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Abstract

We discuss new developments in the nonequilibrium dynamics and ther-
modynamics of living systems, giving a few examples to demonstrate the
importance of nonequilibrium thermodynamics for understanding biologi-
cal dynamics and functions.We study single-molecule enzyme dynamics, in
which the nonequilibrium thermodynamic and dynamic driving forces of
chemical potential and flux are crucial for the emergence of non-Michaelis-
Menten kinetics. We explore single-gene expression dynamics, in which
nonequilibrium dissipation can suppress fluctuations.We investigate the cell
cycle and identify the nutrition supply as the energy input that sustains the
stability, speed, and coherence of cell cycle oscillation, fromwhich the differ-
ent vital phases of the cell cycle emerge.We examine neural decision-making
processes and find the trade-offs among speed, accuracy, and thermody-
namic costs that are important for neural function. Lastly, we consider the
thermodynamic cost for specificity in cellular signaling and adaptation.
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1. INTRODUCTION TO NONEQUILIBRIUM DYNAMICS
AND THERMODYNAMICS

Cell dynamics and functions are controlled by networks full of interacting molecules and the
chemical reactions among them (17). In addition,without a nutrition supply, a cell cannot function
properly (3, 17). Therefore, a cell is not an isolated system. A cell is a nonequilibrium open system
with the exchange of energy, information, and material with the environment. Therefore, it is
crucial to quantify the dynamics and nonequilibrium thermodynamics of the cell to understand
the mechanisms underlying cell functions. To quantify the nonequilibrium dynamics of the cell,
one needs to identify the forces that drive them.

1.1. Global Nonequilibrium Dynamics Are Determined by Landscape and Flux

While cellular functions are regulated by the underlying gene networks (17), spatial organization
and input from other cells and the environment are also important in determining a cell’s function.
Presently, more and more experimental studies (including high-throughput measurements) are
being carried out on gene expressions, providing information on the dynamics of the underlying
gene networks. One can use the information on gene expressions as a first step in characterizing
the state of the cell (17). A future step will be to incorporate input from spatial organization and
interactions with other cells and environments.

The expression dynamics of the gene regulatory networks can be modeled as (5)

d�C
dt
= �F (�C). 1.
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In this case, �C = {C1,C2,C3, . . . ,Cn} represents the expression levels of the 1, 2, 3, . . . , nth
genes, and �F (�C) = {F1(�C),F2(�C),F3(�C), . . . ,Fn(�C)} represents the driving force from the regulatory
interactions of other components (genes) with the specific (1, 2, 3, . . . , nth) genes.Thus, the change
of the expression patterns is determined by the regulatory interactions. Local stability analyses can
be performed around fixed points (47). However, the global stability is still challenging to address
because wemust consider the connections among states,which aremissing from the local analyses.

In equilibrium systems, there is no net input from outside. As a result, the driving force and,
therefore, the associated dynamics can be determined by the gradient of the interaction potential,
which is associated with the equilibrium probability through the Boltzmann law (77). The equi-
librium probability provides a global quantification in terms of the potential landscape through
the weight of each state, from which one can establish the connections between the states. The
global behavior can thus be quantified by the associated dynamics and thermodynamics (77).

In nonequilibrium systems, the global behavior cannot be addressed directly by using the equi-
librium approach (47, 88). To resolve this, one can explore a stochastic version of the deterministic
Equation 1. In realistic stochastic systems, intrinsic and extrinsic fluctuations are unavoidable (84),
so stochastic trajectories are not predictable. However, the corresponding probability dynamics
follow a linear evolution law, and that is predictable.

The stochastic trajectory dynamics follows a Langevin equation. In a continuous representa-
tion, we have dC/dt = F(C) + η. In this case, η represents a stochastic force with the strength
of the fluctuations characterized by their auto-correlation function in time <η(C, t)η(C, t′)> =
2DDδ(t − t′), where D denotes a scale factor measuring the magnitude of the fluctuations, and D
represents the diffusion matrix that characterizes the anisotropy of the fluctuations. The corre-
sponding probability evolution follows a Fokker-Planck equation (88): �P/�t=−� · J. (· denotes
a vector or matrix product). The change of the local probability P(C, t) in time at any location in
the state space of expressions is determined by the net flux J(C, t) in or out of that region. In this
case, the probability flux is determined by both deterministic and stochastic driving forces (88):
J = FP − D� · (DP).

At long times, the system reaches steady state, and the divergence of the flux becomes zero:
�· Jss = 0. In this case, ss represents the steady state.Nonzero and nonconstant divergent free flux
has no source or sink to go into or come out from and therefore is rotational or curl, meaning that
the force line is circling around. A good example of this is the magnetic field. A charged particle
moving in an electric field will always go along the gradient of the electric potential because the
force experienced by the charged particle from the electric field is a gradient of the corresponding
electric potential. For the electric field, there is a sink or source due to the presence of electric
charges for the field lines to go into or come out from. Therefore, the force lines point toward or
away from the source or sink (positive or negative charge).However, the magnetic field has no sink
or source to get into or come out from (divergent free flux without magnetic charges). Therefore,
naturally, the force experienced by the charged particle from themagnetic field is rotational or curl.
One can say that the electric field generates the gradient force, and the magnetic field generates
the rotational force for the motion or dynamics of the charged particle.

