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Abstract

The proto-oncogenic epidermal growth factor (EGF) receptor (EGFR) is a
tyrosine kinase whose sensitivity and response to growth factor signals that
vary over time and space determine cellular behavior within a developing
tissue. The molecular reorganization of the receptors on the plasma mem-
brane and the enzyme-kinetic mechanisms of phosphorylation are key de-
terminants that couple growth factor binding to EGFR signaling. To enable
signal initiation and termination while simultaneously accounting for sup-
pression of aberrant signaling, a coordinated coupling of EGFR kinase and
protein tyrosine phosphatase activity is established through space by vesic-
ular dynamics. The dynamical operation mode of this network enables not
only time-varying growth factor sensing but also adaptation of the response
depending on cellular context. By connecting spatially coupled enzymatic
kinase/phosphatase processes and the corresponding dynamical systems de-
scription of the EGFR network, we elaborate on the general principles nec-
essary for processing complex growth factor signals.
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1. INTRODUCTION

Communication via growth factors coordinates the collective behavior of cells that generate their
identity within the developing tissues of an organism. Cell-surface receptors recognize the ligands
as inputs from the environment and transmit the signals to the inside of the cell. An example is
the epidermal growth factor (EGF) receptor (EGFR), whose signaling affects collective processes
in the embryonic development of skin, lung, heart, and neuronal tissues (Lemmon et al. 2014;
Miettinen et al. 1995, 1999; Sibilia & Wagner 1995; Threadgill et al. 1995) but also wound heal-
ing in fully developed organisms (Sibilia et al. 2007, Yu et al. 2010). As one of four members of
the ErbB family of tyrosine kinase receptors, EGFR can be activated upon binding of the differ-
ent cognate ligands: EGE, transforming growth factor alpha, amphiregulin, heparin-binding EGF
(HB-EGF), betacellulin (BTC), epigen (EGN), and epiregulin (EPR) (Burgess 2008, Lemmon
etal. 2014). The binding of these known ligands leads to EGFR dimerization (Burgess et al. 2003,
Lax et al. 1989) and subsequent activation of its intrinsic tyrosine kinase activity. EGFR can also
form heterodimers with the other family members (Lemmon et al. 2014, Yarden & Sliwkowski
2001), particularly the orphan receptor ErbB2 and the kinase-dead receptor ErbB3 when these
are coexpressed in cells. Although the bispecific ligands HB-EGE, EPR, and BT'C regulate both
EGEFR and ErbB4 (Wilson et al. 2009), the latter is mainly activated by the specific class of neureg-
ulins (Falls 2003).
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The activation of the intrinsic tyrosine kinase activity by dimerization causes autophosphory-
lation of the receptor in #runs and thereby intracellular signal transduction that determines cell
fate (Jura et al. 2009, Zhang et al. 2006). Some of the low-affinity ligands such as EPR and EGN
function as partial agonists of EGFR dimerization but full agonists of EGFR phosphorylation
(Freed et al. 2017), indicating that EGFR phosphorylation (and thereby signaling) depends not
only on the generation of stable dimers but also on the ligand-induced kinetics of the reversible
dimerization reaction (Macdonald-Oberman & Pike 2014). In physiological settings, the ligands
are produced locally depending on intracellular signaling, which further affects the receptor in a
recursive autocrine or paracrine manner (Conte & Sigismund 2016, Singh & Harris 2005). Due
to the central role of EGFR in tissue generation and homeostasis, its overexpression and/or hy-
peractivation through genetic alterations can also lead to malignant transformations and tumor
development (Rowinsky 2004). In such pathological instances, EGFR mutations can not only af-
fect the behavior of individual cells, leading to disorganized growth, but also change the population
response in a tissue by altering how cells sense and communicate via growth factors.

Through structural and biochemical studies, it became apparent how information on growth
factor binding to EGFR is transmitted through the membrane by self-association that leads to
phosphorylation and signaling in the cytoplasm (Burgess 2008, Lemmon et al. 2014). Such stud-
ies have also revealed that different cognate ligands induce distinct structural changes in EGFR,
leading to different signaling patterns (Freed et al. 2017, Sweeney & Carraway 2000, Wilson et al.
2009). However, multiple and sometimes even opposed phenotypic responses can arise from the
same growth factor depending on context, and time-varying EGF signals can also alter the pheno-
typic response to resemble the responses induced by other growth factors (Ryu et al. 2015, Yarden
& Sliwkowski 2001). These information-processing capabilities therefore indicate that EGFR is
embedded in a sensing system that can interpret complex growth factor patterns. To describe
how EGFR processes information as a function of stimulus history and current context, we dis-
cuss how the EGFR phosphorylation response emerges through coordinated action of EGFR
reaction kinetics, vesicular dynamics of the receptor, and spatially established interactions with
protein tyrosine phosphatases (PTPs). We hereby argue that this interdependence between the
different scales of receptor organization establishes a unified growth factor-sensing system that
manifests within each scale and enables a balance between signaling commitment and continuous
responsiveness in a changing environment.

2. FROM THE STRUCTURAL BASIS OF EGFR ACTIVATION
TO I'TS REACTION DYNAMICS

2.1. Conformational Mechanisms of EGFR Kinase Activation

EGFR activation through EGF-induced dimer formation relies on allosteric release of the in-
tramolecular interaction between two of the four extracellular subdomains (IT and IV). This re-
lease results in a transition from a closed to an open configuration with freed dimerization arms
of subdomain II that allow the association between two EGFR receptor molecules (Burgess et al.
2003, Ferguson et al. 2003, Garrett et al. 2002, Lax et al. 1989, Ogiso et al. 2002). A symmetric
extracellular domain module configuration with a 2:2 EGF:EGEFR stoichiometry is thereby gener-
ated at saturating EGF concentrations (Figure 14) (Garrett et al. 2002, Ogiso et al. 2002), whereas
an asymmetrical extracellular domain module with a 1:2 stoichiometry and altered subdomain II
binding interface (Alvarado et al. 2010, Liu et al. 2012) is likely adopted at low physiological EGF
concentrations. EGF binding thus removes the steric constraints on the self-association imposed
by the tethered extracellular module, favoring dimerization of the transmembrane helices as well
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Figure 1

