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Abstract

Design in the chemical industry increasingly aims not only at economic but
also at environmental targets. Environmental targets are usually best quan-
tified using the standardized, holistic method of life cycle assessment (LCA).
The resulting life cycle perspective poses a major challenge to chemical en-
gineering design because the design scope is expanded to include process,
product, and supply chain. Here, we first provide a brief tutorial highlight-
ing key elements of LCA. Methods to fill data gaps in LCA are discussed,
as capturing the full life cycle is data intensive. On this basis, we review re-
cent methods for integrating LCA into the design of chemical processes,
products, and supply chains. Whereas adding LCA as a posteriori tool for
decision support can be regarded as established, the integration of LCA into
the design process is an active field of research.We present recent advances
and derive future challenges for LCA-based design.
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Life cycle assessment
(LCA): ISO-normed
environmental
assessment method
that considers all life
cycle stages and
various impact
categories

1. MOTIVATION

Chemical engineering is one key discipline to approach many of the United Nations’ Sustainable
Development Goals (1). Sustainability is therefore becoming a main objective for the design of
chemical products, processes, and supply chains (2–9). Although the term sustainability implies
environmental, economic, and social aspects (10), in this review, we focus on chemical design
approaches for minimizing environmental impacts.

Environmental assessment has been recognized as an important part of chemical process de-
sign for more than 20 years (11). Various performance indicators and metrics for environmental
assessment have been proposed and used in process design (12). Frequently, these metrics assess
environmental impacts as part of a hazard assessment on environment, health, and safety, and im-
pact categories include acute toxicity, biodegradability, and ozone depletion potential (13, 14).The
focus of environment, health, and safety metrics is often limited by both data availability and the
scope of current regulations and is therefore confined to the process of interest itself. Expanding
the scope beyond the process is desirable for considering potential trade-offs along the complete
life cycle.

Environmental impacts can be quantified along the complete life cycle in a standardized way
by life cycle assessment (LCA) (15). As its first holistic feature, LCA considers the entire life cycle
of a process or a product (e.g., a chemical or chemical device), starting from the provision of raw
materials and energy, via manufacturing and product use, to its recycling or final disposal at the
end of life (Figure 1). A second holistic feature of LCA is that multiple environmental impacts are
evaluated. Through these holistic features, LCA aims to avoid problem shifting between both life
cycle stages (e.g., where more efficient production might lead to more harmful waste treatment)
and environmental impacts (e.g., where climate-friendlier production might require more toxic
materials). As a consequence, LCA enables a balanced assessment of changes across all life cycle
stages and impact categories.

Compared with chemical process design, LCA is a relatively young methodology, whose stan-
dardization began in the 1990s (16). LCA therefore was not considered in process design for a
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Figure 1

Life cycle design, in which different design approaches cover different parts of the life cycle, while considering multiple environmental
impacts.
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long time. For example, classical textbooks on conceptual process design focus solely on economic
evaluation and do not teach LCA (17, 18). First approaches toward integrating sustainability were
proposed using qualitative design principles, such as avoiding toxic by-products and minimizing
waste streams (19, 20). Azapagic and colleagues (21, 22) reviewed the first systematic approaches
to integrating LCA directly into process design in the late 1990s. Nowadays, it is common prac-
tice to formulate environmental impacts as design constraints in economic optimization problems
(23). A recent development is to consider environmental impacts as a sole or additional objective
in design.

From the life cycle perspective, chemical design approaches should be restricted not to parts
but rather to the entire life cycle. In early pioneering work,Grossmann and coworkers (24) already
identified that optimizing toxicity for parts of the life cycle may outsource toxicity impacts out-
side the considered system boundaries. Although expanding the scope beyond the manufacturing
process of chemicals toward the entire life cycle has been and remains challenging, a complete life
cycle design is highly attractive because it provides the opportunity to exploit newly introduced
degrees of freedom (Figure 1): Alternative raw materials can be employed, such as biomass or re-
newable energy; supply chain structure can be redesigned to identify more sustainable suppliers;
products can be designed to maximize fitness for purpose; and the end-of-life by chemical waste
management can be addressed from the very beginning by designingmolecules that degrade faster
or are easier to recycle in efficient reverse supply chains.

In this review, we analyze how chemical engineers currently integrate LCA into product and
process design and even beyond. Our vision is to exploit all possible degrees of freedom for an
environmentally optimal design of complete chemical life cycles by gradually expanding the scope
of the design space. For this purpose, we first introduce the fundamentals of LCA (Section 2).
We present estimation methods for closing data gaps (Section 3) and begin the literature review
with the integration of LCA into process design (Section 4). Here, we define process design as
the conceptual engineering of a chemical plant for the process under study, e.g., the choice of
equipment and process settings.The design space is then expanded to include the use phase,which
is mostly affected by product design (Section 5). Further expansion of the design space covers
supply chains (Section 6). In contrast to process design, supply chain design is defined as the
design of a network of upstream and downstream processes, considering also the reverse supply
chain. Ultimately, we extend the scope of the design space beyond physical supply-and-demand
relationships by considering market-mediated effects (Section 7). Due to its holistic ambition,
LCA is inherently uncertain, and validation is challenging. These topics are therefore discussed
in the concluding Section 8.

2. FUNDAMENTALS OF LIFE CYCLE ASSESSMENT

The LCA methodology has been standardized by the International Organization for Standard-
ization (ISO) for environmental assessment of products along their entire life cycle, including the
supply of raw materials, the production process, product use, and final disposal (15). The basic
concept of LCA is to collect all mass and energy flows that are exchanged with the environment
over the life cycle of a product and to translate the resulting inventory into environmental impacts.
Owing to its holistic approach, LCA identifies impact shifting between different stages in the life
cycle and between different environmental impacts.

The LCA methodology consists of four phases (15):

1. Goal and scope definition: The first step defines the goal of the study (the “why?”
and “what?” questions the study should answer), as well as the scope [what is (not) in-
cluded?]. The scope definition includes key LCA elements, such as the functional unit (the
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quantitative basis of the study), suitable benchmarks in comparative studies, the system
boundaries, and the considered environmental impact categories.

2. Inventory analysis: Mass and energy flows are collected for all processes within the system
boundaries.

3. Impact assessment: The inventory data collected in phase 2 are translated into environmen-
tal impacts.

4. Interpretation: Results are verified by uncertainty analyses, and compliance with the in-
tended goal and scope is checked before conclusions are drawn.

In the following, we briefly discuss key elements of LCA that we believe are particularly impor-
tant for conducting and integrating LCA into chemical design approaches, including definition
of functional unit and benchmarking, selection of environmental impact categories, definition of
system boundaries, and contrasting of foreground versus background systems.

