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Abstract

Aging is a major risk factor for many types of cancer, and the molecular
mechanisms implicated in aging, progeria syndromes, and cancer pathogene-
sis display considerable similarities. Maintaining redox homeostasis, efficient
signal transduction, and mitochondrial metabolism is essential for genome
integrity and for preventing progression to cellular senescence or tumori-
genesis. NAD™ is a central signaling molecule involved in these and other
cellular processes implicated in age-related diseases and cancer. Growing
evidence implicates NAD™ decline as a major feature of accelerated aging
progeria syndromes and normal aging. Administration of NAD™ precur-
sors such as nicotinamide riboside (NR) and nicotinamide mononucleotide
(NMN) offer promising therapeutic strategies to improve health, progeria
comorbidities, and cancer therapies. This review summarizes insights from
the study of aging and progeria syndromes and discusses the implications
and therapeutic potential of the underlying molecular mechanisms involved
in aging and how they may contribute to tumorigenesis.
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INTRODUCTION

Aging is the leading risk factor for many diseases including cancer. Hallmarks of aging (Lopez-Otin
etal. 2013) and cancer have recently been proposed (Hanahan & Weinberg 2011). The identifi-
cation of hallmarks of aging and associated disease states is a key first step toward understanding
complex disease processes. Metabolic decline, one hallmark of aging, can lead to obesity, insulin
resistance, oxidative stress, DNA damage, and tumorigenesis (Caliskan et al. 2018, Giovannucci
et al. 2010, Ligibel 2012, Nawab et al. 2017, Renehan et al. 2008). The underlying molecu-
lar mechanisms of this physiological decline are not well understood. The central metabolite,
nicotinamide adenine dinucleotide (NAD™"), is emerging as an important aging metabolite that
may be a common link between age-related genome instability, metabolic decline, and associated
comorbidities such as diabetes, neurodegeneration, and cancer.

Aging and cancer share many common underlying features. For example, genome instabil-
ity, characterized by an accumulation of oxidative DNA damage combined with a decrease in
DNA repair capacity, can lead to the accumulation of mutations that initiate tumorigenesis (Bohr
et al. 1998). Recruitment of DNA repair proteins is crucial to repair DNA damage. Following
DNA single-strand breaks (SSBs), double-strand breaks (DSBs), and other type of DNA damage,
poly(ADP-ribose) polymerases (PARPs) catalyze the poly(ADP-ribosylation) of damaged DNA
and proteins as an initial recruitment signal via the consumption of NAD™. For this reason, PARP1
is often considered a guardian of genome integrity. However, if DNA damage is not repaired, and
PARP activation is persistent, declining cellular NAD™ can impair sirtuin (SIRT) activities, thus
altering epigenetic chromatin structure (Fritze et al. 1997) and gene transcription involved in
mitochondrial metabolism (reviewed in Fang et al. 2016b). These pathways can lead to mitochon-
drial dysfunction characterized by increased oxidative stress and decreased energy production in
the form of ATP. This can promote inflammation and initiate a feedforward cycle of oxidative
stress that exacerbates cellular injury (Bryan et al. 2013). Many hallmarks are shared by physio-
logical aging and cancer pathogenesis (Figure 1). We propose that the cellular response to these
metabolic perturbations likely dictates whether cells follow the aging pathway toward senescence
and apoptosis or initiate uncontrolled proliferation and tumorigenesis. With NAD™ as the central
metabolite connecting these cellular processes, we focus on the roles of the bioenergetics and
redox regulation of different NAD™ species.

NAD* BIOSYNTHESIS

NAD™ metabolism is a dynamic redox cycle that functions to shuttle electrons throughout cells
to maintain redox homeostasis and bioenergetics. NAD™ is synthesized through several pathways
discussed in detail in recent reviews (Fang et al. 2017, Yoshino et al. 2017) and summarized in
Figure 2. De novo synthesis of NAD" accounts for a minority of the total NAD* pool, while the
majority of NAD* comes from recycling the NAD* breakdown product nicotinamide (NAM)
by the salvage pathway enzyme NAM phosphoribosyltransferase (NAMPT) to nicotinamide
mononucleotide (NMN) and back to NAD* via NMN adenyltransferases 1-3 (NMNATSs)
(Chiarugi et al. 2012, Nikiforov et al. 2015).

NAD*/NADH ALTERATIONS IN AGING

Contrary to the notion of a continual decline with age, physiological aging is accompanied by
a biphasic shift in basal metabolic rate, which increases from adolescence to adulthood and only
begins to decline by around the middle of the second decade of life in humans (Baker & Peleg 2017).
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Figure 1

Interactions between hallmarks of aging and cancer. Common underlying cellular processes involved in
aging and cancer (middle), including alterations in redox state, can initiate oxidative stress leading to genome
stability, metabolic dysfunction, and poly(ADP-ribose) polymerase (PARP) activation, which can repair
endogenous DNA damage or initiate persistent cellular dysfunction. Chronic PARP activation can deplete
cellular nicotinamide adenine dinucleotide (NAD™) and thus impair sirtuin activity and autophagy, which
can lead to further metabolic decline and cell death or senescence, leading to age-related cellular dysfunction
(teal). On the other hand, following persistent PARP activation, cellular maladaptation can upregulate
nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting NAD™ salvage pathway enzyme, and
enhance autophagy and cellular metabolism to promote uncontrolled cellular proliferation and
tumorigenesis (purple).