Catalytic and autocatalytic EGFR activation. (4, /eft) In the absence of growth factors, EGFR is predominantly monomeric with
unphosphorylated tyrosine residues (e.g., regulatory Y845 in the activation loop of the kinase domain or signaling tyrosines on the
C-terminal tail). (Middle) Upon EGF stimulation (green spheres), distinct short-lived, catalytically active dimers form that are in
equilibrium with monomers. A high EGF dose generates an extracellular domain symmetrical/intracellular domain asymmetrical dimer
(2:2 EGF:EGFR stoichiometry, fop 7ow) that is longer lived than the extracellular domain asymmetrical/intracellular domain
asymmetrical dimer (1:2 EGF:EGEFR stoichiometry, middle row) formed at a low EGF dose. Tyrosine residues are directly (receiver
kinase) or indirectly (e.g., via EGFR-phosphorylation-dependent recruitment of Src) phosphorylated within the dimers. Disassociated
EGFR monomers that are phosphorylated on Y845 are catalytically active and can form transient dimers with ligandless EGFR,
resulting in its phosphorylation (downward arrows pointing to bottorm row). (Right) On the population level, the transient dimers with a
1:2 EGF:EGFR stoichiometry turn over EGFR monomers, resulting in a catalytic amplification of monomer phosphorylation (zop).
This catalytic amplification is spatially restricted by the diffusion of the monomeric receptors (faded pink baze, top). Phosphorylation on
Y845 results in a cascade of autocatalytic EGFR phosphorylation-mediated activation events that enable the spread of the
phosphorylation signal (so/id pink baze, bottom). The large pink arrow in the background is a visual guide through the reaction steps that
lead to autocatalysis. (b) Causal representation of the bidirectional relationship between ligand-bound dimers and autocatalytically
activated monomers. Monomers are converted to dimers through EGF binding (black arrow), whereas dimers promote autocatalytic
phosphorylation of EGFR monomers (red arrows). Abbreviations: EGE, epidermal growth factor; EGFR, epidermal growth factor
receptor; P, phosphorylated; Src, tyrosine-protein kinase Src; SH2, Src homology 2 domain; Y, tyrosine.

as the juxtamembrane segments and the formation of asymmetrical dimers of the intracellular
kinase domains (Zhang et al. 2006). During this self-association, the intracellular C-lobe of the
kinase domain of one protein acts as an allosteric activator while the N-lobe of the binding part-
ner acts as an allosteric receiver in such a way that its activation loop position is altered so that an
open, active conformation of the kinase domain is favored.
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The activation of the intracellular kinase domain of the receiver results in the transphos-
phorylation of tyrosine residues (pY) on the C-terminal tail of the activator receptor within the
EGFR dimer. Subsequent recruitment of adaptor proteins that contain Src homology 2 domains
(SH2s to pY992, 1068, 1086, 1114) or phosphotyrosine-binding domains (PTBs to pY992, 1068,
1173, 1148) then couple activated receptor dimers to diverse signaling pathways in the cytoplasm,
such as the Ras-mitogen-activated protein kinase (MAPK), phosphoinositide-3-kinase (PI3K),
protein kinase B (Akt), and phospholipase C-gamma (PLC-y) pathways (Yarden & Sliwkowski
2001).

Concurrently, recruitment of the E3 ligase Cbl directly to pY1045 and/or indirectly via the
adaptor protein Grb2 to pY1068 and pY1086 ubiquitinates the receptor on lysines (de Melker
et al. 2004, Jiang et al. 2003, Schmidt & Dikic 2005, Stang et al. 2000, Thien & Langdon 2001).
Monoubiquitination creates docking sites for proteins such as AP1 or CIN8S that couple to the
endocytic machinery via specialized ubiquitin-docking domains (Haglund et al. 2002, Huang et al.
2006) and thereby marks the dimeric receptor for degradation via the endocytic lysosomal route,
leading to signal termination.

Ligand binding to EGFR thus triggers a unidirectional sequence of molecular self-association
and subsequent conformational rearrangement events that lead to activation of the intrinsic kinase
and phosphorylation within the dimer. This profiles the phosphorylated dimeric receptor as a sta-
ble end product that initiates signal transduction through cell-specific signaling pathways, which
determine specific phenotypic responses.

2.2. Catalysis and Autocatalysis

Quantitative single-cell, EGF-dose/EGFR-phosphorylation-response experiments have demon-
strated EGFR phosphorylation levels that largely exceed the measured level of EGF-induced
self-association, indicating that the information about extracellular ligand is communicated to lig-
andless receptors through their phosphorylation (Reynolds et al. 2003, Stanoev et al. 2018). Such
amplification of EGFR phosphorylation can occur via turnover of EGFR monomers through an
EGFR dimer that serves as a catalytic intermediate. This requires that EGFR dimers are transient
complexes through which the exchange of monomers can occur (Ichinose et al. 2004). Optical
tracking of single EGFR molecules in cells has indeed demonstrated that both ligand-bound and
ligandless dimers are formed transiently with relatively short lifetimes (ko ~ 0.1-0.3 s7!) (Chung
et al. 2010, Coban et al. 2015, Valley et al. 2015), which is consistent with the low micromolar
affinity of extracellular as well as intracellular EGFR segment dimerization (Burgess et al. 2003,
Odaka et al. 1997, Ogiso et al. 2002). Furthermore, for physiological, subsaturating EGF concen-
trations (below or in the range of the nanomolar EGF dissociation constant), most EGFR dimers
are occupied by a single EGF but can still exhibit transphosphorylating activity (Liu et al. 2012).
Negative cooperativity for the second EGF binding (Macdonald & Pike 2008, Pike 2012, Wofsy
et al. 1992), which originates from an altered asymmetrical dimer interface in the extracellular
domains (Alvarado et al. 2010), suggests that EGF-EGFR dimers with 1:2 stoichiometry are even
shorter-lived intermediates (Salazar-Cavazos et al. 2020). That transient dimers can give rise to
catalytic amplification of phosphorylation is further supported by the fact that low-affinity ligands
such as epiregulin and epigen act as partial agonists of dimerization (due to a weakened dimer-
ization interface) but are full agonists of receptor phosphorylation (Freed et al. 2017). EGFR
phosphorylation amplification through phosphorylation on ligandless monomers by transient as-
sociation with ligand-bound EGFR is depicted in Figure 14. On the population level, the catalytic
amplification of the phosphorylation is spatially restricted by the diffusion of the ligand-bound
receptors.
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However, this catalytic phosphorylation can also trigger autocatalytic EGFR activation by
phosphorylation on regulatory tyrosines that affect kinase domain conformation. Molecular
dynamics simulations have shown that Y845 phosphorylation in the EGFR activation loop
suppresses the intrinsic disorder in the aC-helix region, thereby stabilizing an active kinase
conformation as well as increasing EGFR dimerization (Shan et al. 2012). Using a conforma-
tional EGFR sensor based on genetic code expansion, Baumdick et al. (2018) provided further
evidence that Y845 phosphorylation does indeed stabilize an active activation loop conformation
in EGFR monomers. This conserved regulatory Y845 has been reported to be phosphorylated
by Src, which in turn is activated by phosphorylated EGFR (Osherov & Levitzki 1994, Sato
et al. 1995), indicating that an autocatalytic loop can also be realized indirectly. In this respect,
it has been demonstrated that the two kinases in an asymmetric dimer cannot access each other’s
activation loops and therefore require the recruitment of a kinase such as Src on phosphorylated
Y1086 (Kovacs et al. 2015). This is consistent with the findings that phosphorylation on signaling
tyrosines precedes phosphorylation on Y845 (Kim et al. 2012), and that phosphorylation of
the distal segment of the tail (Y999-Y1186) enhances phosphorylation of Y845 (Kovacs et al.
2015). Alternatively, the phosphorylation of Y845 might require the formation of higher-order
oligomers of asymmetric EGFR dimers (Huang et al. 2016). In this case, the transient oligomers
formed between ligand-bound dimers and ligandless receptors could facilitate the activation of
ligandless receptors (Ichinose et al. 2004).

