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Abstract

A cardinal feature of cancer cells is the deregulation of cell cycle controls.
Targeted drug therapy is designed to take advantage of specific genetic alter-
ations that distinguish tumor cells from their normal counterparts. Mutated
oncogenes and inactivated tumor suppressors can increase the dependency
of cancer cells on G1-phase cyclin-dependent kinases, augment replication
stress and DNA damage during S phase, and dismantle checkpoints that
monitor progression through S/G2/M. These acquired defects generate can-
cer cell–specific vulnerabilities that provide a window of opportunity for
targeted cancer treatments. We review the basic principles underlying the
design of targeted therapies with emphasis on two main features: oncogene
addiction and synthetic lethality. We discuss how traditional cytotoxic agents
may depend, with relatively less specificity, on these same features and then
point to examples of the successful application of newly developed, targeted
therapeutic agents that offer reduced, dose-limiting toxicities to normal cells.
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S phase: the DNA
synthesis phase of the
cell cycle

1. INTRODUCTION

The cell division cycle functions in an oscillatory manner to couple cellular DNA replication
with chromosomal segregation, thereby ensuring that duplicated genetic material is distributed
equally to two daughter cells (Norbury & Nurse 1992). In cycling somatic cells, the intervals
between DNA synthesis (S phase) and mitosis (M phase) are separated by two gap phases (G1 and
G2, respectively) (Figure 1). Cyclins expressed during different phases of the cycle allosterically
regulate a family of cyclin-dependent kinases (CDKs), whose phosphorylation of key substrates
enforces cell cycle progression (Figure 1) (Hunt 1991). Additional checkpoint controls act to
guarantee that one process is completed before another begins (Hartwell & Weinert 1989). These
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Figure 1
Cell cycle dynamics. The four phases of the mitotic cell division cycle are indicated at the left. Cells with
unphosphorylated RB (retinoblastoma protein, a corepressor of E2F-responsive genes) enter into G1 phase
from a quiescent state (G0) (not shown) and progress toward S phase in response to the mitogen-dependent,
cyclin D–dependent kinases (CDKs) 4 and 6. RB phosphorylation by CDK4 and CDK6, and later by cyclin
E– and A–dependent CDK2, inactivates RB, which is maintained in its hyperphosphorylated state by CDKs
until cells exit mitosis and RB activity is restored by dephosphorylation. Total CDK activity increases
throughout the cycle, but the degradation of cyclins A and B during M phase restores the G1 state, in which
low CDK activity is required for the licensing of the origins of replication that fire during S phase. Mitogenic
signal transduction pathways that induce D-type cyclins and regulate their assembly with CDK4 and CDK6
(right) include receptor tyrosine kinases (RTKs), components of the RTK/Ras signaling pathways (Raf, Mek,
Erk, PI3K), hormone receptors (HRs), and interleukin cytokine receptors (ILRs); nutrients promote
increases in cellular mass and G1 progression by stimulating the mechanistic target of rapamycin (mTOR).
Cyclin D is degraded during S phase (Baldin et al. 1993, Diehl et al. 1998) but restored during G2 in response
to Ras signaling (Hitomi & Stacey 2001, Stacey 2003). In continuously cycling cells, the reaccumulation of
cyclin D during G2 results in the contraction of ensuing G1 intervals and cell cycle generation times
throughout later mitotic divisions. Mitogen withdrawal leads to cyclin D degradation, regardless of the
position in the cycle, and cells exit the cycle from G1. Depending on the biological context, cells can exit G1
into G0 or undergo definitive cell cycle withdrawal (senescence). INK4 proteins [including p16INK4a (shown)
and p15INK4b] are induced in response to hyperproliferative mitogenic stress, primarily resulting from
oncogenic mutations affecting signaling pathway components. The INK4 proteins specifically inhibit CDK4
and CDK6 to promote cell cycle arrest; their effects are mimicked by chemical CDK4 and CDK6 inhibitory
drugs. Signal transduction inhibitors, which block the accumulation of D-type cyclins, synergize with CDK4
and CDK6 inhibitors to arrest cell cycle progression. Adapted from figure provided by Ashley Broussard, St.
Jude Children’s Research Hospital Biomedical Communications Department, Memphis, TN.
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mechanisms ensure, for example, that G1 cells that acquire DNA damage do not enter S phase, that
replicative DNA damage during S phase is repaired before cells enter mitosis, and that duplicated
chromosomes are correctly aligned on the mitotic spindle before they segregate to daughter cells.

Many oncogenic mutational processes exert their effects by targeting signaling pathway com-
ponents, enforcing constitutive mitogen-independent progression in lieu of normally regulated
controls. Other mutations disrupt the DNA damage response (DDR) and checkpoint mecha-
nisms, allowing inappropriate consolidation of genomic damage and triggering aneuploidy or
catastrophic mitotic failure, or both. Targeted therapy is designed to take advantage of specific
vulnerabilities acquired by cancer cells as a result of the driver mutations in oncogenes and tumor
suppressors that they sustain. By exploiting the acquired genetic dependencies of cancer cells,
targeted therapies should reduce the dose-limiting toxicities affecting normal cells and act with
greater precision than conventional genotoxic agents in killing tumor cells.