While it is still unknown at what age cellular NAD* decreases, it has been reported to decline with
age in many tissues including liver, skin, muscle, pancreas, and adipose tissue (Fang et al. 2017).
Importantly, in the human brain, there is a significant decline in the NAD*/NADH redox state
with age because of the gradual decline in NAD*, coupled with the gradual increase in NADH (Zhu
etal. 2015a). The small decline in NAD" with age observed via magnetic resonance spectroscopy,
coupled with the increase in NADH (Zhu et al. 2015a), highlights the importance of measuring
multiple NAD* metabolites to gain insight into age- and disease-associated alterations in redox
homeostasis. Moreover, the decline in NAD™ concomitant with the accumulation of NADH
indicates a dysfunction in NAD™ regeneration, anaerobic glycolysis, or oxidative phosphorylation,
which would also resultin a reduced capacity to generate ATP. The following sections highlight the
interactions between NAD™ metabolism in the context of aging, progerias, and their involvement
in various cancers.

NAD* IN PREMATURE AGING DISORDERS AND CANCER

Premature aging syndromes, or progerias, are usually caused by mutations in DNA repair proteins
that lead to profound genome instability and the accumulation of mutations. Intriguingly, despite
the accumulation of DNA mutations, only some progeria syndromes have a high incidence of
cancer (Vermeij et al. 2016). The major progerias include xeroderma pigmentosum (XP), Werner
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Figure 2

Convergence of nicotinamide adenine dinucleotide (NAD™) metabolites for genome maintenance. The de
novo synthesis of NAD* begins from the conversion of dietary precursor tryptophan (Trp) to quinolinic
acid (QA) by indoleamine 2,3-dioxygenase (IDO). QA is converted to nicotinamide adenine mononucleotide
(NAMN) by quinolinate phosphoribosyl transferase (QPRT). NAMN is also synthesized via nicotinic acid
riboside (NAR) by nicotinamide riboside kinases 1 and 2 (NRK1/2) or indirectly via nicotinic acid (NA) by
nicotinate phosphoribosyltransferase (NAPRT). NAMN is adenylated to nicotinic acid adenine dinucleotide
(NAAD) via nicotinamide mononucleotide adenyltransferases 1-3 (NMNATS) before NAD™ synthesis via
NAD synthetase (NADS). NAD™ is reduced by tricarboxylic acid (TCA) cycle enzymes to NADH, which
acts as the principle electron donor to complex I of the mitochondrial electron transport chain to support
mitochondrial metabolism. The corresponding phosphorylated redox pair NADP/NADPH are crucial TCA
cycle intermediates that provide reducing equivalents for endogenous antioxidant defense systems to
maintain redox homeostasis, while NADPH production via the pentose phosphate pathway (PPP) is critical
for nucleotide synthesis. Sirtuins (SIRTs) and poly(ADP-ribose) polymerases (PARPs) consume NAD™ to
produce ADP ribose (ADPr) and nicotinamide (NAM), which is recycled to nicotinamide mononucleotide
(NMN) by the salvage pathway enzyme nicotinamide phosphoribosyltransferase (NAMPT) and adenylated
to NAD* by NMNATSs. Nicotinamide riboside (NR) is an NAD* precursor that can bypass the NAMPT
salvage pathway via conversion to NMN by NRK1/2. These factors converge to prevent DNA damage,
facilitate repair of the nuclear genome, and prevent genome instability.

(WRN), Bloom (BLM), Cockayne (CS), and Hutchinson-Gilford (HG) syndromes. Of these,
XP, WRN, and BLM have a high incidence of cancer, while no elevated incidence of cancer has
been reported in CS and HG patients. CS and XP type A cells have decreased NAD™ levels,
in part due to the persistent activation of PARP1 (Fang et al. 2014, Scheibye-Knudsen et al.
2014). So why does WRN have a high incidence of osteosarcoma, while CS patients do not get
cancer? This may be due to the different age of onset of these disorders. WRIN and BLM are
segmental progerias, with the onset of advanced aging symptoms presenting in the second decade
of life, while CS and HG patients exhibit a failure-to-thrive phenotype from birth. CSB can
promote cell proliferation via the degradation of p53, and knockdown of CSB sensitizes cancer
cells to chemotherapeutic-induced apoptosis (Proietti-De-Santis et al. 2018). Additionally, CS
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cells are resistant to UV-induced mutagenesis, which may explain the lack of cancer in CS (Reid-
Bayliss et al. 2016). In XP, the accumulation of mutations with UV exposure to sunlight probably
contributes to their susceptibility to skin cancer (Bradford et al. 2011). The compounding effect
of advanced age in WRN and BLM is likely to be part of the reason an increased incidence of
cancer is observed, but this requires further research (Lebel & Monnat 2018).

NAD* metabolism has emerged as a potential target for cancer treatments. In cancer, NAD*
and the major NAD" metabolites [e.g., NAD(P)H] participate in multiple physiological processes
that can modulate cancer cell metabolism, survival, progression, and invasion. Some of the many
enzymes utilizing NAD* metabolites as substrates that are involved in various mechanisms of
carcinogenesis are reviewed in Table 1, and major NAD" -synthesizing and -consuming enzymes
including NAMPT, NMNATs, SIRTs, PARPs, and cluster of differentiation 38 (CD38) are
discussed below.

