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Abstract

Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor that initiates
innate immune responses. DNA-bound c¢GAS produces cyclic GMP-AMP
(cGAMP), which activates stimulator of interferon genes (STING) to in-
duce inflammatory cytokines and other immune mediators. cGAS detects
DNA without sequence specificity and responds to both cytosolic foreign
DNA from pathogens and self-DNA leaked into the cytosol due to genome
instability or cellular damage. Because of the diverse sources of cytosolic
DNA, the cGAS-STING pathway plays a critical role during infection, au-
toimmune diseases, and senescence. Moreover, cGAS detects tumor-derived
DNA and stimulates endogenous antitumor immunity. Thus, the cGAS-
STING pathway is a promising target for cancer immunotherapy. Here, we
review the role of the cGAS-STING pathway in various diseases and high-
light various approaches targeting the cGAS-STING pathway for cancer
therapy.

323


https://doi.org/10.1146/annurev-cancerbio-030518-055636
https://www.annualreviews.org/doi/full/10.1146/annurev-cancerbio-030518-055636

324

The cGAS-STING PATHWAY

The innate immune system is composed of molecules and cells that respond to external and
internal danger signals, such as pathogen-associated molecular patterns (PAMPs) and damage-
associated molecular patterns (DAMPs). PAMPs and DAMPs bind to their respective pattern
recognition receptors (PRRs) to initiate immune responses. Membrane-bound PRRs such as Toll-
like receptors (TLRs) detect extracellular pathogens on the cell surface or pathogen-derived nu-
cleic acids in the endosomes (Kawai & Akira 2009). On the other hand, cytosolic PRRs including
nucleotide-binding oligomerization domain-like receptors, retinoic acid—inducible gene I-like re-
ceptors (RLRs), and cyclic GMP-AMP synthase (cGAS) detect intracellular pathogens (Wu &
Chen 2014). Upon ligand binding, PRRs activate downstream signaling cascades to induce in-
flammatory responses, providing early protection against pathogen invasion or cellular damage.
PRR-induced innate immune responses further activate the adaptive immune system that specif-
ically eliminates pathogens or damaged or malignant cells. In this review, we focus on the cGAS-
STING (stimulator of interferon genes) pathway and its role in infectious diseases, autoimmune
diseases, senescence, tumor immunity, and cancer immunotherapy.

DNA is often called the blueprint of life, as it encodes the genetic information for all living
organisms except for RNA viruses. Accordingly, hosts have evolved innate immune pathways to
recognize the invasion of pathogen DNA into the cytosol; one of these is the cGAS-STING
pathway (Chen et al. 2016, Ishikawa & Barber 2008, Sun et al. 2013, Wu et al. 2013, Zhong et al.
2008). Two molecules of ¢cGAS bind to two molecules of double-stranded DNA (dsDNA) to form
a ¢cGAS,-DNA, complex (X. Li et al. 2013, Zhang et al. 2014). Upon binding DNA, cGAS un-
dergoes conformational changes at the active site that allow cGAS to convert ATP and GTP into
2'3'-cyclic GMP-AMP (cGAMP) (Ablasser et al. 2013; Civril et al. 2013; Diner et al. 2013; Gao
et al. 2013a,b; Kranzusch et al. 2013; Wu et al. 2013; X. Li et al. 2013; Zhang et al. 2013, 2014).

c¢GAMP functions as a second messenger that binds to its endoplasmic reticulum (ER)-resident
adaptor protein STING (Figure 1) (Wu et al. 2013). cGAMP binding induces a conformational
change in STING that may expose the C-terminal tail for TBK1 binding and activation (Gao et al.
2013b, Tanaka & Chen 2012, Zhang et al. 2013). TBK1 phosphorylates IRF3, which induces type I
interferons (IFNs) (Fitzgerald et al. 2003, S. Liu et al. 2015, Sharma et al. 2003, Tanaka & Chen
2012). Type I TFNs bind to the type I IFN receptor, which activates a signaling cascade leading to
the expression of hundreds of IFN-stimulated genes (ISGs) (Schneider et al. 2014). Type I IFNs
and ISGs elicit antiviral responses by promoting antiproliferative and immunomodulatory activi-
ties. STING also activates IKK and subsequently NF«B for proinflammatory cytokine induction.
After cGAMP binding, STING traffics from the ER to the ER-Golgi intermediate compartment
and then to the Golgi apparatus (Ishikawa et al. 2009, Saitoh et al. 2009). After signaling, STING
is transferred to autophagosomes and lysosomes, where it is degraded. In addition to transmitting
inflammatory signals by secreting cytokines, cGAMP can be transferred into nearby cells through
gap junctions or packaged into viruses during viral replication (Ablasser et al. 2013, Bridgeman
etal. 2015, Gentili et al. 2015). Thus, the cGAS-STING pathway initiates immune responses and
plays an important role in infections and diseases involving cytosolic DNA.

PHYSIOLOGICAL AND PATHOLOGICAL ROLES OF THE cGAS-STING
PATHWAY

cGAS is a critical PRR that senses pathogen DNA in the cytosol. Interestingly, cGAS recognizes
dsDNA irrespective of sequence or species; thus, activation of the ¢cGAS-STING pathway by
self-DNA is avoided using two main strategies: compartmentalization of self-DNA by nuclear or
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Figure 1

The cGAS-STING pathway. Pathogen-derived DNA (i.e., dsDNA from DNA viruses and bacteria or
reverse-transcribed DNA from retroviruses) or self-DNA (from mitochondria or nuclei of dead or damaged
cells) can be exposed to the cytosol by an unknown mechanism. To regulate the level of cytosolic DNA,
RNase H2 maintains genome stability by degrading RNA-DNA hybrids or removing misincorporated
ribose from DNA while DNase III (also known as TREX1) and DNase II degrade DNA in the cytosol and
lysosomes, respectively. Cytosolic DNA binds to and activates ¢cGAS, which catalyzes the production of
c¢GAMP from GTP and ATP. cGAMP binds to its ER adaptor STING, which then translocates from the ER
to the Golgi apparatus to activate IKK and TBK1. IKK phosphorylates and induces IkBx degradation,
thereby activating NF«B. TBK1 phosphorylates IRF3, which causes IRF3 dimerization. Activated NFxB
and the IRF3 dimer then migrate to the nucleus, where they induce type I IFNs and proinflammatory
cytokines. Abbreviations: cGAMP, cyclic GMP-AMP; cGAS, cyclic GMP-AMP synthase; dsDNA,
double-stranded DNA; ER, endoplasmic reticulum; IFN, interferon; STING, stimulator of interferon genes.

mitochondrial membranes and negative regulation of the pathway to prevent DNA accumulation
in the cytosol. If the cGAS-STING pathway is aberrantly activated by lack of regulation, the
immune system is activated without pathogen invasion, resulting in autoimmune diseases. The
c¢GAS-STING pathway also senses the leakage of nuclear DNA into the cytoplasm and acts as a
danger sensor by inducing senescence.