2. TARGETING G1 PHASE

2.1. Regulators of G1 Progression

Following cell cycle entry from quiescence (G0), G1 progression is initially controlled by one
or more mitogen-regulated D-type cyclins (D1, D2, or D3) that assemble combinatorially with
CDK4 or CDK6; cyclin E–CDK2 complexes act later, near the G1/S transition (Figure 1).
Because the expression of D-type cyclins, their assembly into functional holoenzyme complexes
with CDKs 4 and 6, and their stability and nuclear import are all mitogen-dependent events,
mitogen withdrawal results in rapid turnover of cyclin D, loss of CDK4 and CDK6 activity, and
arrest during G1/G0 (Alt et al. 2000, Choi & Anders 2014, Musgrove et al. 2011, Sherr 1995,
Vaites et al. 2011).

CDK4 and CDK6 are fastidious kinases that phosphorylate relatively few substrates (Anders
et al. 2011), the most critical being members of the retinoblastoma (RB) family [RB, RBL1 (p107),
and RBL2 (p130)] (Ewen et al. 1993, Kato et al. 1993, Matsushime et al. 1992, Meyerson & Harlow
1994). RB-family proteins act as transcriptional corepressors and adaptors of chromatin modifiers
that coordinate the activities of many genes required for cell cycle progression, metabolism, dif-
ferentiation, apoptosis, and permanent cell cycle withdrawal (senescence) (Burkhart & Sage 2008,
Manning & Dyson 2012, Nicolay et al. 2015, Sadasivam & DeCaprio 2013). A key set of proteins
negatively regulated by RB includes the E2F transcription factors that upregulate a suite of genes
whose activities are required for cell cycle progression and chromosomal DNA synthesis (Chen
et al. 2009, Dyson 1998, Nevins 1998, Trimarchi & Lees 2002). E2F targets include cyclins E
and A; geminin, an inhibitor of DNA rereplication during S phase; and EMI1, which, together
with CDK2, inhibits an E3 ubiquitin ligase (APCCDH1) that degrades cyclins A and B throughout
the G1 interval (Diffley 2004, Hsu et al. 2002, McGarry & Kirschner 1998, Miller et al. 2006,
Teixeira & Reed 2013). APCCDH1 maintains the low levels of net G1 CDK activity required for
loading prereplication complexes onto DNA and for licensing origin firing before DNA synthesis
begins. The activation of CDK2 by the RB- and E2F-regulated cyclins E and A and the inhibition
of APCCDH1 by EMI1 promote the irreversible G1/S transition and are required for the firing
of replication origins and for centrosome duplication as cells enter S phase (Diffley 2004, Yeeles
et al. 2015). RB is then maintained in its hyperphosphorylated inactive state by CDK2 and CDK1
until it again becomes hypophosphorylated during mitosis (Ludlow et al. 1990). Another form of
APC, which uses the substrate recognition factor CDC20 in lieu of CDH1, assembles during S
phase, but is inhibited by EMI1 until cyclin B–CDK1 complexes are reactivated during mitotic
entry (see Section 4.2).
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INK4 proteins bind directly to CDK4 and CDK6, but not to other CDKs, to inhibit their
kinase activities. In humans, p16INK4a and p15INK4b, encoded by closely linked CDKN2A (INK4a)
and CDKN2B (INK4b) genes on chromosome 9p21, are induced by hyperproliferative stress,
whereas unlinked genes encoding p18INK4c and p19INK4d negatively regulate CDK4 and CDK6
during normal tissue development (Ortega et al. 2002, Roussel 1999). The p16INK4a and p15INK4b

proteins are not expressed in tissues of young, healthy animals, but are induced in response to
aberrant oncogenic signals conveyed by mutant and constitutively active receptor tyrosine kinases,
Ras proteins, or their downstream effectors (Kim & Sharpless 2006). The p16INK4a, cyclin D and
CDK, and RB proteins constitute the RB pathway, in which the negative regulators (p16INK4a

and RB) are potent tumor suppressors, and the positive regulators (D-type cyclins and CDK4
and CDK6) have proto-oncogenic activity (Bartek et al. 1996, Sherr 1996). Not surprisingly,
inactivation of INK4A by mutation, deletion, or silencing; RB loss of function; and amplification
of the genes encoding D-type cyclins, CDK4, or CDK6 are frequent events in human cancers
(Hall & Peters 1996). Because the final target of the pathway is RB itself, p16INK4a arrests RB-
proficient cells during G1 but lacks activity in that subset of tumor cells that are RB deficient
(Koh et al. 1995, Lukas et al. 1995, Medema et al. 1995).