NAMPT IN CANCER

Maintenance of cellular and tissue NAD™ in healthy cells occurs predominantly via the salvage
pathway (Chiarugi et al. 2012). NAMPT is the rate-limiting enzyme of this pathway and is up-
regulated in multiple cancer cell lines (Bajrami et al. 2012, Cagnetta et al. 2015, Cea et al. 2012,
Hasmann & Schemainda 2003). NAMPT exists in both intracellular (NAMPT) and extracel-
lular (eNAMPT) forms. Multiple human malignancies exhibit increased NAMPT (extracellular
and intracellular) expression, which increases cellular NAD" and can enhance many hallmarks of
cancer, including proliferation, invasion, angiogenesis, metabolic dysfunction, inflammation, and
resistance to apoptosis.

eNAMPT is also known as pre-B cell colony-enhancing factor or visfatin. It is secreted by
adipocytes; by immune cells, including lipopolysaccharide-activated monocytes, leucocytes, lym-
phocytes, pre-B cells, and tumor cells (Grolla et al. 2016); and by cancer cells under nutrient
deprivation due to limited blood supply (Zhao et al. 2014), inflammatory response, and cellular
stress. Studies report that eNAMPT may act as a growth factor or cytokine; however, the under-
lying mechanisms and importance of extracellular NAM and NMN synthesis by eNAMPT are
not completely understood.

eNAMPT and iNAMPT expressions are increased in numerous malignancies (Table 1). High
NAMPT (intracellular and extracellular) levels are linked with higher tumor grade, metastasis, and
poor survival (Long et al. 2012, Neubauer et al. 2015, Santidrian et al. 2014). These data indicate
that higher cellular NAD™ levels may represent a hallmark for some cancers that promote cancer
initiation or progression. This is contrary to aged cells and tissues, which generally display a
decline in NAD™. Due to its many roles in cell health and metabolism, NAMPT has received
considerable attention as a potential therapeutic target for cancer treatment.

ANTICANCER EFFECT OF NAMPT INHIBITORS

In the past two decades, inhibition of the salvage NAD™ biosynthesis pathway has emerged as a po-
tential anticancer strategy. Increased NAMPT expression in some tumors is a biomarker and a ther-
apeutic target for anticancer therapies. GMX1777/CHS828 and APO866/FK866 are well-studied
and specific NAMPT inhibitors (NAMPT?) with affinities in the nanomolar range. NAMPT inhi-
bition regulates the expression of multiple genes important for predicting recurrence-free survival
and may serve as a prognostic marker in breast and colorectal cancers (Zhou et al. 2014).
Toachieve the full potential of NAMPTH, there is a need to identify biomarkers for patients who
may respond positively to NAMPTi treatment. As outlined in Figure 2, multiple routes of NAD*
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biosynthesis may make NAMPT1 particularly useful in certain cancer types that primarily rely on
the salvage pathway. Accordingly, studies have reported that patients with increased NAMPT
expression are more sensitive to NAMPTi. For example, isocitrate debydrogenase 1 (IDHI)-mutant
cancers also show increased sensitivity to NAD™ depletion (Tateishi et al. 2015). Mutant IDHI
downregulates the Preiss-Handler pathway’s enzyme nicotinate phosphoribosyltransferase, re-
sulting in reduced NAD™ levels and increased sensitivity to NAMPT1. Various oncogenic signals
are also associated with increased NAMPT or NADT levels. For instance, activation of the onco-
gene c-Mycincreases NAMPT messenger RNA (mRNA) transcription, which may facilitate tumor
progression in cancers (Menssen et al. 2012).

Various clinical trials have been conducted to exploit the antitumor potential of NAMPT in-
hibition; however, this approach has thus far shown low efficacy and high toxicities. Oral and
intravenous administration of NAMPTi are associated with various toxicities, including throm-
bocytopenia, skin rash, lymphopenia, and gastrointestinal effects such as esophagitis, diarrhea, and
vomiting. Reduced efficacy of NAMPTi may be attributed to increased NAD* biosynthesis via
the de novo or Preiss-Handler pathways. Therefore, targeting the NMNAT:S as the final step in
NAD" synthesis may represent a more effective and targeted approach for NAD* depletion in
tumor cells.

NMNATSs

Mammalian cells have three isoforms of NMNATs (NMNAT1-3), which are localized to the
nucleus (NMNAT1), the cytoplasmic membrane of the Golgi apparatus (NMNAT?2), and the
mitochondria (NMNAT?3) (Lau etal. 2010). While NAMPT has been considered the rate-limiting
step of the NAD™ salvage pathway, it is important to note that NAD* production from any of the
biosynthetic pathways requires NMINAT's as the terminal step for NAD™ synthesis (Buonvicino
etal. 2018). NMNATS have been predominantly studied for their neuroprotective role in axonal
degeneration in the central nervous system (CNS) (Ali et al. 2013). Interestingly, NMNAT?2,
which is cytoplasmic and highly expressed in the CNS, was recently demonstrated to contribute
to both the cytoplasmic and mitochondrial NAD™ pools (Cambronne et al. 2016). This means
that mitochondrial NAD™ is critically important to maintain cell health in the CNS. Moreover,
NMNAT?2 mRNA levels have been reported to decline in models of Alzheimer’s disease and
precede neurodegeneration (Ljungberg et al. 2012), while a single-nucleotide polymorphism in
NMNATS3 has been identified in a Dutch cohort of familial Alzheimer’s disease (Liu et al. 2007).