Infectious Diseases

The ¢GAS-STING pathway detects the invasion of pathogens that release DNA into the cytosol
of host cells. These pathogens include DNA viruses, retroviruses that reverse-transcribe their
single-stranded RNA genome into DNA, and intracellular bacteria. Upon infection with these
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pathogens, the cGAS-STING pathway is required for induction of ISGs and proinflammatory
cytokines. Furthermore, mice deficient in ¢cGAS or STING display greater pathogen burden and
lethality. The essential role of the cGAS-STING pathway in infectious disease is summarized
in other reviews and in the Supplemental Appendix (Cai et al. 2014, Chen et al. 2016, Ma &
Damania 2016).

Sterile Inflammation, Autoimmune Diseases, and Ischemia

Preventing aberrant activation of the ¢cGAS-STING pathway is important for maintaining im-
mune homeostasis. Several enzymes regulate cGAS activation by controlling the basal level of
cytosolic DNA: RNase H2, TREX1, and DNase II. Mice deficient in these functional enzymes
develop autoimmune disease with inflammation and lethality in a cGAS- and STING-dependent
manner, suggesting a critical role for the cGAS-STING pathway in the pathogenesis of autoim-
mune diseases (Ahn et al. 2012, Gall et al. 2012, Gao et al. 2015, Gray et al. 2015, Mackenzie
et al. 2016, Pokatayev et al. 2016). In addition, the activation of the cGAS-STING pathway by
self-DNA may be involved in sterile inflammation. Recent studies show that myocardial infarction
damage is mediated in part by the cGAS-STING pathway and type I IFNs (Cao et al. 2018, King
et al. 2017). Activation of cGAS and STING has also been linked to age-related macular degen-
eration (Kerur et al. 2018) and liver fibrosis (Iracheta-Vellve et al. 2016). The critical role of the
c¢GAS-STING pathway in autoimmune diseases and inflammatory diseases suggests that cGAS
is a promising therapeutic target. Details of the effect of the cGAS-STING pathway in autoim-
mune and inflammatory disease mouse models and patients are summarized in the Supplemental
Appendix and in other reviews (Chen et al. 2016, Crowl et al. 2017).

Senescence, Genomic Instability, and Oncogenesis

Stressed and damaged cells induce senescence, a state of irreversible cell cycle arrest, to pro-
vide a natural barrier to tumorigenesis. The known causes of senescence include laminopathies,
oncogene activity, DNA damage, and telomere attrition (Campisi & d’Adda di Fagagna 2007).
All of the above stimuli directly or indirectly induce DNA damage followed by the DNA dam-
age response, formation of micronuclei and cytoplasmic chromatin fragments (CCFs), and the
senescence-associated secretory phenotype (SASP). SASP includes the secretion of inflammatory
cytokines, growth factors, and proteases that regulate immune cell recruitment and the tissue mi-
croenvironment. Recent studies revealed that the cGAS-STING pathway detects micronuclei and
CCFs and is essential for SASP in senescent cells (Figure 2).

During senescence, the integrity of the nuclear envelope decreases via downregulation of
Lamin B1. Damaged CCFs may bud off or leak into the cytosol through the fragile nuclear
membrane (Gluck et al. 2017). DNA damage also promotes chromosome mis-segregation during
cell division and increases CCF formation (Mackenzie et al. 2017). CCFs recruit nuclear envelope
components and form micronuclei that have less membrane integrity and are prone to rupture.
Micronuclei colocalize with ¢GAS, which induces a type I IFN response (Bartsch et al. 2017,
Gluck et al. 2017, Harding et al. 2017, Mackenzie et al. 2017, Yang et al. 2017). Recognition of
micronuclei by ¢cGAS was essential for SASP induction in senescence induced by drug treatments,
oxidative stress, oncogenic Ras, or ionizing radiation in vitro (Dou et al. 2017, Gluck et al. 2017,
Yang et al. 2017). Furthermore, cGAS- and STING-deficient mice did not show senescence and
SASP in response to whole-body ionizing radiation or expression of the oncogene RasV'12 (Dou
et al. 2017, Gluck et al. 2017). Notably, RasV12-expressing senescent cells persisted in ¢GAS-
and STING-deficient mice, while wild-type mice cleared these senescent cells. This observation
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Figure 2

Roles of the cGAS-STING pathway in cellular senescence and tumor immunity. Normal cells undergo senescence after exhaustive
proliferation or senescence-inducing treatments. Senescent cells show decreased nuclear membrane integrity due to downregulation of
Lamin B1. DNA released from the nucleus or micronuclei activate the cGAS-STING pathway. Activation of the cGAS-STING
pathway leads to SASP, which includes the production of proinflammatory cytokines. When normal cells overcome cell cycle
checkpoints and senescence, they become tumor cells with the ability to undergo massive proliferation. Dying tumor cells can be taken
up by dendritic cells, allowing tumor-derived antigens to be presented to CD8" T cells via MHC class I molecules. Tumor-derived
DNA is exposed to the cytosol by an unknown pathway to activate the cGAS-STING pathway. This activation induces type I IFN
production and promotes cross-priming of CD8" T cells. Multiple STING-targeting anticancer therapies and tumor radiation therapy
promote STING activation. Tumor vaccines and immune checkpoint blockade therapies cooperate with STING-targeting agents to
enhance antitumor effects. Abbreviations: cGAS, cyclic GMP-AMP synthase; IFN, interferon; IFNR, interferon receptor; SASP,
senescence-associated secretory phenotype; STING, stimulator of interferon genes; TCR, T cell receptor.

suggests that cGAS-induced SASP may play a role in preventing tumorigenesis. Supporting this
idea, low expression of ¢cGAS and STING in tumors is linked to decreased survival of human
lung adenocarcinoma patients and poor prognosis of gastric cancer and hepatocellular carcinoma
patients (Bu et al. 2016, Song et al. 2017, Yang et al. 2017). In addition, many tumor cell lines
have lost the expression of cGAS, STING, or both (Bhatelia et al. 2014; Chen et al. 2017; Sun
etal. 2013; Wu et al. 2013; Xia et al. 2016a,b).

