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Abstract

Cancer is a disease reliant on the generation of mutations and the subse-
quent selection of those subpopulations endowed with the greatest fitness
advantage. Beginning with a heterogeneous landscape of somatic alterations,
various selective pressures acting on a tumor can shape the way it evolves.
In this review, we first discuss the current bioinformatics tools available to
tease apart the heterogeneous nature of a tumor and second consider the
impact that evolutionary forces have on sculpting a tumor. Neighboring
subclones may alter the microenvironment cultivating either cooperation or
competition between clonal populations. Additionally, the harsh environ-
ment brought about by therapy and the immune system may force adapta-
tion. Finally, we examine recent analyses focused on precancerous samples,
which help to reveal clonal selection occurring during the earliest stages of
tumor development, as well as work that has identified patterns of somatic
evolution observed in normal tissues.
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INTRODUCTION

Tumor development is an evolutionary process, involving the twin forces of mutation generation
and selection. One hallmark of this Darwinian process is tumor heterogeneity, which provides the
fuel upon which selection acts. Although mutation generation necessarily leads to heterogeneity,
microenvironmental, immune, and therapeutic selection pressures can dynamically sculpt a tumor
as it develops, fostering either homogeneity or heterogeneity. Recent studies have begun to shed
light on the extent of diversity within solid and hematological tumors, revealing that many tumors
develop through a process of branched clonal evolution, in which distinct clonal populations
coexist, possibly competing or cooperating during a cancer’s progression. The wealth of data
from next-generation sequencing studies has also shed light on the processes involved in generating
mutations (Alexandrov et al. 2013, Helleday et al. 2014, Lawrence et al. 2013, Segovia et al. 2015)
and the dynamics of tumor clones during the disease course and through treatment (Calbo et al.
2011, Keats et al. 2012, Landau et al. 2013, Marusyk & Polyak 2010, Murtaza et al. 2013).

In this review, we focus on the role of selection and clonal evolution in generating, maintain-
ing, or eliminating tumor heterogeneity. We explore tumor evolution, intratumor heterogeneity
(ITH), and clonal dynamics in the context of precancer, immune control, and through therapy.
We also investigate the tools to analyze heterogeneous tumor genomes and the insights these
tools have provided to the field.

Although macroscopic ITH has likely been evident since tumors were first excised many thou-
sands of years ago (Mukherjee 2011), an understanding of the extent of diversity at the single-
nucleotide level within tumors has only fully emerged as a result of next-generation sequencing.
Recent in-depth studies of single tumor samples, as well as multiple and serial sampling tech-
niques, have revealed considerable variability in the extent of diversity within both patients and
individual tumors. Next-generation sequencing has allowed for the identification and character-
ization of genetic ITH across a wide range of cancer types, including breast carcinomas (Navin
et al. 2011, Nik-Zainal et al. 2012b), clear-cell renal carcinomas (Gerlinger et al. 2012, 2014a),
glioblastomas (Sottoriva et al. 2013), gliomas ( Johnson et al. 2014), prostate cancers (Gundem
et al. 2015, Haffner et al. 2013), non-small-cell lung cancers (NSCLCs; de Bruin et al. 2014,
Zhang et al. 2014), head and neck squamous cell carcinomas (Mroz et al. 2015), squamous cell
melanomas (Ding et al. 2014), high-grade serous ovarian cancer (Schwarz et al. 2015), chronic
lymphocytic leukemia (CLL; Landau et al. 2013), acute myeloid leukemia (Ding et al. 2012, Klco
et al. 2014), and multiple myeloma (Bolli et al. 2014, Lohr et al. 2014). Taken together, these
studies have demonstrated that heterogeneity is observed to varying extents across a wide variety
of cancers, with both clonal and subclonal driver mutations identified. However, the majority of
studies considering heterogeneity in detail have either been limited to a small number of patients
or only investigated heterogeneity based on one sample from each tumor, thereby potentially
underestimating the true extent of diversity within tumors.

BIOINFORMATIC TOOLS TO EXPLORE HETEROGENEITY

Data available from next-generation sequencing experiments are suited to statistical analysis to
assess diversity within tumors given that sequencing data represent a random sample of DNA
molecules, and by extension cancer cell genomes, within a given tumor cell population. As such,
the advent of next-generation sequencing has seen a surge in computational tools to explore the
clonal architecture of tumors, from both single and multiregion studies.