In contrast to the decline in NMNAT expression implicated in age-related neurodegenera-
tive diseases, NMNATT?2 overexpression has been reported in colorectal cancer (Cui et al. 2016),
melanoma, and neuroblastoma (Buonvicino et al. 2018). Therefore, targeting NMNATs could be
more efficacious than targeting upstream NAMPT. Indeed, recent reports indicate that an NAD*
analog called Vacor inhibits NAD* synthesis and potentiates cytotoxicity by targeting NAMPT
and NMNAT?2/3 in melanoma and neuroblastoma cell lines (Buonvicino et al. 2018). These results
support the development of specific NMNAT inhibitors as a potentially useful clinical treatment
option for cancers overexpressing multiple pathways of the NAD™ synthesis machinery.

PARPs

PARPI1-3 are major NAD* consumers, with PARP1 being the best understood. PARPs are in-
volved in DNA damage repair, chromatin modification, transcription regulation, inflammation,
cell death, and energy metabolism (reviewed in Dulaney et al. 2017). PARPs require NAD™ as
a substrate to generate poly(ADP-ribose) (PAR) polymers and NAM at sites of DNA damage.
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PARPs are initiating components of the cellular stress response that are activated immediately
following DNA damage to recruit components of the DNA repair machinery. PARP1 is involved
in SSB and DSB repair by promoting the homologous recombination (HR) pathway over the
error-prone nonhomologous end joining (NHE]) pathway. For example, PARPI activity is re-
quired for the recruitment of BRCAI to repair DSBs via HR (Li & Yu 2013). However, in the
absence of BRCAL, such as in many breast cancers, the inability to repair DNA via HR activates
alternative NHE], which promotes the accumulation of mutations and eventual tumorigenesis.

Increases in PARP activity have been linked to both the suppression and the progression of
tumorigenesis. This discrepancy may be due to PARPs’ role in DNA repair, which may prevent
mutation accumulation and cancer formation, but may also aid in cancer cell survival following
tumor initiation. For example, high-PARP expression in patients with breast cancer (Green et al.
2015), gastric cancer (Y. Liu et al. 2016), melanoma (Rodriguez et al. 2013), and small-cell lung
cancer (Kim et al. 2014) is linked with poor prognosis, whereas pancreatic cancer patients with
high PARP expression exhibit improved survival (Klauschen et al. 2012). Thus, the activation of
PARPs may be beneficial in pancreatic cancer, whereas inhibition of PARPs would be beneficial
in other cancers.

PARP inhibitors (PARPi) represent a suitable strategy in cancer therapy when tumors are
defective in HR DNA repair (i.e., loss of BRCA1 and BRCA?2). Accordingly, several PARPi have
reached late-stage clinical trials, and olaparib is currently approved by the US Food and Drug
Administration (FDA) for the treatment of BRCA-deficient cancers (Dulaney et al. 2017). Tumor
cells that lack BRCALI are extremely dependent on repair via Pol6 and alternative NHE]J for their
survival (Ceccaldi etal. 2015). PARPi kill tumor cells in several different ways: (#) PARPi can cause
synthetic lethality due to increased SSB formation during DNA replication, which can proceed
to DSBs that cannot be repaired (Bryant et al. 2005); (/) PARP may be “trapped” on the DNA
to physically impede the DNA repair machinery; and (c) PARPI can facilitate death by mutation
accumulation due to the reliance on error-prone NHE]. Thus, PARP1 inhibition limits the ability
of tumor cells to repair DNA and proliferate when they bear mutations rendering them defective
in HR (Dulaney et al. 2017). The future development of combination therapies with PARPi and
other strategies to impair PARP activity with less toxicity will hopefully improve the efficacy and
tolerability of PARPI treatment in cancer patients.

SIRTUINS

SIRTSs were first identified as major determinants of lifespan (Tissenbaum & Guarente 2001)
that are required for the robust life extension afforded by calorie restriction in multiple species
[reviewed by Guarente (2005), Lin & Guarente (2003), Minor et al. (2010), and Sinclair (2005)].
There are currently seven SIRT isoforms (SIRT1-7), identified with different subcellular local-
izations (e.g., SIRT3-5 are mitochondrial) and functions [reviewed by Houtkooper et al. (2012)
and Imai & Guarente (2014)]. SIRT's require NAD™ as a cosubstrate to posttranslationally modify
target proteins, producing ADP-ribose and NAM. Evidence demonstrates that SIRT's have dual
roles in cancer and may function as tumor suppressors or initiate tumorigenesis (Song & Surh
2012). Mechanistically, most SIRT isoforms deacetylate proteins including histones and modu-
late the transcription of key genes, including the master regulator of mitochondrial biogenesis,
PGCla. SIRTT also directs cell cycle progression by modulating p53 activity via deacetylation.
Since SIRT activity is known to decline with age, likely as a result of declining NAD, the loss
of SIRT-mediated tumor suppressor function may be a critical step leading to tumorigenesis. On
the other hand, SIRT1 is overexpressed in multiple malignancies (Table 1). Activated SIRT1
diminishes tumor suppressors such as p53, PTEN, and retinoblastoma protein and stabilizes
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oncogenes such as MYCN to enhance epithelial-to-mesenchymal transition and cancer cell metas-
tasis (Shackelford et al. 2013b). SIRT?2 is overexpressed in numerous cancers including prostate,
colorectal, and hepatocellular carcinoma (Cheng et al. 2018, Yang et al. 2017). Mechanistically,
SIRT?2 has been demonstrated to deacetylate and activate glucose-6-phosphate dehydrogenase,
thereby enhancing NADPH production and promoting cancer cell proliferation (Xu et al. 2016).