Figure 12 depicts a schematic representation of the autocatalytic amplification through phos-
phorylation in transient ligandless dimers. This bimolecular reaction leads to a cascade of phos-
phorylation and activation events that can enable the spread of the phosphorylation signal (Tischer
& Bastiaens 2003). As shown in Figure 15, these reactions can be abstracted through a causal bidi-
rectional relationship between ligand-bound dimers and autocatalytically activated monomers.

2.3. The Role of Nanoscale EGFR Organization in the Plasma Membrane
for Controlled Signaling

The catalytic and autocatalytic reaction—diffusion mechanisms of EGFR activation run the
risk of generating an uncontrolled amplification of signals and thereby aberrant signaling. One
layer of constraint over these reactions can be exerted by diffusional barriers that limit free
diffusion of EGFR to nanoscopic membrane domains (50-300 nm wide) that are delimited by
actin-based membrane skeleton fences (Kusumi & Sako 1996, Kusumi et al. 2005). These domains
are considered to be well-mixed protein reaction vessels within which EGFR self-association
and the resulting phosphorylation is facilitated. The crossing of signaling proteins through these
fences thus becomes the rate-limiting factor in lateral information transfer by reaction—diffusion
mechanisms such as autocatalysis. However, equipartitioning among the domains results in few
receptors per domain at physiological EGFR expression levels of ~5 x 10* receptors per cell,
thereby limiting EGFR reactivity (Clayton et al. 2005, Grecco et al. 2011). However, preformed
100-200-nm-sized nanoclusters containing 10-100 EGFR molecules have been observed, in-
dicating the presence of diffusional traps based on weak interactions with cytoskeletal or other
proteins (den Hartigh et al. 1992, Holowka & Baird 2017, Masip et al. 2016). Alternatively,
these nanoclusters might be additionally maintained by homotypic interactions between the
extracellular domains of EGFR molecules (Needham et al. 2016, Zanetti-Domingues et al. 2018).
What is clear, however, is that EGF stimulation leads to a ubiquitination-dependent enhanced
trapping of EGFR in the formation of clathrin-coated pits (CCPs) (Ibach etal. 2015, Rappoport &
Simon 2009). The rapid exchange between diffusive and immobile states of EGFR within CCPs
enables a spatially confined reaction—diffusion mechanism that amplifies EGFR phosphorylation
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(Ibach et al. 2015). An additional positive feedback loop between CCP formation and phos-
phorylated EGFR trapping thereby leads to the acceleration of the formation of invaginated
membrane structures that accumulate EGFR clusters, which effectively nucleate intracellular
signaling complexes (Liang et al. 2018) and commit these complexes to signaling endosomes
(Miaczynska et al. 2004, Sorkin et al. 1996, Villasenor et al. 2016, Wouters & Bastiaens 1999).

In these submicrometer-scale clathrin-coated membrane structures there is thus a balance
between the generation of relatively stable large EGFR signaling complexes that commit the
system to intracellular endosomal signaling and reversibility by transient EGFR self-association
that matters not only for growth factor sensing but also for distinct signaling responses in time.
Rapid and continuous phosphorylation/dephosphorylation reaction cycles (Bohmer et al. 1995,
Offterdinger et al. 2004, Ruff et al. 1997) are essential for both the sensing of and the response
to extracellular changes in growth factors. Indeed, it has been demonstrated that these phospho-
rylation/dephosphorylation cycles operate on a timescale of seconds, which is approximately two
to three orders of magnitude faster than the total duration of receptor phosphorylation (Kleiman
etal. 2011). This reveals protein tyrosine phosphatases to be key regulators of EGFR phosphory-
lation dynamics.

2.4. The Role of Protein Tyrosine Phosphatases in Regulating
EGFR Phosphorylation

PTPs that have distinct localization in the cell (Andersen et al. 2001, Tonks 2006) provide the
major EGFR-dephosphorylating activities (Alonso et al. 2004, Fischer et al. 1991, Tonks & Neel
1996). Different PTPs that have preferential activity and thereby specificity toward given EGFR
tyrosine residues have been identified (Liu & Chernoff 1997, Tiganis et al. 1998, Yuan et al. 2010).
Additionally, large-scale studies based on enzymatic assays of purified PTPs (Barr et al. 2009),
membrane two-hybrid assays (Yao et al. 2017), or biochemical assays on cell extracts after small
interfering RNA (siRNA) knockdown (Tarcic et al. 2009) have been performed to identify which
PTPs dephosphorylate EGFR. Recently, microscopic imaging of EGFR phosphorylation upon
opposed genetic PTP expression perturbations have identified not only the receptor-like R-PTP-
y and R-PTP-n and the endoplasmic reticulum—associated TC-PTP as the strongest dephospho-
rylating activities toward EGFR, but also when and where they dephosphorylate EGFR (Stanoev
etal.2018). The catalytic activity of fully active PTPs is, however, two to three orders of magnitude
higher than that of tyrosine kinases (Fischer et al. 1991). This would effectively suppress spuri-
ous EGFR phosphorylation (Baumdick et al. 2015) but also inhibit EGFR phosphorylation upon
growth factor binding and thereby impair signal initiation. This conundrum implies that PTP ac-
tivity is regulated through feedback coupling to EGFR kinase activity. Such regulation of EGFR
phosphorylation by EGFR-PTP feedback enables suppression of spurious EGFR activation to be
unified with robust growth factor dose sensing and subsequent signaling duration before reset-
ting to a basal state. As discussed below, the EGFR-PTP feedback can be locally realized either by
biochemical reactions coupled to EGFR phosphorylation that modulate PTP activity or in space
via phosphorylation-dependent vesicular trafficking of the receptor through spatially distributed
PTP activities.

