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Abstract

We review the adaptations of enzyme activity to different temperatures. Psy-
chrophilic (cold-adapted) enzymes show significantly different activation pa-
rameters (lower activation enthalpies and entropies) from their mesophilic
counterparts. Furthermore, there is increasing evidence that the tempera-
ture dependence of many enzyme-catalyzed reactions is more complex than
is widely believed. Many enzymes show curvature in plots of activity versus
temperature that is not accounted for by denaturation or unfolding. This is
explained bymacromolecular rate theory: A negative activation heat capacity
for the rate-limiting chemical step leads directly to predictions of tempera-
ture optima; both entropy and enthalpy are temperature dependent. Fluctu-
ations in the transition state ensemble are reduced compared to the ground
state. We show how investigations combining experiment with molecular
simulation are revealing fundamental details of enzyme thermoadaptation
that are relevant for understanding aspects of enzyme evolution. Simula-
tions can calculate relevant thermodynamic properties (such as activation
enthalpies, entropies, and heat capacities) and reveal the molecular mecha-
nisms underlying experimentally observed behavior.
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INTRODUCTION

Enzymes have evolved over some 3.5 billion years to catalyze nearly every chemical reaction that is
central to life. Enzymes are generally highly effective catalysts, achieving very large rate accelera-
tions, with high specificity. They have evolved, however, not merely to be superb catalysts, but also
to meet the precise evolutionary requirements of the organisms in which they reside and of the
changing environmental conditions that they encounter. As life occupies almost every conceivable
niche on Earth, from deep rocks to the Antarctic mountains, enzymes have evolved to operate at
all temperatures where life is viable [approximately −20°C to +120°C (26)]. Life (and the con-
stituent enzymes) has evolved as planetary temperatures have changed over geological time, and
many environmental niches are subject to fluctuating temperatures. In one sense, the role of en-
zymes is to compress chemical timescales for uncatalyzed reactions (10−3–1016 s) into timescales
suitable for life (10−3–105 s) over the biological temperature range (−20°C to +120°C). As na-
ture’s solution to these chemical and physical challenges, enzymes are truly remarkable molecules
in meeting these formidable constraints and represent one of the great and essential innovations
in evolution.

The precise mechanisms by which enzymes achieve their rate enhancements at environmental
temperatures have been the subject of intense discussion, and many enzymic mechanisms have
been interrogated by experiment [e.g., kinetic isotope effects (KIEs), mutagenesis] and simula-
tions. As chemical entities, enzymes obey the laws of thermodynamics, but as large biological
molecules, their complexity can obscure the detailed mechanisms that underlie the impressive
rate enhancements required. The relative instability of enzymes—a consequence of the small dif-
ference between very large opposing contributions from enthalpy and entropy of folding—further
complicates the picture. For example, there has been widespread speculation about the relation-
ship between enzyme stability and activity (52, 58).

Despite this complexity, advances in experimental and computational approaches have brought
detailed understanding of enzyme catalysis. The confluence of high-precision experimental data
using an increasing range of techniques with sophisticated computational approaches suggests an
emerging consensus with respect to the causes of catalysis (i.e., of barrier lowering). There has
also been some important recent progress on the temperature dependence of enzyme-catalyzed
reaction rates, as we discuss below.

Multiscale molecular simulation methods (1), as recognized by the 2013 Nobel Prize in
Chemistry (29), and developments in electronic structure theory (12) have played central roles
in revealing the chemical mechanisms of enzyme catalysis and of the origins of enzyme cat-
alytic power, complementing experiments. Important general principles of enzyme catalysis have
emerged: stabilization of transition states [as proposed by Pauling (53) 60 years ago] and reactive
intermediates; the central role of electrostatics in this stabilization (69); and catalysis being due to
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preorganization of (e.g., dipoles in) the active site (i.e., lowering of the reaction barrier compared
to the equivalent uncatalyzed reaction in solution), as shown by Warshel et al. (69). Conforma-
tional changes have also been identified as intrinsic parts of the catalytic cycles of many enzymes.

Perhaps the most important frontier in understanding enzyme catalysis and evolution is under-
standing the temperature dependence of enzyme-catalyzed reaction rates. This is important not
only in terms of fundamental evolution in molecular biology, but also in terms of practical appli-
cations such as biocatalysis and in understanding ecosystems and their response to climate change,
for example (62). There is a rich and storied literature that uses temperature as a perturbing factor
to study the mechanisms that underlie enzymic catalysis (35, 37, 56). Temperature effects com-
bined with mutagenesis, evolutionary approaches, isotopic labeling, and advanced spectroscopy
have made significant contributions to our understanding (20, 71). In this article, we review recent
advances in understanding the evolution and adaptation of enzyme catalysis, particularly relating
to the temperature dependence of enzyme-catalyzed reaction rates. Although many recent papers
suggest a range of opposing views, it is our contention that there is a consensus emerging in the
field. Numerous reviews of the field provide excellent summaries of our current understanding,
and we refer readers to these reviews (2, 23, 34, 65). In this article, we focus on the concepts
and experimental data that support a consensus among these views. Indeed, we seek to provide a
synthesis of the field at this point in time.