2.1. Functional Unit and Benchmarking

The functional unit is the reference basis to which all LCA results are related. The functional unit
quantifies the function or service of the system under study. Typically, the function of a chemical
process is to provide products. Thus, a common functional unit is simply “1 kg of a chemical.”

The definition of the functional unit can become more complex if processes provide more
than one product. These so-called multiproduct or multifunctional processes are common in the
chemical industry, e.g., in (bio)refineries or water electrolysis producing both hydrogen and oxy-
gen. Although the functional unit can be defined as a bundle of products (e.g., x kg of chemical A
and y kg of chemical B), this bundle approach becomes impractical in highly integrated chemical
networks with many by-products. Product-specific impacts are therefore often desirable, where
overall emissions must be allocated to each product. Allocation rules have been developed, and
a hierarchy is specified in the ISO standard. For detailed guidance on allocation rules, interested
readers are referred to Reference 25.

Functional units are particularly important in comparative assessments (26). For a sound com-
parison, the final functions must be identical for both the assessed process and its benchmark. For
example, if two process alternatives produce the same chemical, it is meaningful to compare the
processes based on 1 kg of the chemical. In contrast, if, e.g., chemicals with different heating values
are compared as fuel alternatives, a comparison based on 1 MJ of provided energy is preferable.

The choice of benchmark processes and products is crucial and depends strongly on the
application. For example, methanol produced from CO2 can be used as chemical feedstock or
synthetic fuel. As chemical feedstock, CO2-based methanol competes with fossil-based methanol
and thus should be compared with methanol production from steam reforming of natural gas.
In contrast, when using methanol as synthetic fuel, CO2-based methanol would probably not
substitute fossil-based methanol but rather gasoline, and thus should be benchmarked against
gasoline production (27).

2.2. Environmental Impact Categories

An ideal LCA should assess all environmental impact categories of concern (25, 28). If instead
only a few impact categories are considered, the LCA practitioner might miss increased impacts in
other categories that are out of scope, and problems might be shifted to other impact categories.
In practice, however, it is not always obvious which impacts are relevant and must be included
in the assessment. Selecting impact categories and corresponding methods (called classification
in ISO) for a reliable assessment faces further challenges from limitations in inventory data, lack
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Global warming
potential (GWP):
a measure of the
molecule-specific
contribution to global
warming relative to
CO2

Global warming
impact (GWI):
a process property that
describes the
cumulated GWP of all
emissions in a
product’s life cycle

or immaturity of impact-assessment methods, or even the choice between multiple assessment
methods for the same impact category. To support LCA practitioners in this challenge, guide-
lines on selection of impact categories have been developed for specific impact categories (29),
geographical contexts (30), and applications (31).

The standard approach to quantifying environmental impacts is to use impact scores IS j ob-
tained by multiplying the flows Qi = ∑

k Qk,i of each resource and emission i (as sum over all
processes k in the entire life cycle) with a characterization factor CFi, j for each environmental
impact category j (28):

IS j =
∑

i

CFi, j ·Qi.

Themost prominent impact category is probably climate change (CC), which considers the global
warming effect caused by greenhouse gas emissions.1 The standard characterization factorsCFi,CC
for impacts on climate change are the global warming potentials (GWP) published by the Inter-
governmental Panel on Climate Change (32). GWP quantifies the radiative forcing induced by an
emission of a substance relative to the radiative forcing induced by 1 kg of CO2. The GWP of a
substance is measured in kilograms of CO2 equivalents (kg CO2e). If GWP values are multiplied
with the corresponding inventory results, the global warming impact (GWI) is obtained (33). The
distinction between GWP (=CFi,CC) and GWI (=ISCC) is essential: The characterization factor
GWP is an intrinsic, molecular property reflecting the strength of emission to absorb radiation.
We refer to properties such as GWP as product properties because they depend exclusively on
molecular structure. In contrast, GWI is a process property that describes the cumulated GWP
of all emissions in a product’s life cycle (also known as carbon footprint) (34). For example, the
GWP of the refrigerant R134a is 1,300 kg CO2 e/kg R134a, whereas the GWI for the production
of R134a is only 6.6 kg CO2 e/kg R134a (35).

2.3. System Boundaries

The system boundary defines which life cycle stages are included in the assessment. In princi-
ple, LCA studies should always consider the entire life cycle (Figure 2), which is the so-called
cradle-to-grave approach. However, in specific cases, narrower system boundaries can be suffi-
cient: cradle-to-gate, gate-to-gate, or gate-to-cradle. A cradle-to-gate approach neglects all emis-
sions after a certain factory gate, i.e., all emissions caused in downstream processes and the end-
of-life phase. Such a cradle-to-gate approach is appropriate in comparative assessments if the life
cycle after the gate is identical for the compared processes. For example, if the same chemical is
produced, the system boundaries need to include only the processes from the extraction of raw
materials to the factory gate. Similarly, a gate-to-grave approach can be chosen for competing uses
of a scarce product (36) or for alternative waste treatment options. The gate-to-gate approach is
typically employed for compiling data for LCA databases (37). A gate-to-gate analysis can be used
in comparative assessments only in rare and very special cases and is generally not recommended.

A common pitfall when assessing the environmental impacts of individual processes is the
use of inconsistent system boundaries. An assessment accounting for environmental impacts of
the electricity supply while excluding the supply of raw materials, for example, will always im-
ply that a shift in energy supply from electricity towards more energy-intensive raw materi-
als is environmentally beneficial. In reality, however, the production of raw materials may have

1The terms impact on climate change, global warming impact, greenhouse gas emissions, and carbon footprint
are often used equivalently.
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Figure 2

System boundaries in life cycle assessment. Ideally, all processes are included in a so-called cradle-to-grave boundary. The system
boundary can further be divided into foreground and background systems. The foreground system is here defined as the part that is
“under control,” i.e., within the design space.

substantial environmental impacts that need to be accounted for to understand the environmental
implications of such a shift. It is therefore crucial to include the provision of both energy and raw
materials into the system boundaries (38, 39).

2.4. Foreground versus Background System

The system boundary is often further divided into the foreground and background systems.
However, these terms are not part of the ISO standard, and there is no common definition.
The foreground system can simply be viewed as the processes “of direct interest” (40). It can
also be defined as the part for which specific data are available, e.g., own-company data or
supplier-specific data for raw materials and energy (41). Here, we adopt Frischknecht’s (42,
p. 57) definition: “The foreground system consists of processes which are under the control of
the decision-maker.” In the context of design approaches in this review, the foreground system
thus corresponds to the design space.