CDK2 activity is antagonized by another class of CDK inhibitors, the so-called CIP/KIP
proteins (Sherr & Roberts 1999). The p27Kip1 protein accumulates in quiescent cells (Polyak
et al. 1994) but is phosphorylated, ubiquitinated, and degraded as cells that have entered the cycle
approach S phase (Carrano et al. 1999, Nakayama & Nakayama 2006, Pagano et al. 1995). Notably,
p21CIP1 is a canonical target of p53 activation (El-Deiry et al. 1993). The p53 transcription factor
acts as a potent tumor suppressor to arrest the cell cycle during G1 in response to DNA damage or
aberrant oncogene signaling, which is itself a source of replicative DNA damage during S phase
(see Section 3.2). DNA damage during G1 phase induces the ATM and CHK2 kinases, both of
which phosphorylate and activate p53 (Table 1) (Ahn et al. 2004, Banin et al. 1998, Bartek &
Lukas 2003, Canman et al. 1998, Kastan & Bartek 2004). In turn, p53-responsive genes, such as
CDKN1A, encoding p21CIP1, can arrest the cell cycle, whereas other p53 target genes can induce
apoptosis or boost DNA repair (Kruiswijk et al. 2015, Levine & Oren 2009). Mutations targeting
p53 are among the most frequent in cancer (Vogelstein et al. 2000), so that p53-deficient cancer
cells defective in G1 checkpoint control need to rely more strongly on intra-S-phase and G2/M
controls for survival and may potentially be vulnerable to drugs targeting downstream checkpoints
(Zhou & Bartek 2004).

2.2. Chemical Inhibitors of CDK4 and CDK6, and Oncogene Addiction

Although early-generation pan-CDK inhibitors failed to offer a strong therapeutic index for cancer
cells versus normal cells, and were unacceptably toxic in the clinic (Asghar et al. 2015, Diaz-Moralli
et al. 2013), potent and specific orally available chemical inhibitors of CDK4 and CDK6 have re-
cently emerged as targeted therapeutics for cancer (Asghar et al. 2015, Sherr et al. 2016). These
CDK4 and CDK6 inhibitors arrest tumor cells during G1; however, tumors lacking functional RB
are resistant, mimicking their refractoriness to p16INK4A. One such drug, palbociclib (Pfizer) (Fry
et al. 2004, Toogood et al. 2005), was approved by the US Food and Drug Administration in early
2015 for treating estrogen receptor (ER)-positive, HER2 (ERBB2)-negative breast cancer after
it significantly extended progression-free survival of women with advanced disease without pre-
cipitating undue toxicity (Finn et al. 2015, VanArsdale et al. 2015). Notably, although palbociclib
monotherapy exhibited limited activity, it acted synergistically in combination with the aromatase
inhibitor letrozole (Novartis) to arrest breast cancer progression (Finn et al. 2015). This study
underscores the concept that combinatorial therapies targeting both estrogen-dependent D-type
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Table 1 Selected protein targets of drugs that impact cell cycle progressiona

Drug target Cell cycle phaseb,c Major functions during the cell cycle

ATM (ataxia telangiectasia
mutated)

G1, S, G2 A kinase sensor of DNA double-strand breaks and oxidative stress;
phosphorylates hundreds of proteins required for cell cycle arrest (e.g.,
CHK2, p53), DNA repair (e.g., NBS1, BRCA1), chromatin structure
(e.g., cohesin components), and other diverse cellular functions

ATR (ATM- and
RAD3-related)

(G1), S, G2 A kinase essential for both unperturbed cell cycle progression and as a
checkpoint sensor of single-stranded DNA and stalled replication forks;
phosphorylates CHK1 and other proteins required for diverse cellular
functions, including homologous recombination

Aurora A and B kinases G2/M A family of mitotic kinases that associate with centrosomes and mitotic
spindle components; Aurora A functions during centrosome separation
and chromosome alignment at kinetochores and recruits Aurora B to
centromeres; Aurora B binds to spindle microtubules during anaphase;
both enzymes function during cytokinesis

BRCA1 (breast cancer
susceptibility type-1)

(G1), S, G2 Associates with many proteins on chromatin to modulate homologous
recombination and repair of DNA double-strand breaks, transcription,
and cell cycle checkpoint control

BRCA2 (breast cancer
susceptibility type-2,
equivalent to FANC-D1)

S, G2 Binds single-stranded DNA and RAD51 to facilitate repair of strand
breaks by homologous recombination; functions as a component of the
Fanconi anemia complex (FANC) to repair DNA cross-links

CDK4 and CDK6 (cyclin-
dependent kinases 4 and 6)

G1, [G2] Phosphorylate and inactivate RB-family proteins to reduce cellular
dependence on extracellular mitogens and to propel S-phase entry

CHK1 (checkpoint kinase-1) S, G2 A serine or threonine kinase phosphorylated and activated by ATR;
induces cell cycle arrest by activating p53 and by inhibitory
phosphorylation of CDC25 phosphatases; phosphorylates tousled-like
kinases (TLKs) to regulate chromatin remodeling

CHK2 (checkpoint kinase-2) G1, S, G2 A serine or threonine kinase phosphorylated and activated by ATM;
facilitates DNA repair via phosphorylation of BRCA1 and facilitates cell
cycle arrest by targeting p53, CDC25, and E2F1

Kinesin-5 G2/M A motor protein required for microtubule assembly, and mitotic spindle
formation and function

MPS1 (monopolar spindle-1
kinase)

G2/M Recruits mitotic checkpoint BUB and MAD proteins to unattached
kinetochores to inhibit the APCCDC20 ubiquitin ligase, thus halting
mitotic progression and preventing premature mitotic exit

PARP1 [poly(ADP-ribose)
polymerase-1]

G1, S, G2 Detects DNA breaks; binds to DNA; polymerizes poly(ADP-ribose)
chains on many targets; recruits repair proteins