The fraction of reads reporting a point mutation in a sample is dependent on the copy number
at that locus, the level of tumor purity (i.e., what proportion of cells that are sequenced are tumor
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Figure 1
Correcting for copy number to determine the cancer cell fraction (CCF). The variant allele frequency (VAF) of each mutation will
depend on its local copy number. By correcting for mutation copy number and then clustering mutations, one can determine clonal and
subclonal mutations. In this hypothetical example, mutations occur in regions of the genome of copy number 2 (orange) or copy
number 3 ( purple). The distribution of VAF in regions of copy number 3 is consistent with all cells harboring these mutations, some on
one copy and some on two copies of the three alleles present. On the contrary, the distribution of VAF in regions of copy number 2
shows that some of these mutations are subclonal.

cells), and finally the cancer cell fraction, describing the fraction of cancer cells in the sample that
harbor the mutation. The majority of tools to dissect clonal architecture rely on the relationship
between these variables, to estimate whether mutations are likely clonal or subclonal (Figure 1).

In general, a first step in dissecting the clonal architecture of a tumor involves estimating its
genomic copy number profile and also its purity. Tools such as ASCAT (Van Loo et al. 2010),
ABSOLUTE (Carter et al. 2012), OncoSNP (Yau et al. 2010), PICNIC (Greenman et al. 2010),
and Sequenza (Favero et al. 2015) utilize mathematical frameworks to decipher copy number
and data purity by assuming that sequenced DNA represents a mixture of measurements from
a population of at least two distinct cell types present at different proportions: (a) tumors cells
that contain an unknown amount of DNA and (b) an unknown proportion of normal cells with a
known amount of DNA per cell. Although the system of equations is undetermined, only a few
combinations of purity and ploidy can result in biologically meaningful solutions (Van Loo &
Campbell 2012).

Once the copy number and purity of a sample have been determined, the cancer cell fraction
of each mutation can be estimated. A simple approach to assess the clonality of a given mutation is
to determine whether the observed variant allele frequency differs from what would be expected
given a clonal mutation (Carter et al. 2012, Stephens et al. 2012). More sophisticated methods
rely on the assumption that mutations with similar variant allele frequencies may correspond to
clonal or subclonal clusters, reflecting nodes on an evolutionary tree. For example, PyClone (Roth
et al. 2014, Shah et al. 2012) integrates variant allele frequencies with allele-specific integer copy
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number estimates to define the subclonal composition within individual biopsies. The method uses
a Bayesian Dirichlet clustering process to jointly group mutations, and infers posterior density
estimates over the cancer cell fraction for each mutation. Conveniently, modeling the number
of subclones as coming from a Dirichlet process does not require knowledge of the number of
subclones a priori (Roth et al. 2014). PyClone assumes all copy number events are clonal, and
deep sequencing is recommended (Roth et al. 2014).

The method adopted by Nik-Zainal et al. (2012b) leverages data from whole genome sequenc-
ing to circumvent the need for deep sequencing and allows mutations to reside on subclonal
copy numbers. By contrast, SciClone (Miller et al. 2014), which also applies a Bayesian cluster-
ing method, focuses on single-nucleotide variants in balanced copy number regions. Although
this feature of SciClone circumvents issues associated with clonal and subclonal copy number
aberrations, it means that the clonality of every mutation cannot be determined.

More recent methods also use the fact that the structure of mutations should be hierarchical,
with nested subclones (Deshwar et al. 2015, Jiao et al. 2014), as well as modeling different forms
of data together (El-Kebir et al 2016, Fischer et al. 2014). These methods have also been extended
to allow multiple samples over space or time to be included in subclonal clustering, and this may
considerably improve the accuracy of subclonal reconstruction.

Importantly, it may be difficult to accurately deconvolve the subclonal structure in a tumor
from a single sample. For example, if two subclonal populations have similar cancer cell fractions
in one tumor region, they will appear as one clone. Analysis of another tumor region may enable
their separation. Similarly, without single-cell or multiregion sequencing, an amplification to eight
copies occurring in half the tumor population may appear like an amplification to four copies in the
tumor population as a whole. In addition to multiregion sequencing, further information regarding
the clonal composition of tumors can be inferred based on the mutual exclusivity or co-occurrence
of mutations in cancer cells, either from single-cell sequencing or from phasing. Phasing involves
determining whether mutations co-occur or are mutually exclusive, allowing different subclones
to be delineated; if two mutations never appear to occur together on the same haplotype, they are
likely to represent distinct subclones, whereas if two mutations can be phased in the same cancer
cell they are necessarily present in the same lineage (Nik-Zainal et al. 2012b). However, phasing
approaches are currently limited to the analysis of mutations in regions of hypermutation or high
mutation burden.