Because the background system is the part that is “out of control,” it is typically difficult to
obtain data for background processes. Especially when the LCA ambition to cover the entire life
cycle is taken seriously, data for practically all processes of the entire economy would be required.
But evenwhen focusing on themost important background processes, the LCApractitioner always
faces data gaps. Thus, we first discuss the possibilities to obtain background data, in particular by
using chemical engineering principles (Section 3). Subsequently, we review LCA-based design
approaches, where we gradually extend the design space across the life cycle from process design
via product design to supply chain design and market-mediated effects (Sections 4–7).

3. DATA SOURCES FOR BACKGROUND SYSTEMS

Owing to its holistic nature, LCA requires data for a huge number of processes. To ease the
effort of manual data collection, various approaches are used to approximate LCA data. These
approaches should provide the required data at maximum accuracy with minimum effort. Typical
data sources can be organized in the following hierarchy:

1. industry data,
2. LCA databases,
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Life cycle inventory
(LCI): contains all
mass and energy
balances, which are
required for an LCA,
including both
technical flows
between life cycle
stages and elementary
flows exchanged with
the environment

Life cycle impact
assessment (LCIA):
in this assessment, LCI
results are translated
into environmental
effects, such as global
warming

3. simulation or laboratory data scaled up to industrial scale, and
4. so-called streamlined LCA approaches.

Data accuracy typically decreases across these approaches from 1 to 4. The background system
should preferably be modeled using firsthand industry data for the considered processes (43).
However, real plant data are not always available owing to confidentiality, especially when data
must be exchanged between different organizations.

The use of database values for processes in the background system is recommended if data of
sufficient quality are available, e.g., anonymized industrial data. Current commercially available
databases include approximately 500 commonly used chemicals, focusing on bulk chemicals and
intermediates (44). Please note that LCA databases do not always use process data from industry
but sometimes also use simple heuristics.

If only laboratory data are available, scaling up those data is essential to ensure sound compar-
isons, e.g., with industrial-scale benchmarks (45). Simon et al. (46) and Piccinno et al. (47) provide
heuristics for the scaling of laboratory data. Laboratory data on substance properties and reaction
kinetics can be fed into process simulations to estimate process data at industrial scale, which can
then be used as input for LCA studies.

Finally, streamlined LCA approaches can be employed to reduce the required amount of data
to a minimum (48). In one approach, the scope can be reduced directly by assessing fewer en-
vironmental impact categories and using correlations between impact categories for the left-out
categories (49–51). Another approach is to use proxy data or prediction methods (52). These pre-
diction methods are tailored to specific applications (53) and can be classified mainly into two
approaches: predicting the life cycle inventory (LCI, the “bill of materials” of the life cycle) or
directly predicting the final life cycle impact assessment (LCIA).

In chemical engineering, LCIA results have been predicted using molecular structure models.
The logic of these models is that the molecular structure directly influences the complexity of its
production process and its hazard and fate at the end of life, and thereby its life cycle environmental
impacts. This correlation between molecular structure and the LCIA can be fitted by multi-linear
regression models (54–56) or nonlinear models, such as artificial neural networks (57–60).Herein,
the physical properties of the product, e.g., the molar mass or the number of functional groups, are
used as input to describe the chemical of interest. The regression model is then used to predict an
LCIA result based on previous training on a given number of LCA studies for chemicals. Another
approach identifies typical groups of chemicals via clustering algorithms. The impact of a new
chemical is then predicted using the average of the cluster (61). Similarly, decision trees have been
used to classify the expected LCIA results into low, medium, and high environmental impact (62).
This approach is based on if–then rules, which use a set of critical parameters of the process chain,
e.g., the molecular structure of the product and process-chain-related variables corresponding
to chemistry, complexity, and generic process conditions. Current approaches are summarized in
Table 1.

In contrast to predicting LCIA results directly, other approaches estimate LCIs based on
generic flowsheets (37, 63) or heuristics (64). A most simple approach roughly estimates LCI
by using stoichiometric mass balances. This approach yields lower bounds for the environmental
impacts (64). This simple approach can still be very useful when process candidates are screened
against existing benchmarks: If a candidate’s lower-bound impacts are already higher than the
benchmark, this candidate can be discarded.

More recent approaches are based on advanced process calculations (65, 66) and data mining
(67). Parvatker & Eckelman (44) compared these prediction methods for LCI. The authors
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Table 1 Prediction methods for life cycle impactsa
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100 chemicals
as training
set

2–17 molecular
descriptors

CED, GWP (but
meant is GWI),
BOD, COD, TOC,
Eco-indicator 99

5.8–21% mean
relative error
due to
leave-one-out

57

338
inventories

10 molecular descriptors CED, GWP,
Eco-indicator 99,
electricity use, heat
use

0.41–0.69
coefficient of
determination

20.7–94.6% mean
relative error

58

Total of 166
chemicals:
10 as test
set, 16 as
validation
set, the rest
for training

Molecular descriptors
such as functional
groups

CED, global warming
(IPCC 2007, 100a),
acidification
(TRACI 2.0), and
three end-point
impact categories:
Eco-indicator 99
(I,I, total) (EI99),
ecosystem quality
(Impact 2002+), and
human health
(Impact 2002+)

On test set:
between 30 and
65% MRE and
R² between 0.45
and 0.87

59

3,073 organic
and a few
inorganic
chemicals

Physical properties such
as molecular weight
or partitioning
coefficient between
octanol and water
(9 in total)

Vector with the
characterization
factors to calculate
human toxicity and
freshwater
ecotoxicity

R² between 0.46
and 0.96

60

Total of 63
organic
chemicals

185 possible descriptors
in total, consisting of
178 molecular
descriptors (e.g.,
physical and chemical
properties) and 7
process descriptors
(e.g., concentration of
each component at
the reactor outlet or
the sum of the
environmental
impacts of the
reactants)

17 Recipe v1.08 (H)
midpoint categories

R² between 0 and
0.66

27

D
ec
is
io
n
tr
ee
s

91 study
systems as
training
data

30 predictor variables
(molecular
descriptors of the
FineChem tool and
process indicators as
proposed by
Sogiyama (169) and
Patel (170)

ReCiPe and CED
methods (23 metrics
in total)

13–40% averaged
validation error

62

M
ul
ti-

lin
ea
r
re
gr
es
si
on

141 and 90
products

Original set of 18
variables available in
the USEtox database

CED, Eco-indicator 99 Error values below
20% using 5
proxy LCIA
metrics in the
electricity
category, and
below 15% for
3 proxy
indicators in the
oil category

54

(Continued)
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Table 1 (Continued)

Category Method
Training
input Input for prediction Impacts regarded

Prediction
accuracy Reference

M
ul
ti-

lin
ea
r
re
gr
es
si
on

Data set
presented
by Wernet
et al. (57),
but removed
outliers and
molecules
where no
thermody-
namic
properties
are
available,
resulting in
83 data
points