PLK1 (polo-like kinase-1) S, G2/M Facilitates centrosome maturation during S/G2; activated by Aurora
kinases; regulates WEE1; facilitates CDC25 activation to
dephosphorylate and activate CDK1 during mitotic entry and recovery
from the G2 checkpoint

WEE1 checkpoint kinase S, G2/M Phosphorylates CDK1 and CDK2 to inhibit kinase activity; prevents
S-phase progression and mitotic entry; opposed by CDC25 phosphatases

aIndividual drug targets are referenced via in-text citations. Most of the available targeted agents either are in preclinical development or have been
advanced to various stages of clinical trials. Notable exceptions include the CDK4 and CDK6 inhibitor palbociclib (Pfizer) and the PARP inhibitor
olaparib (AstraZeneca), both of which have been approved by the US Food and Drug Administration.
bParentheses indicate that the designated target has a lesser role during the G1 phase.
cSquare brackets indicate uncertainty about activity during G2. Continuously cycling cells synthesize D-type cyclins during the G2 phase, raising the
possibility that cyclin D–dependent kinases phosphorylate substrates other than RB-family proteins during this interval (Stacey 2003). A potential G2

substrate is FOXM1 (Anders et al. 2011).
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of the TFIIH
transcriptional
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phosphorylates RNA
polymerase II and,
separately,
phosphorylates and
activates other
cyclin-dependent
kinases

cyclin synthesis and CDK4 and CDK6 activity are particularly efficacious. Because many cancers
are driven by oncogenic mutations in signaling pathways that constitutively activate expression of
D-type cyclins and for which targeted and specific inhibitory drugs have already been developed,
opportunities abound in various tumor types for analogous combinatorial therapies with CDK4
and CDK6 and D-cyclin inhibitors (Figure 1). In addition to palbociclib, two similar drugs, abe-
maciclib (Eli Lilly) and ribociclib (Novartis), are in clinical trials for cancer treatment (Asghar
et al. 2015, Sherr et al. 2016).

Why is inhibition of CDK4 and CDK6 well tolerated? Neither of these CDKs is essential
for viability, and their combined absence in mouse gene knockout models is compensated for by
CDK2 and CDK1 throughout much of fetal development (Malumbres et al. 2004). However,
tumor cells driven by deregulated mutant oncoproteins may become addicted to the resulting
high signaling thresholds and, thus, exhibit a heightened dependency on recruited downstream
signal transducers (Luo et al. 2009, Pagliarini et al. 2015, Weinstein 2008). For example, cy-
cling breast cancers expressing abnormally high levels of ERs become especially reliant on the
pro-proliferative effects of cyclin D1–driven CDK4 activity (Musgrove et al. 2011). Moreover,
ER-positive tumors that had sustained deletion of CDKN2A or amplification of CCND1, including
those with inactivated p53, also responded well to combined palbociclib and letrozole treatment
(Finn et al. 2015). In models of HER2-positive breast cancers, resistance to targeted receptor
inhibition can be mediated by elevated cyclin D1 and CDK4 signaling, whereas CDK4 inhibition
resensitizes these cancers to anti-HER2 therapy and delays tumor recurrence (Goel et al. 2016).

2.3. Cyclin-Dependent Kinases Governing RNA Transcription

Certain CDKs, including CDK7, CDK8, and CDK9, that are regulated by distinct cyclins have
major roles as cofactors during polymerase II transcription and messenger RNA (mRNA) chain
elongation. CDK7, CDK8, and CDK9 are components of, respectively, TFIIH, mediator, and
pTEFb transcription complexes, and inhibitors of these CDKs are under development (Malumbres
2014). Unlike other CDK inhibitors that are adenosine triphosphate antagonists, the CDK7
inhibitor THZ1 binds covalently to a unique cysteine residue located outside of the canonical
kinase domain (Kwiatkowski et al. 2014). Overexpressed MYC oncogenes, which are frequently
amplified and targeted by activating translocations in many tumor types, maintain aberrant pro-
proliferative activities by sustaining transcription in cancer cells. Chemical inhibitors of CDK7,
CDK8, and CDK9 that regulate superenhancer-mediated transcription appear to exert more
significant antiproliferative effects on cells that overexpress MYC family oncogenes than on their
normal counterparts (Christensen et al. 2014, Huang et al. 2014, Lu et al. 2015, Pelish et al. 2015,
Wang et al. 2015). Recent preclinical studies have pointed to their efficacy in myelogenous and T
lymphoid leukemias, neuroblastoma, triple-negative breast cancer, hepatocellular carcinomas, and
RB-inactivated small cell lung cancers driven by superenhancer-associated transcription factors,
including MYC itself. Using these agents for indirect MYC targeting seems promising.