The presence of the nonzero steady state flux represents a net input (output) to (from) the
system and breaks the detailed balance that characterizes equilibrium conditions (94). In fact,
the nonzero steady state flux can be used to quantify the degree of departure from equilibrium.
The driving force for nonequilibrium systems can then be decomposed into a gradient force deter-
mined by the nonequilibrium potential U, associated to the steady state probability, U = −lnPss,
and a rotational force involving curl flux, F = −DD ·�U + Jss/Pss +� ·DD, up to a gradient of
the diffusion coefficient (92, 94). Because U is directly associated to the Pss, it provides a global
quantification of the state space through the weight of each state, giving rise to the landscape
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topography (basins and barriers). The nonequilibrium potential under a zero fluctuation limit be-
comes a Lyapunov function, which can then be used to directly quantify the global stability (92,
108). One can visualize the equilibrium dynamics under detailed balance as a charged particle
moving under an electric field, while nonequilibrium dynamics under broken detailed balance can
be imagined as a charged particle moving under both an electric and a magnetic field (92). The
driving force decomposition for the nonequilibrium systems can also be generalized to the discrete
representation (for example, numbers of molecules), in which the evolution of the gene network
follows a master equation (56, 74).

1.2. Global Nonequilibrium Thermodynamics Determined by Flux and Their
Associated Entropy Production Rate

We are interested in the behavior of a system that is typically composed of many components or
particles. If the components or particles do not interact with each other, then each of the many
system configurations has an equally small chance of appearance.However, if the particles interact
with each other, then some states emerge with greater probabilities (weights), distinguishing them
from the others. These observable emergent states are called collective because they result from
the mutual interactions among the components. For a closed physical system, the collective nature
can be described by the thermodynamics (77).

Energy is conserved according to the First Law of thermodynamics.The total entropy increases
in time according to the Second Law.Can the thermodynamics apply to living systems? Living sys-
tems cannot function without net energy or material input, and therefore they are nonequilibrium
systems. The thermodynamics of physical equilibrium systems are well established (77). Progress
has been made toward understanding nonequilibrium thermodynamics (26, 37, 63, 64, 73, 78, 79,
81, 87). It is useful to quantify the nonequilibrium thermodynamics from the perspective of the
far-from-equilibrium dynamics based on the potential landscape and flux (92, 108).

For living systems, one can search for the thermodynamic origins of the dynamics in the net
flux from energy pumps (89, 92, 102, 108). For cellular processes, the energy pump is the nutrition
supply or the phosphorylation and dephosphorylation reactions of adenosine triphosphate (ATP)
hydrolysis (73, 89, 92, 102).

1.2.1. Entropy production rate and heat dissipation in nonequilibrium thermodynamics.
To study the nonequilibrium thermodynamics, one can first start with the definition of the entropy
of the system S = −�P(C, t) lnP(C, t)dC. The time evolution of the system entropy can then be
decomposed into two parts (73, 79, 92, 108): dS/dt = dSt/dt − dSe/dt. In this case, dSt/dt =∫
dC( J · (DD)−1 · J)/P represents the total entropy rate of the system and environments, which is

often termed the entropy production rate (EPR). It is directly related to the nonequilibrium flux
J. dSe/dt =

∫
dC[ J · (DD)−1 · F′] denotes the entropy change rate of the entropy flow from the

environment. The effective force F′ is defined as F′ = F−D∇ ·D. One can prove that the total
entropy rate dSt/dt is always larger than or equal to zero (73, 79, 92, 108). This is consistent with
the Second Law of thermodynamics. However, this does not guarantee that the system entropy
can always be kept positive because the environment contributes to the entropy rate. A negative
system entropy change gives rise to the possibility of creating order within the cell. Therefore,
living systems can be in ordered low-entropy states due to exchange with the environment.

1.2.2. Quantifying the nonequilibrium thermodynamics. The energy of the system can
be defined by averaging the potential landscape U using the unit of temperature T: <U>=
−T ∫

P(C, t ) lnPss(C, t )dC. As mentioned above, the entropy of the system is defined as
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S = − ∫
P(C, t ) lnP(C, t )dC. Therefore, the free energy can be defined as f =U − TS =

T
∫
P(C, t ) ln[P(C, t )/Pss(C, t )]dC. One can also study the nonequilibrium thermodynamics from

the free energy change in time t, which can be decomposed to df/dt = Qhk/T − dSt/dt (24,
73). Therefore, one sees that TdSt/dt = Qhk − df/dt, where the entropy production is defined
as dSt/dt =

∫
dC[ J · (DD)−1 · J]/P, and the housekeeping heat is defined as Qhk = T

∫
Jss/Pss · 1/

(DD) · Jss/PssdC. In this case, J is the flux, whileD is a scale factor measuring the magnitude of the
fluctuations, and D represents the diffusion matrix, measuring the anisotropy of the fluctuations
that were defined above.T is the fictitious temperature or diffusion scale coefficient characterizing
the fluctuation strength, while ss represents the steady state. There are two contributions to the
total entropy production dSt/dt. One contribution comes from df/dt, the relaxation of free energy
in time. The other contribution comes fromQhk, denoting the housekeeping heat for maintaining
the nonequilibrium steady state, supported by the steady state flux Jss (24, 73). Once the proba-
bility evolution of the cellular dynamics is known by either real time traces in experiments or by
simulations, one can quantify the free energy change, housekeeping heat, and entropy production.