SIRT3-5 are located in mitochondria, where they play numerous roles in mitochondrial
metabolic regulation. For example, SIRT3 has been identified as an essential mediator of some
of the beneficial effects of caloric restriction (Qiu et al. 2010) and adaptive responses to energetic
challenges in the brain (A. Cheng et al. 2016). Mechanistically, SIRT3 deacetylates IDH2 (Yu
et al. 2012) and superoxide disumutase 2 (Liu et al. 2017), resulting in the increased production
of NADPH for reactive oxygen species (ROS) detoxification. Accordingly, SIRT3 modulation has
been implicated as an oncogene and tumor suppressor in cancer (reviewed in Torrens-Mas et al.
2017). Similarly, SIRT4 has also been identified as a deacetylase that acts as a tumor suppressor
in numerous malignancies (Zhu et al. 2014).

SIRTS is unique among sirtuins in thatitisa very weak deacetylase, butitacts predominantly asa
lysine desuccinylase, demalonylase, and deglutyrase for the modulation of numerous mitochondrial
metabolic enzymes (Zhang et al. 2017). The diverse roles for SIRT'S in metabolic reprogramming
in cancer have been recently reviewed (Bringman-Rodenbarger et al. 2018). In brief, SIRTS is
generally overexpressed in tumor tissues relative to native normal tissues, and it demalonylates
GAPDH and other glycolytic enzymes, resulting in elevated energy production via glycolysis
(Nishida et al. 2015). SIRTS also interacts with and regulates numerous TCA (tricarboxylic acid)
cycle enzymes via desuccinylation including mitochondrial complex I (NADH dehydrogenase)
(Marcon et al. 2015), complex II (succinate dehydrogenase) (Park et al. 2013), and IDH2 (Zhou
etal. 2016).

SIRT6 deacetylase activity modulates DNA repair in telomeres and participates in nuclear DSB
repair by recruiting PARP1 to DNA breaks (McCord etal. 2009, Michishita etal. 2008, Van Meter
etal. 2016). SIRT6 also participates in base excision repair to remove oxidatively damaged DNA
(Mostoslavsky et al. 2006). Accordingly, transgenic SIRT6-overexpressing mice display several
health benefits including increased lifespan, improved glucose tolerance, and reduced adipose
inflammation (Roichman et al. 2017). This suggests that SIRT6 has important roles in genome
integrity maintenance and metabolic programming. The role of SIRT6 in cancer has recently
been reviewed (Dong et al. 2016). Intriguingly, conflicting results have shown that SIRT6 is
overexpressed or downregulated depending on cancer type (Table 1), and this therefore requires
further investigation.

SIRT7 has been implicated in aging and cancer physiology butis relatively poorly characterized.
This may be due to the relatively low enzyme activity of SIRT7. Despite the limitations in our
current understanding of SIRT?7, it is thought to play a role in RNA metabolism by regulating
RNA polymerase expression and is localized to the nucleoli, where ribosomal RNA is transcribed
(Ford etal. 2006). Like other SIRT's, SIRT7 plays a key role in metabolic regulation. For example,
SIRT7-knockout mice develop fatty liver disease, and overexpression of SIRT7 can reverse these
effects (Yoshizawa et al. 2014). Increasing our understanding of SIRT7 regulatory mechanisms
may provide insight into mechanisms of metabolic dysregulation in age-related disorders and
comorbidities like cancer.

Overall, the involvement of many SIRT isoforms highlights the complex relationships be-
tween the epigenetic modulation of cellular transcription, cell cycle progression, and metabolic
regulation. Importantly, these processes are nearly all influenced by NAD* bioavailability and
posttranslational modifications of key metabolic enzymes. Since SIRTs play numerous crucial
roles in the aging process, future research should focus on understanding the SIRT-mediated
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regulation of metabolic pathways in relation to age-related diseases and the proclivity for cancer
development and progression.

CD38 IN AGING AND CANCER

CD38isan NAD*-consuming ectoenzyme originally discovered for its extracellular role in innate
immune activation. Emerging evidence demonstrates that CD38 is the major enzyme responsible
for NAD™ decline in physiological aging (Camacho-Pereira et al. 2016). CD38-knockout mice
have elevated NAD™ levels in multiple tissues (Camacho-Pereira et al. 2016, Sahar et al. 2011,
Young etal. 2006). Contrary to the idea that elevated NAD* may facilitate cancer formation, CD38
knockout impedes tumorigenesis and halts the progression of lung cancer in murine models (Bu
etal. 2018). This implicates a tumorigenic role for CD38 in inflammatory immune system activa-
tion. Indeed, low-CD38 expression has been associated with proinflammatory prostate cancer cells
(X. Liu et al. 2016). Moreover, recent research also proposes that CD38 is a diagnostic marker for
aggressive prostate cancer (Sahoo et al. 2018) and is involved in the pathophysiology of other can-
cers such as multiple myelomas (Chini et al. 2018). Accordingly, the FDA has approved the mon-
oclonal antibody targeted to CD38, daratumumab, for the treatment of patients with relapsed or
refractory multiple myeloma (Raedler 2016). These data suggesta role for CD38 modulation of the
immune response in cancer development/progression, a possibility that requires further research.

METABOLIC AND MITOCHONDRIAL (DYS)FUNCTION
IN AGING AND CANCER

Mitochondrial metabolism declines with age, and cells may adapt by utilizing alternative biofuels
depending on local bioavailability within the given cellular and tissue environment. Cell fate
is largely determined by mitochondria, which dictate whether cells survive or die by necrotic
or apoptotic cell death pathways. Mitochondria can initiate cell death through the release of
apoptosis-inducing factor (AIF) or cytochrome ¢, which initiates the formation of the apoptosome
and caspase activation. Intriguingly, AIF release is downstream of persistent PARP activation,
in which PAR polymer accumulation can permeabilize the outer mitochondrial membrane that
results in cell death known as parthanatos (Andrabi et al. 2008).