3. TARGETING S PHASE

3.1. The DNA Damage Response

DNA damage occurs more frequently throughout S phase than during other cell cycle phases in
normal cells, setting dependencies on the complex protein machinery called upon to recognize
and repair the thousands of different lesions that arise during each division cycle, including DNA
strand breaks, abnormally modified bases or abasic sites, and mismatched bases (Bauer et al. 2015,
Ciccia & Elledge 2010, Jackson & Bartek 2009, Kunkel 2015). Although the p53-dependent G1/S
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checkpoint arrests the cell cycle to allow DNA repair prior to S-phase entry (see Section 2.1),
other mechanisms can delay DNA replication and prevent late-origin firing during the S-phase
interval (the intra-S-phase checkpoint) or can recognize unrepaired DNA damage during G2/M to
prevent aneuploidy or mitotic catastrophe (Bartek & Lukas 2007, Kastan & Bartek 2004). Each of
these checkpoint pathways involves the recruitment of protein complexes that sense and signal the
presence of damaged DNA and engage effectors to repair different lesions (Goldstein & Kastan
2015, Hoeijmakers 2001, Jackson & Bartek 2009, O’Connor 2015). Mechanisms—such as base and
nucleotide excision repair, mismatch repair, homologous recombination (HR), nonhomologous
end joining (NHEJ), and translesion synthesis—have evolved to protect the genome (Bauer et al.
2015, Jasin & Rothstein 2013, Kunkel 2015, Malkova & Haber 2012, Reardon & Sancar 2005,
Reyes et al. 2015, Sale 2013).

Persistent double-strand (ds)DNA breaks are the most deleterious forms of damage because if
they are carried into mitosis, improper chromosome segregation may occur and essential genetic
material may be lost. During G1 phase, before the duplication of chromosomal DNA occurs, cells
must resort to NHEJ, a relatively inaccurate mechanism that predisposes the genome to mutations
and chromosomal rearrangements. However, during S phase, when one sister chromatid can be
used as a repair template for another, cells can utilize accurate HR in addition to NHEJ in an
attempt to correct dsDNA breaks ( Jackson & Bartek 2009, Jasin & Rothstein 2013, Moynahan &
Jasin 2010). In general, deleterious mutations impinging on one DDR pathway can be compensated
for by another, albeit with reduced fidelity and efficiency.

3.2. Replication Stress and the DNA Damage Response in Tumor Cells

A hallmark of cancer cells is their acquisition of defects in one or more DNA damage checkpoint
or repair pathways, forcing them to rely on secondary, suboptimal mechanisms for maintaining
genome integrity. Taking advantage of this feature affords a rationale for targeted cancer therapy.
Although germ-line mutations of DDR components, such as BRCA1 and BRCA2 tumor suppressor
genes, predispose to cancer (Table 1), most cancer-associated DDR defects are acquired during
tumor progression. A major force that selects for abnormalities in the DDR machinery in nascent
tumor cells is replication stress (RS), which is driven by the activation of oncogenes or the loss
of certain tumor suppressors (Bartkova et al. 2005, Di Micco et al. 2006, Gorgoulis et al. 2005,
Halazonetis et al. 2008, Hills & Diffley 2014). Indeed, the most frequently encountered examples
of tumor-promoting aberrations that enhance RS include mutations affecting Ras-driven signaling
pathways, disruption of the RB pathway, amplification and overexpression of c-MYC or cyclins
D and E, and haploinsufficiency of p27KIP1, all of which promote S-phase entry. The increased
threshold of RS is accompanied by the aberrant accumulation of diverse replication intermediates,
stalled or collapsed replication forks, or even unscheduled genome rereplication (Bartek et al.
2012, Branzei & Foiani 2010, Zeman & Cimprich 2014). RS may reflect collisions of replication
forks with oncogene-driven transcription complexes, and it occurs when the progress of DNA
polymerase is uncoupled from the helicase that unwinds DNA. Extended regions of single-stranded
(ss)DNA near the replication fork and the binding of replication protein A to the single strands
to prevent DNA cleavage induce the DDR mediated by the ATR and CHK1 kinases (Table 1).
ATR–CHK1 signaling recruits the repair machinery to suppress replication fork collapse, and
it inhibits new-origin firing to slow DNA replication and allow more time for repair. Failure to
exert these functions can instead generate more severe dsDNA breaks that prevent replication and
allow cells to enter mitosis with fragmented or misarranged chromosomes.

RS alarms both the ATR–CHK1 and ATM–CHK2 kinase cascades that initially provide an
intrinsic anticancer barrier, commonly leading to elimination of incipient tumor cells from the
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Synthetic lethality:
cell death resulting
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disruption of either
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proliferative pool. However, RS in nascent cancer cells also provides a strong pressure that selects
for the inactivation of DDR components, among them the ATM and CHK2 checkpoint kinases
and their prime target, p53 (Ahn et al. 2004, Bartek et al. 2007, Halazonetis et al. 2008). The
loss of p53, for example, compromises tumor suppression by allowing cells with DNA damage
to endure, insulating them from undergoing apoptosis or from permanently exiting the cell cycle
into a senescent state (Halazonetis et al. 2008, Vogelstein et al. 2000, Vousden & Prives 2005).
Notably, although ATM and CHK2 are dispensable for cell proliferation, and their inactivating
mutations are tolerated in cancer, ATR and CHK1 perform vital cell cycle–regulatory tasks,
including supporting replication fork stability and the timing of mitotic entry. These functions
are often essential for cancer cell viability and can be exploited by ATR and CHK1 inhibitors
in the treatment of advanced tumors (Bartek et al. 2012, Murga et al. 2011, Velic et al. 2015).
Because ATR is an essential gene, there had been concerns that its pharmacological inhibition
might not be tolerated in vivo. However, cancer cells are considerably more sensitive than normal
cells to partial ATR inhibition, and drugs that inhibit ATR or CHK1 are now being clinically
tested, particularly as radiosensitizers, for treating several types of malignancies, including breast,
pancreatic, and non-small-cell lung cancers (Velic et al. 2015).