BACKGROUND

The study of the temperature dependence of reaction rates has a long and rich history in chemistry
and biology. Among the most important and influential contributions, van ’t Hoff and Arrhenius
noted and described (mathematically and phenomenologically) the temperature dependence of
chemical equilibria and reaction rates, respectively, in the late nineteenth century, working in the
context of the emerging field of statistical thermodynamics. The Arrhenius equation (rate coeffi-
cient = Aexp[−Ea/RT]) accounts for and formalizes the observation that the rates of many chem-
ical reactions increase in a simple way with temperature. Early in the twentieth century, Eyring
and Polanyi developed transition state theory, providing a theoretical basis for, and defining, the
pre-exponential factor in the Arrhenius equation. In the first decades of the twentieth century,
Michaelis and Menten developed a simple model for enzyme kinetics [building on previous work
by Henri (27)] whose explanatory power remains as powerful today as it was 100 years ago (31).
The Michaelis-Menten equation is consistent with both bulk kinetics and single-molecule treat-
ments of enzyme kinetics (55). Thus, we take as our starting point the Michaelis-Menten scheme
for enzyme kinetics (Equations 1 and 2) and transition state theory for defining the temperature
dependence of the rate constant (Equations 3 and 4):
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The Michaelis-Menten scheme posits the association of an enzyme (E) with its substrate (S) to
form an enzyme–substrate complex (ES), defined by an (apparent) equilibrium dissociation con-
stant (KM). The chemical transformation then occurs on-enzyme, converting substrate (ES) to
product (EP) with rate constant kcat. The product dissociates from the enzyme with rate constant
kd (Equation 1). We depict this latter process as unidirectional (for convenience), assuming very
low product concentrations at the beginning of the reaction. Strictly speaking, the processes asso-
ciated with both kcat and kd are reversible (i.e., the reaction may proceed in reverse on the enzyme,
and the product may rebind, respectively). TheMichaelis-Menten equation (Equation 2) provides
themathematical model for Equation 1. In this case,we are primarily interested in the temperature
dependence of kcat because this is the rate constant for the chemical step that is catalyzed by the
enzyme. This can be compared with the rate of the equivalent (reference) uncatalyzed reaction,
kuncat, to estimate the catalytic power of the enzyme (56). In this case, we focus on the temperature
dependence of the enzyme-catalyzed reaction rate, not the origins of catalysis (rate acceleration),
although there is emerging evidence that the two are linked (9).

For enzyme-catalyzed reactions, there are two regimes to consider. At saturating substrate
concentrations (i.e., [S] � KM), the rate equation is first order and independent of the substrate
concentration:

dP
dt

= kcat[E]0.

At very low substrate concentrations (i.e., [S]�KM), the rate equation is second order, and kcat/KM
is a pseudo-second-order rate constant, k2:

dP
dt

= kcat
KM

[E]0[S] = k2[E]0[S].

Transition state theory quantifies the rate constant in terms of the energy difference between the
reactants and the transition state (�G‡) modified by the transmission coefficient γ(T) and the bar-
rierless frequency kBT/h, where kB and h are the Boltzmann and Planck constants, respectively.
Transition state theory can alternatively be derived based on a definition of a dividing surface
between reactants and products [i.e., with no pseudoequilibrium assumption and with an assump-
tion of no recrossing (65)]. When the substrate is saturating (i.e., the first regime above, [S] �

KM), the relevant species that define�G‡ are the enzyme–substrate complex (ES) and the enzyme–
transition state complex (E–TS), and kcat is the observed (first-order) rate constant.When substrate
concentration is limiting (i.e., [S] � KM), the relevant species are the free enzyme plus substrate
(E + S) and the enzyme–transition state complex (E–TS), and k2 is the pseudo-second-order rate
constant.

The transmission coefficient, in general, has contributions from recrossing, quantum tunnel-
ing, and deviations from the equilibrium distribution of states assumed by the quasi-equilibrium
between the ground state and the transition state (25).The pre-exponential factor kBT/h is the bar-
rierless frequency for the reaction (equal to 6.2 ps−1 at room temperature, 298 K). In general, the
transmission coefficient may be temperature dependent and may be significantly different from 1
in cases where tunneling is a factor. For example, Masgrau & Truhlar (47) have determined γ(T)
for Escherichia coli dihydrofolate reductase (DHFR) to be 3.1 for the protiated substrate (H) and
2.7 for the deuterated substrate (D) at 278 K. Furthermore, γ(T) is temperature dependent.

The fields of dynamics and enzyme catalysis are highly active and somewhat controversial.
Comparison of heavy (fully isotopically substituted) DHFR with the natural enzyme helps to
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quantify such effects, at least in that enzyme. The transition state theory (including tunneling) ap-
proach of Glowacki et al. (25) accurately fits the experimental results using physically plausible pa-
rameters.The agreement found between this kineticmodeling and quantummechanics/molecular
mechanics (QM/MM) molecular dynamics simulations is striking, for example, in showing that
tunneling does not change in going from a heavy to light enzyme. Both the simulations and the
kinetic modeling point to a small, but measurable, dynamical effect and identify the likely cause
of the effect (43).

Dissecting the dynamical effects to analyze quantummechanical tunneling and barrier recross-
ing effects separately shows that the tunneling contribution is nearly identical in the light and
heavy enzymes (43). The energy barriers are also the same in the heavy and light enzymes. In con-
trast, the recrossing transmission coefficient in the heavy enzyme is notably smaller than that in the
light enzyme, suggesting that the slower chemical step in the heavy enzyme is caused by different
coupling of the chemical reaction coordinate of the protein dynamics due to heavy isotope substi-
tutions, leading to more frequent barrier recrossing. This significant isotopic substitution, across
the whole enzyme, appears to cause a genuine dynamical effect but also shows that the effect of
protein dynamics on the reaction rate is small. The effects of enzyme dynamics can be accounted
for in a transition state theory framework. Protein promoting motions do not affect tunneling
(at least in DHFR), contrary to widespread claims in the literature. In general, dynamical effects
(i.e., dynamical corrections to transition state theory) are not important in enzyme catalysis, i.e.,
they do not significantly contribute to accelerating the reaction relative to uncatalyzed equivalents
(34).