2.4.1. Regulation of PTP activity by EGFR-induced oxidation. A major mechanism of bio-
chemical coupling between EGFR and PTPs occurs by EGFR-induced reactive oxygen species
(ROS)-mediated oxidation of the catalytic cysteine of PTPs (Bae etal. 1997, Rhee et al. 2000). This
coupling is realized via the multisubunit NADPH oxidases (NOXs), where EGFR-induced PI3K
activation induces phosphatidylinositol (3,4,5) trisphosphate (PIP3) production in the plasma
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Figure 2

Feedback regulation of EGFR phosphorylation by PTPs. () R-PTPs dephosphorylate phosphorylated
tyrosine (red to yellow dots) on EGFRs at the plasma membrane. Phosphorylated EGFR induces PI3K
activation, which in turn activates the GTPase Rac and NOX assembly. NOX generates extracellular
superoxide from oxygen that is rapidly dismutated to H,O; and reenters the cell, where it reversibly
inactivates R-PTP by oxidation of a catalytic cysteine to sulfenic acid. Phosphorylated EGFR thereby
inhibits R-PTP activity. (b)) Causal representation of the generated double-negative (toggle-switch)
interaction of EGFR and R-PTP. The monomeric phosphorylated EGFR species is represented.

(¢) EGF-induced phosphorylation of EGFR promotes its internalization via endocytosis. The PTPs
associated with the cytoplasmic side of the ER membrane dephosphorylate EGFRs on endosomes, implicitly
coupling EGFR-phosphorylating to PTP-dephosphorylating activity through endocytosis. (d) Causal
representation of this spatially established negative feedback between EGFR and ER-PTPs. The monomeric
phosphorylated EGFR species is represented. Abbreviations: EGE, epidermal growth factor; EGFR,
epidermal growth factor receptor; ER, endoplasmic reticulum; ER-PTP, endoplasmic reticulum—associated
protein tyrosine phosphatase; H, O;, hydrogen peroxide; NOX, NADPH oxidase; O, ~, superoxide;

P, phosphorylated; PI3K, phosphoinositide-3-kinase; PTP, protein tyrosine phosphatase; R-PTP,
receptor-like protein tyrosine phosphatase; S, reduced cysteine thiol; SOH, sulfenic acid.

membrane, resulting in the activation of the GTPase Rac and thereby the NOX assembly (Abo
etal. 1991; Bae et al. 1997, 2000; Paulsen et al. 2012). Activated NOX generates extracellular su-
peroxide from oxygen that is rapidly dismutated to H, O, and reenters the cell by diffusion or via
aquaporins (Bienert et al. 2006, Suh et al. 1999). These become the source of a steep membrane-
proximal intracellular H, O, gradient (Bae et al. 1997), which can locally oxidize the catalytic cys-
teine of PTPs to the catalytically impaired cysteine sulfenic acid (SOH, Figure 24) (Salmeen et al.
2003). This primary oxidation product is reversible, enabling PTP oxidation/reduction cycles to
generate a tightly confined area containing inactive PTPs near the ROS-generating membrane
due to the vast cytoplasmic pool of antioxidants (Schieber & Chandel 2014, Grecco et al. 2011).
This local ROS-mediated inhibition of PTP activity due to phosphorylated EGFR amounts to
a negative regulatory causality (Figure 2b) that, together with the negative regulation of EGFR
phosphorylation by PTP, generates a double-negative feedback loop (Reynolds et al. 2003). This
type of feedback regulation has been demonstrated for the candidate tumor suppressor R-PTP-y,
which enables both suppression of spurious EGFR activation and robust phosphorylation upon
growth factor stimulation (Stanoev et al. 2018).
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2.4.2. Direct EGFR-PTP negative feedback. Negative feedback regulaton of EGFR
phosphorylation can be accomplished by phosphorylation-induced EGFR-PTP interaction that
activates the PTP. The protein tyrosine phosphatase SHP2, which is encoded by the proto-
oncogene PTPNI11 (Bennett et al. 1996, Lechleider et al. 1993, Sugimoto et al. 1993), participates
in such feedback and exists in the cytoplasm in a low-activity state in which the active site is
occluded by an intramolecular interaction with its N-terminal SH2 domain. Interaction of the
SH2 domain with pY on EGFR releases the autoinhibitory interaction, creating an active form of
the phosphatase that dephosphorylates the receptor. This negative feedback regulation has been
shown to maintain a constant mean amount of phosphorylated EGFR on endosomes irrespective
of their size and EGFR loading (Villasenor et al. 2015). However, this negative feedback regulation
of EGFR phosphorylation can also result in a positive effect on EGFR signaling from the plasma
membrane as demonstrated for dephosphorylation of Y992 that recruits Ras GTPase-activating
protein (RasGAP) (Agazie & Hayman 2003). Furthermore, H, O,-mediated oxidation of SHP2 on
redoxosomes (Spencer & Engelhardt 2014), as demonstrated for PDGFR (Tsutsumi et al. 2017),
could add another layer of regulation in which a negative feedback switches to a ROS-mediated
toggle switch to sustain signaling of endocytosed receptor tyrosine kinases in the peripheral
cytoplasm.

2.4.3. Spatial establishment of negative EGFR-PTP feedback. Negative feedback regula-
tion of EGFR phosphorylation can also be realized in space by receptor-mediated endocytic traf-
ficking of activated, phosphorylated EGFR from the plasma membrane to an area with high PTP
activity. Toward that end, the two PTPs associated with the cytoplasmic side of the endoplas-
mic reticallum membrane (PTPN1/PTP1B and PTPN2/TC-PTP) (Cool et al. 1989, Tonks et al.
1988) have been shown to dephosphorylate EGFR on endosomes (Haj et al. 2002, Yudushkin
et al. 2007), implicitly coupling EGFR phosphorylation activity to PTP dephosphorylating ac-
tivity through endocytosis (Figure 2¢). This amounts to a spatially established negative feedback
that determines the duration of EGFR phosphorylation (Figure 24). PTP1B has also been shown
to suppress the spontaneous activation of EGFR by dephosphorylating Y845 on constitutively
recycling receptors (Baumdick et al. 2015). The activities of these PTPs are additionally redox
regulated (Haque et al. 2011, Lee et al. 1998, Meng et al. 2004) through space to enable EGFR
signal propagation in the cytoplasm (Yudushkin et al. 2007).