The emergence of clones with DDR checkpoint defects allows for tumor progression at the
expense of decreased genomic stability owing to the persistent, unresolved consequences of ongo-
ing oncogene-fueled RS. Such volatile, genomically unstable states favor tumor heterogeneity and
progression, limiting the repertoire of DDR mechanisms for halting the cell cycle and allowing
sufficient time for repair (Burrell et al. 2013a,b; Halazonetis et al. 2008; Lord & Ashworth 2016).
In turn, it is these specific vulnerabilities that selectively sensitize cancer cells to traditionally
used irradiation and S-phase poisons (Goldstein & Kastan 2015, Moding et al. 2013), providing
a therapeutic window that distinguishes tumor cells from actively self-renewing populations of
normal cells—which include hematopoietic progenitors in the bone marrow, the epithelial cells of
the gut, or hair follicle stem cells—and that confers dose-limiting toxicities to these agents. One
negative consequence of chemo- and radiotherapy is that cytotoxic treatment regimens can further
mutagenize subpopulations of cells that have already lost such checkpoint controls, leading to the
emergence of drug-resistant and even more genetically unstable clones. This is a major reason
why multiple cytotoxic agents are frequently combined to kill cancer cells by simultaneously at-
tacking different DDR pathways and thereby avoiding the re-emergence of resistant populations
(Al-Lazikani et al. 2012, Burrell et al. 2013b, Velic et al. 2015).

3.3. Synthetic Lethality

The fact that tumor cells originate from cells with inherited DNA repair defects, or acquire somatic
defects in particular DDR pathways that force reliance on compensatory mechanisms, provides an
opportunity to induce cell death by drug-induced inactivation of backup pathways. The underlying
principle of such synthetic lethality is that although inactivation of one of two compensatory
pathways alone does not lead to a loss of cell viability, the disruption of both promotes cell death.
Hence, cancer cells mutant in one DDR pathway should be more susceptible than their normal
counterparts to the disruption of a second (Kaelin 2005, Lord & Ashworth 2012). The success
of conventional cytotoxic therapies largely depends on the targeting of S- and M-phase cell cycle
checkpoints that survey the fidelity of DNA replication and mitotic progression and that induce cell
death when repair mechanisms fail (Goldstein & Kastan 2015). For example, accelerated entry into
S phase may occur before the accrual of sufficient metabolic building blocks for DNA replication
(Beck et al. 2012). In this case, the clinical efficacy of chemotherapeutic nucleoside analogs that
further reduce nucleoside triphosphate pools and amplify replication stress represents an example
of drug-induced synthetic lethality.
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A parallel example of more precisely targeted therapy involves tumor cells with SETD2 mu-
tations that result in deficiency of histone H3 lysine 36 trimethylation (H3K36me3) (Pfister et al.
2015). This histone mark clusters within the bodies of actively transcribed genes, allowing them
to recruit specific chromatin readers that regulate proper precursor mRNA processing (Guo et al.
2014). Cells with SETD2 mutations that are defective in H3K36me3 exhibit significantly reduced
synthesis of the M2 subunit of ribonucleotide reductase, causing a shortage of nucleotide triphos-
phates. Because the phosphorylation of CDK2 (and CDK1; see Section 4.1) by the WEE1 kinase
(Table 1) negatively regulates its activity and prevents the firing of replication origins, drug-
induced WEE1 inhibition in SETD2-deficient cells further increases RS and kills H3K36me3-
deficient tumor cells (Pfister et al. 2015, Shoaib & Sorensen 2015).

Synthetic lethality has been exploited in the treatment of familial breast and ovarian tumors that
lack BRCA1 and BRCA2 tumor suppressor function and are defective in HR, which is used during S
phase for double-strand break (DSB) repair (Bryant et al. 2005, Farmer et al. 2005). The poly(ADP-
ribose) polymerase (PARP) is required for ssDNA repair (Table 1). The formation of ADP-ribose
chains and the subsequent dissociation of PARP from DNA facilitate the repair process, whereas
drugs such as olaparib (AstraZeneca) that inhibit PARP dissociation cause replication fork stalling
and collapse, thereby initiating DSBs. Because HR requires functional BRCA proteins, tumors
lacking these are highly sensitive to PARP inhibition, whereas normal cells are not (Lord et al.
2015). BRCA1 and BRCA2 are canonical tumor suppressors requiring the loss of both alleles
to manifest phenotypic deficiency. Hence, cells from patients who inherit one normal and one
mutated BRCA gene are relatively resistant to PARP treatment, whereas tumor cells that lose the
wild-type allele are much more sensitive.