Transition state theory provides very good agreement with experimental results for the reac-
tions of small molecules. That is to say that �G‡ may be very accurately determined by simulation
for small molecules in the gas or liquid phases (66). The dominant term with respect to tempera-
ture dependence is the exponential term, and this predicts linear Arrhenius/Eyring plots where the
natural log of the rate constant (ln k) versus the reciprocal of the temperature (1/T) gives a straight
line of slope −�H‡/kB. Deviations from linearity in Arrhenius/Eyring plots are increasingly be-
ing recognized for enzymes, and this is attracting significant attention and debate, as discussed in
more detail below.

For enzymes, the free energy landscape is very complex. Enzymes are large and show complex
dynamics, e.g., sampling many different conformations. This and other puzzling experimental
observations have led to suggestions that enzymes somehow perform differently from chemical
catalysts. Simple models based on a constant energy barrier cannot explain the unusual tempera-
ture dependence of kinetic isotope effects found for some enzyme-catalyzed reactions, particularly
some thought to involve significant contributions from quantum tunneling, including soybean
lipoxygenase 1 (SLO-1) (46), aromatic amine dehydrogenase (AADH) (10), methylamine dehy-
drogenase (MADH) (6), and DHFR (41). These observations and others have led to widespread
suggestions that transition state theory is not applicable to enzyme-catalyzed reactions, and that
enzyme dynamics are involved in modulating reactivity in ways presumed somehow not to be in-
cluded in chemical models. Detailed analyses have shown, however, that transition state theory
is a reliable and accurate theoretical framework to describe enzyme kinetics as long as important
effects such as conformational variability and quantum tunneling are taken into account (25, 34).
Deviations from transition state theory (which is of course a theory that involves approximations),
such as barrier recrossing, are apparently small in the context of experimental measurements on
enzymes. Simulations of reactions with QM/MMmethods, employing variational transition state
theory with multidimensional tunneling corrections, reproduce large kinetic isotope effects in
enzymes, such as for AADH (46). Masgrau & Truhlar (47) have reviewed applications of vari-
ational transition state theory for enzymes, addressing each of the components of Equations 3
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and 4 and stressing the importance of including ensemble averaging and changes in the transition
state with temperature. The core components of a quantitative description of rate constants for
enzyme-catalyzed reactions are (from Equation 3) the transmission coefficient, including recross-
ing; tunneling; and deviations from the quasi-equilibrium free energy landscape that defines the
change in free energy between the reactant(s) and the transition state(s), �G‡. For enzymes, this
last component must consider the potential contributions from changes in the protein, not limited
to the active site, including the possibility of multiple conformations and multiple paths across the
barrier, as well as changes in vibrational frequencies of the protein complex as the reaction pro-
gresses. Many investigators explicitly acknowledge multiple conformations in enzyme-catalyzed
reactions (17, 25, 59) and the idea of multiple enzyme–substrate conformations goes back at least
seventy years (11, 48), i.e., even before the first three-dimensional structure was determined.

EVOLUTIONARY ARGUMENTS BASED ON THE TEMPERATURE
DEPENDENCE OF ENZYME CATALYSIS

In a series of elegant experiments, Radzicka &Wolfenden (56, 57) sought to quantify enzyme cat-
alytic power via direct measurement of the temperature dependence of uncatalyzed and catalyzed
reaction rates for various biologically relevant chemical reactions. Linear Arrhenius plots allow
extrapolation of the uncatalyzed rates to similar temperatures to reveal the apparent enzymic rate
enhancements (kcat/kuncat), which can be as high as 1026 (19). In these cases, the quantification
of the rate enhancement at room temperature is probably valid because the extrapolation over
large temperature ranges via an Arrhenius (or Brønsted) plot is reasonable for small molecules.
Radzicka & Wolfenden’s approach highlights the role of enzyme catalysis in mapping chemical
timescales onto biological timescales (72) (Figure 1). Furthermore, the conceptual framework
resulting from these analyses suggests that enzymes may have evolved from small catalysts oper-
ating at high temperatures to more sophisticated catalysts as temperatures fell over evolutionary
time (71). Radzicka & Wolfenden’s hypothesis is that modern enzymes evolved to reduce �H‡

for the reaction (when compared to the uncatalyzed reaction). Small reductions in �H‡ encode
significant improvements in rate as temperature falls (Figure 1).This hypothesis provides a mech-
anism by which evolutionary processes may have escaped from the tyranny of Arrhenius (64), i.e.,
maintaining rapid biochemical processes as the temperature on Earth cooled over geological time
(71).

Lowering the enthalpic barrier will indeed significantly reduce the temperature dependence
of the rate constant (see the Eyring equation) and, vitally, lead to a lower free energy barrier at
low temperatures. However, the term �H‡/RT remains exponential in Equation 3, and significant
decreases in temperature (as is believed to have occurred over evolutionary time) will still lead to
exponential decay of the rate constant. Most of the planet now sees mean annual temperatures
below 10°C, and for enzymes, this poses significant challenges to achieve the reaction rates re-
quired for life. Numerous investigators have acknowledged the apparent enigma of psychrophilic
enzymes that operate efficiently at (biologically) low temperatures (7, 20).