If cells enduring age-related metabolic decline do not die, they could persist in a metaboli-
cally dysfunctional state or they may exit the cell cycle and enter senescence (discussed in detail
below). If cells persist in a dysfunctional state, they could initiate a maladaptive metabolic switch
toward the utilization of glucose and upregulate NAD* synthesis pathways, which initiates a series
of incompletely understood events that may initiate tumorigenesis. Since there are a myriad of
metabolic signaling pathways modulated by NAD™ metabolites, we focus on the roles of other
NAD™ metabolites as putative determinants of aging and cancer.

NADH

NAD" is reduced to NADH by pyruvate dehydrogenase and the TCA cycle enzymes malate
dehydrogenase and «-ketoglutarate dehydrogenase (¢! KGDH). NADH acts as the principle elec-
tron donor to complex I (NADH dehydrogenase) of the mitochondrial electron transport chain
to support mitochondrial oxidative phosphorylation to generate ATP. Mitochondrial function,
including complex I function, declines with age (Stefanatos & Sanz 2011). The resulting decline
in NAD*/NADH redox state has been reported to initiate a pseudohypoxic state that upregu-
lates many oncogenic signaling pathways such as the canonical hypoxia-inducible factor 1 alpha
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(HIF1oc) pathway (Gomes et al. 2013). HIF1ox can upregulate the expression of many stress re-
sponse genes such as vascular endothelial growth factor, which promotes angiogenesis and can
provide nutrients to malignant cells and encourage metastasis. Moreover, the production of more
NADH may force cells to rely on glycolysis via NADH utilizing the enzyme lactate dehydrogenase
to produce lactate and also regenerate NAD™. This characteristic Warburg shift in metabolism
promotes tumorigenesis (Warburg 1956).

Lactate dehydrogenase (LDH) is encoded by two genes, LDHA and LDHB. The gene products
of LDHA and LDHB combine to form five isozymes of tetrameric LDH. Tetrameric structures
containing a majority of LDHA proteins primarily drive the forward reaction, reducing pyruvate
to lactate by consuming NADH to regenerate NAD ™. Isozymes containing the majority of LDHB
proteins catalyze the reverse reaction (Ross et al. 2010). Elevated lactate is observed with aging
and has been proposed to be a hallmark of the aging process (Houtkooper et al. 2011, Ross et al.
2010). Since LDH is a critical component of anaerobic glycolysis and the Warburg shift is a
key observation in cancer cells, it is not surprising that LDH is also overexpressed in several
forms of cancer (Furuta et al. 2010). Elevated LDH has also been associated with poor prognosis
for cancer patients (Thonsri et al. 2017). Increased NADH production implies a mitochondrial
deficit; however, many TCA cycle enzymes also act as NAD(P)H redox cycling enzymes and are
implicated in aging and cancer development.

NADPH

NADPH is an essential TCA cycle intermediate for endogenous antioxidant defense systems (e.g.,
glutathione and thioredoxin peroxidase systems) to maintain redox homeostasis. As a substrate for
many important enzymes, NADPH is involved in the regulation of cell growth, differentiation,
antioxidant systems, immune cell activation, and nucleic acid synthesis. NADPH production via
the pentose phosphate pathway is critical for nucleotide synthesis support of DNA replication
and repair. Given that NADPH plays numerous crucial roles in maintaining metabolic homeo-
stasis, perturbations in NADPH redox state and mutations in NADP(H)-dependent enzymes are
associated with age-related pathologies and cancer.

Isocitrate Dehydrogenases

IDHI1 and IDH2 reduce NADP* to NADPH to catalyze the decarboxylation of isocitrate to «-
ketoglutarate (x’KG) in the TCA cycle. IDH1 and IDH2 are commonly mutated in gliomas at sites
Arg132 and Arg140/172, respectively. Mutations at the arginine residue alters substrate (isocitrate)
binding to the enzyme’s active site, which results in a decline in *KG. Intriguingly, mutant IDH
isoforms produce oncometabolite D-2 hydroxyglutarate (2-HG) using NADPH as a substrate,
resulting in reduced «KG levels and an altered NADP/NADPH redox ratio. Corresponding
increases in 2-HG inhibit ’KG-dependent dioxygenases, including prolyl hydroxylase (PHD),
which promotes the stabilization of HIF1«. The phenomenon where alterations in redox state or
TCA cycle activity occurs has been described as pseudohypoxia (Gomes et al. 2013, MacKenzie
et al. 2007). Interestingly, the addition of a cell-permeable derivative of aKG can reverse the
pseudohypoxic state by reactivating the degradation of HIF1« by PHD (MacKenzie et al. 2007).