Molecular descriptors
and thermodynamic
properties such as
reaction enthalpy or
functional groups; 17
molecular descriptors,
15 thermodynamic
properties

CED, GWP, COD,
BOD, TOC, EI99

Relative errors in
the range
20–44%, while
COD, BOD5
and TOC
showed much
larger errors

55, 56

C
lu
st
er
in
g

140 materials Expert knowledge to
classify the chemical
of interest into 1 of
14 categories, e.g.,
solvent or organic
aliphatic

Net mass of materials
used, energy
required,
greenhouse gas
equivalents, oil and
natural gas depletion
for materials
manufacture,
acidification
potential,
eutrophication
potential,
photochemical
ozone creation
potential, total
organic carbon load
before waste
treatment

Expected error for
most categories
is less than 6%
RMSE

61

H
eu
ri
st
ic
s

A
ve
ra
ge
d
L
C
A

No training
required

LCA of inputs,
stoichiometric
equation

All possible Not stated 64

Not
mentioned

Impact categories,
which are correlated
with the impact of
interest

Damage to human
health, damage to
eco-system quality,
and damage to
resources, along
with the GWP
(GWP100) and the
Eco-indicator 99

Not mentioned 51

aEleven papers are reviewed predicting various life cycle impacts based on the molecular structure. For reasons of simplicity, the impacts considered are
abbreviated as follows: biological oxygen demand (BOD), cumulative energy demand (CED), chemical oxygen demand (COD), global warming potential
(GWP), global warming impact (GWI), total organic carbon (TOC). ReCiPe is a life cycle impact assessment method, which comprises harmonized category
indicators and thus provides a variety of impact categories (171).

applied five prediction methods to two case studies for the production of styrene and the
subsequent product acrylonitrile butadiene styrene. The results are compared with an LCA study
based on process simulations (according to Step 3 of the hierarchy) and an LCA study based on
real plant data (according to Step 1 of the hierarchy). In conclusion, process simulations were
perceived as the favored method to approximate LCIs, although out of 18 estimated impact
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categories, only 4 categories were predicted within a 10% range compared with the full LCA con-
ducted with real plant data. Stoichiometric calculations should be used only when no information
regarding the process is available. Molecular structure models are found to underestimate the
results for global warming significantly but predict the cumulative energy demand within a 3%
range compared with the LCA based on plant LCI. Recent work from our own group (68) has
shown that combining molecular structure models with simplified process data (e.g., using ideal
thermodynamics) can improve prediction accuracy with low modeling effort. The development
of prediction methods for LCIs and life cycle impacts remains an important field for future
research. A key challenge for this research is to provide sufficient and reliable data at industrial
scale. Therefore, chemical engineers and the chemical industry should work on developing
platforms for the anonymous exchange of original plant data. Additionally, uncertainties in the
provided LCA data must be quantified and considered when using the data.

4. PROCESS DESIGN

In designing a sustainable chemical process, the most natural starting point is the design of the
process itself, i.e., the engineering of a single-site chemical plant. In LCA terminology, this means
that the foreground system is represented by the process only. However, even the design of such
a single plant itself involves decision-making on multiple scales (69, 70): On the smallest scale,
molecules must be selected as catalysts, solvents, or working fluids. On the process scale, equip-
ment types and operating conditions are determined for optimal process performance. Finally,
decisions extend to plant-site scale with close links to supply chain design, such as the selection of
a reaction network or separation sequences.

On all of these scales, process design can consider environmental aspects, whereby we can
distinguish three levels of integration (Figure 3): As a first level, LCA can be used for process
selection. Here, LCA is applied to fixed process alternatives. Process modeling provides the LCI.
LCA results serve as decision criteria for or against selecting a specific process design. However,

a   Process selection b   Process optimization c   Process synthesis

LC
I

LCI

Im
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ct
s

Process Process

m1, Q1, V1

i ii

• •
m2, Q2, V2
• •

m, Q, V• •

Process

m, Q, V• •

LCI
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ct
s

LCA LCA LCA

Figure 3

Integration of life cycle assessment (LCA) and process design ranges over various levels, from (a) evaluation of fixed process structures
by LCA in process selection to (b) integrated feedback loops of environmental impact on process design in process optimization and (c)
process synthesis. On all levels, the integration of LCA is enabled by the provision of life cycle inventory (LCI) from the process model.
Red font and boxes indicate optimization variables, i.e., process settings or flowsheet alternatives.
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there is no feedback loop from LCA results to process design. As a second level, LCA can provide
feedback to process design by integrating LCA into process optimization. Here, mass and heat
flows as well as temperatures and pressures are typically optimized for minimal environmental
impacts, but the flowsheet is fixed. Finally, as a third level, the flowsheet itself can be generated
under environmental consideration so that LCA is integrated into process synthesis.

In this review, we highlight contributions of integrating LCA into process design on all three
levels of integration. Because of the large number of contributions in this field, we focus on more
recent developments published since 2012. Earlier contributions are summarized in excellent pre-
vious reviews (71–73).

4.1. Process Selection

Most contributions to LCA-conscious process design apply LCA after process synthesis and pro-
cess optimization. These contributions can be categorized as process selection based on com-
parative LCA (26) (see Figure 3). The integration of LCA into process design is rather low, as
environmental impacts serve only as decision criteria to choose among fixed process designs and
do not provide feedback to process design.

Still, LCA for process selection has been applied for important problems such as the selection
of feedstocks (74), catalysts (75), products (76, 77), and process routes (78, 79). Major interest in
comparing process alternatives arises from the assessment of novel process designs to conventional
processes, e.g., recently in the area of bio-based production of chemicals (80) or carbon capture
and utilization (27). Typical tasks include the selection of more sustainable pathways to produce a
given product or to utilize a limiting feedstock.

The idea of comparing available options has been extended to provide feedback to process
design by analyzing the LCA results of every option, e.g., via hot-spot analysis (81, 82). The iden-
tified hot spots provide valuable insights for process designers on where to set a focus in the design
of new, improved alternatives.Ott et al. (81) demonstrated this approach to improve a pharmaceu-
tical process. Gear et al. (82) formulated this approach as a standardized flow scheme and showed
how the approach leads to more environmentally friendly process decisions for a thermal cracking
process for mixed plastic waste.

4.2. Process Optimization

The above-described selection of fixed process designs via comparative LCA requires considerable
manual effort and still runs the risk of missing beneficial options. Therefore, it is desirable to con-
sider LCA simultaneously with process design (53). LCA has been incorporated into well-known
process design methods, such as optimization by mathematical programming (21, 71).Mathemat-
ical programming can include environmental considerations, such as LCA impacts, as constraints
or as objective function yielding one integrated,multi-objective optimization problem. Integrated
process optimization with LCA commonly optimizes process settings and equipment sizes for a
fixed process flowsheet to find economic and environmentally benign solutions (83–88).