Finally, it is important to recognize that the cancer cell fraction of a mutation need not directly
reflect its timing or phylogenetic relationship with other mutations. For instance, given the dy-
namic nature of tumor evolution, an early truncal mutation may later be lost as a result of copy
number alterations (McPherson et al 2016, Murugaesu et al. 2015). Equally, the identification of a
mutation in every tumor region does not mean that it is necessarily truncal as subclonal mutations
may be present at low frequencies in multiple tumor regions.

CANCER, SELECTION, AND NEUTRAL EVOLUTION

First formally proposed as such by Nowell (1976), tumor progression represents an evolutionary
process under continuous Darwinian selection (Greaves & Maley 2012). At the time of detection, a
tumor will have undergone many rounds of cell division, with each generation of cells stochastically
acquiring novel somatic mutations (Gerlinger et al. 2014b). Although most of these mutations may
have little impact on the overall fitness of the cell, a minority subset of these mutations (known as
driver events) may endow a cell with an evolutionary advantage, allowing that cell and its progeny to
flourish and outcompete others. Combined, the processes of clonal selection and clonal evolution
acting on the cell may result in the outgrowth of multiple subclones, often with their own distinct
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driver events, leading to the branched evolutionary phylogeny that has been observed across many
cancer types (de Bruin et al. 2014, Gerlinger et al. 2012, Gundem et al. 2015, Nik-Zainal et al.
2012b, Sottoriva et al. 2013) (Figure 2a).

Generally, the number of driver events required for tumor initiation and progression, and how
this changes with time and the tumor microenvironment, remains unknown. Conventional theory
has viewed tumorigenesis as a slow process of clonal evolution as driver mutations are gradually
acquired, enabling various populations to expand, resulting in the formation of progressively more
disordered clones (Merlo et al. 2006, Stratton et al. 2009). However, recent studies have shown
that the malignant transformation of normal mammary tissue may also be induced surprisingly
quickly and efficiently, requiring the use of only KRAS G12D as an oncogene (Nguyen et al. 2015).
Additionally, the analysis of tumor genomes has recently revealed novel catastrophic events such as
chromothripsis, chromoplexy, and kataegis, which may result in a drastic shift in the evolutionary
trajectory of a tumor (Baca et al. 2013, Campbell et al. 2010, Forment et al. 2012, Nik-Zainal et al.
2012a, Shen 2013, Stephens et al. 2012).

Although the majority of established driver events are clonal, indicating that they likely arise
early in tumor evolution, subclonal driver events have been identified across many cancers and
are thought to play a role in tumor maintenance and progression, potentially leading to subclonal
expansions (McGranahan & Swanton 2015). Even the most common driver events may occur early
in some tumors while occurring late in others (McGranahan et al. 2015, Yates et al. 2015). This
reflects that the delineation between driver and passenger mutations is context dependent. As selec-
tive pressures and the tumor microenvironment change, so do the requirements for tumor survival.

Subclonal populations of cancerous cells give rise to a heterogeneous environment within the
tumor; however, each subclone is not an isolated entity. Interaction between subclones during
tumor evolution may be competitive or cooperative. One subclone may outcompete another for
vital resources, such as oxygen, nutrients, or space (Marusyk & Polyak 2010). Over time, different
subclones may even alternate as the dominant clone in a population, indicating the dynamic
selective pressures influencing clonal competition (Egan et al. 2012, Keats et al. 2012).

