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Abstract

Cancer cells have an increased demand for energy sources to support accel-
erated rates of growth. When nutrients become limiting, cancer cells may
switch to nonconventional energy sources that are mobilized through nutri-
ent scavenging pathways involving autophagy and the lysosome. Thus, sev-
eral cancers are highly reliant on constitutive activation of these pathways to
degrade and recycle cellularmaterials.Here,we focus on theMiT/TFE fam-
ily of transcription factors, which control transcriptional programs for au-
tophagy and lysosome biogenesis and have emerged as regulators of energy
metabolism in cancer. These new findings complement earlier reports that
chromosomal translocations and amplifications involving the MiT/TFE
genes contribute to the etiology and pathophysiology of renal cell carci-
noma, melanoma, and sarcoma, suggesting pleiotropic roles for these fac-
tors in a wider array of cancers. Understanding the interplay between the
oncogenic and stress-adaptive roles of MiT/TFE factors could shed light on
fundamental mechanisms of cellular homeostasis and point to new strategies
for cancer treatment.
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INTRODUCTION

Lysosomes are membrane-bound organelles that function as the primary degradative compart-
ment of eukaryotic cells through breakdown and recycling of a diverse array of intracellular and
extracellular macromolecules (de Duve 2005). Several endocytic trafficking pathways including
phagocytosis, macropinocytosis, clathrin- and caveolin-dependent endocytosis, and independent
endocytosis import macromolecules from outside the cells and the plasma membrane to the lyso-
some for degradation (Conner& Schmid 2003,Di Fiore& von Zastrow 2014,Goldstein&Brown
2015). Similarly, the self-catabolic process known as autophagy serves to capture and deliver di-
verse cytoplasmic content including lipid droplets, damaged or misfolded proteins, and organelles
to the lysosome for elimination (Kaur & Debnath 2015, Mizushima & Komatsu 2011).

In addition to degradation and recycling of nutrients, the lysosome also plays a crucial role in
the regulation of signaling pathways that control cellular anabolism. The mechanistic target of
rapamycin complex 1 (mTORC1), a master regulator of organismal survival and growth, exerts its
activity on the lysosomal surface, suggesting that the lysosome is at the interface between cellular
catabolic and anabolic pathways (Sancak et al. 2010, Zoncu et al. 2011). Recent studies have im-
plicated excessive lysosomal activity as a recurrent feature in cancer. First, cancer cells have higher
metabolic demands than normal cells and thus may rely on induction of the autophagy-lysosome
machinery for survival (Rabinowitz & White 2010). Second, cancer patients experience muscle
atrophy—a syndrome known as cachexia—which is due to excessive muscle protein breakdown
via not only activation of E3 ubiquitin ligases and upregulation of proteasome-mediated degrada-
tion but also induction of the autophagy-lysosome system (Bodine et al. 2001, Gomes et al. 2001,
Sandri et al. 2016). Lastly, hyperactivation of mTORC1 signaling has largely been reported to
promote cell growth in several malignancies (Ilagan & Manning 2016, Saxton & Sabatini 2017,
Yecies &Manning 2011). The advantages and disadvantages of decreased and increased lysosomal
function are outlined in Figure 1.

Autophagy and Lysosome Dysfunction in Cancer

A hallmark of rapidly growing cancer cells is the ability to synthesize biomass at higher rates than
normal cells (DeNicola & Cantley 2015, Lunt & Vander Heiden 2011, Piao & Amaravadi 2016,
Rabinowitz & White 2010). During periods of growth when the supply of external nutrients is
absent or limiting, lysosome-mediated degradation and recycling can contribute precursors to fuel
the generation of new proteins, membrane lipids, DNA, and RNA. For example, fluctuations in
in vivo microenvironment conditions due to poor vascularization can limit nutrient and oxygen
availability to cancer cells, while infiltration of stromal and immune cells further competes with
cancer cells for limited nutrient pools (Davidson et al. 2016, DeNicola & Cantley 2015, Lyssiotis
& Kimmelman 2017, Perera & Bardeesy 2015). Under these conditions, tumor cell–associated
activation of autophagy, which converges on the lysosome, aids in the generation of necessary
building blocks through recycling of damaged or unnecessary cellular components to produce
all classes of cellular macromolecules. For example, lung and pancreatic ductal adenocarcinoma
(PDA) tumors appear to be reliant on constitutive activation of autophagy for supplying essential
nutrients and for removing damaged mitochondria (Guo et al. 2011; Karsli-Uzunbas et al. 2014;
Perera & Bardeesy 2015; Perera et al. 2015; Rao et al. 2014; Rebecca et al. 2017; Strohecker et al.
2013,White 2015; Yang et al. 2011, 2018). Several other cancers, including melanoma, breast, and
prostate cancer, show context- and stage-specific reliance on autophagy during tumor initiation
and progression (Huo et al. 2013, Lock et al. 2011, Santanam et al. 2016,Wei et al. 2011, Xie et al.
2015). Since the final steps of macropinocytosis and autophagy involve fusion with lysosomes for
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Figure 1

The advantages and disadvantages of decreased and increased lysosomal function for cell metabolism. A
decrease in lysosomal function can be beneficial in pathological conditions such as cancer, in which
lysosome-mediated degradation sustains high energy demands and promotes invasiveness and migration of
malignant cells. However, defective lysosomal degradation leads to the accumulation of undigested material
within the lysosomes of individuals affected by lysosomal storage diseases (LSDs) or common
neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, and Huntington’s disease. Conversely,
enhancing lysosomal activity can be beneficial in diseases associated with dysfunctional lysosomes, but can be
deleterious in conditions associated with excessive catabolism (such as cachexia) and in malignancies relying
on lysosomal metabolism for cell growth.

efficient degradation of cargo, these studies collectively highlight the importance of nutrient scav-
enging in cancer and establish lysosomal catabolism as essential for removing damaged organelles
and supplying the building blocks for tumor growth (Guo et al. 2016).