The structures of psychrophilic, mesophilic, and thermophilic enzymes are generally very sim-
ilar: Catalytic and binding residues (and thus chemical mechanisms) are highly conserved between
homologous enzymes from organisms adapted to different temperatures, although their optimal
temperatures are typically very different. Psychrophilic enzymes (20) are generally less stable than
their mesophilic counterparts, while thermophilic enzymes are (not surprisingly) more stable.
There are widespread suggestions of differences in flexibility between thermophilic, mesophilic,
and psychrophilic enzymes. The activities achieved by a series of homologous enzymes from or-
ganisms across such a temperature range are generally similar at their environmental temperature
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Figure 1

Temperature dependence of uncatalyzed and enzyme-catalyzed reaction rates. A hypothetical chemical
reaction rate (y axis, log scale) varies with temperature (x axis) according to the Eyring equation (Equation 3),
assuming γ(T) = 1. The uncatalyzed reaction is shown as a heavy dashed line (�H‡ = 147 k J mol−1, �S‡ =
195 J mol−1 K−1). Enzyme-catalyzed reaction rates (for the same reaction) are shown for hypothetical
psychrophilic (blue, �H‡ = 27.4 k J mol−1, �S‡ = −122.4 J mol−1 K−1), mesophilic (green, �H‡ =
47.4 k J mol−1, �S‡ = −65.1 J mol−1 K−1), and thermophilic enzyme homologs (red, �H‡ = 77 k J mol−1,
�S‡ = 20.6 J mol−1 K−1). The rate enhancement is illustrated by shading. The gentle curvature is a result of
using a linear temperature scale (as opposed to the inverse temperature scale typical of an Arrhenius plot).
The inverse temperature is shown on the upper x axis. Enzymes have evolved to show similar rates at their
environmental temperatures, and this is illustrated by a horizontal line at 20 s−1 and the x axis intercepts for
each enzyme (indicating hypothetical environmental temperatures for thermophile, mesophile, and
psychrophile). The decreasing slopes for the uncatalyzed rate and thermophilic, mesophilic, and
psychrophilic enzyme-catalyzed rates illustrate the enthalpy–entropy trade-off as enzymes evolve to catalyze
reactions at lower temperatures. Half-life values (t1/2) are shown on the right-hand y axis.

(Figure 1). At lower temperatures, thermophilic enzymes exhibit reduced activity and are less ef-
ficient than their mesophilic counterparts. Arguments put forward to account for these activity
differences propose links between protein stability, activity, and dynamics. Indicators of reduced
flexibility of thermophilic proteins include lower susceptibility to trypsinolysis and slower rates of
peptide hydrogen–deuterium exchange; the converse vis-à-vis mesophilic enzymes is often sug-
gested for psychrophilic enzymes.The corresponding states hypothesis suggests that thermophilic
enzymes are more rigid, and psychrophiles less rigid, than their mesophilic counterparts at the
same temperature but achieve similar mobility (and thus activity; see Figure 1) at their respective
environmental temperatures. However, counterexamples are also known, and it is not clear how
or to what extent the many different types of protein dynamics (over many different timescales)
are affected, nor is it clear how they relate to activity.

It has been widely proposed that enzyme stability is related to activity, and therefore that psy-
chrophilic enzymes achieve low-temperature activity by being less stable. Feller & Gerday (20)
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argue that psychrophilic enzymes are minimally stable, and reduction in their stability would re-
sult in unfolding. This has been suggested to give rise to “localised increases in flexibility” (20,
p. 202) at the active site that allow an enthalpy–entropy trade-off such that �H‡ is lowered at the
expense of�S‡. It is, however, now clear that psychrophilic enzymes remain folded and active (with
diminished activity) above their environmental temperatures. In addition, there is little evidence
of differences in active site flexibility between psychrophilic and mesophilic enzymes (3). The ori-
gins of different temperature optima seem to lie in other factors. Somero and colleagues (42) were
among the first to suggest that psychrophilic enzymes reduce�H‡ to allow the reaction to achieve
efficient catalysis at low temperatures. A trade-off between activation enthalpy and entropy (i.e.,
relating to activity, not stability) is supported by numerous experimental measurements (and sim-
ulations; see below) on a range of enzymes. Evidence for this trade-off comes from, e.g., protein
engineering and directed evolution experiments that show the transition between psychrophilic
and mesophilic homologs (15). The stability–activity trade-off is more contentious. For example,
Arnold and colleagues (49, 70) demonstrated that significant gains in stability can be achieved
without loss of activity in the directed evolution of a psychrophilic enzyme. They suggest that
evolutionary drift may be responsible for the loss of stability, rather than minimal stability being
a requirement for activity at low temperatures.

Evidence that psychrophilic enzymes show reduced activation enthalpies (with a trade-off giv-
ing reduced activation entropies) compared to their mesophilic counterparts has been significantly
strengthened through computational experiments by Åqvist and colleagues (2, 3). These exper-
iments have also provided molecular-level insight into the changes responsible for these differ-
ences. They used molecular dynamics simulations with empirical valence bond (EVB) models to
calculate�G‡ at different temperatures for several enzyme-catalyzed reactions. This allows calcu-
lation of Arrhenius plots, giving �H‡ from the slope and, thus, �S‡ from the difference between
�G‡ and �H‡ (30). The agreement between these calculations and experiments is impressive (36).
For example, the simulations of cytidine deamination, comparing the uncatalyzed reaction with
that on the enzyme cytidine deaminase, gives activation free energies (�G‡), activation enthalpies
(�H‡), and activation entropies (�S‡) in excellent agreement with experimental findings. Åqvist
and colleagues (36) identified the chemical mechanism in each case and showed that the origin of
low-entropy barriers in the enzyme is the preorganization of the active site structure to catalyze
the reaction, while the high activation entropy in solution is due to ordering of the solvent at the
surface of the enzyme. These results show that reduction of substrate entropy by binding to the
enzyme does not contribute significantly to catalysis (i.e., to barrier lowering by the enzyme), as
had been suggested previously.