The consumption of NADPH by IDH may also compromise endogenous antioxidant de-
fense systems, resulting in more oxidatively damaged proteins, lipids, and DNA (Madala et al.
2018). Therefore, elevated oncometabolite 2-HG levels may serve as a diagnostic and prognos-
tic marker, specifically in gliomas. Enasidenib, an IDH2-R140Q and IDH2-R172H inhibitor, is
currently used as a treatment for acute myeloid leukemia, and glioma-specific vaccines targeting
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IDHI1-R132H are also in clinical trials (Madala et al. 2018). Since IDH mutations result in dimin-
ished NADPH for antioxidant defense enzymes and aKG levels, downstream «KGDH function
may also be compromised; the resulting redox imbalance and HIF1 e stabilization can facilitate
tumorigenesis and could serve as a promising therapeutic target.

a-Ketoglutarate Dehydrogenase

aKGDH reduces NAD™ to NADH for the decarboxylation of «-ketoglutarate to succinyl-
coenzyme A, the precursor to succinate, which is the principle substrate for cellular energy gener-
ation at mitochondrial complex IT (succinate dehydrogenase). Intriguingly, supplementation with
a«KG has been demonstrated to extend lifespan in Caenorbabditis elegans by as much as 50% (Chin
et al. 2014). Lifespan extension by «KG was mediated by a reduction in cell metabolic rate via
the inhibition of ATP synthase and the activation of autophagy (Chin et al. 2014). Moreover,
«KGDH dysfunction is implicated in age-related pathology such as neurodegenerative disorders
(Gibson et al. 2005). This may be because xKGDH has been identified as a major source of ROS
generation (Starkov et al. 2004) and plays an important role in regulating cancer cell metabolic
plasticity (Vatrinet et al. 2017).

aKGDH has been reported to possess ADP-ribosyltransferase activity (Pankotai et al. 2009)
and therefore may act within the mitochondria to regulate metabolic activities through post-
translational modifications. Despite the observation of polyADP-ribosylation in mitochondrial
extracts (Lai et al. 2008, Masmoudi & Mandel 1987) and PARP localization to the mitochon-
dria (Rossi et al. 2009, Du et al. 2003), the presence of a mitochondrial PARP isoform remains
controversial. Given the role of xKGDH in generating substrates necessary for mitochondrial
energy metabolism, the production of ROS, and the potential ADP-ribosyltransferase activity
of «KGDH, more attention is warranted to the role and putative therapeutic value of targeting
aKGDH and «KG in the regulation of age-related pathologies and cancer.

AUTOPHAGY, MITOPHAGY, AND NAD*

Autophagy is activated in response to nutrient deprivation, via inhibition of the mTOR pathway,
to recycle damaged cellular components to amino acid building blocks, while mitophagy may be
triggered in nutrient-rich conditions to remove damaged mitochondria that adversely affect cell
health (Youle & Narendra 2011). Accumulating evidence advocates that rates of autophagy and
mitophagy decline with age (Fang etal. 2017, Moreira etal. 2017, Shi etal. 2017). NAD™ precursor
treatment may improve age-related pathology by restoring autophagy/mitophagy (Fang etal. 2014,
2016a; Kerr etal. 2017; Lin & Qin 2013; Scheibye-Knudsen et al. 2014). Intriguingly, an excellent
review detailing the role of autophagy in cancer reports that the initiation of cancer occurs under
conditions where autophagy is also compromised (Santana-Codina et al. 2017). This indicates
that the decline in autophagy observed during aging may be a key factor that predisposes aged
individuals to cancer. Following cancer cell initiation, autophagy is vastly upregulated to provide
the amount of amino acids and nutrients required to support uncontrolled cellular proliferation
(Kimmelman & White 2017, Santana-Codina et al. 2017). Interestingly, malignant cells not only
upregulate autophagy to meet these bioenergetic needs but also have been reported to sequester
extracellular metabolites through a process known as macropinocytosis. Collectively, these data
imply that the metabolic adaption in response to the aging process may dictate cell fate and
represent a therapeutic opportunity to treat age-related diseases and cancer.

Mitochondrial quality control, the balance between mitochondrial biogenesis and mitophagy,
is critical to maintain cellular energy and redox homeostasis. The turnover of damaged
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mitochondria helps prevent excessive generation of ROS, which protects the nuclear and mi-
tochondrial genome from DNA damage, thus preventing DNA mutations and promoting cell
survival under energetic stress (Chourasia et al. 2015). Research from the Finkel group demon-
strated that mitophagy drastically declines in the hippocampus with age (Sun et al. 2015). Since
neuronal activity is bioenergetically demanding, the age-dependent decline in mitophagy may
contribute to metabolic decline and neurodegeneration. Contrarily, diminished mitochondrial
function combined with an increase in oxidative damage may promote a metabolic shift toward
glycolysis, which could predispose aged tissues toward tumorigenesis. Importantly, mitophagy
has been shown to promote mitochondrial health in age-related disorders (Ryu et al. 2016). In-
terestingly, two main regulatory proteins of mitophagy, parkin and NIX/BNIP3L, are frequently
deleted or silenced in a variety of human cancers (Springer & Macleod 2016), implying that the in-
duction of mitophagy may represent a therapeutic strategy to help restore a healthy mitochondrial
pool and improve metabolic dysfunction in aging and cancer.

SENESCENCE AND NAD*

As we age, senescent cells accumulate and wreak havoc in our body. Senescent cells are metaboli-
cally active but irreversibly cell cycle—arrested cells that degrade organ function, promote inflam-
mation, and have both pro- and anticancer properties. Senescent cells are also a hallmark of aging
(Lopez-Otin et al. 2013). They secrete proinflammatory markers, extracellular matrix proteases,
and chemokines to surrounding cells, and collectively this phenotype is called secretory-associated
senescence phenotype (SASP) (Coppe et al. 2010). SASP promotes cancer and aging. There are
many stimuli that encourage the development of senescent cells, including oncogene expression,
DNA damage exposure, replication stress, telomere erosion, and mitochondrial dysfunction (van
Deursen 2014, Wiley et al. 2016). Senescent cells also display a protective role because cells can
enter a senescent state after DNA damage, and this represents a major tumor-suppressor mech-
anism (Rodier et al. 2007, Campisi & d’Adda di Fagagna 2007). Consequently, senescent cells
possess both pro- and anticancer properties depending on the biological context.