Depending on the question at hand, various solution strategies have been developed that can
be grouped based on the level of detail for process modeling: Frequently, processes are modeled in
an equation-oriented way by formulating mass and energy balances and cost correlations (83–85).
The resulting optimization problems can be solved via deterministic mathematical optimization.
Most often,multi-objective optimization has been limited to one economic and one environmental
objective by focusing on only one LCA impact category, such as the GWI, or by using aggregated
metrics, such as the Eco-Indicator 99 (89). Problems that have been solved in this way include
optimization of a coupled solar desalination facility for minimum cost and GWI (83), design of
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environmentally conscious absorption cooling systems via minimization of Eco-Indicator 99 and
cost (84), and optimization of design and operations of a hydrocarbon biorefinery by minimizing
GWI and maximizing net present value (85). The optimization typically leads to so-called Pareto
optimal solutions, which represent optimal trade-off solutions between the conflicting environ-
mental and economic objectives (22).

If more detailed modeling of the process is required, e.g., by including more detailed thermo-
dynamics, mass and energy balances are often not sufficient, and equation-oriented approaches
frequently become computationally demanding because of the highly nonlinear models. For
such cases, process simulators and LCA software have been combined with surrogate mod-
eling approaches and derivative-free optimization (86–88). For instance, Gonzalez-Garay &
Guillen-Gosalbez (86) developed the SUSCAPE framework for multi-objective design of chemi-
cal processes. SUSCAPE employs process simulation and surrogate process models with a genetic
algorithm for optimization. At the same time, SUSCAPE aims at accounting for more than one
LCA impact category without using aggregated indicators. Instead, SUSCAPE minimizes the
number of objective functions with an objective-reduction algorithm (90). The resulting Pareto
frontier is explored by multi-criteria decision analysis using data envelopment analysis, which has
been extended to include improvement targets (87). To realize the integration of LCA into pro-
cess optimization, systematic approaches such as the SUSCAPE framework are highly desirable,
as they try to capture all facets of the integrated problem.

4.3. Process Synthesis

As a further extension to process optimization, process synthesis not only optimizes given process
designs but also derives novel process designs, e.g., by selecting options from a superstructure
or by altering the design via evolutionary algorithms. Applications include synthesizing a process
flowsheet by selecting from a set of unit operations, selecting an optimal type of equipment for a
given task, or choosing a reaction route for a given product (91, 92).

Similar to process optimization problems, synthesis problems have been expanded by LCA.
Contributions to LCA-based process synthesis can be distinguished by solution approach and ap-
plication: Firstly, much work has been performed on formulating equation-oriented superstruc-
ture optimization problems for optimal process flowsheets (93–95). Wang et al. (93) developed
a superstructure model to determine technology, operational settings, and flow rates of a hydro-
carbon biorefinery for maximum net present value and minimum GWI. Similarly, Gong & You
(94) optimized a microalgae-to-biodiesel process for minimum GWI and cost. In both works, the
results show distinct trade-offs between net present value and GWI. Large savings of GWI can
be achieved, but only at higher cost, which highlights the need for multi-objective optimization of
conflicting objectives. Demirhan et al. (95) minimized the costs of ammonia production by solv-
ing a process superstructure under strict restrictions on GWI.They found that an optimal process
design can reduce both greenhouse gas emissions and cost.

Bakshi and colleagues (96) extended the scope of superstructure flowsheet design to include
ecosystem services. Environmental impacts have been taken into account by limiting the process
design to not exceed natural resources. The capability of this approach has been shown for a
biodiesel production facility that can operate sustainably with only small economic losses. Later,
Gopalakrishnan et al. (97) extended this work by including the ecosystem as a unit operation to
design both process and ecosystem in biodiesel production.

Apart from finding optimal equipment or a process flowsheet, LCA has also been integrated in
process pathway design. A topic of major recent interest is the design of reaction networks, e.g.,
for biorefineries. König et al. (98) investigated the production of bio- and e-fuels to find reaction
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pathways that are cost optimal and have low GWI. They formulated an optimization problem in-
cluding various reaction pathways to various fuel candidates from lignocellulosic biomass as well
as from CO2 and renewable hydrogen. The nonlinear optimization problem was solved for opti-
mal reaction pathways using the method of reaction and process network flux analysis (99, 100).
Similarly, Balakrishnan et al. (101) optimized the product portfolio of a sugarcane biorefinery.
They developed a novel heterogeneous catalyst and showed the effects of employing the novel
catalyst in a biorefinery by optimizing environmental impact as well as production of fuel or lu-
bricant. Furthermore, process pathway design can be closely linked to product design, as shown
by Dahmen &Marquardt (102). They incorporated the model-based prediction of fuel properties
into pathway design for optimal fuel blends from biomass. Caldeira et al. (103) recently presented
an approach to further integrate LCA. They designed a biodiesel blend from waste-based feed-
stocks for minimizing environmental impacts and production cost constrained by technical fuel
requirements.

This type of superstructure optimization often leads to computationally demanding mixed-
integer nonlinear programs (MINLPs), in particular when combined with multi-objective opti-
mization. Because the resulting MINLPs are sometimes not solvable with commercial multipur-
pose solvers, many researchers work not only on the problem formulation but also on tailored
solution algorithms (94, 95).

In contrast to formulating an equation-orientedmathematical optimization problem,Maréchal
and colleagues (104) created a process synthesis framework based on flowsheeting and process
integration software and combined it with an evolutionary, multi-objective optimization algo-
rithm. Their so-called thermo-environomic design explores trade-offs not only in environmental
(eco-indicators) and economic objectives (profit) but also in thermodynamic objectives (thermo-
dynamic efficiency). They found that neither objective alone is sufficient for a balanced process
design by applying their framework to CO2 mitigation in chemical processes and oil and gas
plants (105–107). Pavão et al. (108) also chose a derivative-free optimization approach, using a
meta-heuristic approach with simulated annealing and particle swarm optimization, to synthesize
a heat-exchanger network with minimum cost and environmental impacts.

In conclusion, pioneering work has extended the methods of process systems engineering by
integrating environmental assessment at all levels of process design. Future work should focus on
the key features of LCA: Because LCA is a holistic method, systematic approaches must be further
developed and applied for including multiple environmental impact categories. Additionally, the
choice of system boundaries needs to be presented consistently for meaningful and comprehensi-
ble results.