Additional roles for autophagy in cancer promotion have also emerged that are distinct from
its primary function in mediating autodigestion. These processes either do not require the forma-
tion of a double-membrane autophagosome or do not terminate at the lysosome. Such autophagy-
related processes have been reviewed elsewhere, including secretion, LC3-associated phagocyto-
sis, regulation of inflammation, and immune signaling (Cadwell &Debnath 2018,Heckmann et al.
2017, Levine & Deretic 2007, Monkkonen & Debnath 2018, Subramani & Malhotra 2013).

The MiT/TFE Family of Transcription Factors

The microphthalmia/transcription factor E (MiT/TFE) family of transcription factors (TFs) en-
codes four distinct genes:MITF,TFEB,TFE3, and TFEC (Hemesath et al. 1994). All family mem-
bers share a common structure, consisting of a basic helix-loop-helix (bHLH) leucine zipper (LZ)
dimerization motif, a transactivation domain, and an identical basic region required for DNA
binding (Beckmann et al. 1990, Sato et al. 1997, Steingrímsson et al. 2004).

A new role for the MiT/TFE family proteins emerged in 2009 following the discovery that
TFEB recognized and bound an E box–related consensus element found in the promoter region
of many lysosomal genes, including those encoding hydrolases, lysosomal membrane permeases,
and lysosome-associated proteins (Napolitano&Ballabio 2016,Palmieri et al. 2011, Sardiello et al.
2009, Settembre et al. 2013b). This element was termed the coordinated lysosomal expression and
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regulation (CLEAR) element and was required for TFEB-mediated induction of gene expression.
In line with the high level of sequence conservation of theDNA-binding region amongMiT/TFE
family members, follow-up studies showed that MITF and TFE3 could also bind the CLEAR
element and regulate lysosome biogenesis in several different cell types (Martina et al. 2014,Ploper
et al. 2015).

In addition to regulating lysosomal genes, TFEB was shown to control the expression of
several genes involved in autophagy, including those associated with autophagosome initiation
(BECN1, WIPI1, ATG9B, and NRBF2), elongation (GABARAP, MAP1LC3B, and ATG5), sub-
strate capture (SQSTM1), and autophagosome trafficking and fusion with lysosomes (UVRAG and
RAB7), which harbor CLEAR elements in their promoters (Palmieri et al. 2011, Settembre et al.
2011). Thus, TFEB is a true master regulator of cellular catabolism, capable of controlling the
cell’s ability to select and capture substrates via autophagy and to degrade them via the lysosome.

This procatabolic activity of MiT/TFE factors occurs in most cells and has tissue- and organ-
specific roles. For example, in the liver, in response to fasting, TFEB promotes autophagy and
lipid catabolism via activation of a gene expression program that includes the master metabolic
TF PGC1α, as well as many of its downstream genes involved in fatty acid oxidation and mito-
chondrial biogenesis (Settembre & Ballabio 2014, Settembre et al. 2013a). Liver-specific deletion
of Tfeb rendered mice hypersensitive to the effects of a high-fat diet, whereas its overexpression
promoted resistance to lipid accumulation in an autophagy-dependent manner. The regulatory
action of TFEB in lipid metabolism is also conserved in Caenorhabditis elegans (O’Rourke &
Ruvkun 2013, Settembre et al. 2013a). In addition, muscle-specific TFEB deletion impairs the
cell’s ability to adapt energy metabolism to physical exercise (Mansueto et al. 2017). These studies
provided strong evidence that regulation of the autophagy-lysosome system may be a key aspect
of metabolic adaptation, both at the cellular and at the organismal level.

Regulation of MiT/TFE Factors

The importance of lysosomal function for maintaining cellular and tissue health suggested that
there must be mechanisms in place by which cells can rapidly and adaptively boost lysosome num-
ber or activity in response to cellular need. Interestingly, in the presence of nutrients, TFEB was
shown to be in the cytoplasm but rapidly translocates into the nucleus in response to nutrient
starvation (Settembre et al. 2011). This observation was followed by the key discovery that path-
ways involved in nutrient sensing and growth control regulate the MiT/TFE factors (Martina
et al. 2012, 2014; Peña-Llopis et al. 2011; Roczniak-Ferguson et al. 2012; Settembre et al. 2012).
This process is primarily regulated by mTORC1, which, once activated by nutrients, phospho-
rylates TFEB at critical serine residues, promoting its cytoplasmic localization (Martina et al.
2012, Roczniak-Ferguson et al. 2012, Settembre et al. 2012). Conversely, nutrient depletion in-
hibits mTORC1 and limits TFEB phosphorylation. Dephosphorylation of TFEB is mediated by
the phosphatase calcineurin (CaN), which is activated following TRPML1-mediated lysosomal
calcium release (Medina et al. 2015) and enables TFEB to translocate into the nucleus. Physi-
cal exercise also activates CaN, thus linking TFEB-mediated autophagy induction to the health
benefits of exercise (Mansueto et al. 2017, Medina et al. 2015).