These examples underscore the need to determine the underlying mutations in a patient’s tumor
so as to pinpoint specific oncogenic drivers and pre-existing defective pathways, thus allowing
targeted agents to be employed that precisely exploit the vulnerabilities of cancer cells. Combining
targeted DDR inhibitors, with each other or with chemotherapy or irradiation, may prove effective
in attacking specific repair mechanisms to induce synthetic lethality. Precision therapy of this type
depends upon determining the mutational spectrum encountered in particular tumors, information
that may be difficult to obtain, given random biopsies and clonal evolution that leads to variegated
gene expression and to significant differences among primary and metastatic lesions. Still, drugs in
clinical trials that specifically target S-phase regulators—such as PARP and the CDK2, ATM and
ATR, CHK1 and CHK2, and WEE1 kinases (Table 1)—may emerge as new targeted therapeutics
(O’Connor 2015, Velic et al. 2015).

3.4. Synthetic Viability and Treatment Resistance

Despite the growing list of promising drugs that target cancer cell vulnerabilities, acquired drug
resistance remains a problem. The successful application of PARP inhibitors, approved in the
United States and Europe for clinical use for ovarian cancer patients whose tumors harbor BRCA1
or BRCA2 mutations, illustrates the particular complexities of acquired drug resistance. Some
cases of PARP inhibitor resistance are attributable to secondary reverse mutations in BRCA1 or
BRCA2 that undermine synthetic lethality by restoring partially or fully functional BRCA genes
(Lord & Ashworth 2013). In addition, there is a growing range of additional cancer abnormalities
that occur in BRCA1-defective cancers and lead to adaptation of the DDR machinery in a way
that can be described as synthetic viability. These candidate resistance mechanisms reflect the
loss of DDR factors—such as 53BP1, RIF1, JMJD1C, or MAD2L2 (Rev7)—that normally limit
the extent of DSB end resection and hence HR repair, and whose loss results in at least partially
restored HR capacity in cancer cells lacking BRCA1 (Bouwman et al. 2010, Bunting et al. 2010,
Watanabe et al. 2013, Xu et al. 2015, Zimmermann et al. 2013).
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Another example of drug resistance involves the presence of two parallel and redundant stress-
support checkpoint pathways that target an overlapping spectrum of substrates. Specifically, KRAS
oncogene-driven cancers that feature enhanced endogenous RS depend on CHK1 signaling; how-
ever, in subsets of such tumors, the MK2 checkpoint kinase is aberrantly activated and substi-
tutes for CHK1, thereby causing resistance to CHK1 inhibitors. Consistent with the redundant
stress-support roles of CHK1 and MK2 (Reinhardt & Yaffe 2013), concomitant pharmacological
inhibition of both kinases efficiently kills such mutant KRAS tumors, providing a rationale for
overcoming this mode of resistance (Dietlein et al. 2015).

4. TARGETING G2 PHASE AND MITOSIS

4.1. The G2 Checkpoint

Cyclin A, induced at the G1/S transition, is degraded at prometaphase, whereas cyclin B accumu-
lates in S/G2 after cyclin A and is degraded later during anaphase. Transcription factors that induce
CCNB1 are activated by CDK activity, placing a dependency of cyclin B accumulation during G2 on
cyclin A (Fung et al. 2007, Fung & Poon 2005). Mitotic entry is largely controlled through the acti-
vation of cyclin B–driven CDK1, but G2 cells that express cyclin B do not yet express active CDK1,
which is restrained through inhibitory phosphorylation by the WEE1 and MYT1 kinases and is
activated by the removal of inhibitory phosphates mediated by the CDC25C phosphatase
(Domingo-Sananes et al. 2011, Lindqvist et al. 2009, Nigg 2001). Rising levels of cyclin B and
CDK1 complexes during the G2 phase eventually overcome the WEE1 inhibitory threshold, after
which WEE1 itself is inactivated by CDK1-mediated phosphorylation and CDC25C is activated
(Perry & Kornbluth 2007). This process drives the sudden burst of CDK1 activity as cells enter
mitosis.

DNA damage during G2 activates the ATR/CHK1 signaling pathway, leading to phosphory-
lation and inactivation of CDC25 isoforms, CDK1 inhibition, and G2 cell cycle arrest. If DNA
damage is subsequently repaired, arrest can be reversed. Other kinases, including polo-like kinase-1
(PLK1) and Aurora A, contribute to checkpoint reversal and mitotic entry (Table 1) (Aarts et al.
2013, Dominguez-Brauer et al. 2015, Keen & Taylor 2004, Nigg 2001, Strebhardt & Ullrich
2006). For example, PLK1 is activated by Aurora A–mediated phosphorylation. In turn, CDK1
phosphorylation mediates PLK1 recruitment to, and phosphorylation and degradation of, WEE1
and the parallel reactivation of CDC25. A prediction is that chemical WEE1, PLK1, or Aurora
kinase inhibition would prematurely drive cancer cells with pre-existing DNA damage into mito-
sis, ultimately triggering mitotic catastrophe and cell death by synthetic lethality ( Jackson et al.
2007). However, despite intensive efforts, the developed inhibitors of Aurora and PLKs have
caused severe side effects owing to an inability to distinguish cancer cells from normal cells, and
they have not so far demonstrated therapeutic clinical activity in solid tumors (Dominguez-Brauer
et al. 2015, Huang et al. 2009).