5. PRODUCT DESIGN

The goal of chemical product design is to find a product that fulfills desired properties and
functionalities for an intended application (109). “[Product design] decides what to make” (110,
p. 319). To identify the relevant properties, the function of the product must be known. In this
sense, product design is similar to LCA, where the LCA practitioner also first identifies the prod-
uct’s function to define a functional unit (see Section 2). On the basis of the functional unit, envi-
ronmental impacts of alternative products can be compared to identify the most environmentally
friendly product. Given these similarities, it seems natural to merge the typically retrospective
LCA approach with predictive product design into LCA-based product design.

Chemical products can be roughly classified into molecular products (single species and blends
thereof, e.g., solvents or fuel blends), formulated products (mixtures, e.g., sunscreen lotions), func-
tional products (e.g., controlled-release herbicide granules), and chemical devices (e.g., inhalers
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for drug delivery) (111). The design of molecular products is an inherent part of the design of all
chemical product classes (110) and is thus most advanced. The key element in computer-aided
design of molecular products is the prediction of molecular properties. Therefore, we focus on
property prediction in the context of LCA-based (molecular) product design.

In LCA-based product design, two types of product properties are considered: On the one
hand, traditional physicochemical properties are considered tomaximize product performance and
quality. On the other hand, environment-related properties must be considered to ensure an en-
vironmentally benign application. For example, the design of a working fluid for organic Rankine
cycles should consider not only physicochemical properties, such as enthalpies and thermal con-
ductivity, but also environment-related properties, such as toxicity, ozone-depletion potential, and
GWP (112). Whereas traditional product design often optimizes properties for the product-use
phase only, product properties can also be tightly coupled with environmental impacts during
manufacturing (e.g., fugitive emissions owing to high vapor pressure), during product use (e.g.,
wear emissions), and in the end-of-life phase (e.g., as persistent waste or difficult-to-recycle com-
posites). To expand the scope of product design, Kümmerer (113) suggested a benign-by-design
approach to include the end-of-life stage and to identify properties necessary for easy and fast
degradation.

Several advances have been made in computer-aided molecular design (CAMD) methods to-
ward environmentally relevant properties and combinations of CAMD with LCA. Although fully
integrated approaches of CAMD and LCA are yet missing, we present recent advances in CAMD
in which LCA-relevant properties are considered. Mehrkesh & Karunanithi (114) presented an
LCA-based CAMD approach to minimize potential downstream environmental impacts from
ecotoxicity of solvents. The ecotoxicity characterization factors were obtained from the USEtox
LCA model (115), where the required physicochemical properties and toxicity data were com-
puted with group contribution (GC) models. Schilling and coworkers (116) proposed a CAMD
approach for a working fluid for organic Rankine cycles and considered not only conventional
physical properties but also nonconventional product properties, such as flammability and au-
toignition temperature, as well as LCIA characterization factors, such as toxicity, ozone-depletion
potential, and GWP. They showed the importance of integrating nonconventional properties
into CAMD, as constraints on nonconventional properties excluded otherwise-optimal molecules
from the design space. Papadopoulos et al. (117) demonstrated an integrated sustainability assess-
ment and CAMD approach for the design of solvents for chemisorption-based CO2 capture. The
considered sustainability metrics include LCA process metrics computed from a molecular-based
neural network (58; see Section 3) as well as environment-relevant product properties computed
fromGCmodels. As expected, their comparison of twoCAMD approaches with and without LCA
objectives showed that considering LCA process metrics reduces environmental impacts.Remark-
ably, the authors were able to link these impact reductions to the chemical groups involved (e.g.,
the CAMD approach with LCA constraints favors OH-containing structures) and potential phe-
nomena (e.g., OH groups hinder desired solvent-water immiscibility and phase-change behavior).
Von der Assen et al. (118) proposed an LCA-based approach for the design of an environmentally
optimal polymer structure and supply chain. The focus of this approach was not on the employed
GC model for polymer properties but rather on how alternative LCA choices for by-products
along the supply chain affect the optimal polymer structure. The work shows that a deep
understanding of the LCA methodology, in this case of allocation methods, is essential in
LCA-based product design.

In summary, very few approaches have included LCA in product design, which is likely due
to the wide range of applications of chemicals and the corresponding need for many property

216 Kleinekorte et al.



CH11CH10_Bardow ARjats.cls May 19, 2020 9:30

SCM: supply chain
management

predictions. Nevertheless, LCA-based product design provides a great potential to maximize the
product’s function and simultaneously minimize environmental impacts, i.e., to do more with
less.

6. SUPPLY CHAIN DESIGN

The previous sections focused on the integration of LCA into process and product design. In
addition, the implementation of a process typically affects upstream and downstream activities
along the entire supply chain. Vice versa, the supply chain can influence the designed process.
Therefore, it is desirable not to consider the supply chain as an aggregated background system but
to analyze—or even design—the supply chain in detail. For example, supply chains are typically
multiregional.A detailedmultiregional supply chain analysis can resolve transregional effects, such
as changes in transport distances and environmental impact restrictions (119, 120).

Whereas LCA was developed to measure sustainability to support a decision, the implemen-
tation of a decision was the original focus of supply chain management (SCM) (121). Owing to
the different objectives, these two separate fields of research have emerged over time. Neverthe-
less, SCM and LCA are conceptually and technically very similar. As Blass & Corbett (121) argue,
both fields use the same mapping and measurement approaches to extend the scope from a single
process to multiple processes. It is therefore only a small step to add resource consumption and
environmental impacts in SCM. We begin our review on sustainable SCM by introducing SCM
terminology and mapping these terms to LCA. Then, we review the design possibilities and mod-
eling frameworks in sustainable SCM. SCM is a broad field, including tactical, operational, and
strategic decision levels. Here, we focus on strategic SCM, which covers long-term issues, such as
facility locations and technology decisions.

SCM commonly discusses different types of system boundaries: forward supply chain, reverse
supply chain, and closed-loop supply chain (122) (see Figure 4). Mentzer et al. (123) describe
the forward supply chain as the set of processes from a source to a customer. In other words,
the forward supply chain design focuses on determining the production network and logistics
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System boundaries for supply chain management and the integration of market-mediated effects. Typical system boundaries in supply
chain management include forward supply chain, reverse supply chain, and closed-loop supply chain. These system boundaries can be
expanded to account for interactions with other life cycles via market-mediated effects.
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operations from raw material to customer (cradle-to-gate). A typical task when analyzing a
forward supply chain is to identify the most environmentally beneficial production pathways for a
product. For example, Mahbub et al. (124) compared the environmental impacts of conventional
diesel production to bio-based oxymethylene ether (OME) blends. In contrast to a process-level
LCA, they expanded the foreground system to the forward supply chain of OME synthesis
from the supply, transportation, and conversion of biomass to the combustion of OME blends.
They analyzed selected pathways toward OME blends using LCA. Because the complexity of
the supply chain was manageable, the environmentally best pathway could be selected manually
(124). Looking at multiple environmental indicators, von der Assen et al. (125) analyzed to
what extent the use of CO2 as a building block in the forward supply chain of polyurethanes
is environmentally beneficial compared with conventional production. Although the number
of production pathways is limited, they have been considered in an integrated model and are
therefore interdependent. Owing to the higher complexity, an optimization-based approach was
chosen to find the environmentally optimal solution. Kätelhön et al. (126) expanded this scope to
the forward supply chain of 20 large-volume chemicals to quantify climate benefits and trade-offs
of CO2 utilization technologies to supply the global chemical industry.

