore, the component of the variance that derives from different
communities being in different steady states (σF2) will be passed intact from the parent to the off-
springmetacommunity. By contrast,σξ

2 is nonheritable, as it includes all of the sources of variation
that are stochastic and are uncorrelated between parent and offspring communities, from drift in
population dynamics to environmental fluctuations or measurement error. Because, by assump-
tion, ξ x and ξ y are uncorrelated, Cov( fx, fy) = σF

2. The slope of the regression between parent and
offspring function will thus be equal to b = σF

2/σx2. It is straightforward to see that the slope b
is equal to the fraction of the total variation in function across the parent metacommunity that is
heritable, i.e., the community heritability h2 (15, 42):

h2 = σF
2/σx

2 = σF
2/(σF 2 + σξ

2) = (1 + σξ
2/σF

2)−1.

The larger σξ
2 is relative to σF

2, the weaker will be the response to selection. This highlights
the detrimental role of all nonheritable components for community-level selection. The effect
of pipetting errors has been recently examined (123), and other factors such as the importance
of precise and accurate measurements of community-level functions and of working with geneti-
cally diverse communities in equilibrium have also been highlighted.Uneven spatial and temporal
environmental conditions among the populations should be avoided.

SUMMARY AND OUTLOOK

Our motivation for writing this review was to synthesize the differences and similarities that ex-
ist between directed evolution of biological systems above and below the organismal level. Just
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as directed evolution has been used to engineer proteins and microbial strains, it may be used to
engineer communities and organisms as well. The underlying idea is similar, but important dif-
ferences exist. Unlike the genotype of an organism (which is stable throughout its lifespan) or of
a molecule, the composition of a community changes not only during the successions within each
batch, but also across successive batches. Only after the communities stabilize can their compo-
sition and collective properties be reliably passed from parent to offspring communities. At that
point, communities become a valid unit of selection and can be subject to directed evolution. In
this review, we discuss how one may carry out such an experiment and provide ideas that we hope
will be useful for other researchers as they design their own approaches.

APPENDIX: THE STRUCTURE–FUNCTION LANDSCAPE

We argue that the functions of a community are determined by their structure. Can we be more
precise? For the structure–function landscape to be meaningful, we must specify what exactly are
the function and the structure.To address this question, it is helpful to think of a concrete example,
which is inspired by recent experiments in our laboratory (94). Let us consider a community of
species that is seeded into a habitat at time τ = 0 and allowed to grow in it. Species abundances
[listed by the vector X(τ )] will change over time according to X ′(τ ) = dX/dτ = g[X(τ );� (τ )],
where �(τ ) represents the set of all environmental parameters. As the species grow in this habitat,
some of these environmental parameters change as well. For instance, species may be secreting an
enzyme into the environment.The concentration of this enzyme in the habitat [C(τ )] will increase
as a result of secretion, but it may also decline as the enzymes become degraded by proteases or
inactivated through other means. The concentration of enzyme C(τ ) will thus be governed by a
differential equation, just as the species abundance is, where

C′ (τ ) = h (X ,X ′,�) −C (τ )m (X ,X ′,�).

In this case, we introduce a function h(.), which captures the instantaneous rate of enzyme
production in the community, and a second function m(.), which reflects the instantaneous rate of
degradation or dilution per enzyme. The total secretion rate will be a function of the abundances
of all secreting species X(τ ) (94) and potentially also of the growth rates of all species X′(τ ), as the
expression of most genes is regulated by growth rate (59). Finally, it may also be a function of the
total concentration of the enzyme in the environment, as the byproducts of an enzyme are often
inhibitors of its expression (44, 94). This rate may also depend on additional factors, such as the
previous growth history of all cells, as gene expression can exhibit hysteresis (9, 88).

In this example, the enzyme concentration at the end of the batch incubation (i.e., the harvest-
ing time) t is a community trait for which one may want to select, and therefore, it is a potential
function (F) of the community: F = C(t). The abundance of all species at the time of harvest,X(t),
could be thought of as the structure of the community.Yet the functionF is in this case a cumulative
property of the community over the incubation time t. In principle,Fwill causally depend not only
on the species abundances at time t, but also on their entire ecological (i.e., succession) dynamics
over the incubation time t, i.e., on {X(τ ),X′(τ ),�(τ )}, where τ � (0, t) (Figure 2b,c). Therefore, it
is unclear that a structure–function landscape F[X(t)] that uniquely maps every structure [i.e., the
abundance vector X(t)] with a function F even exists in this case.

This situation is resolved if we think of a population in equilibrium. It may sound strange
to speak of communities being in equilibrium, given that they are being serially passaged and
therefore engaging in a dynamical ecological succession during each incubation. A community is
generationally stable when the ecological successions within subsequent incubations are identical
(26), and as a result, the abundance vectors at the end of the ith and all subsequent incubation
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periods are also identical, i.e., if Xi(t) = Xi+j(t) (j > 1). If two consecutive successions are identical,
thenXi(τ )=Xi+1(τ ) for all τ � (0,t), and we should expect that the same equality will hold forX′(τ )
and �(τ ) and, therefore, for C(τ ). We thus argue that the structure–function landscape F[X(t)] is
well defined for communities that are generationally stable. It is important to note, however, that
F is not causally determined byX(t), but rather, thatX(t) and F(t) are both linked together through
the same underlying dynamical process. Although there exists an association between both, this
association does not immediately imply causation.

Finally, we should also note that the function F can (and often does) feed back to population
dynamics. For instance, the concentration of extracellular enzymes will affect the fitness of dif-
ferent microbial strains (20, 93), and the per-capita contribution of each strain to this function
may also be costly at the individual level (98). This can lead high-function states to be vulnerable
to invasion by cheater strains that have high fitness when the function is high but that do not
contribute to its production, thus avoiding the cost. Understanding how multilevel selection can
contribute to avoiding cheater invasion is an area of intense theoretical and experimental interest
(2, 21, 50, 51, 82) that can help us design efficient methods of artificial community-level selection
(5, 123).
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