These researchers have compared simulations of psychrophilic and mesophilic enzyme ho-
mologs, allowing direct examination of the microscopic origins of the enthalpy–entropy trade-off.
In contrast to the hypothesis of increased flexibility in the active site residues for psychrophiles,
they showed that the behavior of active site residues for homologous enzymes are very similar,
and that differences instead arise from differences in the flexibility in the exterior surface of the
enzyme (including the closely associated solvent). They extended this analysis further and con-
ducted a computational metamorphosis of a psychrophilic enzyme into a mesophilic enzyme, not
via mutation, but simply by applying force restraints to exterior parts of the enzyme. Upon re-
peating the analysis with these constraints in place and including gradually more of the protein,
they demonstrated a transition toward mesophilic properties for the constrained psychrophilic
enzyme via the enthalpy–entropy trade-off, i.e., increasing restraints increased �H‡ while at the
same time increasing �S‡. Thus, the origin of the trade-off lies at the exterior of the enzyme:
Psychrophilic enzymes have more mobile surfaces and thus a broader reactant free energy land-
scape.This broad free energy landscape for the reactants (greater conformational sampling) comes
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at an entropy cost for the reaction, and �S‡ becomes more negative when compared to the
mesophilic counterpart. This may have implications for stability. These analyses are based on
linear Arrhenius plots. These authors find no evidence from experimental (or molecular simula-
tion) data for deviations from linearity (2). A corollary of this is that �H‡ and �S‡ are constant
over the temperature range considered (e.g., 5–37°C).

These concepts are also relevant to allosteric regulation for enzymes. Cooper & Dryden (14)
originally proposed that allosteric regulation could be achieved not by conformational change
but by increasing or decreasing the fluctuations about a mean conformation. They used a statisti-
cal thermodynamics formalism to postulate this idea 35 years ago. An ensemble view of allostery
whereby protein dynamics are acknowledged as a critical aspect of modulating enzyme-catalyzed
rates has been experimentally verified for many systems and elegantly reviewed by Hilser and col-
leagues (50). Indeed, changes at the periphery via the recruitment of 60 additional water molecules
to the R state of hemoglobin when compared to the T state (13) has parallels with the peripheral
dynamical changes observed by Åqvist and colleagues (3) for a psychrophilic enzyme.

NONLINEAR ARRHENIUS/EYRING BEHAVIOR

There is increasing evidence of nonlinear temperature dependence of enzyme activity (28, 38).
Reduction in activity at higher temperatures is often not due to enzyme denaturation, despite
many such statements in the literature; for example, psychrophilic enzymes maintain their struc-
ture and function above optimum temperatures. The textbook explanation for reduced enzyme
activity at high temperatures is protein denaturation or unfolding; however, for many enzymes,
this explanation cannot account for experimental observations.

Another obvious potential cause of nonlinear Arrhenius plots is a change of the rate-
determining step as the temperature changes (21). All enzymes require one or more association
and dissociation steps, andmany enzyme-catalyzed reactions involvemultiple chemical steps.Each
of these steps may in general be rate limiting, and which step(s) limit the rate may change over
the biological temperature range. Changes in the rate-limiting step can even be hidden beneath
apparently linear Arrhenius kinetics (44).

The rather trivial instance of a change in rate-limiting step can be controlled by careful organi-
zation of experimental setup so that an assay reports on only a single chemical step. Alternatively,
stopped-flow approaches can reveal the existence of burst phases, and kinetic data can be fitted to a
model that provides rate constants for each significant chemical step.However, there is increasing
evidence for many enzymes that a single, identifiable chemical step shows a nonlinear Arrhenius
plot (5, 28).

Truhlar and Kohen noted that Arrhenius plots for some enzymes are convex and provided a
theoretical basis for their interpretation, showing that this behavior requires a decrease in rate
constant with increasing energy (67). They illustrate this using a simple case in which the enzyme
fluctuates between a reactive state and a nonreactive state (R and N, respectively), which narrows
to a single transition state, pointing out similar suggestions by others (48). An increase in the
population of the unreactive conformation at higher temperatures would lead to convex Arrhenius
behavior; they point out that convexity could in general arise because of the reactant complex
accessing a wider region of phase space and therefore spending less time in any special region
through which reaction must proceed.

We note that a simple two-state model is congruent with that for the allosteric regulation
of enzymes (the Monod-Wyman-Changeux and Koshland-Némethy-Filmer models), which also
invokes two conformations of different reactivity in the reactant state (8, 11). Indeed, the same
model was proposed nearly 70 years ago to explain convex Arrhenius plots for several enzymes,
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although using a different mathematical construct, by Kavanau (35), who also showed that this
implies a temperature-dependent �S‡ and �H‡ for enzyme-catalyzed reactions. Also notable is
that Daniel & Danson (17) invoked an equilibrium between reactive and nonreactive native-like
states to explain convex Arrhenius plots for a large number of enzymes. These investigators built a
rather complex model to account for the temperature dependence of both catalysis and denatura-
tion simultaneously.They demonstrated convex Arrhenius plots in the absence of denaturation for
many enzymes (18, 38, 54). It is worth noting that Glowacki and colleagues (24) also invoked two
conformations of the reactant state with different reactivities to explain the anomalous tempera-
ture dependence of kinetic isotope effects in some (but not all) enzyme-catalyzed reactions using
transition state theory; two conformations are required to explain the experimentally observed
behavior of KIEs for some enzymes (such as AADH and MADH), while a single conformation
accounts for the observed behavior of SLO-1, as long as the temperature dependence of quantum
tunneling is taken into account. It is widely recognized that enzymes adopt multiple conforma-
tions, and this is thought to be important for, e.g., the evolution of different activities (e.g., a minor
conformation may have a different activity) (33).