3. REGULATION OF GROWTH FACTOR SIGNALING
BY THE DYNAMICS OF SPATTAL EGFR CYCLES

The concept that signaling molecules downstream of cell-surface receptors can influence vesicu-
lar trafficking (Dykes et al. 2017, Er et al. 2013, Hanafusa et al. 2011, Laketa et al. 2014, Salazar
& Gonzalez 2002, Wang et al. 2015) generates a reciprocal relationship between receptor activa-
tion and vesicular dynamics that can shape the cellular response to stimuli (Mettlen et al. 2018).
Ligand-bound EGFR complexes are predominantly internalized via clathrin-mediated endocy-
tosis (CME) at low EGF doses and clathrin-independent endocytosis (CIE) at high EGF con-
centrations (Bakker et al. 2017, Collinet et al. 2010, Goh et al. 2010). Receptor-ligand complexes
packaged into vesicles from both pathways enter early endosomes (EEs) by fusion (Bucci et al.
1992, Goh & Sorkin 2013, Vieira et al. 1996); EEs further mature in the perinuclear area into late
endosomes (LEs) and eventually fuse into lysosomes where receptors (and ligand) are degraded
(Ceresa 2006, Levkowitz et al. 1999, Rink et al. 2005, Vanlandingham & Ceresa 2009). Positioned
both temporally and physically between the plasma membrane and the lysosomal compartment,
the highly dynamic, interconverting vesicular system propagates and processes receptor tyrosine
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kinase signals in the cytoplasm (Baass et al. 1995; Bakker et al. 2017; Grecco et al. 2011; Grimes
et al. 1996; Rashid et al. 2009; Schenck et al. 2008; Sorkin et al. 2000; Villasenor et al. 2015, 2016;
Wouters & Bastiaens 1999).

3.1. Regulation of Vesicular EGFR Dynamics by EGFR Signaling

Akt activity that is coupled to EGFR activity via PI3K drives EGFR vesicular trafficking through
the endosomal system (Er et al. 2013) by activating the early endosomal effector PIKfyve (FYVE-
containing phosphatidylinositol-3-phosphate 5-kinase). The kinase activity of PIKfyve converts
phosphatidylinositol-3-phosphate to phosphatidylinositol-3,5-bisphosphate on endocytic vesi-
cles, which enhances the transition of EGFRs from EEs to LEs as well as to Rab11-positive
recycling endosomes (REs), thereby recycling EGFR to the plasma membrane. Cbl-mediated
ubiquitination of the receptor couples the active, phosphorylated ligand-bound receptor to the
endocytic machinery at the plasma membrane (Haglund et al. 2002, Huang et al. 2006). How-
ever, ubiquitination also functions as a sorting signal in the vesicular trafficking of the EGFRs
(Bakker et al. 2017, Henne et al. 2011, Marmor & Yarden 2004, Waterman et al. 2002). Whereas
ligand-bound, ubiquitinated receptor complexes are unidirectionally trafficked from the plasma
membrane through the EEs and LEs to lysosomes, the internalized nonubiquitinated, predom-
inantly monomeric receptors are redirected from the EEs to the REs and back to the plasma
membrane (Baumdick et al. 2015) (Figure 3a).

3.2. The Effects of EGF Concentration on EGFR Trafficking Dynamics

EGFR trafficking dynamics depends on the extracellular concentration of EGE, because distinct
EGF concentrations establish a different balance between ligandless monomers and ligand-bound
EGEFR complexes. At saturating EGF concentrations, a high steady-state amount of ligand-bound,
ubiquitinated dimers is generated, which are unidirectionally trafficked from the plasma mem-
brane to the lysosome for degradation. However, at the low subsaturating EGF concentrations
typically found in human tissue secretions (0.4 to 20 ng/mL) (Konturek et al. 1989), only a frac-
tion of receptors are ligand bound, whereas the majority of receptors remain monomeric, are not
ubiquitinated, and undergo recycling (Figure 34). Once these recycled receptors are at the plasma
membrane, they are available to bind growth factors, which generates the dimeric species. Such
an EGFR trafficking system, whose differential dynamics depends on EGF concentration, enables
sensing of growth factor signals that vary over time. The ligand-bound entities alone cannot sense
further growth factor changes due to the high-affinity binding of EGF with dissociation rates on
a timescale of minutes to tens of minutes (ko ~ 0.5-0.05 min~') (Bellot et al. 1990, Defize et al.
1989) and their rapid endocytosis through aggregation in CCPs. However, before being endocy-
tosed, the ligand-bound dimeric EGFR transfers information about growth factor concentration
by promoting the autocatalytic phosphorylation of the recycled ligandless receptors (Figure 1).
These ligandless receptors therefore function as sensing entities of upcoming growth factor sig-
nals. For the system to sense changes in growth factor signals, the ligandless receptors have to be
dephosphorylated before they return to the plasma membrane.

4. FROM SPATTAL CYCLES TO CAUSALITY AND DYNAMICAL
MODE OF EGF SENSING

Sensing of growth factor signals that vary over time arises through the coordinated action of
vesicular dynamics, EGFR reaction kinetics, and the PTP-EGFR interactions that regulate the
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Figure 3

Dynamics of spatial EGFR cycles. (#) EGFR vesicular trafficking through the endosomal system is promoted through the EGFR-
PI3K-Akt-dependent activation of the early endosomal effector PIKfyve, which phosphorylates PI(3)P to PI(3,5)P. This enhances the
transition of EGFR from EEs to other endocytic compartments, namely LEs or REs. Ub functions as a sorting signal in the vesicular
trafficking of EGFR through the endosomal system: Ligand-bound, ubiquitinated receptor complexes are unidirectionally trafficked
from the plasma membrane through the EEs and LEs to be degraded in LYs, whereas the internalized, nonubiquitinated monomeric
receptors are redirected from the EEs to the REs back to the plasma membrane. (b)) EGF (green spheres) doses potentiate a distinct
vesicular route. (Top) At physiologically low EGF doses, only a minority of receptors are ligand bound, whereas the majority of
receptors remain monomeric, are not ubiquitinated, and undergo recycling. (Bottorz) At saturating EGF dose, there is a high steady-
state amount of dimeric ligand-bound receptors that are ubiquitinated and unidirectionally traffic from the plasma membrane to the LY
for degradation. Abbreviations: Akt, protein kinase B; EE, early endosome; EGEF, epidermal growth factor; EGFR, epidermal growth
factor receptor; LE, late endosome; LY, lysosome; P, phosphorylation; PI3K, phosphoinositide-3-kinase; PI(3)P,
phosphatidylinositol-3-phosphate; PI(3,5)P, phosphatidylinositol-3,5-bisphosphate; PIKfyve, FYVE-containing
phosphatidylinositol-3-phosphate 5-kinase; RE, recycling endosome; Ub, ubiquitin.

receptors’ phosphorylation dynamics. A systemic description of the response dynamics of such a
complex system first requires translating these interdependencies into a causal description. The
obtained network allows the analysis of which qualitatively different EGFR response dynamics
can arise. The predicted qualitative differences in response dynamics can then be verified by ex-
perimentally altering the system’s parameters to identify how EGFR senses changes in growth
factor signals.