Along with mTORC1, other growth-regulating kinases such as MAPK kinase (MEK)/
extracellular signal-regulated kinase (ERK) and glycogen synthase kinase 3 (GSK3) also affect
MiT/TFE nuclear localization (Marchand et al. 2015, Ploper et al. 2015, Settembre et al. 2011).
Notably, acute inhibition of mTORC1 via catalytic inhibitors completely abolished TFEB phos-
phorylation, leading to its rapid nuclear translocation, suggesting that mTORC1 is predominant
with respect to other kinases in regulating TFEB activity (Settembre et al. 2012). Follow-up
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studies in several cellular systems showed that the TFEB serine residues phosphorylated by
mTORC1 are conserved in MITF and TFE3, whose subcellular localization in response to nutri-
ent starvation and mTORC1 inhibition is regulated in a similar way (Martina et al. 2014). Thus,
in normal cells, anabolic (mTORC1 signaling) and catabolic (MiT/TFE activation) pathways are
mutually exclusive.

Recent studies revealed that MiT/TFE proteins, which are substrates of mTORC1, are in turn
able to reciprocally regulatemTORC1 activity, thus identifying anMiT/TFE-mTORC1 feedback
loop (Di Malta et al. 2017). Mechanistically, MiT/TFE factors strongly induce the expression of
RRAGD, the gene encoding RagD, one of the four mammalian Ras-related small GTP-binding
proteins called Rag GTPases (Kim et al. 2008, Sancak et al. 2008). Unlike Ras-related and most
other small G proteins, Rags exist as heterodimers, where the highly similar RagA and RagB bind
to either RagC or RagD (Schürmann et al. 1995, Sekiguchi et al. 2001). In response to amino
acids, Rags switch to an active conformation in which RagA or B is GTP loaded and RagC or
D is GDP loaded. Active Rag GTPases subsequently facilitate mTORC1 relocalization from the
cytoplasm to the lysosomal surface, which is necessary for mTORC1 activation (Buerger et al.
2006; Kim et al. 2008; Sancak et al. 2008, 2010). Consequently, transcriptional induction of RagD
promotes Rag assembly on the lysosomal surface, enabling mTORC1 recruitment once nutri-
ents become available. Thus, MiT/TFE TFs and mTORC1 are involved in a feedback loop by
which mTORC1 inhibits TFEB nuclear localization and function, and in turn, TFEB regulates
mTORC1 lysosomal recruitment and activity through the RagD GTPase (Di Malta et al. 2017).
Figure 2 summarizes the regulation of MiT/TFE factors and their downstream pathways.

Autophagy

MiT/TFE

P

MiT/TFE

mTORC1

CaN

Lysosome
14-3-3 LAMP1/2

V-ATPase
Hydrolases
NPC1/2

MAP1LC3B
SQSTM1
ATGs
BECLIN1

mTORC1
RagD GTPase

NUCLEUS

GSK3β

MEK/ERK

MiT/TFE

CLEAR

Figure 2

Regulation and downstream targets of MiT/TFE transcription factors. MiT/TFE proteins are negatively
regulated through phosphorylation of conserved serine residues by mTORC1 as well as GSK3β and ERK,
leading to 14-3-3 binding and cytoplasmic retention. Dephosphorylation by CaN enables the nuclear
translocation of MiT/TFE proteins and consequent binding to CLEAR sequences present in their target
genes. Pathways and cellular processes regulated by MiT/TFE factors include autophagy, lysosomal
biogenesis, and mTORC1 signaling through upregulation of RagD GTPase. Abbreviations: ATGs,
autophagy-related proteins; CaN, calcineurin; CLEAR, coordinated lysosomal expression and regulation;
ERK, extracellular signal-regulated kinase; GSK3β, glycogen synthase kinase 3 beta; MEK, MAPK kinase;
MiT/TFE, microphthalmia/transcription factor E; mTORC1, mechanistic target of rapamycin complex 1.
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Role of MiT/TFE Proteins as Oncogenes

MiT/TFE proteins have established roles in promoting tumorigenesis (Haq & Fisher 2011,
Kauffman et al. 2014). Genomic amplifications of MITF are found in 5–20% of melanomas
(Cancer Genome Atlas Res. Netw. 2015), while translocations and rearrangements of TFE3 and
TFEB are found in pediatric renal cell carcinoma (RCC) and alveolar soft part sarcoma (ASPS)
(Argani et al. 2001,Ramphal et al. 2006). In addition, a recent study showed upregulated expression
of MiT/TFE factors in PDA (Perera et al. 2015).

RENAL CELL CARCINOMA

RCC is the most common form of kidney cancer, and it includes multiple histopathologically
distinct subtypes that originate from the renal tubular epithelium (Linehan et al. 2010). RCCs
include clear cell carcinoma (65–70%), papillary RCC (15–20%), and chromophobe RCC (5–
10%) (Amin et al. 2002). Several mutations in genes involved in metabolism (VHL, SDHB, SDHC,
SDHD, and FH), mTOR signaling (FLCN, TSC1, TSC2, and PTEN) (Linehan & Ricketts 2013),
tyrosine kinase receptor–mediated signaling (MET) (Schmidt et al. 1997), and Polycomb repressor
complex proteins (BAP1) (Farley et al. 2013,Peña-Llopis et al. 2012) are associated with hereditary
RCC.