Despite the critical role of the cGAS-STING pathway in senescence, cGAS-knockout mice
do not spontaneously develop tumors, indicating that other tumor-suppressing pathways are suf-
ficient to prevent tumor development (Yang et al. 2017). Moreover, multiple human cancers
preserved the cGAS-STING pathway during tumorigenesis and showed a correlation between
STING expression and an increased proinflammatory gene profile (Dou et al. 2017, Yang et al.
2017). The presence of multiple tumor-suppressing pathways, the complex origin of tumors, and
the role of the cGAS-STING pathway in both senescence and inflammation makes the role of
c¢GAS in tumorigenesis very complex. Nevertheless, recent studies on senescence propose a new
function for cGAS as a danger sensor that detects self-DNA in damaged, stressed, or transformed
cells. Immune cells recruited by SASP will then remove dangerous cells harboring damaged or
mutated DNA that could potentially develop into cancer.
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Although ¢GAS deficiency does not itself promote spontaneous tumorigenesis, it will be in-
teresting to test if cGAS deficiency promotes tumorigenesis in oncogene- or carcinogen-driven
tumor models. Downregulation of type I IFN signaling was reported to decrease oncogene-
induced senescence and promote tumorigenesis in chemically induced tumors (Dunn et al. 2005,
Katlinskaya et al. 2016, Katlinski et al. 2017). As cGAS is essential for type I IFN production dur-
ing senescence, cGAS may play a similar role in suppressing tumorigenesis. Senescence is also
involved in tissue regeneration and repair, thus playing an important role in aging. The role of
the cGAS-STING pathway in age-related diseases such as atherosclerosis or neurodegenerative
diseases remains to be further investigated. If cGAS plays a critical role in age-related diseases,
inhibition of cGAS may provide benefits to a large population of patients with these diseases.

Tumor Immunity

In 1863, Rudolf Virchow observed lymphoid cells in a tumor, providing a possible link between
the immune system and tumors (Balkwill & Mantovani 2001). The presence of adaptive immu-
nity against tumors was later evidenced by the spontaneous activation and infiltration of tumor
antigen—specific CD8* T cells (Anichini et al. 1999, Lee et al. 1999, Valmori et al. 2002). The acti-
vation of the innate immune system precedes the priming of tumor antigen—specific CD8* T cells,
and the level of ISGs is correlated with infiltrating T cell markers in metastatic melanoma, sug-
gesting activation of IFN-inducing pathways in response to tumors (Harlin et al. 2009). In murine
tumor models, type I IFN signaling in dendritic cells (DCs), specifically CD8«x* DCs, was shown
to be essential for antitumor T cell priming (Diamond etal. 2011, Fuertes etal. 2011). Thus, type I
IFN production in response to tumors is a critical factor in the formation of antitumor immune
responses; however, how tumors induce type I IFNs was not understood until recently (Figure 2).

Multiple innate immune signaling pathways such as TLRs, RLRs, and cGAS-STING can pro-
duce type I IFNs. Using genetically modified mice thatare deficient in PRRs or signaling adaptors,
it was shown that the cGAS-STING pathway is essential for type I IFN production in tumors and
the generation of antitumor immune responses. Mice lacking components of the TLR or RLR
pathway, but not STING-deficient mice, can still spontaneously prime tumor antigen—specific
CD8* T cells (Woo et al. 2014); moreover, tumor-infiltrating antigen-presenting cells (APCs)
produced type I IFNs in a STING-dependent manner. The activation of STING indicates the
presence of cytosolic DNA that activates cGAS; indeed, tumor-infiltrating DCs contain tumor-
derived DNA that is not restricted to lysosomes (Woo et al. 2014). Another study suggested that
endothelial cells are also a source of type I IFN in the tumor microenvironment (Demaria et al.
2015). These studies suggest that tumor-derived DNA is transferred into host cells and is then
released into the cytosol of those cells to activate cGAS. Dying tumor cells can be phagocytosed
by immune cells or can directly transfer DNA into endothelial cells (Arandjelovic & Ravichandran
2015, Ehnfors et al. 2009). How tumor-derived DNA reaches the cytosol of immune cells is yet
to be understood. In addition, tumor cells that express cGAS may generate cGAMP after cellular
stress or DNA damage. It will be interesting to dissect the role of cGAS in tumor cells versus host
cells in antitumor immunity in vivo.

Due to the existence of endogenous antitumor immunity, immunotherapy that stimulates the
host immune system has opened a new era in cancer therapy. In fact, immune checkpoint blockade
therapy has shown remarkable effects in clinics, improving long-term survival in approximately
20% of patients on average, although the response rates vary greatly among different tumor types
(Postow et al. 2015). Immune checkpoint inhibitors include neutralizing antibodies blocking T
cell inhibitory molecules such as CTLA-4, PD-1, and PD-L1. CTLA-4 and PD-1 are expressed
on the T cell membrane and inhibit T cell activation when they are bound to their cognate ligands,
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namely costimulatory molecules on APCs for CTLA-4 or PD-L1 expressed on APCs or tumor
cells for PD-1. The physiological role of CTLA-4 and PD-1 is to maintain immune homeostasis
(Nishimura et al. 1999, Tivol et al. 1995, Waterhouse et al. 1995). Despite great success in treating
cancer patients, immune checkpoint blockade therapy is not effective when the tumor is cold, that
is, lacking infiltrating T cells or possessing a microenvironment that suppresses T cell function.
As the cGAS-STING pathway is shown to be essential in priming CD8* T cells and promoting
leukocyte infiltration, the therapeutic efficacy of the anti-PD-L1 antibody depends on ¢GAS and
STING activation in the mouse melanoma model (Wang et al. 2017).

APPLICATION OF THE cGAS-STING PATHWAY IN CANCER
IMMUNOTHERAPY

Following the development of immune checkpoint blockade therapy, a major focus of current
immunotherapy is to augment innate immunity and foster a CD8* T cell-rich tumor environ-
ment. The essential role of the cGAS-STING pathway in spontaneous type I IFN induction and
CD8* T cell priming reveals that this pathway is a potential immunotherapy target. Using ro-
dent tumor models, many preclinical studies assessed the therapeutic index of STING agonists
and other anticancer modalities that trigger the cGAS-STING-IFN axis. Moreover, the combina-
tion of STING agonists and immune checkpoint inhibitors showed a synergistic effect in treating
tumors. In this section, therapeutic approaches utilizing the cGAS-STING pathway are catego-
rized into STING agonists, radiation therapy, chemotherapy, antibody therapy, viral therapy, and
therapeutic vaccines, as summarized in Table 1. In addition, combinations of STING-targeting
therapies and other therapies are listed.

STING Agonists

Detection of tumor-derived DNA by ¢GAS produces cGAMP, which activates STING and sub-
sequent antitumor immune responses. To enhance antitumor immune responses, researchers have
used various tumor models to test several natural and synthetic STING agonists.