In addition to environmental indicators, economic indicators are often considered simultane-
ously in forward supply chain design. For example, You et al. (127) investigated the trade-offs
between economic and environmental performance of cellulosic biofuel supply chains. Yang et al.
(128) compared the economic and environmental performance of three production pathways of
ethylene from different feedstocks. Their detailed modeling allows analysis of additional effects,
such as supply seasonality, geographical diversity, and biomass degradation, on the environmental
performance of the process.

In contrast to the forward supply chain, the reverse supply chain refers to logistical activities
carried out in recycling, substitution, reuse of materials, and disposal (gate-to-grave) (129). By
considering the reverse supply chain, the question of whether a product should be recycled or
disposed of can be answered from an economic and environmental point of view. Thereby, not
only different recycling technologies but also different waste sources can be considered. Guo and
colleagues (130) analyzed the environmental impact of mechanical recycling of different sorts
of plastic waste using different waste management technologies and compared the impacts to
virgin material production. Another use of reverse supply chains answers the question of which
waste management technology should dispose of a product in the most sustainable way. For more
information, see work by Laurent et al. (131, 132).

However, the isolated consideration of either forward or reverse supply chains still neglects
interactions between these system boundaries. For example, changing the production pathway
may reduce the environmental impact of production, but benefits may be outweighed by higher
recycling efforts. To consider effects and opportunities in both the forward and reverse supply
chain, closed-loop supply chains are considered (133, 134). Closed-loop SCM maximizes value
throughout the entire life cycle of a product (cradle-to-grave). The design of complete, closed-
loop supply chains is an approach that has hardly been implemented to date and will therefore be
an important field of research in the future.

Furthermore, LCA at the process level can be linked with SCM. Hanes & Bakshi (135), for
example, proposed the process to planet (P2P) framework, a multiscale modeling framework that
aims to integrate process models into their supply chains. P2P uses process-level data in combina-
tion with value-chain and economy data derived from economic input–output databases. Thereby,
P2P can investigate the impact of changes within the process on the overall supply chain.

Typically, there are many possible combinations of process design and SCM. Finding the
best possible solution therefore requires the use of decision-making tools such as optimization.
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Optimization is often used to identify production pathways with the highest revenues and the
lowest environmental impacts. As Barbosa-Póvoa et al. (136) recently demonstrated, optimization
models can be used as a practical tool for designing sustainable supply chains. Optimization
tools can help to identify environmental hot spots in complex supply chains.Whereas our review
focuses on strategic supply chains with environmental objectives, Barbosa-Póvoa et al.’s (137)
broader review summarized the main characteristics of optimization models for the design of
sustainable supply chains. These characteristics include the system boundaries, decision variables,
constraints, and objectives. In addition, they identified the most important research gaps in supply
chain design and planning and developed a set of guidelines for the development of supply chain
optimization models (137).

Aside from these guidelines, specific models for the design and optimization of sustainable
supply chains have already been developed. For example, Mota et al. (138) looked into the design
and planning of sustainable supply chains, adopting a multi-objective approach in which the three
pillars of sustainability were considered. A closed-loop supply chain for a battery producer was
studied, and different supply chain structures were obtained based on the respective objectives
considered. A near-optimal solution was reached easily when considering the three sustainability
pillars simultaneously. In contrast to Mota et al. (138), who implemented a bottom-up approach
using only unit process data, Yue et al. (139) developed a top-down life cycle optimization frame-
work that combines unit process data and economic input–output data.This so-called hybrid LCA
approach (140) can assess interactions between the considered system and other industrial sectors
in the economy.

Of course, the quality of the results of supply chain optimization always depends on the data
used.However, the comprehensive representation of the supply chain, including multiple produc-
tion steps, is always associated with simplifications and uncertainties (120). Therefore, the inte-
gration of uncertainty as well as risk and resilience aspects is important for the design of robust
and sustainable processes and supply chains. A detailed analysis of the main sources of uncertainty
arising from the consideration of the supply chain would help in understanding the impact on the
quality of the LCA results (141). Other future research topics for sustainable process and supply
chain design are the development of integrated decision models that consider all life phases of a
product and the sound treatment of all sustainability pillars. In this context, Mota et al. (142) have
already addressed the shortcomings of existingmodels and proposed themulti-objective optimiza-
tion tool ToBLoOM for the design and planning of sustainable supply chains under uncertainty.
In addition, efficient approaches are highly desirable to overcome multi-scale, multi-target, and
multiplayer challenges (5, 136, 137).

7. MARKET-MEDIATED EFFECTS

In addition to the physical supply chains discussed in the previous section, process design can
also affect other product life cycles via market-mediated effects (see gray boxes in Figure 4). The
integration of market-mediated effects into LCA is often discussed under the term consequential
LCA.Consequential LCA aims at capturing the environmental consequences of decisions, such as
the introduction of a new technology, the purchase of a product, or changes in process design (143–
146).Consequential LCA combines technical and economicmodeling to trace these consequences
throughout the economy, considering both technical relationships and market-mediated effects.
In this section, we first review market-mediated effects relevant for process design. Subsequently,
we discuss modeling approaches used to incorporate market-mediated effects into LCA-based
process design.
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7.1. Types of Market-Mediated Effects

Process design decisions can trigger various types of market-mediated effects. A commonly dis-
cussed market-mediated effect is a change in technologies that are required to satisfy an increase
in a market demand. This increased demand for, e.g., raw materials or energy can be due to a
change in the process design. Importantly, the additional demand is not necessarily produced by
the average technology mix in the market supply (147). In Germany, for example, approximately
13% of electricity is produced by nuclear power plants (148). An increase in electricity demand,
however, will not increase nuclear power production in the same way, owing to the limited addi-
tional capacity of nuclear power plants and a political commitment to phase out nuclear power
generation (149). Consequently, the marginal technology mix used to satisfy an additional elec-
tricity demand will probably contain less nuclear power, and thus, the marginal differs from the
average technology mix. Considering marginal technologies for the supply of energy and reac-
tants represents the actual consequences of design decisions (147). Considering market-mediated
effects through marginal technology mixes for energy and reactants may lead to different process
designs. Thus, the identification of marginal technologies is of major importance for assessing the
impacts of process design choices.