Approximately 5% of sporadic RCC tumors define a rare subgroup termed translocation-RCC
(tRCC), which involves MiT/TFE genes (Figure 3). These chromosomal abnormalities include
translocations and rearrangements involving TFE3 located centromerically on the short arm of
the X chromosome (Xp11) and, less commonly, TFEB (Bruder et al. 2004, Cancer Genome Atlas
Res. Netw. 2013). Translocations involving TFE3 were first discovered in the mid-1990s (Shipley
et al. 1995, Sidhar et al. 1996,Weterman et al. 1996) and are among the earliest reported cancer-
associated gene fusions. Unlike the common histopathological subtypes of RCC, tRCC is most
common in children, representing 20–50% of all pediatric RCC cases (Kauffman et al. 2014). The
morphologic spectrum of tRCC is diverse and has potential overlap with common RCC subtypes
such as clear cell and papillary RCC. tRCC-associated TFE3 gene fusions can occur with several
partners including PRCC, ASPSCR1, SFPQ, NONO, and CLTC (Kauffman et al. 2014, Linehan
et al. 2010). ASPSCR1-TFE3 and SFPQ-TFE3 fusions are not restricted to RCC and were origi-
nally identified in ASPS (Argani et al. 2001) and in a subset of benign tumors known as perivascu-
lar epithelioid cell neoplasms (Tanaka et al. 2009), respectively. For each of these fusion proteins,
rearrangement occurs within an intron of either gene partner, but the specific intron involved
can vary between patients, resulting in different messenger RNA (mRNA) isoforms consisting of
the N-terminal portion of the fusion partner linked to C-terminal coding exons of TFE3. TFE3
fusion proteins vary considerably in size—47.8 kDa for PRCC-TFE3 and up to 136.1 kDa for
CLTC-TFE3—however, the fusion proteins always retain a 280–amino acid C-terminal portion,
harboring the bHLH-LZ dimerization, DNA-binding domain, and putative nuclear localization
signal of TFE3 (Kauffman et al. 2014).

TFEB-associated tRCCs are less common than TFE3 tRCCs and result from a gene fusion be-
tween TFEB on chromosome 6p21 and the metastasis-associated lung adenocarcinoma transcript
1 gene known as MALAT1 on chromosome 11q12 (Davis et al. 2003). MALAT1-TFEB fusion
breakpoints generally are located before the start codon in exon 3 of the TFEB coding sequence,
thus resulting in full retention of TFEB under the control of the strong MALAT1 promoter.
TFEB-tRCC patients usually have a better prognosis than TFE3-tRCC patients. More recently,
a comprehensive genomic analysis of 161 primary papillary RCCs led to the identification of novel
fusion partners for both TFE3 and TFEB, including RBM10 andDVL2 for TFE3 and COL21A1
and CADM2 for TFEB (Cancer Genome Atlas Res. Netw. 2016).
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Figure 3

TFE3 and TFEB gene fusions. Exons, coding sequences, and functional domains of (a) TFE3 and (b) TFEB.
Positions of known fusions with the indicated genes are shown with lines and arrows. Abbreviations: bHLH,
basic helix-loop-helix domain; LZ, leucine zipper domain; mRNA, messenger RNA; TD, transactivation
domain.

The mechanisms mediating the oncogenic effects of TFE fusions in RCC remain unclear. It
has been postulated that chimeric proteins resulting from TFE3 fusions retain some activity of
the fusion partner (Kauffman et al. 2014). For example, most of the TFE3 fusion partners ap-
pear to have regulatory roles in either mRNA splicing (NONO, SFPQ, and PRCC) or mitosis
(PRCC and CLTC) that could promote cellular transformation. For instance, fusion of TFE3
with genes associated with mRNA splicing may ensure constitutive nuclear localization of the
fusion protein. An alternative hypothesis is the so-called dysregulated activity model, according
to which the fusion leads to upregulation of oncogenic activity already present in the wild-type
protein. Consistent with this idea, all TFE3 fusion partners display constitutively active gene pro-
moters, and therefore, TFE3 fusion proteins are usually expressed at much higher levels than
wild-type TFE3 (Argani et al. 2003b; Clark et al. 1997; Weterman et al. 1996, 2000). This is also
the case forMALAT1-TFEB, sinceMALAT1 provides a much stronger promoter without chang-
ing the protein-coding sequence of TFEB (Kuiper et al. 2003). No MITF-associated fusions have
been reported as causative of RCC; however, a specificMITF germline gain-of-function mutation
(E318K) confers an increased risk for developing RCC or melanoma (Bertolotto et al. 2011).

Several patient tumor–derived cell line models of tRCC (Shipley et al. 1995, Sidhar et al. 1996,
Weterman et al. 1996) have been developed to study key features of the disease. More recently,
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a conditional, kidney-specific, TFEB-overexpressing mouse line was generated, which displayed
phenotypic features commonly observed in patients with tRCC such as cysts, clear cells, fibro-
sis, and multilayered basement membranes (Calcagnì et al. 2016). Starting from postnatal day 30
(P30), this mouse model also developed papillary carcinoma that was eventually associated with
hepatic metastases from P90. Thus, this mouse line well recapitulates the human disease, further
supporting the hypothesis that tRCC tumorigenesis is mediated by increased activity ofMiT/TFE
genes. Furthermore, these mice represent a valuable tool for studying the pathogenic mechanisms
underlying tRCC and a model for testing new therapeutic strategies.