Mouse STING agonist. 5,6-Dimethylxanthenone-4-acetic acid (DMXAA) was developed as a
cell-permeable drug to disrupt tumor vasculatures and cause hemorrhagic necrosis of tumor tis-
sue (Daei Farshchi Adli et al. 2017, Rewcastle et al. 1991, Zwi et al. 1994). Unlike other vascular
disrupting agents, DMXAA was found to activate mouse STING and innate immune responses.
DMXAA dramatically decreased the size of implanted tumors, such as non-small-cell lung cancer
(NSCLC), melanoma, colon cancer, breast cancer, and glioma (Bahr et al. 2017, Corrales et al.
2015, Downey et al. 2014, Wang et al. 2009, Weiss et al. 2017); additionally, DMXAA extended
the survival of mice with myeloid leukemia (Curran et al. 2016). STING activation by DMXAA
induced type I IFNs and proinflammatory cytokines and led to the recruitment of more immune
cells such as tumor antigen-specific T cells, macrophages, or neutrophils into the tumor. De-
spite this potent immunostimulatory effect in various tumor types, DMXAA failed to protect mice
from metastatic NSCLC or human breast cancer xenografts (Downey et al. 2014). Furthermore,
DMXAA failed to show an effect in a clinical trial due to its inability to bind human STING
(Conlon et al. 2013, Lara et al. 2011).

Another mouse-specific cell-permeable STING agonist, 10-carboxymethyl-9-acridanone
(CMA), induces malignant T cell apoptosis and inhibits tumor growth (Gulen et al. 2017). In-
tratumoral injection of CMA prevented growth of T cell acute lymphoblastic leukemia (T-ALL)
in both wild-type and STING-deficient mice, suggesting that CMA directly activated STING

www.annualreviews.org » Roles of cGAS-STING in Cancer

329



Table 1  Preclinical studies for cGAS-STING pathway-targeting immunotherapies®
Treatment | Administration | Tumor model Reference
STING agonists
DMXAA 1P MC38 colon cancer (SQ) Wang et al. 2009
1P 344SQ-ELuc lung cancer (SQ) Downey et al. 2014
1T B16 melanoma, TRAMP-C2 prostate cancer, 4T1 breast | Corrales et al. 2015
cancer, Ag104L fibrosarcoma (SQ)
1P MMTV-PyMT breast cancer (mammary fat pad) Weiss et al. 2017
1P LN-229 glioma (SQ) Bahr et al. 2017
v C1498 leukemia (IV), CMM™ mouse leukemia model Curran et al. 2016
CMA 1T Cpc46 T-ALL, EL4 lymphoma (SQ)* Gulen et al. 2017
c-di-GMP 1P 4T1 breast cancer (mammary fat pad)? Chandra et al. 2014
1T GL261 glioma (intracranial) Ohkuri et al. 2014
1T Spontaneous papilloma (Pdx-Cre*’~, KrasG12P+/~, Baird et al. 2017
and Trp§3R172H+/ -
3'3’-cGAMP 1P STGMI multiple myeloma (SQ, IV), Eu-TCL1 mouse Tang etal. 2016
CLL model?
cGAMP IT with B16F10 melanoma (SQ, IV), MC38 colon cancer (SQ) Demaria et al. 2005
lipofectamine
v MC26 colon cancer (SQ) Lietal. 2016
M B16F10 melanoma (SQ) Wang et al. 2017
1T 4T1 breast cancer, CT26 colon cancer, mnSCC1 Ohkuri et al. 2017
squamous cell carcinoma, B16F10 melanoma (SQ)
ADU-S100 1T B16F10 melanoma (SQ, IV), 4T1 breast cancer, CT26 Corrales et al. 2015
mammary carcinoma (SQ)
1T NT2.5 breast cancer (SQ) in tolerant FVB/N mice Foote et al. 2017
v C1498.SIY (IV) Curran et al. 2016
Dithio c-di-GMP 1T MOCT1 head and neck cancer (SQ) Moore et al. 2016
c-di-GMP/YSKO05 v B16F10 melanoma (IV) Nakamura et al.
liposome 2015
ADU-S100/PBAE + 1T B16F1melanoma (SQ) Wilson et al. 2017
PD-1 Ab
Anticancer therapies targeting the STING pathway
IR Local IR MC38 colon cancer (SQ) Deng etal. 2014b
Topotecan 1P, 1T E0771 breast cancer (SQ) Kitai et al. 2017
CD47 Ab IP,IT A20 B cell lymphoma, MC38 colon cancer (SQ) X. Liu et al. 2015
1T MC38 colon cancer, A20 B cell lymphoma, B16.SITY Xu etal. 2017
melanoma (SQ)
Heat-iMVA IT B16F10 melanoma, MC38 colon cancer (intradermal) Dai et al. 2017
LM vaccine CT26 colon cancer (IV, SQ) Brockstedt et al.
2004
v B16-MOS5 melanoma (IV) Starks et al. 2004
(Continued)
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Table 1  (Continued)
Treatment Administration Tumor model Reference
PC7A nanoparticle SQ B16F10 melanoma, MC38 colon cancer, TC-1 myeloma | Luo etal. 2017
vaccine SQ)
T-MP-loaded DCs SQ B16 melanoma (SQ, IV) H22 liver cancer, CT26 colon Zhang et al. 2015

cancer (SQ)

Combination immunotherapies with STING activation

Combination with tumor vaccines

STINGVAX SQ CT26 colon cancer, SCCFVII head and neck cancer, Fuetal. 2015
TRAMP prostate cancer, B16 melanoma (footpad),
PANCO2 pancreatic cancer (hemispleen injection)

c-di-GMP, TriVax v B16F10 melanoma (SQ) Wang & Celis

2015

c-di-GMP, ovalbumin
peptide

CDN (IT), peptide
Q)

Quad-GL261 glioma (intracranial)

Ohkuri et al. 2014

c-di-GMP, LM vaccine

CDN (IP), vaccine
dP)

4T1 breast cancer (mammary fat pad)

Chandra et al. 2014

Combination with immune checkpoint blockade

cGAMP, PD-1 Ab + CDN (IT), Ab (IP) | BI6F10 melanoma (SQ) Demaria et al. 2005
CTLA-4 Ab
¢GAMP, PD-L1 Ab cGAMP (IM), Ab B16F10 melanoma (SQ) Wang et al. 2017
aP)

c-di-GMP, CTLA-4
Ab + PD-1 Ab +
4-1BB Ab

CDN (IT), Ab (IP)