Alternatively, low-frequency clones may support the growth of the dominant clone or promote
resistance to therapy through paracrine signaling networks (Hobor et al. 2014, Inda et al. 2010).
Additionally, crosstalk between different cell populations is capable of shaping tumor properties,
such as metastatic potential, as has been shown in mouse models of small-cell lung carcinoma
(Calbo et al. 2011). It is not necessary for a subclone to have an obvious fitness advantage itself
in order to affect tumor development, as the subclone may still drive tumor growth by induc-
ing favorable changes in the microenvironment (Marusyk et al. 2014). However, if the subclone
responsible for contributing to the advantageous growth conditions is outcompeted by another
faster proliferating subclone, which itself is dependent on the current microenvironment, tumor
collapse may occur (Maley et al. 2004, Marusyk et al. 2014).

In addition to the ongoing clonal selection evident in some cancers, recent work has also
highlighted the occurrence of neutral evolution during tumor development (Figure 2b). Using a
theoretical model that determines the expected distribution of subclonal mutations under neutral
evolutionary processes, Williams and colleagues (2016) demonstrated that the extensive hetero-
geneity observed in some tumors can be explained by neutral expansion and the accumulation
of passenger mutations after any early driver mutations required for tumor initiation have been
acquired. The absence of selective sweeps as predicted under a model of neutral evolution implies
that once a mutation has arisen in a surviving lineage, it will persist and expand at the same rate
as any other mutation. Thus, the entire historical record of tumor evolution can be observed in
the current tumor genome. The earliest mutations that initiated tumor growth would be present
in all tumor cells, whereas more recently acquired mutations would be permanently constrained
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to a smaller tumor subpopulation, without any selective sweeps occurring to change their relative
prevalence. One consequence of this model is that the malignant potential of a tumor may be
determined very early in development (Sottoriva et al. 2015). Although the distribution of sub-
clonal mutations fits the neutral evolution model for a subset of tumors across many cancer types,
it remains to be determined how prevalent the phenomena is with more comprehensive sampling
strategies and how copy number corrections of the variant allele frequencies impact the model.

SELECTION AND SOMATIC EVOLUTION IN NORMAL
AND PRECANCEROUS CELLS

Stochastically acquired mutations in normal and precancerous tissues may be selected for, even-
tually resulting in the clinical presentation of a tumor. However, before that stage, the analysis of
noncancerous samples can shed light on the earliest stages of tumor development. Studies focusing
on Barrett’s esophagus, a precursor lesion to esophageal adenocarcinoma (EAC), have revealed
that it is more likely to progress to cancer if there is a higher degree of clonal diversity present
(Maley et al. 2006, Merlo et al. 2010). Indeed, by the time EAC is clinically diagnosed, there has
often been such evolution that the percentage of mutations shared between EAC and the adjacent
segments of Barrett’s esophagus can be less than 20% (Ross-Innes et al. 2015).

The order in which mutations arise can influence the outcome of subsequent selective pressures,
restrict evolutionary paths (Papaemmanuil et al. 2013), and affect the clinical behavior of disease
presentation as well as response to therapy (Ortmann et al. 2015). In a recent study on the evolution
of melanoma from precursor lesions, a BRAF V600E mutation alone was found to be sufficient to
form a nevus; however, precursor lesions with NRAS or alternative BRAF mutations also harbored
additional oncogenic mutations. Moreover, different melanoma subtypes evolved through separate
means (Shain et al. 2015).

Evidence of mutation acquisition and selection can also be observed in noncancerous cells.
For instance, although human hematopoietic stem/progenitor cells divide very rarely, they still
stochastically acquire mutations that may confer a slight selective growth advantage. In an anal-
ysis of germline reference blood samples taken from patients from The Cancer Genome Atlas
(TCGA) diagnosed with many different solid cancer types, mutations associated with leukemia
and/or lymphoma were identified. Importantly, none of these patients had any observable sign of
hematological malignancies, and the fraction of patients harboring leukemia- and/or lymphoma-
associated mutations increased with patient age. Thus these mutations appear to represent the
earliest stages of clonal selection and hematopoietic expansion (Xie et al. 2014). Furthermore,
apparently healthy individuals who carried driver mutations in their blood have been shown to be
at a higher risk of developing blood cancers (Genovese et al. 2014, Jaiswal et al. 2014).

High numbers of mutations and extensive ITH have also been identified in normal skin tissue
from the eyelids of middle-aged individuals. Positive selection of many known squamous skin can-
cer driver genes has been identified, with some clones acquiring multiple driver mutations without
undergoing malignant transformation. This observation and the fact that, in most cases, muta-
tions were detected only in a small fraction of the cells suggest that clonal outgrowth is not solely
determined by driver gene acquisition or is somehow curtailed early on (Martincorena et al. 2015).