ALVEOLAR SOFT PART SARCOMA

ASPS is a rare malignant tumor generally arising in the skeletal muscle of the lower limbs in ado-
lescents and young adults or in the head and neck in children. Accounting for approximately 1%
of all soft tissue sarcomas, all ASPS tumors harbor a characteristic chromosomal translocation re-
sulting in oncogenic fusion or rearrangement of TFE3with ASPSCR1 on chromosome 17 (Argani
et al. 2001). First identified in ASPS, ASPSCR1-TFE3 fusions were later discovered in a subset of
RCC. The ASPSCR1-TFE3 fusion replaces the N-terminal portion of TFE3 with ASPSCR1 but
retains the TFE3 DNA-binding domain. There are two forms of the ASPSCR1-TFE3 chimera,
involving an in-frame fusion of ASPSCR1 to either exon 6 of TFE3 (type 1) or exon 5 (type 2),
which retains the transactivation domain of TFE3 (Figure 3). Similar to tRCC-specific TFE3 fu-
sion proteins, ASPSCR1-TFE3 has a predominant nuclear localization (Argani et al. 2003a) and
is a stronger transcriptional activator than the native TFE3.

ASPS tumors display characteristic alveolar histology and an abundant vascular network.
Despite being a slow-growing tumor, ASPS can metastasize to the lung and brain. Several
angiogenesis-associated genes are found to be upregulated in ASPS, and patients respond to anti-
angiogenesis inhibitors (Azizi et al. 2006, Ghose et al. 2012, Stacchiotti et al. 2009). However,
only a few angiogenesis-associated genes appear to be direct transcriptional targets of ASPSCR1-
TFE3, as determined by chromatin immunoprecipitation analysis (Kobos et al. 2013), suggest-
ing that additional molecular pathways or microenvironment factors may contribute to ASPS
pathophysiology. Two studies have developed in vivo mouse models to study the pathophysiology
of ASPS. Goodwin et al. (2014) developed a tamoxifen-inducible conditional ASPSCR1-TFE3
(type 2 variant) mouse model that developed spatially restricted tumors within the intracranial
vault, but no tumors in the skeletal muscle—the most common site of human ASPS. A further lim-
itation of this model was the lack of vascular invasion and metastasis, often seen in human ASPS.
Nevertheless, mouse intracranial tumors in this GEM (genetically engineered mouse) model dis-
played characteristic histological features and overlapping transcriptional profiles with human
ASPS. Interestingly, the development of ASPS-like tumors within the cranial vault was proposed
to be associated with a preference for high environmental lactate, which was shown to be taken
up by tumor cells and to promote proliferation, highlighting a previously unrecognized environ-
mental factor that contributes to ASPS development.

An additional ex vivomodel of ASPS developed byTanaka et al. (2017) used primarymouse em-
bryonic osteochondrogenic progenitors (eMCs), which were in vitro transduced with ASPSCR1-
TFE3 followed by subcutaneous injection. These xenografts displayed characteristic histological
features of human ASPS and, importantly, showed prominent angiogenesis; over 50% metasta-
sized to the lung. Interestingly, abundant mitochondria and lysosomes were observed in ASPS
xenografts, and gene set enrichment analysis of microarray data generated from ASPS xenografts
and ASPSCR1-TFE3-expressing eMCs showed a statistically significant upregulation of
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lysosome and autophagy signatures. Thus, the cell of origin and the tissue microenvironment
likely have complementary roles in ASPS initiation and progression.

MELANOMA

Melanoma is an aggressive type of cancer that arises within any anatomic territory occupied
by melanocytes. The most common type, the cutaneous melanoma, develops from epidermal
melanocytes of the skin. In rare cases, cutaneous melanoma can also originate from melanocytes
located in the choroidal layer of the eye or in the mucosa of respiratory, gastrointestinal, or geni-
tourinary systems (Tsao et al. 2012). Approximately 50% of melanoma cases harbor a V600E acti-
vating mutation in the BRAF kinase, resulting in hyperactivation of the MAPK signaling pathway
(Davies et al. 2002, Hodis et al. 2012). Amplification of theMITF gene was detected in 5–20% of
melanoma cases, and these tumors appear to have better prognosis (Cancer Genome Atlas Res.
Netw. 2015).

MITF is a melanocyte lineage determinant, and if overexpressed, together with SOX10
and PAX3, it can directly reprogram human and mouse fibroblasts into functional melanocytes
(Tachibana et al. 1996, R. Yang et al. 2014). MITF-associated tumors are usually caused by gene
amplifications; however, in rarer cases, somatic mutations ofMITF have also been reported.These
mutations are generally located in the MITF transactivation domain, suggesting that increased
transcriptional activity of MITF is sufficient to trigger tumorigenesis (Cronin et al. 2009). In ad-
dition, two independent studies identified a rare oncogenicMITFE318K mutation in patients with
familial melanoma and a small fraction of sporadic cases (Bertolotto et al. 2011, Yokoyama et al.
2011). Interestingly, these patients are also predisposed to developingRCC (Bertolotto et al. 2011).
TheMITFE318K mutation occurs at a site previously described as a target of MITF SUMOylation
(addition of a small ubiquitin-like modifier) (Miller et al. 2005) and represents a gain of function
of MITF activity.