For discrete dynamics, one can quantify the nonequilibrium dynamics by the master equation:
dPi/dt =

∑
j Ti jPj −

∑
j TjiPi for state i,where Pi represents the probability of state i.Tij represents

the transition probability from state j to state i.
The nonequilibrium thermodynamics can also be formulated (38, 56, 79, 110, 111). At steady

state, since dPi/dt= 0,we have
∑

j (−Ti jPss
i
+ TjiPss

j
) = 0.However, the local steady state flux itself,

F ss
i j = −Ti jPss

i
+ TjiPss

j
, is not zero when detailed balance is broken. One can define a generalized

chemical potential between i and j, Aij = ln (TjiPj)/(TijPi).
There exists a mapping between chemical or biological networks and electric circuits. The

flux corresponds to the current, and the chemical potential Aij corresponds to the voltage in an
electrical circuit. The nonequilibrium systems or the networks dissipate energy in a similar way
to electric circuits (38, 56, 79, 110, 111).

The system entropy S is defined as S = −∑
i Pi lnPi, and the EPR dStot/dt is given as (38, 56,

79, 110, 111) dStot/dt =
∑

i j Fi jAi j =
∑

i j (Ti jPj − TjiPi ) ln[(TjiPj )/(Ti jPi )]. As seen above, the EPR
is directly related to the flux. Therefore, the EPR or the dissipation can also give a measure of the
degree of departure from equilibrium. The flux for characterizing the nonequilibrium part of the
dynamics and the entropy production characterizing the nonequilibrium thermodynamic cost can
be quantified once the underlying regulatory network is specified.

2. NONEQUILIBRIUM DYNAMICS AND THERMODYNAMICS
FOR BIOLOGICAL PROCESSES

2.1. Nonequilibrium Dynamics and Thermodynamics
of a Chemical Kinetic Cycle

Nonequilibrium dynamics describes the time evolution of gene expressions or protein concen-
trations in the cell. The nonequilibrium thermodynamics describes the global thermodynamics of
the whole cell in terms of the underlying gene network. A physical and quantitative measure of the
nonequilibrium thermodynamics is the EPR, which can be used to quantify the thermodynamic
cost for performing biological functions. In addition to the gradient potential landscape driving
force specified by the steady state probability, the steady state probability flux is a driving force for
nonequilibrium gene networks. It turns out that it is also the key to determining the EPR (EPR
being roughly the integration of flux squared over the state space in the continuous representation)
(73, 79, 92, 108). Flux is then important in determining not only the nonequilibrium dynamics, but
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also the nonequilibrium thermodynamic cost for the underlying gene network evolution. There-
fore, flux is the bridge between nonequilibrium dynamics and nonequilibrium thermodynamics.

Since the flux, which characterizes the amount by which the detailed balance is broken, is as-
sociated with the net input (energy, information, or material) to the system, one can explore the
thermodynamic origin (e.g., net energy input) of the flux. It can be shown that the energy pump to
the system, denoted by the chemical potential difference �G, generates not only the deterministic
chemical reaction flux, but also the probabilistic flux, in analogy to electric voltage generating elec-
tric current. Using the Schnakenberg kinetic model (89), in which all of the individual reactions
are reversible (102), we have

B
k−2←→
k2

Y,

2X+ Y
k−3←→
k3

3X,

X
k−1←→
k1

A. 2.

The species B and A are kept at constant concentrations, as they are the source of energy input
(79, 102) related to ATP and adenosine diphosphate concentrations, for example. The concen-
tration ratio B/A can then be used to represent the strength of the energy pump, where A, B,
X, and Y represent the concentrations of the species. The forward and backward reaction fluxes
Jj +, Jj − for each reaction can be defined. The chemical potential difference can thus be defined
as �Gj = kBT ln(Jj +/Jj −). The total chemical potential difference becomes �GAB =

∑
j �Gj =

kBT ln[k1k2k3B/(k−1k−2k−3A)] (102).
The chemical reactions specified above can have several stable states or phases depending on

the concentrations of molecular species A and B. One stable state or phase is the monostable one,
in which the concentrations of both chemical species X and Y reach steady state values. This state
is locally stable. In addition to this specific stable state, a limit cycle oscillation state of the X and
Y species can be found; no other steady state or phase is found. Therefore, a specific stable state
can only be either monostable or a state of stable limit cycle oscillations.