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 2
Modes of tumor evolution. (a) When cancer cells are subject to positive selection, their frequency may increase, meaning that the
variant allele frequency (VAF) of a mutation will not remain constant over time. (b) During neutral evolution, the frequency of a cancer
cell clone will directly reflect its timing, with the VAF remaining constant.
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THERAPY, SELECTION, AND HETEROGENEITY

Longitudinal analyses of tumor samples have consistently identified shifts in the genomes of
samples taken before and after treatment with chemotherapeutics (Ding et al. 2012, Johnson
et al. 2014, Landau et al. 2013, Mullighan et al. 2008, Murugaesu et al. 2015, Schuh et al. 2012),
indicating that cancer therapy can play a major role in altering the genomic landscape of a tumor.
One way therapy may impact the evolution of a tumor is by directly acting as a mutagenic agent.
In this case, the genotoxic effects of chemotherapy may be reflected by changes to the mutational
landscape and spectra of the tumor. Consistent with this, an analysis of primary and relapsed
acute myeloid leukemia samples revealed an increase in the transversion rate among relapse-
specific mutations after cytotoxic therapy, indicating that at relapse chemotherapy had altered the
mutational spectrum (Ding et al. 2012).

A multiregion exome sequencing analysis of a small cohort of four patients with EAC taken
before and after treatment with a platinum-containing chemotherapy identified an increase in
C > A transversions at CpC sites present in the postchemotherapy samples of patients with residual
disease (Murugaesu et al. 2015). Mutations in this particular context had been previously identified
in Caenorhabditis elegans treated with cisplatin, a platinum-based chemotherapeutic (Meier et al.
2014). The majority of the mutations observed in the platinum-associated mutational context
by Murugaesu et al. were subclonal, consistent with those mutations occurring late in tumor
evolution, as would be expected for chemotherapy-induced mutagenesis. Consistent with these
findings, a larger study of 30 paired EACs sampled before and after neoadjuvant chemotherapy
also found a significant increase in C > A transversions after treatment (Findlay et al. 2016). As the
presence of residual disease indicates an incomplete response to chemotherapy, the observation
that some drugs leave behind clear signs of mutagenic activity in subclonal populations highlights
the need to better determine which patients are most likely to clinically benefit from therapy.

Conceivably, mutations generated from chemotherapeutics may not only leave scars in the
genome, but may also directly contribute to disease progression (Figure 3a). In a seminal study,
Johnson and colleagues (2014) examined the mutational landscape of a cohort of initial low-grade
gliomas and their recurrences and found that 6 out of 10 patients treated with temozolomide
recurred as hypermutated high-grade gliomas, with the majority of newly acquired mutations
occurring in a temozolomide-associated context. Additionally, within this mutational context,
they identified driver mutations in the RB and Akt-mTOR pathways. Their finding highlights
how chemotherapy-induced mutagenesis is not limited to solely aiding genetic diversification, but
that it can also influence the evolutionary path taken by the tumor, resulting, in this case, in a
tumor of higher histological grade with poor prognosis.

A subset of tumors from patients who have been treated with alkylating agents, such as temo-
zolomide, exhibit a significant increase in overall mutation burden, consisting of primarily C > T
transitions at CpC and CpT dinucleotide sites (Alexandrov et al. 2013, Johnson et al. 2014). The
proposed mechanism for resistance and hypermutation is via a selective advantage for clones that
acquired inactivating somatic mutations of MSH6, rendering them resistant to alkylating agents,
yet left to undergo accelerated mutagenesis due to the lack of effective mismatch repair (Hunter
et al. 2006).