It has been proposed that the levels of MITF can fluctuate within a tumor to potentially influ-
ence activation of diverse cellular programs and response to therapy (Ennen et al. 2015,Hoek et al.
2008, Konieczkowski et al. 2014,Müller et al. 2014, Tirosh et al. 2016). High expression of MITF
in melanoma cells is associated with differentiation and proliferation, while low levels favor stem
cell–like, invasive potential and intrinsic resistance to multiple targeted therapies. Fine-tuning of
MITF levels and activity in melanoma likely involves the integration of microenvironmental cues,
epigenetic states, and activities of upstream signaling pathways.

PANCREATIC DUCTAL ADENOCARCINOMA

PDA is among the most lethal of cancers with a five-year survival rate of only 6% following initial
diagnosis (Maitra & Hruban 2008, Ryan et al. 2014, Ying et al. 2016). Activating mutations in the
KRAS oncogene occur in more than 90% of patients with PDA and are early initiating events in
this disease, while frequent inactivating mutations in TRP53,CDKN2A, and SMAD4 occur during
later stages of malignant progression. Constitutive activation of autophagy and increased rates of
macropinocytosis, which is responsible for the bulk uptake of extracellular material, most notably
serum albumin, help to maintain metabolic homeostasis in PDA cells and tumors (Commisso et al.
2013; Davidson et al. 2017; Kamphorst et al. 2013, 2015; Palm et al. 2015; Yang et al. 2011; A. Yang
et al. 2014). Recently, increased mRNA and protein expression of MITF, TFE3, and TFEB was
detected in PDA cell lines and patient tumors (Perera et al. 2015). Importantly, prominent nuclear
staining of these TFs was observed in PDA, similar to that seen in RCC and ASPS. Functionally,
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MiT/TFE factors were shown to control autophagy in PDA and promoted an increase in lysosome
biogenesis (discussed below).

DOWNSTREAM MECHANISMS IMPLICATED IN THE PATHOGENESIS
OF MiT/TFE-DEPENDENT TUMORS

The ability of MiT/TFE factors to regulate lysosomal biogenesis and mTORC1 signaling sug-
gests that these pathways may be dysregulated in MiT/TFE-associated malignancies. In addi-
tion, co-occurring genetic alterations and tissue-specific microenvironmental factors likely influ-
ence tumor progression in the different tumor types associated with MiT/TFE dysregulation.
Here we describe established and emerging roles of MiT/TFE proteins in the regulation of pro-
tumorigenic processes in cancer.

Autophagy and mTORC1 Signaling

Constitutive activation of autophagy is a hallmark of PDA (Yang et al. 2011). In cell lines and
patient-derived PDA cultures, MiT/TFE proteins were found to be upregulated and required
for maintaining high levels of autophagy and lysosome gene expression (Perera et al. 2015). Ac-
cordingly, PDA cells display a 12-fold increase in lysosome biogenesis. Importantly, MiT/TFE
proteins bypass mTORC1-mediated surveillance and are constitutively localized in the nucleus
of PDA cells regardless of nutrient availability. Boosted lysosome-mediated catabolic activity in
PDA tumors was required for maintenance of intracellular amino acid levels. Importantly, inac-
tivation of MiT/TFE proteins in PDA cells results in downregulation of autophagy and lyso-
some genes, defective lysosomal function, and autophagic flux, as well as decreased degradation of
macropinocytosis-derived proteins, culminating in the inhibition of tumor growth both in vitro
and in vivo.

PDA cells and tumors also show high rates of macropinocytosis, which mediates uptake of
extracellular serum albumin and potentially other external fuel sources. Carbon tracing of 13C-
labeled albumin taken up via macropinocytosis in PDA cell lines and in vivo tumors revealed
specific labeling of multiple metabolite species, indicating that lysosome-mediated digestion of al-
bumin is followed by the utilization of the resulting free amino acids in the cytoplasm (Commisso
et al. 2013, Davidson et al. 2017, Kamphorst et al. 2015). Collectively, these data show that by
governing both autophagic flux and lysosomal catabolism, the MiT/TFE proteins support an in-
tegrated cellular clearance program that enables efficient processing of cargo from autophagy as
well as macropinocytosis.

More recently, the discovery thatMiT/TFE factors are positive regulators of mTORC1 signal-
ing has led to the identification of a novel pathogenetic mechanism prevalent among MiT/TFE-
associated malignancies (Di Malta et al. 2017). Specifically, tumors associated with hyperactiva-
tion of MiT/TFE factors (melanoma, tRCC, and PDA) display constitutive induction of RRAGD
and, to a lesser extent, RRAGC transcripts. For example, analysis of patient metastatic melanoma
TCGA (The Cancer Genome Atlas) data and human melanoma cell lines identified a correlation
between MITF and RRAGD gene expression levels. Similarly, increased RRAGD transcript lev-
els were detected in kidney tissue and primary kidney cells from a mouse model of RCC driven
by TFEB overexpression (TFEB-RCC). As Rag GTPases are responsible for mTORC1 lysoso-
mal recruitment and activation, increased RagD levels in tumors correlated with hyperactivation
of mTORC1 signaling and proliferation. Importantly, treatment of TFEB-RCC mice with an
mTOR inhibitor or silencing of RRAGD in an MITF-dependent melanoma cell line suppressed
proliferation or reduced in vivo tumor growth, respectively. Together, these findings highlight
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RRAGD as a new transcriptional target associated with the pathogenesis of MiT/TFE-dependent
tumors (Di Malta et al. 2017).