When the system is at a steady state, the deterministic flux reaches Jss = k2B − k−2Y0. Y0

is the steady state value of Y. The deterministic flux monotonically increases as the chemical
potential �G(�GAB) increases in the monostability regime. Therefore, the nonequilibrium
chemical potential difference �G leads to a nonzero deterministic flux (102). When the energy
input increases, the monostable regime becomes unstable, and a limit cycle sets in. One can
explore the relationship between the steady state probabilistic flux and the deterministic flux
under different chemical potential differences �G (�GAB). The chemical potential difference
is closely related to the concentration ratio B/A. One can see that the chemical potential
difference is the main factor keeping the limit cycle going (102). In analogy to the case of
voltage generating the electric current, the chemical voltage (potential) drives both the average
deterministic flux and the steady state probabilistic flux. There is a strong correlation between the
two fluxes with respect to the chemical potential driving force (102). These numerical results and
discussions support the view that the energy pump is the origin of the nonequilibrium flux (102).
From the perspective of thermodynamics, the combined effect of the chemical potential difference
(voltage) and flux (current) �G × Jss gives rise to the entropy production or the thermodynamic
cost for maintaining the stability and function of the nonequilibrium system (92, 102).

232 Fang • Wang



BB49CH11_Wang ARjats.cls April 28, 2020 19:2

2.2. Nonequilibrium Single-Molecule Enzyme Dynamics

Recent advances in technology make it possible to study chemical reaction dynamics, including
enzymatic dynamics, at the single-molecule level (59). Single-molecule measurements can reveal
heterogeneity in kinetic rates that are not available from bulk measurements.

Enzymatic reactions under protein conformational fluctuations are often found to obey the
classic Michaelis-Menten (MM) rate law: The inverse of the enzyme catalytic rate is linear on the
inverse of the substrate concentration (21, 62). The MM form is expected to be valid as long as
the detailed balance condition is preserved, with no net flux between the different conformations
of the fluctuating enzymes (43, 49, 98).

Single-molecule catalysis of the oxidation of dihydrorhodamine 6G into rhodamine 6G by the
enzyme horseradish peroxidase (HRP) has recently been observed at room temperature (19, 20,
39). HRP in the presence of hydrogen peroxide and a nonfluorescent substrate can turn over the
substrate into a fluorescent product. The catalysis is visible by fluorescence spectroscopy. The
kinetic scheme for this enzyme reaction process is shown in Figure 1a.

HRP has two conformations, E1 and E2. The enzyme molecule binds with substrate dihy-
drorhodamine 123 to form the ES complex, while ES binds with substrate H2O2 and returns to
the original enzyme state by releasing the H2O molecule. ES represents the complex that can
be observed by the fluorescence. The single enzyme dynamics can be studied by the probability
evolution of the states dictated by the master equation:

d
dt
P =

⎛
⎜⎜⎜⎝

−k1[s]− β α k−1 + k3[H2O2]
β −k2[s]− α k−2 + k4[H2O2]
k1[s] k2[s] −k−1 − k−2 − k3[H2O2]− k4[H2O2]

⎞
⎟⎟⎟⎠P = AP. 3.

In this case, P represents a vector of [PE1, PE2, PES], while PE1, PE2, PES represent the probabili-
ties of the enzyme being in the E1, E2, or ES state, respectively. A transition matrix A specifies the
transition probability from one state to another. From this equation, one can derive the enzyme
catalytic rate. The derivation shows that the inverse of the enzyme catalytic rate is not linear with
respect to the inverse of the substrate concentrations when the detailed balance is broken and the
associated flux is nonzero. In such cases, we have a non-MM catalytic rate that deviates from the
conventional MM rate with its inverse linear law (43, 54). Therefore, the nonequilibrium net flux
that breaks the detailed balance between conformational states is a key for determining whether
the enzyme follows the MM rate law. From the experimental observations shown in Figure 1b
(54), one can see clearly the nonlinear relationship between the inverse enzyme rate and the in-
verse substrate concentration.The straight lines indicate the linear behavior that would have been
expected for the MM rate. This shows clearly the non-MM behavior of the enzyme reaction rate
with respect to the substrate. Based on this, one can quantify the flux at different substrate concen-
trations, as shown in Figure 1c. For thermodynamic characterization, the corresponding chemical
potentials can be quantified based on the correlation functions of the experimental fluorescence
intensity data. The chemical potential of the chemical reaction cycle can be given as

�μ=�μE1−ES +�μES−E2 +�μE2−E1

= kBT ln
A31PS3 A12PS1 A23PS2
A13PS1 A32PS3 A21PS2

= kBT ln
A31A12A23

A13A32A21
. 4.
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Figure 1

(a) Single-molecule enzyme reaction scheme. (b) Michaelis-Menten rates (straight lines) and non-Michaelis-Menten rates (curved lines)
versus the inverse of substrate concentrations. (c) Steady state probability loop flux among the states (E1, E2, ES) versus substrate
concentrations. (d) Chemical potential versus substrate concentrations. (e) Entropy production rate versus substrate concentrations.
Figure adapted with permission from Reference 54. Abbreviation: HRP, horseradish peroxidase.
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Aij represents an element of the transition rate matrix A in the master equation. PS repre-
sents the steady state probability. The chemical potentials at different substrate concentrations
are shown in Figure 1d (54). The chemical potentials have almost constant values at different
rhodamine substrate concentrations with certain H2O2. The chemical potential thus gives rise to
the energy supply sourced as a chemical battery.