A recent and important related contribution comes from Warshel and colleagues (60), who
used EVB simulations to calculate the free energy landscape for reaction in alcohol dehydroge-
nase (ADH) from Bacillus stearothermophilus. They made additional calculations to determine �S‡

directly from the simulations. They showed, via simulation at low temperatures, that the highly
polarized reactants give rise to a restricted dipole organization in this state, which is lifted in the
transition state ensemble because this state is less polar. This results in a favorable entropy of ac-
tivation and a positive value of �S‡ at lower temperatures. This entropy barrier is reduced as the
temperature increases and approaches zero at temperatures above 310 K. Thus, at temperatures
above 310 K, the barrier is entirely enthalpic, and the differences in rate between protiated and
deuterated substrates are due to zero-point energy differences for hydrogen and deuterium.Below
310 K, the entropic component of �G‡ is significant; it is also temperature dependent, causing
divergence of the kinetic isotope effect. A possible microscopic cause of this is changes in the
donor acceptor distances for H and D in the reactant state. From these experiments,Warshel and
colleagues showed that �S‡ and �H‡ are temperature dependent, and they argued that this is the
origin of the nonlinear Arrhenius plots observed for this enzyme. They went further and showed
that calculations for the deuterated substrate increases the temperature dependence of �S‡ and
�H‡ and thus increases deviations from Arrhenius behavior, thus providing a mechanism for the
experimental observations.

If �S‡ and �H‡ are temperature dependent, then, by definition, �Cp
‡ is nonzero. In the case

of ADH above, �Cp
‡ is negative for the protiated substrate and more negative for the deuterated

substrate. Formally, a negative value for �Cp
‡ implies that the fluctuations in the reactant state

are greater than those for the transition state. This difference in fluctuations by definition implies
a difference in heat capacity between the reactant and transition states: �<dH 2>‡ = kBT 2�Cp

‡.
Indeed, differences in fluctuations harken back to the proposal for allosteric regulation by Cooper
& Dryden (14) 35 years ago.

We suggest that each of these models proposing multiple reactant states are consistent with a
negative value for �Cp

‡ and, by definition, temperature-dependent �S‡ and �H‡, as observed in
Warshel and colleagues’ (60) simulations and as originally proposed by Kavanau (35).

We note that Åqvist et al. (2) do not see deviations from linearity in their experimental data.
However, close inspection of some apparently linear Arrhenius plots often reveals nonrandom
residuals, and nonlinear behavior may be more common than previously thought. For example,
Arcus & Pudney (5) reanalyzed a range of model enzyme data and found good evidence for cur-
vature in Arrhenius plots where linear plots were previously reported. This has been reinforced

172 Arcus • Mulholland



BB49CH08_Arcus ARjats.cls April 28, 2020 18:32

0 10 20 30 40 50 60 70 80 90 100
–15

–10

–5

0

5

20

40

60

3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7

Temperature (˚C)

k (s
–1)

In
(k

, s
–1

)

1,000/T (K–1)

20 s–1

Conformational coordinate
Reactio

n

coordinate

Fr
ee

 e
ne

rg
y

Figure 2

A change in heat capacity for an enzyme-catalyzed reaction with at least two reactant conformations. A hypothetical free energy surface
is shown at left with two distinct conformations in the reactant state illustrated by two shallow energy wells. The fluctuations in
enthalpy for this state and the transition state are depicted by Gaussians (dashed lines above surface). The transition state is at higher
energy, and the fluctuations at this state are narrower. The consequences of this are shown at right. The temperature dependence of the
hypothetical psychrophilic and mesophilic enzyme-catalyzed rates is reproduced from Figure 1 (blue and green solid lines, respectively).
However, if there is a change in heat capacity along the reaction coordinate, as illustrated at left, then the observed temperature
dependence will be according to the dashed lines of the same color (�Cp

‡ = −10 and −5 k J mol−1 K−1 for psychrophilic and
mesophilic enzymes, respectively). The absolute rates that correspond to these dashed lines are shown in solid lines at the bottom and
on the right-hand y axis. Note that the optimum temperature for the psychrophile is now 28°C, and that for the mesophile is 60°C, in
the absence of denaturation.

recently with new kinetic data for pentaerythritol tetranitrate reductase (PETNR) (40) and for the
hyperthermophilic glucose dehydrogenase (GDH), for which denaturation is certainly not a factor
across the experimental temperature range (32).The data for hyperthermophilic glucose dehydro-
genase show significant differences in nonlinear behavior between the protiated and deuterated
substrates, and these data are consistent with those of Warshel and colleagues (60). The trend for
GDH is reversed when compared to ADH, which remains intriguing and has yet to be explained
(32).

Thus, all of these proposals are consistent and point toward a general picture of more than
one reactant state passing through a bottleneck in phase space (Figure 2). This suggests that
the parameters �S‡ and �H‡ for the enzyme-catalyzed reaction are temperature dependent, and
that �Cp

‡ is nonzero and negative. To be precise, we discuss the temperature dependence of the
chemical step(s) for enzyme-catalyzed reactions and do not touch on reactions for which product
release is rate determining (e.g., 51, 61), for which different behavior is expected.