Interestingly, elevated RRAGD levels were also identified among a cohort of 332 genes iden-
tified as direct targets of ASPSCR1-TFE3 in ASPS. Kobos et al. (2013) performed transcrip-
tome analysis in cells expressing the ASPSCR1-TFE3 fusion protein and in ASPS tumor samples.
Among the differentially upregulated genes were several autophagy and lysosome genes, as well as
RRAGD. Further studies will be necessary to unravel the contribution of autophagy and lysosome
function and RRAGD upregulation in ASPS and to evaluate mTORC1 signaling activation and
its role in the growth of this cancer, as well as in additional cancer types.

Angiogenesis. Angiogenesis is a physiological process through which new capillaries grow from
preexisting blood vessels; it is associated with tumor invasiveness and metastasis (De Palma et al.
2017, Potente et al. 2011). A role for MiT/TFE factors in the regulation of angiogenesis was first
hypothesized following the observation that Tfeb knockout mice die prenatally due to a defect in
placental vascularization (Steingrímsson et al. 1998). A recent study by Fan et al. (2018) showed no
significant differences between control mice and mice overexpressing Tfeb in endothelial cells un-
der baseline conditions.However, transgenicmice presented enhanced blood flow during recovery
from ischemia, which was mediated by increased expression of proangiogenic functions, includ-
ing enhanced migration, enhanced tube formation, and inhibited apoptosis, whereas endothelial-
specific Tfeb conditional knockout mice displayed the opposite phenotype. These effects required
functional AMPKα and autophagy, as inhibition of these pathways blunted Tfeb-mediated proan-
giogenic functions. Interestingly, ischemia increased Tfeb expression levels, while treatment with
proangiogenic stimuli promoted its nuclear localization, suggesting that TFEB may function as a
homeostatic regulator of angiogenesis.

In addition to TFEB, MITF has also been found to positively regulate angiogenesis. This oc-
curs through direct transcriptional control of hypoxia inducible factor 1 (HIF1α) (Buscà et al.
2005). HIF1α in turn induces the expression of several genes implicated in the response to hy-
poxia, including VEGF—the prototypic angiogenic factor.Moreover,MITF regulates the expres-
sion of the antiapoptotic gene BCL2 (McGill et al. 2002), which increases VEGF levels by both
inducing HIF1α expression (Trisciuoglio et al. 2011) and enhancing the transcriptional activity
of STAT3 (Kaneko et al. 2007). A direct role for TFE3 in the regulation of angiogenesis has not
been described.However,ASPSCR1-TFE3-driven ASPS is a highly vascularized tumor,which re-
sponds to antiangiogenic therapy (Lazar et al. 2007, Zhou et al. 2017).While several angiogenesis-
associated genes were shown to be upregulated in ASPS and are unique to this sarcoma (Lazar et al.
2007), only a few appear to be direct targets of ASPSCR1-TFE3 (Kobos et al. 2013). ASPSCR1-
TFE3-mediated regulation of receptor tyrosine kinase–dependent proangiogenic pathways may
provide an indirectmechanism for activation of angiogenesis downstream ofTFE3 fusion proteins
in ASPS and tRCC tumors.

Dysregulation ofWNT signaling.Dysregulation ofWNT signaling has been reported in RCC,
but the relevance of this alteration in disease progression has remained elusive (Xu et al. 2016).
The recent generation of a Tfeb conditional transgenic model, which closely recapitulates human
RCC, has helped to dissect the signaling pathways associated with tRCC (Calcagnì et al. 2016).
Transcriptomic analysis of kidney tumors from these mice revealed a significant induction of
Wnt pathway components (Axin2, Fzd3, Rnf146, and Kdm6a) and direct target genes (Ccnd1 and
Myc). Additionally, increased protein levels of β-catenin and inactivation of Gsk3β were observed
in several tumors. Accordingly, treatment with Wnt pathway inhibitors significantly attenuated
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tumor growth, suggesting that targetingWNT signaling could be a therapeutic approach in TFE
tRCC (Calcagnì et al. 2016).

Lysosomal exocytosis.Tumor cells must break down basement membranes and extracellular
matrices to invade surrounding tissues prior to metastasizing to secondary organ sites (Eddy
et al. 2017). Lysosomal exocytosis—a process whereby lysosomes dock, subsequently fuse with
the plasma membrane, and secrete their contents into the extracellular space (Cheng et al. 2014,
Medina et al. 2011, Polishchuk et al. 2014)—mediates plasma membrane repair upon mechanical
injury (Andrews et al. 2014, Jimenez & Perez 2017) and remodeling of the extracellular matrix.
This pathway has an important role in several physiological processes, including bone resorption
by osteoclasts, organ development, and branching morphogenesis (Naegeli et al. 2017, Settembre
et al. 2013b). Lysosomal exocytosis can be triggered by changes in cellular calcium levels (Cheng
et al. 2015,Reddy et al. 2001). Increased expression ofTFEB has been shown to promote lysosomal
exocytosis through transcriptional regulation of the lysosomal Ca2+ transporter TRPML1.