The entropy production as a measure of the thermodynamic cost for maintaining the nonequi-
librium steady state can also be quantified from the experimental data through correlations (54):

EPR=
∑
i, j

(
PSi Aji − PSj Ai j

)
ln
AjiPSi
Ai jPSj

= J ln
A31A12A23

A13A32A21
, 5.

where the cycle flux J is given as J = A12Pss
E2 − A21Pss

E1
= A23Pss

E3 − A32Pss
E2 = A31Pss

E1 − A13Pss
E3. The

EPRs at different rhodamine substrate concentrations are shown in Figure 1e (54). Notice that
the EPRs at different substrate concentrations have behavior similar to the flux in Figure 1c.
This is because the flux is the origin of both the deviation from equilibrium and the entropy
production.

Above, I illustrate that the nonequilibrium flux is the driving force for the non-MM behavior.
The nonequilibrium flux driving the dynamics, the corresponding chemical potentials, and the
associated EPR for the nonequilibrium thermodynamics can now be quantified experimentally
(54). The origin of the nonequilibrium flux, the chemical potential, and the EPRs driving enzy-
matic reactions are identified as the energy input in the enzyme reaction through the isothermal
titration calorimetry measurements of heat consumption (54).

2.3. The Nonequilibrium Single-Gene Expression Dynamics
of Self-Regulating Systems

Uncovering the mechanisms of gene regulatory networks is important for understanding many
cellular functions (17). To understand the network dynamics, it is essential to understand their
building blocks, the network modules (17). The simplest building blocks of gene circuits are the
self-regulators: self-activators and self-repressors. The corresponding gene regulation processes
comprise several kinds of biochemical reactions, including binding and unbinding of regulatory
proteins to the genes and syntheses and degradations of the RNAs and proteins (17).

It is often assumed that the binding and unbinding steps are much faster than the synthesis and
degradation steps (adiabatic limit) (2), leading to a stable state for a self-repressor (8, 17).However,
in eukaryotic cells and certain prokaryotic cells, binding and unbinding rates can be comparable to
the associated synthesis and degradation rates. This can lead to naively unexpected and nontrivial
stable states (6, 10, 23, 46, 50, 80).

To understand nontriviality, consider that, conventionally, one expects that a self-repressing
gene can have only one state: the repressed state. However, when the proteins produced by the
gene bind or unbind to repress the gene more slowly than they are synthesized (rather than more
rapidly, as is conventionally expected), there is sufficient time and therefore probability for the
genes to be on, and therefore a state of high expression can emerge as the result of slow binding.
For some bacteria, the regulatory binding can be fast; for others, the binding can be slow. For
eukaryotic cells, due to the epigenetics of histone remodification and DNA methylation, a slower
time scale sets in for regulatory binding and effectively slows it down. Therefore, we expect
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the self-repressor to have this nontrivial high expression state for some bacterial cells and many
eukaryotic cells. This has been tested and confirmed in experiments (14, 48, 83).

Because there are finite numbers of molecules in cells, intrinsic fluctuations in those numbers
can be present. A probabilistic description based onmaster equations is essential for describing the
underlying stochastic dynamics. From the master equations, one can derive the phase diagrams of
monostability and bistability in adiabatic fast regulatory binding and nonadiabatic slow binding
regimes, respectively (23).One can also explore the thermodynamic dissipation cost by calculating
the EPR and correlating it with the stability through landscape topology, often measured by the
barrier height and kinetics (23). Such studies provide new insights into the relationships between
the stabilities of cellular states and the thermodynamic costs of maintaining those states. In a slow-
binding nonadiabatic regime, the calculated EPR was seen to increase monotonically with the
increase of the ratio (ω) of the regulatory binding and unbinding rates relative to the degradation
rate. A higher ω implies more frequent binding and unbinding reactions between two gene states
(two peaks in gene expression distributions), consumingmore energy.Asω reaches the fast binding
adiabatic limit, the EPR also reaches a limit and will not increase further with ω. The binding and
unbinding reaches a balance such that higher ω will not consume more energy (23).

One can use the Fano factor to quantify the statistical fluctuations in terms of the ratio
between the variance and mean of the gene expressions or protein concentrations. A large Fano
factor implies large fluctuations in gene expression. It is interesting to see that the larger entropy
production rate in the fast-binding adiabatic regime is often associated with smaller fluctuations
(measured by the Fano factor); conversely, a smaller EPR in the slow-binding nonadiabatic regime
is often associated with larger fluctuations (23). This indicates that there is a thermodynamic cost
(the EPR) associated with the nonequilibrium dynamics (flux), which can be used for suppressing
the fluctuations (23).

2.4. Nonequilibrium Dynamics and Thermodynamics of the Cell Cycle

A primary cell can have two major fates: to divide or to differentiate. The cell division or cell
cycle process is crucial for growth, proliferation, and replication (12, 13, 41, 85, 86). Cell cycles go
through a few phases: a resting phase called G1, a synthesis phase called S, an interphase called G2,
and a mitosis phase called M. Cell cycle checkpoints are present to ensure the proper progression
across each phase. The cell cycle is believed to be tightly regulated by underlying gene networks
(41, 69). Significant progress has beenmade in describing the principles of the cell cycle.However,
challenges still remain.For example, how dowe understand the physical principles of the dynamics
and thermodynamics for the cell cycle based on the underlying gene network?How canwe identify
the key elements for controlling the stability and speed of the cell cycle?