Recently, intriguing evidence was reported for the emergence of nonlinearity with directed
evolution of a de novo enzyme (9). This behavior implies that an activation heat capacity has
been introduced by evolution, coevolving with increasing catalytic power. Such temperature
dependence can be explained by macromolecular rate theory (MMRT), which is the focus of the
next section.
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MACROMOLECULAR RATE THEORY

Increasing evidence is emerging that the temperature dependence of enzyme-catalyzed reactions
is more complex than was previously believed and can be accounted for by activation heat capacity
(28). This is described by MMRT. For reactions in which there is a change in heat capacity associ-
ated with the reaction, i.e., reactions with an activation heat capacity, the activation enthalpy and
entropy are necessarily temperature dependent. The temperature dependence of �H‡ and �S‡

is, by definition, the result of heat capacity changes between the reactant state and the transition
state. Heat capacity (at constant pressure), CP, is defined as

CP =
(
dH
dT

)
P

= T
(
dS
dT

)
P
,

and the activation heat capacity is

�C‡
P =

(
dH
dT

)‡

P
−

(
dH
dT

)ES

P
= T

[(
dS
dT

)‡

P
−

(
dS
dT

)ES

P

]
.

The heat capacity is also directly related to the fluctuations in enthalpy and entropy:

dH2 = kBT 2CP, dS2 = kBCP, and �dH2‡ = kBT 2�C‡
P.

Therefore, if the reaction coordinate sees a narrowing of the fluctuations between reactants and
the transition state (Figure 2, left), or if the temperature dependence of �H‡ is negative [as
Warshel and colleagues calculate (60) for ADH], then, by definition, �Cp

‡ is nonzero and neg-
ative, and the Arrhenius plot will be convex. Indeed, a model that postulates two conformations
prior to a single transition state [as postulated by allosteric models and by Daniel & Danson (17)
and others; see Figure 2] suggests a negative change in heat capacity for the reaction kinetics and
convex Arrhenius plots.

If we incorporate �Cp
‡ into the Eyring equation, we arrive at Equations 5 and 6:

kcat = γ (T )
kBT
h

e

(
−�G‡(T )
kBT

)
= γ (T )

kBT
h

e

⎛
⎝ �S‡T0

+�C‡P (lnT−lnT0 )

kB

⎞
⎠
e

⎛
⎝ −�H‡

T0
−�C‡P (T−T0 )

kBT

⎞
⎠

5.

and

ln kcat = ln γ (T ) + ln
(
kB
h

)
+ lnT +

�S‡T0 + �C‡
P (lnT − lnT0)

kB
−

�H‡
T0

+ �C‡
P (T − T0)

kBT
. 6.

Strong evidence for MMRT behavior has come from studies of the glycoside hydrolase enzyme
MalL, which hydrolyzes the simple sugars maltose and isomaltose (28). This enzyme is a large
monomer (65 kDa) with a single active site. Quantifying the relevant rates using stopped flow, in-
cluding the unfolding rates in water at different temperatures, allowed the separate determination
of the temperature dependence of kcat and kunfolding and excluded a change in the rate-determining
step with temperature. The temperature dependence of kcat is convex in the absence of denat-
uration; the temperature optimum can be altered significantly by even single-point mutations
(Figure 3). For example, a single-point mutation (Val–Ser at position 200) significantly alters the
temperature dependence of kcat because�Cp

‡ becomes less negative.Anothermutation at the same
site (V200T) has an intermediate effect on the temperature dependence of the rate (28). A fourth
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Figure 3

Effect of mutation on the temperature dependence of kcat for the α-glucosidase MalL. Fits of the
macromolecular rate theory (Equation 6) to temperature-rate data are shown for wild-type MalL and several
single-point mutants.Data shown are the initial rate of enzyme activity at different temperatures as a
function of the enzyme concentration (kcat) and the mean of three replicates. Error bars, where visible,
represent the standard deviation. �Cp

‡ values are in k J mol−1 K−1 (± standard error). Arrows indicate the
maximum rate, Topt, for each enzyme. Figure reproduced from Reference 28 with permission from ACS
Chemical Biology.

mutation (V200A) increases the amplitude of the rate via an enthalpy–entropy trade-off (reducing
conformational entropy) with a relatively small change to�Cp

‡; thus, the temperature dependence
of the rate is similar to that of the wild-type enzyme.This striking behavior is explained byMMRT.

It could reasonably be argued that these results do not provide direct evidence of an activation
heat capacity: There could perhaps be other causes of nonlinear behavior, and it might be thought
that the �Cp

‡ derived by fitting is no more than a fitting parameter. Direct corroboration that
these are indeed heat capacity effects comes from molecular dynamics simulations, specifically
simulations of the reactant state (substrate complex) and transition state. For simulations of the
transition state, a stable transition state analog, or model of a high-energy reaction intermediate,
chemically similar to the transition state, is used. Such simulations, on long timescales, can be used
to calculate the variance of the internal energy <dH2> for both the enzyme–substrate complex
and the pseudo-enzyme–transition state complex. Simulations of both the reactant state and the
transition state can provide access to �Cp

‡ through the difference in the variance of the internal
energies of the two states <dH2>‡ – <dH2>ES. Such simulations of MalL give calculated values
for �Cp

‡ in good agreement with those derived from experiment through convex Arrhenius plots,
providing a molecular-level description of the dynamical differences that give rise to the observed
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Calculation of �C‡
P for enzyme-catalyzed reactions from molecular dynamics simulations. (Top right) The root mean square fluctuations