A promising anticancer strategy is to ablate the G2 DNA damage checkpoint by targeting
the ATR/CHK1/WEE1 pathway. A number of small-molecule inhibitors of ATR, CHK1, and
WEE1 are being evaluated in clinical trials, either in combination with DNA-damaging agents or
with one another (Sorensen & Syljuasen 2012). Despite the fact that p53 mutations allow cells to
tolerate aneuploidy, these drugs are showing particularly promising results in p53-mutant tumors
(Hirai et al. 2009, Van Linden et al. 2013). Even without concomitant genotoxic treatments, a drug
combination targeting CHK1 and WEE1 kinases not only deregulates CDK activity to generate
DNA lesions during S phase (see Section 3.1) but also triggers escape from the G2 checkpoint and
produces mitotic catastrophe in cancer cells that have sustained enhanced RS and DNA damage
(Aarts et al. 2012).
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4.2. Mitotic Progression and the Spindle Assembly Checkpoint

The activation of CDK1 by mitotic cyclins drives the mitotic state until the metaphase–anaphase
transition. By this time, the nuclear membrane has broken down, centrosomes duplicated at G1/S
have matured and migrated to the spindle poles, and chromosomes with duplicated sister chro-
matids have condensed and aligned on the mitotic spindle (Nigg 2001). Although cyclin B–CDK1
phosphorylates numerous proteins, a critical substrate is the APCCDC20 E3 ubiquitin ligase, or cy-
closome (Teixeira & Reed 2013). APCCDC20 degrades securin, a negative regulator of separase, the
protease that cleaves cohesin components to allow sister chromatid separation during anaphase.
APCCDC20 also degrades cyclin B, resulting in the loss of CDK1 activity, thus reversing the mitotic
state as chromosomes segregate and cells prepare for cytokinesis. Later in mitosis, APCCDH1 is
assembled and remains active through G1, targeting cyclins A and B for degradation, until cycling
cells re-enter S phase and APCCDC20 again begins to accumulate (see Section 2.1).

The APCCDC20-dependent spindle assembly checkpoint (SAC) operates to ensure that chro-
mosomes are properly aligned on the mitotic spindle before anaphase ensues. Although cyclin
B–CDK1 activates APCCDC20, its activity is suppressed by a mitotic checkpoint signaling complex
(MPS1, BUB1, BUBR1) until spindles properly attach to kinetochores, thus preventing preco-
cious chromosome segregation and aneuploidy (Kops et al. 2005, Sudakin et al. 2001). Microtubule
inhibitors, such as taxanes and vinca alkaloids, long used for cancer treatment, affect spindle as-
sembly and target the SAC to induce mitotic arrest and independently trigger mitochondrial outer
membrane permeabilization and apoptosis. The recruitment of the mitotic checkpoint complex to
unattached kinetochores depends on the SAC kinase MPS1, which is required for APCCDC20 inhi-
bition and correct chromosome alignment (Table 1) (Bayliss et al. 2012, Dominguez-Brauer et al.
2015). Although inhibition of MPS1 is highly lethal, it may prove that more modest reductions
in its level of activity can augment the effects of paclitaxel to selectively kill cancer cells ( Janssen
et al. 2009). Notably, although failure to satisfy the SAC retards cyclin B degradation and sustains
mitotic arrest, only some cells die during mitosis, whereas others bypass cytokinesis and escape
into a G1 state, from which they either undergo p53-dependent arrest as viable tetraploid cells or,
in the absence of p53, continue to divide as aneuploid cells (Lanni & Jacks 1998). The sensitivity
of normal cells, and particularly neurons, to microtubule inhibitors, as well as the failure of tumor
cells to initiate apoptosis during or after mitotic arrest, limits the efficacy of these agents (Huang
et al. 2009). Unfortunately, none of the drugs that specifically target mitosis—such as inhibitors
of kinesin-5, polo, or Aurora kinases (Keen & Taylor 2004, Marcus et al. 2005, Orth et al. 2008,
Strebhardt & Ullrich 2006, Wood et al. 2001)—prevents mitotic slippage and specifically induces
mitotic death in tumor cells. Potentially, drugs that inhibit CDC20 or cyclin B destruction, or
both, would prolong mitosis and prevent G1 escape (Rieder & Medema 2009), but such agents
have not been developed.

SUMMARY POINTS

1. Normal cell cycle progression depends on checkpoint controls that monitor S-phase
entry, ensure faithful DNA replication, and govern entry into, and progression through,
mitosis. Compromising these mechanisms generates cancer cell–specific vulnerabilities
that can be pharmacologically exploited.

2. Inhibitors of mitogenic signaling pathways, which may be compensated for and tolerated
in normal cells, may more forcefully block the proliferation of cancer cells that become
addicted to aberrantly elevated oncogenic signaling thresholds.
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3. Cancer cells experience increased replicative stress due to oncogene activation and other
mutations affecting the DNA damage response, thus providing opportunities to kill them
by disabling residual compensatory mechanisms.

4. Many inhibitory drugs now in clinical use or under development target G1 CDKs, other
cell cycle kinases (ATM and ATR, CHK1 and CHK2, WEE1, Auroras, polos, MPS1),
DNA damage sensors (PARP), kinesins, and epigenetic regulators (SETD2 methylase).
These agents are being widely exploited in combination with one another or with con-
ventional cytotoxic agents to advance cancer therapy.
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