Additionally, chemotherapy-induced mutagenesis may confound conclusions drawn from ge-
nomic analyses. Somatic mosaic protein truncating variants in PPM1D were originally identified
as associated with germline predisposition to breast cancer and ovarian cancer in women (Ruark
et al. 2013). However, further analysis has revealed that these variants are more commonly ob-
served in postchemotherapy cases rather than pretreatment cases, suggesting that they are somatic
mutations caused by treatment (Pharoah et al. 2016, Swisher et al. 2016).
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a   Therapy-induced mutagenesis

b   Pre-existing resistant clone

c   Shift in clonal composition

d   Maintenance of clonal composition
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Figure 3
Modes of clonal evolution in response to therapy. Beginning with a heterogeneous population of cells,
consisting of distinct subclones (orange, light blue, and dark blue), therapy can generate a mutation (red ) that
may (a) endow a subclonal population with a fitness advantage, (b) select for a pre-existing resistant clone,
(c) result in clonal shifts without a known resistance mechanism, or (d ) not substantially alter the clonal
composition.
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Even without directly inducing novel mutations, which may or may not be selected for, cancer
therapy can alter the genomic landscape and heterogeneity of a tumor by applying new selective
pressures, which can drive evolution reliant on the genetic variation that existed prior to the start
of treatment. Within a heterogeneous tumor, some subclones may be present that originally had
no obvious fitness advantage but impart a resistance to therapy and are subsequently selected
for (Figure 3b). Indeed, there have been numerous reports detailing the outgrowth of resistant
subclonal populations in response to therapy across many cancer types, including colorectal cancer
(Diaz et al. 2012, Kreso et al. 2013), glioblastoma (Cahill et al. 2007, Yip et al. 2009), melanoma
(Shi et al. 2014, Wagle et al. 2011), NSCLC (Kosaka et al. 2006, Turke et al. 2010), and chronic
myeloid leukemia (Shah et al. 2002).

Recent research has also shown the utility of sequencing circulating tumor DNA (ctDNA) taken
at multiple time points to noninvasively monitor clonal dynamics and identify emerging resistance
to therapy (Diaz et al. 2012; Murtaza et al. 2013, 2015; Russo et al. 2016). Murtaza and colleagues
(2015) monitored a patient with metastatic ER-positive, HER2-positive breast cancer for more
than 3 years and could infer the clonal evolution of the tumor over time in response to two separate
classes of targeted therapy. They detected both the presence of a PIK3CA mutation at the time the
patient progressed on trastuzumab and tamoxifen therapy and its decline after lapatinib treatment
was begun. This was followed by an increase in allele frequency of an ERBB4 mutation in response
to lapatinib therapy that was predicted to contribute to the patient’s resistance to the drug. Addi-
tionally, in colorectal cancer, integrative sequencing analyses of spatially and temporally separated
tumor biopsies along with ctDNA have identified polyclonal mechanisms of resistance to EGFR
blockade in distinct metastases from a single patient, highlighting the limits of relying on a single-
lesion biopsy for decisions pertaining to the treatment of a heterogeneous tumor (Russo et al. 2016).

Importantly, although the emerging mutations identified on the path to drug resistance are
often initially undetectable above background levels, little remains known about the evolution of
resistant clones during the course of drug therapy. In particular, the sensitivity of next-generation
sequencing is often not great enough to conclusively determine whether resistant clones existed
before drug exposure, or if they evolved from the original clones to acquire resistance. In a re-
cent study of EGFR-mutant NSCLC cell lines, Hata et al. (2016) used more sensitive sequencing
technologies to track EGFR T790M drug-resistant clones and found that both the intrinsic and
acquired routes to resistance could be observed. Intriguingly, they also found biological differ-
ences between those clones that had a pre-existing EGFR T790M mutation and those that were
initially drug susceptible and evolved a T790M mutation de novo, which may help inform future
therapeutic choices.

Clonal shifts without known resistance mechanisms have also been observed after treatment
with cancer chemotherapy (Figure 3c). Studies performed by Landau and colleagues (2013, 2015)
in CLL have shown clear evidence of clonal evolution over time, where minor subclones at the start
of treatment expand during the course of treatment. Often these subclones are enriched for driver
mutations, suggesting that the selective pressure of treatment could remove incumbent clones and
result in the growth of more aggressive subclones (Landau et al. 2013, 2015). Furthermore, they
observed that the presence of a subclonal driver was independently associated with poorer outcome
and response to therapy. Evidence of changes in clonal composition in response to therapy has
also been detailed in multiple myeloma (Egan et al. 2012, Weston-Bell et al. 2013). Interestingly,
Landau and colleagues (2013, 2015) also observed a minority of CLL cases that relapsed after
undergoing treatment yet maintained a stable clonal equilibrium (Figure 3d).