4.1. Reconstruction of the EGFR-PTP Network

Causal links between EGFR-PTP pairs can be identified by using an EGFR phosphorylation
response to EGF dose as a dynamical signature of the underlying feedback motif together with
opposed genetic perturbations (Rahi et al. 2017, Reynolds et al. 2003, Stanoev et al. 2018). Ectopic
expression of the pairwise interaction partners potentiates the dynamic signature and thereby the
underlying motif over those with other endogenous PTPs, whereas PTP knockdown validates
the identified motif. This approach revealed double-negative EGFR-R-PTP-y feedback (toggle
switch) and negative regulation of EGFR phosphorylation by R-PTP-1 on the plasma membrane,
as well as negative feedback regulation by TC-PTP spatially established by the vesicular recycling
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of the receptor (Figure 44). The recycling thereby unifies these pairwise EGFR-PTP interactions
into a core receptor network that is distributed in space (Figure 4b).

4.2. Identification of Dynamical Modes of Operation

Given the identified network topology, the EGFR phosphorylation response depends on two
experimentally controllable parameters. The first is the fraction of ligand-bound EGFR (EGF-
EGFR %), an extrinsic parameter that depends on the extracellular EGF concentration, whereas
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Figure 4 (Figure appears on preceding page)

EGEFR phosphorylation responses are determined by the dynamical modes of the spatially distributed EGFR-PTP network. (#) EGFR
phosphorylation dynamics is regulated through interaction with PTPs in space. At the plasma membrane, the steep H,O, gradient
(ROS, red baze) mediates a double-negative feedback between monomeric EGFR and R-PTP-y, whereas R-PTP-n negatively regulates
EGFR phosphorylation. A negative feedback between EGFR and TC-PTP is established by vesicular recycling. (5) Causal
representation of the spatially distributed EGFR-PTP network shown in panel 2. Red and blue lines indicate causal interactions, green
arrows represent ligand binding, and dashed black arrows denote that the enclosed causal links are established through vesicular
trafficking. (¢) Three-dimensional bifurcation diagram of the network in panel 4 showing the dependence of EGFR phosphorylation
response (percent of EGFRp) on the relative R-PTP-y to EGFR concentration on the plasma membrane (R-PTP-y/EGFR) and the
fraction of ligand-bound receptors (percent of EGF-EGFR). (d—f, botton) Red lines show temporal EGFR phosphorylation responses
upon time-varying growth factor stimulation obtained by numerical simulations for organization in the (d) bistable, (e) critical, and

(f) monostable regions. Gray lines indicate the fraction of ligand-bound receptors, and yellow bars show growth factor pulses. (d—f, rop)
Opverlay of the corresponding EGFR phosphorylation trajectories on the three-dimensional bifurcation diagram in panel ¢. Red and
blue lines show trajectory segments during pulse presence and absence, respectively. Abbreviations: EE, early endosome; EGE,
epidermal growth factor; EGFR;, phosphorylated epidermal growth factor receptor; H, Oz, hydrogen peroxide; LE, late endosome;
LY, lysosome; NOX, NADPH oxidase; P, phosphorylated; PI3K, phosphoinositide-3-kinase; PM, plasma membrane; PTP, protein
tyrosine phosphatase; RE, recycling endosome; ROS, reactive oxygen species; R-PTP-1, receptor-like protein tyrosine phosphatase eta;
R-PTP-y, receptor-like protein tyrosine phosphatase gamma; SH, reduced cysteine thiol; SOH, sulfenic acid; TC-PTP, T cell protein
tyrosine phosphatase; Ub, ubiquitin. Panels - are adapted from Stanoev et al. (2018) under a Creative Commons CC-BY license.
Results presented in panels d—f were obtained with the two-compartmental model from Stanoev et al. (2020).

the second is the concentration of R-PTP-y relative to that of EGFR on the plasma membrane
(R-PTP-y/EGFR), an intrinsic parameter. Due to the nonlinearities in the system, qualitatively
distinct EGFR phosphorylation responses can be expected for organization in different parame-
ter ranges. The possible dynamical modes of operation for the EGFR-PTP network have been
analyzed using bifurcation analysis, which is a theoretical tool that for a given network allows
the detection of the parameter ranges in which the possible dynamical regimes occur (Strogatz
2018). Three possible dynamical modes of operation of the EGFR-PTP network have thereby
been identified and experimentally verified: a bistable regime bordering two monostable regimes
characterized by basal and high EGFR phosphorylation (Figure 4¢) (Reynolds et al. 2003, Stanoev
et al. 2018). These dynamical states are an intrinsic property of the network topology that is cen-
tered around an EGFR-R-PTP-y toggle-switch motif with autocatalytic EGFR activation. Stim-
ulation of EGFR with different ligands affects only the bifurcation parameter ranges and thereby
the regimes in which the network operates.

For a given range of R-PTP-y/EGFR on the plasma membrane, the system operates in the
bistable regime where EGFR can be in either a basal or a high phosphorylation state in the ab-
sence of any stimulus. When starting from the basal EGFR phosphorylation state, increasing the
ligand and thereby EGF-EGFR fraction, the system switches to the monostable high EGFR phos-
phorylation state via the high bistable state. However, for higher EGFR concentrations relative
to those of R-PTP-v, the system operates in the monostable regime of high EGFR phosphoryla-
tion. In this case the autocatalytic EGFR phosphorylation amplification always leads to R-PTP-y
inhibition via H, O, production, regardless of growth factor stimulus. Conversely, at lower mem-
brane EGFR concentrations, a monostable regime of basal EGFR phosphorylation is attained. In
this regime, EGFR phosphorylation gradually increases with growth factor receptor occupancy
(Figure 4c).

In the presented dynamical framework, the temporal evolution of the average EGFR phos-
phorylation state has been considered, but equivalent results have been also obtained using
single-molecule, reaction—diffusion simulations (Stanoev et al. 2020). In both instances, homoge-
nous distribution of the receptor and the phosphatase on the plasma membrane of the cell has
been considered as a well-mixed reaction vessel. As discussed in the section titled The Role of
Nanoscale EGFR Organization in the Plasma Membrane for Controlled Signaling, there is likely
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a nanoscale organization of EGFR consisting of discrete clusters with 10-100 receptors (Masip
et al. 2016) that poses constraints on the free diffusion of the reactants. However, the diffusion of
the EGFR molecules within as well as in and out of the nanoclusters (Fujiwara et al. 2016, Ibach
et al. 2015) enables all of the dynamical regimes to be manifested as an ensemble behavior of all
nanoclusters, which is the experimental observable for microscopic imaging (Stanoev et al. 2018).