A recent study established a causal role for senescent cells in age-related physical deterioration
and decreased lifespan in mice (Xu et al. 2018). Since the health and lifespan of mice have been
shown to be improved by the removal of senescent cells (Baker et al. 2011, Xu et al. 2018), inves-
tigators have sought out drugs that could preferentially kill senescent cells. These drugs are called
senolytics. Two of the first compounds identified were dasatinib and quercetin; each individually
killed senescent cells, but with different efficiencies depending on cell type. Consequently, senes-
cent cell killing was more effective if the two drugs were combined (Zhu et al. 2015b). Dasatinib is
a tyrosine kinase inhibitor and known to induce apoptosis (Montero et al. 2011, Xue et al. 2012).
Quercetin was also described as a kinase inhibitor (Bruning 2013) but is also a CD38 inhibitor
(Escande et al. 2013). This raises the question of whether modulation of NAD™ contributes to the
senolytic activity of this drug and, further, if other NAD" modulators may attenuate senescence.

Interestingly, in cells with mitochondrial dysfunction—associated senescence, a modified SASP
program was executed (Wiley et al. 2016). These cells were characterized as having lower
NAD*/NADH ratios and lacking the IL-1 (interleukin 1)-associated inflammation due to 5’
AMP-activated protein kinase (AMPK)-mediated p53 activation. Consequently, high NAD* may
be negatively associated with the development of senescent cell phenotypes. In support of this
concept, a recent paper demonstrated that AMPK activation could lead to increased NAD*
and prevent oxidative stress—induced senescence (Han et al. 2016). Further, they showed that
NAMPT was significantly decreased in H,O,-induced senescent cells and that AMPK activation
reversed this. Additionally, there are other lines of evidence that indicate that low NAD" may be a
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common feature found in senescent cells (Ziegler et al. 2015), and thus NAD™ is a druggable
target. Since senescence and mitochondrial dysfunction are both intimately associated with can-
cer and aging, additional research is needed to more thoroughly investigate their relationship to
NAD™ biosynthesis and decomposition.

NAD* AS A THERAPEUTIC TARGET IN CANCER
AND AGING DISORDERS

Although emerging data support the beneficial and protective role of NAD™ supplementation in
age-related neurodegenerative and premature aging diseases (Fang et al. 2016a, Hou et al. 2018,
Scheibye-Knudsen et al. 2014), its role in preventing or treating cancer remains controversial.
There are conflicting studies on the effect of NAD™ on cancer cell proliferation and death. For
example, a high dose (1000 mg/kg) of NAM can inhibit breast tumor growth in mice, whereas in
pancreatic islet cells, 350 mg/kg of NAM increased the incidence of streptozotocin-induced cancer
(Surjana et al. 2010). Further studies are needed to eliminate unwanted effects of NAD* admin-
istration in cancerous cells or the toxicity from NAMPT inhibition to neighboring healthy cells.

Subsequent studies have revealed that NAMPT inhibition results in the attenuation of glycol-
ysis and the activation of autophagy, indicating that NAD*-depleted cancer cells experience an
energy crisis, which may ultimately result in cell death (Cea et al. 2012, Sharif et al. 2016, Tan
et al. 2015). The multifaceted roles of NAD™ on energy production, DNA repair, antioxidant
defenses, and many other signal transduction pathways make this metabolite a gem-like substance
for cell survival and homeostasis. However, processes like DNA repair and energy metabolism
are also hijacked by cancer cells to enhance their survival and proliferation capacity without ac-
tivating cell death pathways, making NAD™ a potential contributing factor for tumorigenesis as
well. Thus, maintaining NAD* at optimum levels throughout the lifespan might be essential to
prevent metabolic maladaptation, age-related neurodegeneration, and cancer formation. In sce-
narios which are at low risk for cancer development, such as in CS patients, the benefits of NAD™*
precursor treatment would be predicted to largely outweigh the risks. Therefore, interventions
modulating NAD™ levels should be considered with caution, as they may either promote or sup-
press cancer formation and progression, depending on the timing of treatment and biological
context.

COMMENTARY

NAD™" metabolism serves as a central signaling hub that links numerous bioenergetic, redox,
transcription, and DNA repair processes. The reviewed evidence suggests that the metabolic
adaptation to cellular stressors encountered during the aging process may alter redox homeostasis
to facilitate the progression of cellular senescence or neoplastic transformation (Figure 3). The
recognition and increasing study of the diverse roles of NAD* metabolites may uncover novel
therapeutic targets for age-related pathologies and cancer. Moreover, while NAD™ precursor
treatment is emerging as an efficacious intervention for the prevention of numerous age-related
pathologies, the therapeutic potential for NAD™ precursors in cancer is not well understood. It
is possible in some instances that boosting NAD* metabolism could fuel cell proliferation and
exacerbate cancer progression and metastasis. On the other hand, supplementation with NAD*
precursors could also prevent or shift cancer cell metabolism in a favorable manner and decrease
uncontrolled proliferation. Therefore, the most optimal anticancer clinical strategy will likely
involve individual patient profiling to identify treatments with maximal efficacy for the particular
metabolic and genetic profile of the patient’s cancer.
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associated with cellular senescence (b/ue) or can upregulate tumorigenic metabolic pathways (purple), such as
glycolysis. Senescent cells also release inflammatory cytokines, which may also lead to tumor formation.
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