Examining the clonal dynamics of a tumor over multiple points in evolutionary time may also
provide a means for future therapeutic intervention. A recent analysis of brain metastases and
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their matched primary tumor samples observed that over half of the brain metastatic samples
contained potentially clinically actionable alterations that were not ubiquitously present in the
primary sample (Brastianos et al. 2015). Hata et al. (2016) also noted, with all the caveats of a
limited sample size, that in their study of EGFR T790M mutant cell lines, the cell lines with a de
novo EGFR-resistance mutation showed less evidence of a response to third-generation EGFR
inhibitors, further highlighting the complexity of resistance mechanisms. Such observations could
potentially have important implications in the clinic.

IMMUNE RESPONSE AND HETEROGENEITY

There is much evidence supporting an interaction between the tumor and the immune system
(Dunn et al. 2002). Tumor cells may induce an immune response by expressing antigens that
are recognized by a patient’s T cells. Indeed, therapeutic tumor regression has been observed
through the collection, ex vivo expansion, and re-administration of autologous tumor infiltrat-
ing lymphocytes resected from patients with metastatic melanoma. This indicates that there are
T cells present capable of recognizing tumor cells and mounting an immune response against
them (Dudley et al. 2002, Rosenberg 2012).

By recognizing some tumor-specific antigens, the immune system may also exert an evolu-
tionary pressure, shaping the antigenicity of the tumor and its diversity as it evolves. Driven by
the process of immunoediting, which describes the interaction between the tumor and immune
system, in which the immune system plays the dual role of protecting the host and sculpting
the tumor, subclonal populations of tumor cells either lacking immunogenic antigens or able to
withstand an immune response may be selected for (DuPage et al. 2012, Matsushita et al. 2012,
Schreiber et al. 2011).

Although an immune response may be mounted against self-antigens that are aberrantly ex-
pressed in cancerous tissues, recently there has been much interest in elucidating how the mu-
tational landscape of a tumor may result in tumor-specific neoantigens that have arisen from
nonsilent mutations. These neoantigenic mutations result in novel epitopes that may be recog-
nized as foreign by a patient’s tumor-infiltrating T lymphocytes (Rajasagi et al. 2014).

Through a pan-cancer study of patients from TCGA, Rooney and colleagues (2015) defined
an expression-based measure of cytolytic activity and observed that it was positively correlated
with the number of putative neoantigens in multiple tumor types. Furthermore, by comparing the
observed and expected numbers of predicted neoantigens generated per nonsilent mutation, they
found evidence of immunoediting, T cell–mediated surveillance, and elimination of subclones
containing neoantigens. Additional studies of TCGA patients have shown that both the presence
and number of predicted neoantigens are associated with overall survival (Brown et al. 2014,
McGranahan et al. 2016).

Although the impact of the clonal architecture of the tumor on the neoantigen repertoire re-
mains unclear (Heemskerk et al. 2013), there are some early indications that ITH might contribute
toward shaping the immunogenicity of a tumor. It has been shown that, among nonhypermu-
tated tumors, the most homogeneous tumors have the largest number of predicted neoantigens
(Angelova et al. 2015, McGranahan et al. 2016). More heterogeneous tumors have been shown to
have an overall greater depletion of immune subpopulations (Angelova et al. 2015) and lower levels
of immune infiltration (Morris et al. 2016). Additionally, patients with homogeneous tumors ex-
hibit longer overall survival than patients with more heterogeneous tumors (Angelova et al. 2015,
McGranahan et al. 2016). These observations implicate ITH as a potentially important factor in
determining the immune response elicited by a tumor.
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IMMUNOTHERAPY AND HETEROGENEITY

The influence of ITH on the immune response may also have implications for personalized
immune therapies, particularly those that target tumor neoantigens by modulating the activity of
the immune system. The use of immune checkpoint inhibitors, such as antibodies directed against
PD-1 (programmed cell death-1) or CTLA-4 (cytotoxic T lymphocyte-associated antigen-4), has
shown great promise across a wide variety of cancers; however, clinical benefit has only been seen
within a subset of the patient population (Hodi et al. 2010, Pardoll 2012, Topalian et al. 2012).
To date, molecular determinants capable of predicting patient response to checkpoint blockade
have been hard to establish. In seminal work studying NSCLC (Rizvi et al. 2015) and melanoma
(Snyder et al. 2014, Van Allen et al. 2015), overall mutation burden has been shown to correlate
with response to anti-PD-1 therapy and anti-CTLA-4 therapy, respectively, whereas in colorectal
cancers (Le et al. 2015) mismatch repair status could predict clinical benefit to PD-1 blockade.