TRAMP-C2 prostate cancer (SQ)

Ager etal. 2017

dithio c-di-GMP,
PD-L1 Ab

CDN (IT), Ab (IP)

MOCI head and neck cancer (SQ)

Moore et al. 2016

ADU-S100, PD-L1 Ab,
OX40R Ab

CDN (IT), Ab (IP)

NT2.5 breast cancer (SQ)
in nontolerant neu/N mice

Foote et al. 2017

IR, CTLA-4 Ab, PD-L1
Ab

Local IR, Ab (IP)

B16F10 melanoma, PDA.4662 pancreatic cancer (SQ)

Twyman-Saint
Victor et al. 2015

IR, CTLA-4 Ab

Local IR, Ab (IP)

4T1 breast cancer (SQ)

Demaria et al. 2005

IR, PD-L1 Ab

Local IR, Ab (IP)

TUBO breast cancer, MC38 colon cancer (SQ)

Deng et al. 2014a

PC7A vaccine, PD-1 Ab

Vaccine (SQ) Ab (IP)

TC-1 myeloma (SQ)

Luo etal. 2017

STINGVAX, PD-1 Ab

Vaccine (SQ), Ab
{P)

B16 melanoma, CT26 colon cancer (footpad)

Fuetal. 2015

Heat-iMVA, CTLA-4
Ab, PD-1 Ab, or
PD-L1 Ab

Heat-iMVA (I'T), Ab
{P)

B16F10 melanoma (intradermal)

Dai et al. 2017

Combination with chemotherapy

cGAMP, 5FU

v

MC26 adenocarcinoma (SQ)

Lietal 2016

DMXAA, cisplatin, or
CP

1P

KHT sarcoma (IM), SKBR3 breast cancer, OW-1
ovarian cancer (SQ)

Siemann et al. 2002
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Table 1

(Continued)

Treatment

| Administration | Tumor model Reference

Combination with other cancer therapies

cGAMP, CpG ODN

1T B16F10 melanoma, EG-7 lymphoma (SQ) Temizoz et al. 2015

IR, cGAMP

Local IR, CDN (IT) | MC38 colon cancer (SQ) Deng et al. 2014b

IR, dithio c-di-GMP

Local IR, CDN (IT) | Panc02 pancreatic cancer, 3LL lung cancer (SQ) Baird et al. 2016

c-di-GMP, CAR T cells | IT biopolymer KPC-luc pancreatic cancer (pancreas, IV), BL6F10 Smith et al. 2017
scaffold melanoma (SQ)

DMXAA, CD20 Ab DMXAA (IP), Ab BCL; lymphoma (IV) Dahal et al. 2017
av

2Qutcomes of cGAS-STING pathway-targeting immunotherapies include inhibition of tumor growth, extended mouse survival, reduced metastases,

systemic and long-lasting antitumor responses, and tumor cell apoptosis.

Abbreviations: +, co-treatment; Ab, antibody; CAR, chimeric antigen receptor; c-di-GMP, 3,5’-cyclic diguanylic acid; CDN, cyclic dinucleotide; cGAMP,
cyclic GMP-AMP; CLL, chronic lymphocytic leukemia; CMA, 10-carboxymethyl-9-acridanone; CMM™, genetically modified Chfb-MYH11/Mpl-induced;
CP, cyclophosphamide; DC, dendritic cell; DMXAA, 5,6-dimethylxanthenone-4-acetic acid; heat-iMVA, heat-inactivated modified vaccinia virus Ankara;
IM, intramuscular injection; IP, intraperitoneal injection; IR, irradiation; I'T, intratumoral injection; IV, intravenous injection; LM, Listeria monocytogenes;

ODN, oligodeoxynucleotide; PBAE, poly(beta-amino ester); SQ, subcutaneous injection; STING, stimulator of interferon genes; T-ALL, T cell acute

lymphoblastic leukemia.
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in tumor cells and caused apoptosis. STING activation-induced cell death is not common, but
specific cell lines are vulnerable, as a recent study showed that STING activation can induce lyso-
somal cell death in human myeloid cells (Gaidt et al. 2017).

Cyclic dinucleotides. 3',5'-Cyclic diguanylic acid (c-di-GMP) is a mouse and human STING ag-
onist found in bacteria. c-di-GMP induced profound reduction of papillomas, orthotopic gliomas,
breast cancer growth, and metastases in mouse models (Baird et al. 2017, Chandra et al. 2014,
Ohkuri et al. 2014). 3'3’-cGAMP, another bacterial STING agonist, caused tumor regression and
improved survival of mice bearing chronic lymphocytic leukemia and myeloma. 3'3'-cGAMP di-
rectly induces apoptosis in malignant B cells and activates the immune system (Tang et al. 2016).

2'3’-cGAMP. 2'3'-cGAMP is the natural product of cGAS and the endogenous STING ago-
nist that is produced in response to DNA. Intratumoral injection of cGAMP alone or in lipo-
somes inhibited the growth of implanted breast cancer, squamous cell carcinoma, colon cancer,
and melanoma (Demaria etal. 2015, Ohkuri et al. 2017). cGAMP treatment induced a systemic an-
titumor response, controlling both local and distant tumor growth (Demaria etal. 2015). Similarly,
c¢GAMP administration at a site distant from the tumor also controlled the growth of melanoma
and colon cancer (Li et al. 2016, Wang et al. 2017). Type I IFNs induced by cGAMP promoted
cross-presentation of tumor-associated antigens and infiltration of tumor antigen—specific CD8*
T cells (Demaria et al. 2015, Wang et al. 2017). Macrophages with proinflammatory cytokine ex-
pression were recruited into the tumor in response to cGAMP and played an essential role in the
antitumor response (Li et al. 2016). cGAMP did not have a direct cytotoxic effect in the studied
tumor cell lines in vitro, but cGAMP treatment in vivo induced apoptosis of tumor cells by pos-
sibly activating antitumor CD8* T cells (Li et al. 2016). Host STING and CD8" T cells were
essential for the antitumor effect of cGAMP (Demaria et al. 2015, Li et al. 2016).

Cyclic dinucleotides engineered for efficient delivery. The administration of cyclic din-
ucleotides (CDNSs) such as c-di-GMP, c-di-AMP, 3'3’-cGAMP, and 2'3’-cGAMP activates

human STING and induces profound antitumor immune responses. However, CDNs are

Yum et al.



susceptible to hydrolysis by phosphodiesterases. Specifically, ecto-nucleotide pyrophosphatase/
phosphodiesterase (ENPP1) was reported to be the dominant cGAMP phosphodiesterase (Li
etal. 2014). ENPPI is rich in the ER lumen, extracellular space, and serum, where it can degrade
the majority of administered cGAMP before entering cells. Moreover, CDNs contain two neg-
atively charged phosphate groups that impair passive diffusion through the plasma membrane.
To improve CDN delivery, researchers synthesized CDNs that are resistant to degradation and
utilized various drug delivery methods.