4.3. Dynamical Modes Determine Phosphorylation Responses

When the system is poised in the bistable mode of operation, the response of EGFR phosphoryla-
tion to low-threshold EGF doses is rapid and robust. However, this bistable organization limits the
system’s responsiveness to temporal growth factor changes by switching it to a high EGFR phos-
phorylation state after the initial growth factor stimulus, which irreversibly persists after growth
factor removal (Figure 4d). EGF pulse experiments with R-PTP-y knockdown have provided ex-
perimental confirmation of such growth factor—triggered sustained activity (Stanoev et al. 2018).
Organization in this regime also enables lateral propagation of EGFR phosphorylation at the
plasma membrane, because receptors can sustain their own activity in membrane areas not ex-
posed to ligand (Reynolds et al. 2003, Tischer & Bastiaens 2003). However, for organization in
the monostable regime, the system quickly loses its ability to sense and respond to growth fac-
tor signals that vary over time (Figure 4f). This was experimentally confirmed by inhibition of
receptor recycling that lowered the steady-state EGFR concentration on the membrane, leading
to a weaker and dampened phosphorylation response to pulsed EGF stimulation (Stanoev et al.
2018). The recursion between theory and experiments thereby demonstrates that sensing growth
factor signal changes cannot be realized when the system organization is in either the bistable or
the monostable operation regime. Namely, sensing time-varying EGF signals requires rapid am-
plification of EGFR phosphorylation at low growth factor levels together with the ability to reset
to basal EGFR phosphorylation when growth factor levels decline.

4.4. The Role of Metastable Dynamics in the Sensing
of Changing Environments

EGEFR phosphorylation was rapidly amplified as well as transiently maintained before resetting to
basal levels in response to low-dose EGF pulses (Stanoev et al. 2018). Theoretical analysis revealed
that the combination of these features arises from critical organization of the system between
the mono- and bistable regimes of operation (Figure 4e). For this organization, an emergent
metastable state is what gives rise to prolonged EGFR phosphorylation after growth factor re-
moval, generating a transient memory of previous growth factor signals (Stanoev et al. 2020). This
metastable state enables the duration of EGFR phosphorylation to depend on previous stimulus
history, effectively displaying signal-integration capabilities. This could provide a possible expla-
nation of how cell fates can be biased depending on growth factor frequencies rather than growth
factor identity alone. This has been observed for PC12 cells, in which a range of frequencies in
EGEF stimuli led to differentiation instead of proliferation (Ryu et al. 2015).

However, the EGFR-PTP sensing system exhibits limits in responsiveness to time-varying
EGEF signals due to the ubiquitination-dependent removal of ligand-bound receptors from the
plasma membrane. This lowers the receptor’s steady-state concentration upon each transient
stimulus, effectively shifting the system toward the monostable regime. Consequently, the system
loses its ability to robustly sense and respond to upcoming growth factor signals depending
on dose and duration of EGF stimuli. However, low-affinity ligands such as epiregulin that
exhibit a rapid dissociation from EGFR and generate a weakened dimerization interface lead
to an increased number of monomeric receptors that recycle and thereby maintain the EGFR
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concentration on the membrane. Therefore, the system is expected to tend to maintain its or-
ganization in the critical dynamical regime upon prolonged epiregulin stimulation, which could
explain the more sustained EGFR phosphorylation at the plasma membrane when compared to
saturating EGF stimulus, as observed experimentally (Freed et al. 2017).

4.5. Implications of Dynamical Modes of Operation for Oncogenic Signaling

In many pathological settings, EGFR signaling is altered due to EGFR mutations that are spe-
cific either to the extracellular or kinase domains (deletions/insertions or point mutations) as well
as gene amplifications/overexpression (Pines et al. 2010). These mutations commonly enhance
EGFR kinase activity, either by loss of suppressive regulatory extracellular domain functions or
by altering the allosteric regulation of the kinase activity (Choi et al. 2007, Ekstrand et al. 1992,
Ozer et al. 2010). Among the most common kinase domain mutations that account for aberrant
EGFR activity in lung, pancreatic, and other cancers is the exon 21 missense mutation where
arginine is substituted for leucine at position 834 in the activation loop (L.834R) (Sharma et al.
2007). This mutation distally suppresses the local disorder of the N-lobe dimerization interface,
thereby facilitating kinase domain dimerization (Shan et al. 2012). However, full-length EGFR
L834R dimers are transient (ko ~ 0.15 s7!) (Valley et al. 2015) and enzymatically more active
than wild-type (WT) receptors (Yun et al. 2007, Zhang et al. 2006), giving rise to spontaneous
EGFR phosphorylation. This suggests that the enhanced intracellular kinase domain dimeriza-
tion can surpass the steric constraints imposed by the tethered extracellular domain. EGFR L834R
phosphorylation can still be enhanced upon EGF stimulation, suggesting that its catalytic activity
can still be regulated upon ligand binding (Chen et al. 2006).

Oncogenic mutations typically occur in one EGFR allele (Nomura et al. 2007), suggesting
that EGFR phosphorylation in pathological settings is determined by interactions between mu-
tant and W'T receptors (Red Brewer et al. 2013). Further, the L834R mutant has been shown to
preferentially adopt an allosteric acceptor position in the heterotypic interaction with WT recep-
tors, leading to their hyperphosphorylation. The structural basis for increased aberrant L834R
activity through suppression of the local intrinsic disorder of the aC-helix region has also been
proposed for Y845 phosphorylation on WT receptors (Shan et al. 2012). The L834R mutant thus
resembles the autocatalytically activated EGFR state, thereby being prone to induce autocatalytic
phosphorylation amplification of WT receptors. Analogous to this situation, oncogenic EGFR
overexpression also leads to its hyperphosphorylation (Arteaga & Engelman 2014).

From a dynamical point of view, in both cases the EGFR hyperphosphorylation results from
a mutation-induced shift between the dynamical operational modes of the system. Given that
EGEFR phosphorylation dynamics is regulated by the spatially established EGFR-PTP network
(Figure 4a), receptor overexpression leads to an increase in EGFR density at the plasma mem-
brane, effectively shifting the operational mode of the system to either the bistable or preactivated
monostable regime. EGFR expression is, however, proportional to the maximal kinase activity in
the system, suggesting that enhanced receptor kinase activity, as in the L834R/WTT system, effec-
tively results in an equivalent shift. A similar argument also applies to coexpression of oncogenic
extracellular domain mutants with WT receptors. An oncogenic mutation-induced shift to the
bistable mode of operation likely enables a highly aberrant EGFR phosphorylation state to be
maintained once a growth factor stimulus is encountered. As outlined in the section titled The
Effects of EGF Concentration on EGFR Trafficking Dynamics, EGFR trafficking—and thereby
its phosphorylation response—depends on the concentration of EGFE. Because the majority of
receptors are internalized and degraded at consistently high EGF doses, kinase-mutant-driven
oncogenic EGFR signaling is likely to be shut off under these conditions. However, at low
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physiological EGF concentrations or, similarly, with transient binding of weak-affinity ligands,
vesicular recycling keeps most EGFRs at the plasma membrane, thereby maintaining the system
in the irreversible bistable regime. The resulting collectively enhanced kinase activity thereby
underlies persistent signaling from the plasma membrane.