Based on the observations made in the treatment-naı̈ve setting, it has been suggested that tu-
mors with a low level of ITH and a high clonal neoantigen repertoire might further contribute
to checkpoint inhibitor response. Conceivably, such patients may respond better because of the
higher level of immune infiltration in more homogeneous tumors or because a highly homoge-
neous tumor itself may be evidence of extensive immunoediting of antigenic subclonal populations
by a functional and active immune system (Angelova et al. 2015, McGranahan et al. 2016, Morris
et al. 2016). Recent research further exploring the same checkpoint blockade–treated NSCLC
and melanoma cohorts (Rizvi et al. 2015, Snyder et al. 2014, Van Allen et al. 2015) has found
that response to PD-1 and CTLA-4 antibodies was particularly improved in patients with tumors
enriched for clonal neoantigens. Among the patients treated with an anti-PD-1 antibody, those
without durable benefit were found to have a significantly more heterogeneous neoantigen reper-
toire than those experiencing a durable clinical benefit. Additionally, incorporating a measure
of heterogeneity, rather than considering total neoantigen burden alone, could more accurately
stratify these patients into groups with durable clinical benefit or no clinical benefit (McGranahan
et al. 2016).

These observations suggest that the clonal structure of neoantigenic mutations may play a role
in immune surveillance and raise the question of whether subclonal mutations are sufficient to
generate a tumor-wide immune response. Furthermore, among the anti-CTLA4-treated cohort,
a small subset of patients previously treated with an alkylating agent had an increased mutational
load of subclonal mutations, consistent with therapy-induced hypermutation, but were among the
poor or limited responders, suggesting that although therapy may induce potentially immunogenic
mutations, those might not always be sufficient to elicit an efficient antitumor immune response
(McGranahan et al. 2016).

It is possible that in the presence of many antigenic subclonal mutations, an immune response
is only mounted against a few of them, and even then, when lymphocytes are generated that
recognize subclonal neoantigens, it is conceivable that they would not be able to target the whole
tumor. Thus as more data become available, it will be important to determine the full extent of
the interplay between the clonal architecture of a tumor and the potential reaction of the immune
system.

FUTURE PERSPECTIVES

Above we consider the selective forces shaping a tumor as it develops, including the response to its
environment and other extrinsic factors such as therapy. As the continuous acquisition of mutations
results in a heterogeneous landscape that confers tumors with increased resilience, it will be of
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particular importance to determine the impact the underlying clonal architecture has on tumor
evolution. Most studies to date have been constrained by sequencing depth and single sample
biopsies; therefore, calculations of tumor heterogeneity are bound to reflect underestimates.

Moving forward, improved computational methods to better dissect clonal architecture and
model tumor clonal dynamics, as well as studies examining tumors with finer resolution through
the use of deeper sequencing depth, single-cell samples, or multiple tumor regions, will help
to elucidate the impact ITH has on a tumor’s evolutionary path and potential. One such study
has already been commenced, TRACERx [TRAcking Cancer Evolution through therapy (Rx)],
which uses multiregion and longitudinal ultradeep exome sequencing to prospectively track the
evolution of primary NSCLC from diagnosis through treatment and relapse ( Jamal-Hanjani et al.
2014). Additionally, this study along with others has begun to analyze tumor immune infiltrates to
assess how the immune system may shape tumor development and determine how heterogeneity
impacts antitumor immunity both with and without the aid of immunotherapy (Angelova et al.
2015, Jamal-Hanjani et al. 2014, Llosa et al. 2015). Beyond genomic analyses of ITH, DNA
methylation studies have also begun to identify extensive epigenetic ITH, adding yet another
layer of complexity to the understanding of tumor evolution (Brocks et al. 2014, Mazor et al.
2015, Oakes et al. 2014).

Continuing such studies will lead to an improved understanding of ITH and clonal dynamics,
endowing us with the ability to more fully decipher the evolutionary history of a tumor as well as a
greater understanding of which events are truly clonal and how a tumor may respond to therapy.
This will potentially translate into novel therapeutic approaches and inform new ways to best
stratify patient groups for maximal treatment efficacy.
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