(RMSF) for enzyme–substrate and enzyme–transition state complexes calculated from ten separate (50–500 ns) molecular dynamics
(MD) simulations for each state. Thin lines are individual runs, and thick lines are the averages of 10 runs. (Bottom right) Calculated
partial �C‡

P values for protein regions. Values including contribution from the ligand are indicated (∗). (Left) The structure of MalL is
colored according to the changes in RMSF between enzyme–substrate and enzyme–transition state complexes based on MD
simulations. Red indicates increasing RMSF in the transition state, and blue indicates decreasing RMSF in the transition state. Of note
are the red helices, which become more flexible in the transition state, and the blue helices, which become less flexible. In addition, the
auxiliary domain becomes more flexible in the transition state, as seen at the bottom left, adjacent to the C-term label. Figure adapted
with permission from Reference 68.

heat capacity (68) (Figure 4). Similar simulations of an unrelated enzyme, ketosteroid isomerase
(KSI), also predicted an activation heat capacity in good agreement with experiment. The simu-
lations show a tightening of the enzyme in the transition state ensemble, which causes the heat
capacity to drop in this state relative to the reactant complex. The activation heat capacity pre-
dicted by these simulations was found to be in good agreement with experimental MMRT fits to
kinetics data.

The observed changes are complex and interesting: Different parts of the enzyme contribute
quite differently (e.g., Figure 4). In these two distinct enzymes, contributions to reduced �CP

‡

come not only from small domains surrounding the active site, but also from distal domains, which
contribute significantly to the overall negative�CP

‡. Significant contributions to�CP
‡ come from

regions throughout the protein, coming from auxiliary domains (MalL) and dimeric subunits (KSI)
far from the active site that are not directly involved with chemical changes at the active site.These
results explain why single-point mutations far from the active site can significantly alter an enzyme
temperature optimum and rates at any particular temperature.

These findings have important implications for the functional role of enzyme mass and
oligomerization. The mass of natural enzymes correlates with their catalytic power (4), and mass
is, of course, related to heat capacity. The findings show functionally significant contributions of
distal domains and subunits, suggesting ways in which evolution may modulate them. Simulations
of this type can be used to design mutants with altered temperature dependence and temperatures
of optimum activity.
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Further support for MMRT comes from experiments that directly measured the heat capacity
changes for the binding of a range of transition state analogs to an enzyme [5′-methyl thioadeno-
sine phosphorylase (MTAP)] using isothermal titration calorimetery (ITC) (22). Schramm (63)
has used kinetic isotope measurements to design transition state analogs (to a range of purine nu-
cleotide phosphorylases) with very high binding affinities. ITC can be used to access the change
in heat capacity,�Cp, by measuring the enthalpy of binding at different temperatures. These mea-
surements show negative heat capacities (�Cp), in line with �Cp

‡ derived from MMRT fitting of
the convex Arrhenius plots for kcat. Interestingly, the inhibitors with heat capacity changes clos-
est to those for the chemical reaction are those that most closely resemble the transition state,
and not those that bind most tightly to the enzyme. For example, adding a hydrophobic group to
the transition state analog improves binding (but chemically moves away from the transition state
species) and reduces change in heat capacity upon binding.

It is significant that the change in heat capacity for binding the transition state analogs to
MTAP results in the value for �H going through zero such that, at low temperatures, the bind-
ing is endothermic, and at high temperatures, the binding is exothermic. Therefore, there exists a
temperature in this range at which �H is zero, and the binding is purely due to �S. This has im-
portant implications for understanding and interpreting binding experiments: Caution should be
used in general in describing binding as driven by entropy or enthalpy because both may be tem-
perature dependent, and one or the other may dominate binding for the same system at different
temperatures. MMRT makes a similar prediction for enzyme-catalyzed reactions, i.e., that �H‡

goes through zero close to the optimum temperature for the catalytic rate (Topt). If we take the
first derivative of Equation 5 and set this equal to zero to find the maximum, then, at the optimum
temperature, Topt is given by

Topt = −�H‡

R
=

−�H‡
T0

− �C‡
P (Topt − T0)

R
7.

and

Topt =
�H‡

T0
− �C‡

PT0

−�C‡
P − R

∼ T0 −
�H‡

T0

�C‡
P

for
∣∣�C‡

P

∣∣ � R. 8.

Equations 5 and 7 predict that, at temperatures close to the optimum (Topt), �H‡ passes through
zero (for �C‡

P < 0). Therefore, the free energy barrier at temperatures close to Topt is dominated
by entropic effects. It also predicts that entropic effects become less pronounced (and may even
be favorable) at lower temperatures.

MMRT predicts that, to achieve activity at lower temperatures, �Cp
‡ will be large (according

to Equation 8), and therefore that the convexity of the Arrhenius plot will be more pronounced
for psychrophilic enzymes (see the absolute rates of the psychrophilic and mesophilic homologs
in Figure 2). Arcus et al. (4) dubbed this the psychrophilic trap. It explains the rather pronounced
curvature found for psychrophilic enzymes and values of Topt that are often far below the unfold-
ing temperatures for these enzymes (16). It also emphasizes the challenges facing adaptation of
biological catalysts at low temperatures.

One outstanding question is whether �Cp
‡ is independent of temperature. We expect Cp

to increase for both the reactant state and the transition state based on extensive experimental
measurements for different proteins using differential scanning calorimetry conducted by
Makhatadze and colleagues (39, 45). However, it is not yet clear whether the temperature depen-
dence of Cp for the enzyme–substrate complex will be parallel with that for the enzyme–transition
state complex as temperature increases, so we leave this as an open question.
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