A persistent signaling from the plasma membrane can also result from an interaction of EGFR
with another protein, which traps the dynamically maintained receptors on the plasma membrane,
thereby effectively shifting the dynamical mode of operation of the EGFR-PTP network toward
the bistable or preactivation regime. In this respect, it was previously shown that EGFR associa-
tion with the oncoprotein erbB2 is sufficient to prolong and enhance the net phosphorylation of
EGFR at the plasma membrane, independent of the kinase activity of erbB2 (Haslekas et al. 2005,
Offterdinger & Bastiaens 2008).

5. CELLULAR CONTEXT-DEPENDENT PLASTICITY IN EGFR
SIGNALING RESPONSES

The ability of cells to adapt to highly dynamic environments must extend beyond the process-
ing capabilities discussed in the section titled Dynamical Modes Determine Phosphorylation Re-
sponses in ways that allow distinct cellular responses to be generated depending on the current
environmental context. Toward this end is the observation that EGFR phosphorylation is blocked
if breast, liver, or tongue squamous cell carcinoma cells are stimulated with hepatocyte growth
factor (HGF) before stimulation with cognate EGFR ligands, thereby affecting cell migration
(Gusenbauer et al. 2013).

A complex changing environment is generally present during wound healing, in which a switch
from a migratory to a stationary mode of behavior coupled to cell proliferation is necessary to en-
sure efficient wound closure. In this setting, the receptors from the Eph family act as sensors of
cell density, becoming activated at cell-cell contacts through interaction with membrane-bound
ephrin ligands present on the surface of neighboring cells (Pasquale 2010). Subsaturating, physi-
ological EGF stimulation promotes an increase in Akt-dependent EGFR recycling (Laketa et al.
2014, Stallaert et al. 2018), which maintains sensitivity to EGF and thereby a migratory mode of
operation by sustaining receptors at the plasma membrane (Figure 54). However, cell contact—
induced EphA2-receptor activity suppresses Akt activity and thereby traps both recycling and
ligand-bound EGFR in EEs by not activating PIKfyve. This change in the steady-state spatial dis-
tribution of EGFR switches the cellular response from EGF-induced signaling from the plasma
membrane, which promotes migration, to extracellular signal-regulated kinase (Erk) MAP kinase—
dependent signaling from EEs, which promotes proliferation (Stallaert et al. 2018) (Figure 5b).
The cellular environment can thus generate context-dependent responses to EGF stimulation by
modulating EGFR vesicular recycling.

6. SUMMARY AND OUTLOOK

To decipher how cells interpret EGF patterns, the description of intracellular signaling can be
decoupled from the multicellular context by investigating information-processing capabilities
within single cells in an experimentally controlled mimic of a changing environment. This can
be accomplished using microspectroscopic imaging approaches to spatially resolve signaling
reactions in live cells (Dehmelt & Bastiaens 2010) together with microfluidic devices that enable
spatial-temporal control of growth factor patterns (Blum et al. 2019, Ryu et al. 2015). Such
approaches have revealed how multiscale collective computations are established within single
cells. On the nanometer scale, catalytic and autocatalytic EGFR phosphorylation reactions are
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confined by clathrin-mediated diffusional traps on the plasma membrane, enabling both con-
trolled signal propagation in the cytoplasm and responsiveness to changing extracellular signals
through dynamic exchange of receptor monomers (Ibach et al. 2015, Rappoport & Simon 2009).
The responsiveness is generated through a feedback coupling with spatially distributed PTPs by

Migration

Fac =» NOX

f Ak
a Z ‘ 7 ¥ PM
LA ROS

EGFR EGF Q@ f
11 Q

QL
Akt S —— Erk

SH

SH
P
LE/LY
— 0
s i

.k —

(Caption appears on following page)

www.annualreviews.org o Processing Temporal Growth Factor Patterns 375



376

Figure 5 (Figure appears on preceding page)

Context-dependent switching in EGFR signaling responses. (#) Low-level sustained EGF (green spheres)
stimulation promotes EGFR-Akt-dependent EGFR monomer recycling (blue arrows), and autocatalytic
phosphorylation amplification of monomers is sustained by a minority of EGFR dimers as long as EGF in
the extracellular medium generates EGFR dimers from monomers (black curved arrow). The resulting high
steady-state level of activated, phosphorylated EGFR at the plasma membrane activates the PI3K-mediated
signaling networks (Akt, Rac) that produce ROS by NOX and promote the migratory state of cells (white box
within gray plasma membrane). (b) Cell contact—induced ephrin-EphA2-receptor activity suppresses Akt
kinase activity and thereby traps both nonubiquitinated recycling and ligand-bound, ubiquitinated EGFR in
EEs, from where Erk signaling promotes proliferation. Abbreviations: Akt, protein kinase B; EE, early
endosome; EGE, epidermal growth factor; EGFR, epidermal growth factor receptor; LE, late endosome; LY,
lysosome; NOX, NAPDH oxidase; P, phosphorylated; PI3K, phosphoinositide-3-kinase; PM, plasma
membrane; RE, recycling endosome; ROS, reactive oxygen species; SH, reduced cysteine thiol; SOH,
sulfenic acid; Ub, ubiquitin.

vesicular recycling, thereby generating a higher-scale organization. This spatial cycling depends
on growth factor-induced signaling from the receptors, enabling responsiveness to time-varying
growth factor signals and context-dependent phenotypic outcomes to EGF (Stanoev et al. 2018).
Due to interdependence across scales, the lower levels of organization manifest in the higher-level
response dynamics. By measuring these response dynamics, genetic perturbations enable the
identification of how signaling activities affect each other. Theoretical analysis of the dynamics
of these networks as a function of experimentally accessible parameters can elucidate how EGFR
growth factor sensing operates as well as predict how oncogenic EGFR mutations affect the
responsiveness of the system.

Cells in developing or repairing tissues, however, both receive and emit information about the
continuously changing environment through paracrine growth factor signaling. If the reception
and the emission of information from growth factors are coupled, a unified system is generated
in which the collective computation coordinates the phenotypic responses of the cells in the
population. The higher-scale organization of the tissue thereby affects the intracellular signaling
and vice versa. For example, EGF paracrine communication is demonstrably a determinant
for the coordinated behavior of migrating cells during wound closure, where spatially distinct
collective EGFR signaling responses arise within the tissue (Aoki et al. 2017, Hiratsuka et al.
2015).

The next step is therefore to understand how paracrine EGF communication enables hetero-
geneous identities to be generated and maintained in tissues (Koseska & Bastiaens 2017). For this,
the same theoretical formalism described in the section titled From Spatial Cycles to Causality and
Dynamical Mode of EGF Sensing can help identify under which conditions EGFR phosphoryla-
tion responses that differ from those of individual cells are possible. This can guide experimental
efforts to understand how cell-cell communication via the EGFR-sensing network affects collec-
tive responses in developing tissues.
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