To address the dynamic and thermodynamic origins of the cell cycle, a global view based on
landscape and flux theory has been suggested (52). The starting point is the mammalian cell
cycle gene network (16, 28, 29). The network contains four major cyclin/Cdk complexes that
dictate the cell cycle dynamics. The mutual repressions between pRB and E2F determine the
cell cycle progression. At the beginning of the cell cycle, a growth factor (GF) promotes the
synthesis of cyclin D and then cyclin D/Cdk4-6 (Complex 1). Activated cyclin D/Cdk4-6 and
cyclin E/Cdk2 (Complex 2) can guarantee the progression of G1 and evoke the G1/S switch due
to the repression of pRB. The repression of pRB leads to the activation of E2F, which generates
the synthesis of G1 cyclins (Complex 2) and therefore the cell cycle progression. In the S and G2
phases (Complex 3), cyclin A/Cdk2 represses Cdh1, which induces the cyclin B degradation. The
negative feedback loops from Cdc20 activation to cyclin B/Cdk1 and cyclin A/Cdk2 (Complex 4),
as well as from cyclin A/Cdk2 to E2F (Complex 3), together reset the cell cycle and start a new
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round of oscillations. Inhibiting phosphorylation by Wee1 and activating dephosphorylation by
Cdc25 control the activity of Cdk1 and Cdk2. The dynamics of the gene regulatory network can
be described by a set of nonlinear ordinary differential equations.

Both the landscape and the steady state probability flux of the cell cycle network can be quan-
tified (52). The landscape shows an inhomogeneous irregular Mexican hat shape. From any state,
the landscape attracts the cell to the oscillation ring valley. On the ring valley, it is the flux that
drives the coherent oscillation of the cell cycle. Therefore, the landscape guarantees the stabilities
of the states or phases of the cell cycle, while the flux guarantees the stable flow of the cell cycle
(52, 92, 94). Both landscape and flux are crucial driving forces for the cell cycle dynamics. On the
landscape, local basins of attraction can quantify the different cell cycle phases (G1, S/G2, M).
The transition states (or barriers) between different local basins can quantify the checkpoints at
different stages of the cell cycle. This gives a natural and physical description for the checkpoint
mechanism of the cell cycle (52).

One can also investigate the origin of the flux as the driving force for coherent cell cycle os-
cillations (52). As seen in Figure 2, as the amount of GF increases, the nutrition supply to the
cell increases, and the flux also increases. This means that the nutrition supply is the source for
the emergence of the flux driving the cell cycle. This speeds up the cell cycle oscillation. How-
ever, the thermodynamic cost in terms of the EPR, which is related to the flux, also increases as
the GF increases. Thus, a thermodynamic cost must be paid to maintain the coherent cell cycle
oscillation. Therefore, the nutrition energy supply gives rise to both the nonequilibrium dynamic
and thermodynamic forces that drive the functional oscillation of the cell cycle (52). Thus, energy
input is the key to the origin of the single-cell life cycle (109).

One can also explore the relationship between the energy input in terms of the nutrition supply
and the emergence of the different cell cycle phases. Without the nutrition supply, there is only
one stable G1 state with a single basin of attraction. As the nutrition increases, other cell cycle
states such as the S, G2, and M phases start to emerge as multiple attractors. As the nutrition sup-
ply increases even further beyond a critical point, the cell cycle Mexican hat landscape emerges
(see supporting information in Reference 52).One can state that the thermodynamic energy input
through the nutrition supply can alter the existing stable states and give rise to the emergence of
the new states through the bifurcations or nonequilibrium phase transitions. Because the flux is
rotational, it tends to destabilize the point attractors and to stabilize the line attractors as limit
cycles. This can give rise to a dynamic source for the bifurcation and nonequilibrium phase tran-
sitions (for example, from point attractors to line attractors). Therefore, the flux and energy input
can provide a dynamic and thermodynamic origin for the bifurcation and nonequilibrium phase
transitions.

Through global sensitivity analyses of landscape topography, on the flux, and on the speeds of
the cell cycle, key genes and regulators in the gene network can be identified as being crucial to the
stability and function of the cell cycle (52). This can help in prediction and design of anticancer
strategies.