Cancer cells can also breach local basement membranes via lysosomal exocytosis to transmi-
grate to other tissues (Olson & Joyce 2015). For example, the extralysosomal functions of the
cysteine cathepsin family of lysosomal proteases include the degradation and turnover of the ex-
tracellular matrix; activation and processing of growth factors, cytokines, and chemokines; and
shedding of cell-cell adhesion molecules, all of which promote tissue invasion and metastases. It
remains to be determined whether cancers harboring increased MiT/TFE-dependent lysosome
activity utilize this pathway to promote invasion and metastasis through lysosomal exocytosis and
the release of luminal proteases.

Cell fate determination.Master TFs often control the specification of tissue lineage, the estab-
lishment of cell types, and their differentiation status within a given organ. Evidence in support of
MiT/TFE factors controlling lineage commitment and differentiation of normal cells in several
organs (Ferron et al. 2013, Hershey & Fisher 2004, Leeman et al. 2018, Shibahara et al. 2000)
suggests that these factors may also regulate cell fate in cancer. For instance,MITF is a key deter-
minant of melanocyte differentiation and regulates the expression of numerous genes associated
with pigmentation and melanocyte differentiation (Steingrímsson et al. 2004).

Differentiation and maintenance of several additional cell types in the body, including the reti-
nal pigment epithelium (RPE) (Shibahara et al. 2000), mast cells (Kitamura et al. 2002, Qi et al.
2013, Steingrímsson et al. 1994), and osteoclasts (Ferron et al. 2013, Hershey & Fisher 2004,
Steingrímsson et al. 2002), are dependent on MiT/TFE factors. A common theme among these
cell types is a role for lysosomes in executing their normal functions: phagocytosis and the degra-
dation of photoreceptor outer segment membranes by the RPE; the release of granules containing
cytokines, histamines, and proteases in mast cells; and bone resorption in osteoclasts.

THERAPEUTIC IMPLICATIONS

The diverse roles of MiT/TFE proteins in promoting tumorigenesis make these TFs and their
downstream pathways important targets for generating anticancer agents. To date, several stud-
ies using in vitro and in vivo tumor models have shown that targeting autophagy and lysosome
function significantly inhibits tumor growth (White 2015). For example, over 40 currently on-
going clinical trials incorporate the lysosomal inhibitor hydroxychloroquine (HCQ) in the treat-
ment of a diverse array of tumor types (Perera & Bardeesy 2015). Most recently, treatment of
31 preoperative PDA patients with HCQ and gemcitabine resulted in a significant increase in
overall survival (Boone et al. 2015). Importantly, increased LC3II staining in isolated peripheral
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blood mononuclear cells posttreatment provided clear evidence of autophagy inhibition in vivo
in responding patients. Results from ongoing trials of HCQ in combination with chemother-
apy (gemcitabine/Abraxane® and FOLFIRINOX) in PDA are highly anticipated. The success of
autophagy-lysosome inhibition against an array of tumor types including glioblastoma, myeloma,
prostate cancer, and breast cancer highlights the broader importance of this pathway in promot-
ing tumorigenesis (Mahalingam et al. 2014, Rangwala et al. 2014, Vogl et al. 2014). It remains to
be determined whether MiT/TFE proteins function in these cancer settings and whether their
activation status represents a biomarker of response.

A further implication of recent studies is that MiT/TFE factors can function upstream of
mTORC1 and stimulate its activity through a feedback mechanism (DiMalta et al. 2017). Accord-
ingly, mTORC1 pathway activation was shown to be higher in tRCC than in non-tRCC (Argani
et al. 2010). Several clinical trials incorporating mTOR inhibitors as both first- and second-line
therapies are underway in RCCs associated with poor prognosis (Sánchez-Gastaldo et al. 2017).
These treatments have shown significant improvement in overall survival. However, the presence
of an MiT/TFE feedback mechanism may confer resistance to mTOR inhibitors in some set-
tings. Thus, simultaneous suppression of several pathways downstream of MiT/TFE factors with
next-generation inhibitors, such as the recently described mTOR RapaLink compound (Rodrik-
Outmezguine et al. 2016), and more potent lysosome inhibitors (McAfee et al. 2012, Rebecca et al.
2017), could confer enhanced efficacy in MiT/TFE-dependent cancers.

CONCLUSIONS

Cancer-associated alterations of MiT/TFE genes in subsets of RCC, melanoma, and ASPS first
established these genes as bona fide oncogenes. As outlined here,MiT/TFE proteins are linked to
several protumorigenic pathways, which may be activated in a context-dependent manner based
on tissue lineage, co-occurring genetic alterations, and microenvironmental conditions. The re-
cent discovery that MiT/TFE proteins regulate autophagy, lysosome biogenesis, and mTORC1
activation suggests that these TFs may be broadly implicated in a wider array of cancers than
previously anticipated. Further defining the full cohort of interacting partners and transcriptional
targets of MiT/TFE proteins may help pinpoint the specific MiT/TFE-dependent gene pro-
grams activated in different tissues and states. Similarly, continued characterization of upstream
signaling cascades that control MiT/TFE levels, stability, localization, and activity may inform the
generation of novel therapeutic strategies to switch off MiT/TFE in cancer cells.
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