A modified CDN, dithio-(Rp,Rp)-[cyclic[A(2,5)pA(3’,5")p]], also known as ML RR-S2 CDA
or ADU-S100, is resistant to phosphodiesterases and has high potency in activating STING
(Corrales etal. 2015). ADU-S100 reduced tumor growth in mice bearing melanoma, colon cancer,
breast cancer, or myeloid leukemia (Corrales et al. 2015, Curran et al. 2016, Foote et al. 2017). The
synthetic CDN dithio c-di-GMP also does not contain a phosphodiesterase target site; treatment
using dithio c-di-GMP led to efficient rejection of implanted head and neck tumors (Moore et al.
2016).

YSKO5 liposomes loaded with c-di-GMP disassemble upon endosomal acidification to acti-
vate STING, achieving reduction of mouse melanoma lung metastases (Nakamura et al. 2015).
Cationic poly(beta-amino ester) (PBAE) polymers loaded with ADU-S100 also promoted ADU-
S100 delivery and showed better tumor growth control than ADU-S100 alone in the presence of
anti-PD-1 (Wilson et al. 2017). Virus-like particles (VLPs) filled with cGAMP were shown to have
cytotoxicity to T lymphoma cells in vitro (Gulen et al. 2017). Whether VLP-cGAMP improves
drug delivery and has an antitumor effect in vivo remains to be studied.

As mentioned above, a variety of small-molecule STING agonists promoted antitumor immu-
nity and were well-tolerated in mouse models. The translation of these results to the clinic needs
to proceed carefully, since immune and inflammatory side effects may be different in humans
than in rodents. It has been reported that STING activation induces the immune suppressor IDO
(indoleamine 2,3-dioxygenase) and promotes tumor growth in the case of lung carcinoma charac-
terized by low antigenicity, suggesting that the outcome of STING activation may differ based on
the tumor type (Lemos et al. 2016). Three ongoing clinical studies are addressing this question.
In one trial, the STING agonist MK-1454 is given alone intratumorally or with the anti-PD-1
pembrolizamab for solid tumors (https://www.clinicaltrials.gov/ identifier NCT02675439). In
the other two trials, ADU-S100 is administered intratumorally to metastatic cancers or lymphoma
alone or with a CTLA4 antibody (NCT02675439) or with a PD-1 antibody (NCT03172936).

Anticancer Therapies Targeting the cGAS-STING Pathway

Several anticancer therapies that were designed to directly target cancer cells are now shown to
indirectly activate the cGAS-STING pathway, which induces antitumor immunity. These anti-
cancer therapies and their therapeutic effects on tumors are discussed below.

Radiation-induced STING activation. Approximately 50% of all cancer patients are treated
with radiotherapy, a method using ionizing radiation to disrupt cancer cells locally by induc-
ing DNA damage and apoptosis (Begg et al. 2011). Interestingly, local radiation treatment not
only treated the targeted tumor but also reduced the size of distant tumors (Mole 1953); this
phenomenon is termed the abscopal effect of radiation therapy. Abscopal effects in metastatic
melanoma and NSCLC are associated with increased tumor infiltration of PD-1" cytotoxic T
lymphocytes (CTLs) and elevated PD-L1 expression in tumor cells or stromal cells, suggesting
activation of antitumor immune responses (Golden et al. 2013, Postow et al. 2012, Twyman-Saint
Victor et al. 2015). Preclinical studies with mouse tumor models showed that the antitumor effect
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of radiation therapy required STING and type I IFNs signaling (Burnette et al. 2011, Deng et al.
2014b). Moreover, cGAS was required for DC sensing of irradiated tumors, suggesting that the
therapeutic activity of radiation depends on the cGAS-STING-IFN axis (Deng et al. 2014b). In-
terestingly, dose fractions above 12-18 Gy in mouse models induced TREX1 expression, which
attenuated the immunogenicity and the abscopal effects by degrading cytosolic DNA (Vanpouille-
Box et al. 2017). This study emphasizes the importance of selecting an appropriate dose of radia-
tion to preventa negative feedback loop. Multiple clinical studies of combination radiation therapy
and immune checkpoint blockade are ongoing.

Chemotherapy-induced STING activation. Several cytotoxic drugs increase genomic DNA
damage and other cellular stresses that may induce cytosolic DNA. Topotecan, a topoisomerase
I inhibitor, triggers cGAS-STING activation, leading to DC and CD8" T cell recruitment to
murine breast tumors and tumor regression in vivo (Kitai et al. 2017). The S phase-dependent
alkylating agents hydroxyurea and cisplatin induced DNA damage in BRCA1-deficient breast
tumors (Parkes et al. 2017). In vitro, these chemotherapy drugs induced ISGs in a STING-
dependent manner. Cytosine arabinoside, an antimetabolite, drove IFN expression in B cell lym-
phoma in vitro (Shen et al. 2015). More DNA-damaging chemotherapy drugs remain to be tested
for their role in activating the cGAS-STING pathway and the antitumor immune responses in
vivo.

Antibody-mediated STING activation. CD47 is a transmembrane protein upregulated in ma-
lignant cells that binds to its receptor SIRPx on phagocytes to inhibit phagocytosis. CD47 block-
ade with anti-CD47 antibodies promotes phagocytosis of tumor cells. CD47 blockade also induced
type I IFNs and required host type I IFN signaling for its therapeutic effect (X. Liu et al. 2015).
Moreover, the anticancer effect of anti-CD47 antibodies required CD8% T cells and STING in
DCs, suggesting activation of the cGAS-STING pathway (X. Liu et al. 2015, Xu et al. 2017). At
the molecular level, CD47 blockade prevented phagosome acidification and degradation of tumor
mitochondrial DNA (mtDNA), which activates cGAS in DCs (Xu et al. 2017).