2.5. Trade-Offs Among Accuracy, Speed, and Dissipation
in Neural Decision Making

To explore how nonequilibrium dynamics and thermodynamics influence the behaviors of
intercellular networks, one can study the dynamics of the neural networks that are crucial for
cognitive functions such as decisionmaking (1, 45, 53, 91). Before making an optimal decision, one
often evaluates the costs and benefits, assessing the risk or uncertainty from a set of alternatives
(15, 60, 66). Recently, progress has been made in both theoretical and experimental studies on
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(a) Landscape and flux for cell cycle. The vertical axis represents U as the potential landscape, defined by the steady state probability
distribution of the cell cycle network of protein concentrations or gene expressions. The purple line represents the flux force line.
(b) Flux versus growth factor. (c) Period of cell cycle versus growth factor. (d) Entropy production rate versus growth factor. Figure
adapted with permission from Reference 52. Abbreviation: GF, growth factor.

decision making (4, 30, 76, 97). In some of these studies, a diffusion model (75, 76) is used to
help explain the behavioral data. However, the longer response times in error (wrong) decision
trials compared to the response times in correct decision trails observed in experiments cannot be
naturally fit by the diffusion model (82). An attractor model was suggested to explain a two-choice
decision-making task (96, 100, 101) and to describe the behavioral and neurophysiological data in
a decision-making process. Although the position of each attractor state can be determined, the
weights of these states and the associated attractor landscape were not quantified (96, 100, 101)
in the attractor model. Quantifying the topology of the attractor landscape through the weights
of the states could help account for the stability of the attractors. However, understanding the
interplay among the speed, accuracy, and cost, as well as the associated underlying mechanisms
of the decision making, remains challenging.

From the landscape and flux theory for neural network dynamics (103–106), the basins of at-
traction as the fates of decision making can be identified (105). The global stability of basins of
attraction can be quantified through the barrier heights and escape times from the basins (105).

238 Fang • Wang



BB49CH11_Wang ARjats.cls April 28, 2020 19:2

60

50

40

En
er

gy

Decision
time ln t

Accuracy

30

20

10

10

12.5
12

11.5

1.2

1.8
1.6

1.4

11
10.5

c

Left

Left

Right

Right

High coherence level

Low coherence level

a

b

I2

1 2

I1

Figure 3

(a) Reduced two-population decision-making model, with two competing neural and self-promoting
populations selective for leftward or rightward directions. The bars represent the repressing regulations, and
the arrows represent the activating regulations. (b) Illustration of the biased dot motion under high
coherence and random dot motion under low coherence. Arrows represent the direction of motion of the
dots, while color represents left or right choices. (c) The trade-off among speed, accuracy, and cost. Figure
adapted with permission from Reference 105.

The optimal decision-making path can also be identified (95, 105). Both the landscape and the
flux dictate the dynamic processes, the decision-making speed, and the optimal path (105, 106).
Moreover, the thermodynamic costs in terms of the entropy production rate related to the flux
can be quantified (105). By varying stimulus input and threshold, one can quantitatively explore
the underlying mechanisms of the speed–accuracy–energy trade-off (105).

Figure 3a shows a reduced two-population decision-making model for the multineuron pop-
ulations, with two mutually repressing neural populations under self-activations. These two pop-
ulations of neurons are selected for representing the leftward or rightward directions of move-
ments. Figure 3b shows the motion of the dots. Notice that most dots move in one direction
under high motion coherence. When motion coherence is low, there is no directional preference
or bias. Figure 3c shows the trade-offs among speed, accuracy, and cost where an optimum seems
to emerge.

When the input threshold dominates the regulation (at the upper bound of the input), the total
cost increases as the accuracy increases and decreases as the decision time decreases (105). When
the amount of stimulus input to the system becomes the dominant mechanism, the total cost in
decisionmaking changes nonmonotonically when the additional input increases (105). Suboptimal
accuracy and performance can be realized with optimal energy cost and speed (105) (see Figure 3).
For decisionmaking, then, such a system can operate atmaximum speed and intermediate accuracy
for a minimal energy cost. Therefore, in the neural decision-making process, both the landscape
and flux are driving forces for the dynamics (speed, path, and accuracy) and thermodynamics.
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This helps us to quantify the relations among speed, accuracy, and energy cost and to uncover the
underlying mechanisms of decision making.

2.6. Energy Cost for Fidelity, Specificity, Cooperativity, and Sensitivity
in Biosynthesis, Cell Signaling, and Immunity

Nonequilibrium thermodynamic cost can significantly influence the fidelity of biosynthesis. This
can occur through a so-called kinetic proofreading mechanism for error correction (44, 65), which
leads to the discrimination between the reaction pathway to the correct product and the reaction
pathways to incorrect products. The probability of the correct product (fidelity) becomes signif-
icantly higher than the probability that one would estimate purely from the difference in the ac-
tivation energies between the correct and incorrect reaction pathways (44, 65). The proofreading
mechanism relies on the presence of an irreversible reaction step that leaves the reaction pathway.
The irreversible step increases the probability of intermediates leaving the pathway toward the in-
correct products, compared to the probability of leaving the pathway toward correct products.The
fidelity of the reaction to the correct product can be increased by increasing the ratio between
the two rate constants of leaving the pathways. This process can be repeated to further increase
the fidelity. The irreversible reaction step in this case explicitly breaks the time reversal symmetry
and therefore the detailed balance. It is the origin of the deviation from equilibrium. The irre-
versible reaction step is supported by the thermodynamic cost through the ATP consumption. It
was quantitatively demonstrated that higher thermodynamic cost leads to higher fidelity (44, 65).

The kinetic proofreading mechanism is important not only for biosynthesis, but also for enzy-
matic reactions, for example, in cell signaling. In this case, the binding affinities are determined by
the structures and interactions of the biomolecules (for example, kinases and their substrate pro-
teins). In addition, the biomolecules are often required to bind with great specificity: A signaling
molecule must bind specifically to the right partner to propagate a signal cascade. The speci-
ficity required for discriminating binding partners is usually based on the molecular structure and
the associated interactions (55, 93, 107). However, a structural and thermodynamic approach to
specificity often cannot meet the high requirements of the biological functions. Kinetic proof-
reading can help to resolve this issue beyond the structures and thermodynamics. It can increase
the specificity by introducing nonequilibrium irreversible kinetic steps. This effectively enlarges
the affinity difference between correct and incorrect targets and increases the ratio of the specific
binding affinity to the nonspecific affinity (70–72). Again, the energy cost through phosphoryla-
tion or dephosphorylation via ATP hydrolysis is required to support the specificity discrimination.

High sensitivity is often important in cell signal transduction. This is often thought to be re-
alized by the cooperativity of allosteric interactions. Such sensitivity requires a sufficient number
of regulating proteins to be present: Enough materials must be supplied. However, high sensitiv-
ity can also be realized through kinetic cooperativity, which requires the presence of only a small
number of regulatory proteins. The trade-off is that the kinetic cooperativity requires energy to
be expended through ATP hydrolysis. High sensitivity can be realized by either allosteric coop-
erativity, with sufficient numbers of regulatory proteins present, or by kinetic cooperativity, with
fewer regulators but sufficient energy expenditure (25, 31, 70–72). If there is a rich source of regu-
latory molecules, as in the environment of metabolites, then the allosteric cooperative interactions
will be suitable for reaching the high sensitivity. However, if regulators are limited to only a small
number, as in visual photon detection, then kinetic cooperativity is more suitable.

In immunity, T cells need to discriminate the molecules of the self from foreign intruders.
The specificity of the receptor structure and binding affinity often is not sufficient for the
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discrimination function of T cells. The kinetic proofreading mechanism of an irreversible
kinetic step, supported by the energy cost from ATP hydrolysis, is again helpful in providing the
specificity necessary for discrimination of the self from the nonself (32, 57).

2.7. Energy Cost in Cell Sensing

Cells can sense changes in the environment with high precision (9, 11, 18, 22, 27, 36, 90, 99).What
is the fundamental limit of this precision? Cells sense chemical signals through receptors.The pre-
cision of sensing will be influenced by both the diffusive transport of the signalingmolecules to the
receptor and the binding to the receptor. Cells can increase the sensing precision by increasing
the number of measurements (9), either by increasing the number of receptors or by increasing
the number of measurements per receptor during certain integration times. The requirement for
precision sets the receptor correlation time, the decay time scale of the fluctuations of the recep-
tors.The downstream signaling pathways then integrate these receptor-state fluctuations from the
upstream. The number of receptors, the receptor correlation time, and the effective integration
time together contribute to the precision of sensing. It was shown that signaling networks inte-
grate the receptor state nonuniformly in time so that cells can go beyond the well-known uniform
integration Berg-Purcell limit by approximately a factor of ten (33).

It was shown that equilibrium signaling networks can achieve sensing.This implies that energy
dissipation is not crucial for sensing (34). However, the associated sensing accuracy is limited by
the number of receptors. This is due to the fact that equilibrium sensing displays a fundamental
trade-off between the removal of extrinsic and of intrinsic noise (34). In nonequilibrium signaling
systems, the burden of this trade-off can be lifted. This is realized by integrating the receptor state
over time while suppressing the intrinsic noise through energy consumption for the purpose of
storing the receptor state in stable chemical modification states of readout molecules (34, 35, 68).
Thus, for nonequilibrium signaling systems, a combination of three resources is fundamentally
required for sensing precision: receptors and their integration times, readout molecules, and
energy cost. The combination of these three resources sets a fundamental sensing limit (7, 34, 35,
68). Thus, the sensing precision is limited by the combination of these three resources and will not
be enhanced further by increasing another resource. Due to the architectural differences between
cell signaling networks and computation, cellular sensing is unlikely to reach the well-known
Landauer limit (67) of the optimal trade-off between accuracy and energy cost.

2.8. Thermodynamic Cost in Cell Adaptation

Sensory adaptation is a crucial regulatory function found in many living systems. The main func-
tion of the adaptation is to maintain sensitivity and fitness in changing environments. Many
sensory adaptations are supported by underlying feedback networks in systems such as bacte-
rial chemotaxis (40), osmotic sensing in yeast (42), and olfactory (58) and light sensing (61) in
mammalian sensory neurons. This raises the questions of what supports the adaptation, and what
the associated energy costs and feedback controls are. A core negative feedback control network
commonly shared in various adaptation systems has been explored (51). It was shown that negative
feedback control is out of equilibrium and supported by energy consumption (51). The energy ex-
penditure is required to stabilize the adapted state against fluctuations. This leads to a quantitative
relationship among the amount of sensory adaptation, its speed and accuracy, and its minimum
energy cost. Direct measurements of the adaptation of starving Escherichia coli cells illustrated
that adaptation slows down but maintains its accuracy (51, 90). These measurements support the
speed–accuracy–energy cost trade-off for sensory adaptation (51).
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