Virus-induced STING activation. Heat-inactivated modified vaccinia virus Ankara (heat-
iMVA) injected intratumorally into melanoma or colon cancer-bearing mice induced tumor re-
gression in a manner that depended on cGAS, STING, IFN signaling, and Batf3 DCs (Dai et al.
2017). Heat-iMVA may have been taken up by DCs, delivering viral DNA into the cytosol. An-
other modified DNA virus, talimogene laherparepvec (T-vec), is a genetically engineered HSV-
1 strain that lacks certain viral immunoinhibitory genes while expressing human GM-CSF for
an immunostimulatory effect (Andtbacka et al. 2015). T-vec is currently the only oncolytic virus
approved by the US Food and Drug Administration (FDA), showing a 26% response rate and
increased CD8* T cell infiltration in melanoma patients (Ribas et al. 2017). Although the prin-
cipal mechanism of action of T-vec is to specifically replicate in tumor cells and induce lysis,
increased tumor cell death may also activate the cGAS-STING pathway. Moreover, cGAS is the
natural PRR for HSV-1, raising the possibility that T-vec may directly activate the cGAS-STING
pathway. Similar to STING-targeting therapies, T-vec displayed synergistic effects with immune
checkpoint therapy in clinical studies (Chesney et al. 2017, Ribas et al. 2017). Other oncolytic
viruses are undergoing clinical trials; however, no evidence for innate immune activation by these
viruses has yet been reported (Babiker et al. 2017).

Therapeutic cancer vaccine-induced STING activation. Listeria monocytogenes therapeu-
tic vaccines were engineered to express tumor antigens while lacking cell-to-cell bacterial
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dissemination and infectivity to nonphagocytic cells (Brockstedt et al. 2004); nevertheless, these
vaccines retain the ability to stimulate STING (Hansen et al. 2014). Recombinant Listeria vac-
cines inhibited metastases of tumors and prolonged survival of tumor-bearing mice (Brockstedt
et al. 2004, Starks et al. 2004). Listeria vaccines, the first STING-related vaccines, have shown
an effect in patients with pancreatic carcinoma and advanced cervical cancer (Cory & Chu 2014;
Le et al. 2012, 2015). Although Listeria vaccines potently trigger adaptive immunity, they also
cause cytokine release syndrome, an excessive inflammatory side effect that needs to be overcome
(Miles et al. 2017). There are currently eight active Listeria vaccine trials for glioma, colorectal
cancer, cervical cancer, head and neck cancer, ovarian cancer, mesothelioma, and prostate cancer.

PC7A nanoparticles are pH-sensitive vehicles that allow efficient delivery of a cargo into
the cytosol. A PC7A nanovaccine conjugated with tumor-associated antigens showed potent
growth inhibition of cervical cancer, myeloma, and melanoma (Luo et al. 2017). Interestingly,
PC7A nanoparticles themselves induced ISGs and promoted cross-priming of CD8" T cells in
a STING- and IFN«/p receptor—dependent manner. PC7A-induced ISGs were partially depen-
dent on cGAS, suggesting an increase of cytosolic DNA by PC7A treatment; alternatively, PC7A
may directly function on STING due to its weak affinity for STING.

Tumor cell-derived microparticles (T-MPs) are generated from ultraviolet-irradiated tumor
cell supernatants and contain tumor-specific antigens and DNA fragments. T-MPs effectively
deliver DNA fragments into DCs and activate the cGAS-STING pathway (Zhang et al. 2015).
T-MP-loaded DCs showed a therapeutic effect in implanted hepatocellular carcinoma, colorectal
cancer, and melanoma models.

Chitosan nanoparticles loaded with tumor-derived antigens displayed a growth inhibition of
mouse thymoma, cervical cancer, and melanoma (Han et al. 2016, Shi et al. 2017). Moreover, chi-
tosan nanoparticles alone were reported to have an adjuvant effect (Lin et al. 2014). After being
phagocytosed by macrophages or DCs, chitosan induces mtDNA-driven cGAS-STING activa-
tion (Carroll et al. 2016). Mechanistically, chitosan damages mitochondria, releasing mtDNA into
the cytosol to activate cGAS. Whether chitosan cancer vaccines activate the cGAS-STING path-
way in vivo to trigger antitumor immune responses remains to be studied.

Combination Immunotherapy with STING Activation

Tumor cells evade immune responses by various strategies, forming a complex microenvironment
composed of multiple immune-suppressing cells. Targeting multiple pathways and enhancing the
antitumor response are key therapeutic approaches for cancer therapy. In 2015, the FDA approved
nivolumab (anti-PD-1) and ipilimumab (anti-CTLA-4) combination therapy, which significantly
delayed progression of metastatic melanoma compared to either therapy alone (Larkin et al. 2015).
Thus, combination immunotherapy has the potential to induce synergistic antitumor responses.
The following studies report the effect of combination immunotherapy with STING activation.

Combination with tumor vaccines. Combining STING agonists with therapeutic vaccines de-
livering antigens enhances activation of adaptive immunity (X.-D. Li et al. 2013). STINGVAX,
a vaccine containing both GM-CSF-producing tumor cells and ADU-S100, increased antitu-
mor responses in melanoma, pancreatic cancer, colon cancer, and head and neck cancer models
when compared to GM-CSF-producing tumor cell vaccines alone (Fu et al. 2015). The efficacy
of STINGVAX depended on STING and was further enhanced by anti-PD-1 treatment. The
TriVax vaccine mixture containing anti-CD40, poly-IC, and a modified CD8* T cell epitope is
used as a vaccine to induce systemic immune responses against tumors. Combination of TriVax
and c-di-GMP showed a synergistic antitumor response against melanoma (Wang & Celis 2015).
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¢-di-GMP combined with an ovalbumin peptide or Listeria-based vaccine enhanced the antitumor
effects of the peripheral vaccine in glioma and breast cancer (Chandra et al. 2014, Ohkuri et al.
2014).

Combination with immune checkpoint blockade. Various immune checkpoint inhibitors com-
bined with STING activation improved antitumor response and survival in rodents. cGAMP com-
bined with anti-PD-L1 or a mixture of anti-PD-1 and anti-CTLA-4 showed a synergistic effect
in controlling murine melanoma growth (Demaria et al. 2015, Wang et al. 2017). Similarly, c-di-
GMP combined with triple checkpoint inhibitors (anti-CTLA-4/PD-1/4-1BB), dithio-c-di-GMP
combined with anti-PD-L1, and ADU-S100 combined with anti-PD-L1 or anti-OX40R all en-
hanced the antitumor effect of immune checkpoint blockade therapy (Ager et al. 2017, Foote et al.
2017, Moore et al. 2016).

Irradiation induced potent antitumor immune responses by activating the ¢cGAS-STING
pathway. Radiation therapy enhanced the effect of anti-CTLA-4 and anti-PD-L1 antibodies in
melanoma and breast cancers (Demaria et al. 2005, Deng et al. 2014a, Twyman-Saint Victor et al.
2015). More than 300 clinical trials combining radiotherapy and immune checkpoint inhibitors
are ongoing.

Tumor vaccines promote T cell priming and enhance the effect of immune checkpoint block-
ade therapy. PC7A nanoparticle vaccines and STINGVAX further improved tumor growth con-
trol and mouse survival when treated together with anti-PD-1 (Fu et al. 2015, Luo et al. 2017).

Virotherapy such as heat-iMVA activates the cGAS-STING pathway and induces antitumor
immune responses. Heat-iIMVA treatment combined with systemic immune checkpoint inhibitors
including anti-CTLA4, anti-PD1, or anti-PD-L1 provided a synergistic antitumor effect in erad-
icating tumors and extending mouse survival (Dai et al. 2017).

Combination with chemotherapy. The chemotherapy drug fluorouracil (SFU) inhibits cancer
cell proliferation by blocking thymidine synthesis and DNA replication. The combination of 5FU
and cGAMP exhibited a synergistic antitumor activity against colon cancer (Li et al. 2016). Fur-
thermore, cGAMP administration alleviated intestinal atrophy, a side effect of SFU. Similarly, the
mouse-specific STING agonist DMXAA synergistically increased cell death of sarcomas when
treated together with cisplatin or cyclophosphamide without aggravating the side effects of cy-
clophosphamide (Siemann et al. 2002). The antitumor effects and the toxicity of combination
therapy involving STING agonists and other chemotherapy drugs require further study.

Combination with other cancer therapies. Activating several innate immune signaling path-
ways may amplify antitumor responses. Co-administration of TLR9-agonist CpG oligodeoxynu-
cleotides and cGAMP displayed synergistic tumor growth inhibition in melanoma and thymoma
(Temizoz etal. 2015). Irradiation combined with STING agonist treatment enhanced immune re-
sponses against colon cancer and pancreatic adenocarcinoma (Baird et al. 2016, Deng et al. 2014b).

Anti-CD20 targets and eliminates B cells by phagocyte-mediated antibody-dependent cell-
mediated cytotoxicity or complement activation. However, in the case of B cell lymphoma, tumor-
associated macrophages display immunosuppressive signatures and express inhibitory Fcy recep-
tors. DMXAA treatment increased stimulatory Fcy receptors on macrophages, allowing B cell
lymphoma clearance by anti-CD20-driven phagocytosis. Priming with DMXAA prior to anti-
CD20 administration significantly enhanced survival in a mouse lymphoma model, effectively
curing 90% of the mice (Dahal et al. 2017).

Chimeric antigen receptor—expressing T cells (CAR T cells) are engineered to recog-
nize tumor-associated antigens. An implanted biopolymer device delivering CAR T cells and
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¢-di-GMP eradicated murine pancreatic cancers and melanomas, whereas infusions of c-di-GMP
or CAR T cells alone were ineffective (Smith et al. 2017). DC maturation and an increased
number of circulating tumor-specific CTLs were only detected with CAR T cell and c-di-GMP
combination treatment.

The mechanism by which combination therapy yields enhanced antitumor immune responses
may vary. Innate immune stimulation with STING agonists promotes tumor antigen—specific
CD8* T cell priming and tumor infiltration; this influx of primed CD8* T cells synergizes with
CAR T cell therapy or with immune checkpoint inhibitors. Several DAMPs, including DNA, may
be released by immunogenic cell death induced by ionizing radiation, tumor-targeting monoclonal
antibodies, or chemotherapy. DAMPs induced by cancer therapy or PRR ligands may amplify in-
nate immune stimulation from STING activation.

FUTURE PERSPECTIVES

Recent studies on the cGAS-STING pathway have significantly advanced our understanding of
pathogen recognition, autoimmune diseases, senescence, and tumor immunity. However, many
questions remain. For example, during mitosis, chromatin is exposed to the cytosol and cGAS
binds to chromatins without pathway activation (Yang et al. 2017). One hypothesis is that cGAS
does not form its catalytically active dimer structure upon binding highly condensed mitotic chro-
mosomes (Andreeva et al. 2017). Other possibilities include the existence of a putative ¢cGAS in-
hibitor during the cell cycle or posttranslational modifications of ¢cGAS. Additional studies are
needed to understand ¢GAS regulation in the nucleus. The common outcome of STING ac-
tivation is type I IFN and proinflammatory cytokine induction, but recent studies also include
autophagy, lysosomal cell death with IL-1 production, and apoptosis as STING-driven events
(Collins et al. 2015, Gaidt et al. 2017, Tang et al. 2016). Investigating additional outcomes of
STING activation and the cross talk between the cGAS-STING pathway and other immune
pathways may provide novel insights into the innate immune system. The critical role of aber-
rant activation of the cGAS-STING pathway during autoinflammatory and autoimmune diseases
suggests that treating these diseases using cGAS and STING inhibitors has great potential. An
active area of future research will be the role of the cGAS-STING pathway in a variety of chronic
inflammatory diseases and senescence- or age-related diseases.

Although activation of ¢cGAS by tumors is evident in many studies, how tumor-derived DNA
is transferred into the cytosol of phagocytes is unclear. In addition, the role of the cGAS-STING
pathway within tumor cells during tumor growth and the antitumor response has not been inves-
tigated. Addressing these questions will provide a deeper understanding of pathway functionality
in tumor cells and also yield knowledge about STING activation as a therapeutic target. As noted
in the previous section, several STING agonists show antitumor efficacy in rodent models and
activate human STING. Development of STING agonists with high affinity and stability will
promote the efficacy of STING-targeting cancer immunotherapy (Corrales et al. 2015). Further
developments and comparisons of STING agonists are needed in rodent models and nonhuman
primates. Furthermore, the therapeutic efficacy and safety of intratumoral and systemic adminis-
tration of STING agonists need to be compared.

Preclinical studies highlighted the importance of the cGAS-STING pathway in tumors and
its potential in cancer immunotherapy. However, additional translational research is necessary
because humans have different cancer biology and immune systems from mouse models; fur-
thermore, individual cancer patients have clinical heterogeneity. More studies in humanized mice
bearing patient-derived xenografts and clinical biopsy samples from STING agonist-treated pa-
tients will shed light on the mechanism and therapeutic efficacy of STING activation in tumors.
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Opverall, several important questions will need to be addressed in the next few years as clinical
trials are advancing. Will certain tumors or tumor subsets be more responsive to STING ago-
nists? Are there predictive biomarkers for therapeutic efficacy and safety? What combination of
immune-modulating agents (e.g., antibodies to PD-1, PD-L1, CTLA-4, or CAR T cells) with
STING agonists will maximize clinical response while minimizing immune toxicity? Future work
elucidating the interplay of innate and adaptive immunity in tumors and testing the efficacy of
STING-targeting agents will lead to more effective cancer therapies.
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