Other market-mediated effects relate to price changes and changes in production cost. A de-
crease in price commonly leads to an increase in demand and vice versa (150). This effect is de-
noted the price elasticity of demand. Owing to the price elasticity of demand, environmental ben-
efits from efficiency improvements in process design can partly be offset by increased production
triggered by additional demand, the so-called rebound effect. Similarly, price increases through
the implementation of low-carbon technologies can even amplify environmental benefits by de-
creasing demand. In addition, changes in production cost due to design changes can affect the
relative competitiveness of competing technologies producing the same product and hence lead
to substitution effects among competing technologies (151).

7.2. Modeling Approaches

Various modeling approaches have been proposed to account for market-mediated effects in LCA
(144, 152). The application of these models has been demonstrated in numerous consequential
LCA studies (for a review, see 144). However, fewer examples exist for the integration of market-
mediated effects into LCA-based process design.

Weidema and colleagues (143, 147) proposed a prominent method for identifying marginal
technologies. This method involves a step-wise procedure in which each step focuses on a spe-
cific question: (a) What is the relevant time horizon? (b) Are specific processes or overall markets
affected? (c) What is the trend in the market? (d) Which technologies are flexible? (e) What tech-
nology is actually affected? By answering these questions, the user is guided through a decision
tree to identify marginal technologies. These marginal technologies can then be included in the
system boundaries of LCA or process design models to account for changes in demand for reac-
tants or energy. Thonemann & Pizzol (153), for example, used this procedure to identify marginal
technologies for a potential increase in supply of H2 and CO2 owing to the introduction of novel
carbon capture and utilization technologies. Advantages of the procedure include its easy applica-
bility. However, Mathiesen et al. (154) showed for the Danish energy system that the procedure
did not match the actual historical developments of the energy system.

The technology choice model (TCM) provides a more complex model enabling the simul-
taneous determination of both marginal technology mixes and substitution effects among com-
peting technologies (155). TCM is a bottom-up model of industrial production systems in which
technologies are represented based on engineering-level data. In TCM, each product can be
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produced by more than one technology, and the choice of technology is based on economic or en-
vironmental objectives, taking into account constraints in factor availability and parameter uncer-
tainty.Using TCM,Larrea-Gallegos et al. (156) analyzed changes in land use, water consumption,
and greenhouse gas emissions owing to an increase in pisco production in Peru. Furthermore,
Budzinski et al. (157) used a similar model to determine Pareto-efficient configurations and feed-
stock supply regions for biorefineries, considering economic and environmental objectives. The
studies demonstrate the ability of TCM to model complex supply chains at a high level of detail
while systematically taking into account market-mediated effects. However, individual processes
are so far treated as black boxes and thus cannot be optimized simultaneously in terms of process
parameters.

Other classes of models used in consequential LCA studies are partial equilibrium (PE) and
computational general equilibrium models (144). These models can simultaneously determine
changes in price and demand based on econometrically derived data. The complexity of PE mod-
els ranges from relatively simple models of single markets to complex models covering multiple
regions (158, 159). In contrast, computational general equilibriummodels cover all markets within
the economy (for example, 160, 161). Voll et al. (162) combined a simple PE model of wood mar-
kets with a process model for biofuel production to consider the interdependency between wood
demand and price in the design of a biofuel process. Gong & You (163) combined modeling ap-
proaches from LCA and techno-economic analysis with process and PEmodels to simultaneously
optimize process parameters, technology choices, and markets in a MINLP model. Integrating
economic equilibrium models into process design can resolve the interactions between processes
and markets in settings. These interactions are important where design decisions have a substan-
tial effect on the overall market, e.g., the effect of large-scale biorefineries on local agricultural
markets. The integration of PE models, however, is constrained in practice by the availability of
high-quality economic data, such as price elasticities (145, 164). Furthermore, equilibrium mod-
els are based on several simplifying assumptions that may not reflect market reality. For example,
equilibrium models assume that markets are in equilibrium, economic agents act rationally under
perfect information and foresight, and individual decision-making by economic agents leads to a
global economic optimum (164).

To allow a more detailed representation of the behavior and objectives of economic agents,
other authors explored the integration of agent-basedmodels into LCA and process design.Agent-
based models take the perspective of multiple individual agents (165). Each agent individually
assesses their own situation and makes decisions based on predefined rules. By simulating the
interplay between multiple agents, agent-based models can derive information on the dynamics of
the overall system.Singh et al. (166) developed an agent-basedmodel of cornmarkets and used this
model to optimize biorefinery supply chain networks. In this model, corn prices are determined by
auctions between biorefinery agents, farmer agents, and a food market agent. Bichraoui-Draper
et al. (167) developed an agent-based model to investigate switchgrass production patterns for a
bioenergy system.

The consideration of market-mediated effects enables the assessment of consequences of pro-
cess design beyond physical supply chains. These consequences are likely to be relevant for
changes in production processes that affect the overall market, i.e., processes that either produce
or consume substantial shares of the market for individual products (168). However, there is no
single, commonly accepted method for integrating market-mediated effects into process design,
and different modeling approaches may lead to different outcomes (145). A detailed guidance
for selecting modeling approaches for market-mediated effects is strongly needed for LCA-based
process design.
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8. UNCERTAINTY AND VALIDATION

Because LCA is a quantitative, data-driven methodology, it is inherently uncertain. In conse-
quence,LCA-based chemical process design should consider data uncertainty and validation.Data
uncertainty can be divided into complete lack of data (i.e., data gaps) and data inaccuracy (172).
Whereas the previous sections present methods to close data gaps, this section briefly highlights
approaches for how to (a) quantify and reduce inaccuracy in LCA, (b) validate LCA results, and
(c) incorporate uncertainty into LCA-based chemical design.

Quantifying uncertainty is essential for a more trustworthy evaluation of LCA results. For this
purpose, the LCA practitioner must be aware of all types of uncertainty: uncertainty in parame-
ters and models and uncertainty owing to choices as well as spatial and temporal variability (173,
174). For the different types of uncertainty, several quantification methods have been developed
and applied in the context of LCA (174–176), covering both analytical (177, 178) and stochastic
(179) approaches.Heijungs & Lenzen (180) argue that stochastic methods provide more informa-
tion, while also requiring detailed uncertainty distributions and higher computational effort than
analytical methods. Still, Lloyd & Ries (175) found that most LCA practitioners use stochastic
methods. In our view, both stochastic and analytical methods ultimately allow for proper analy-
sis of error propagation. Error propagation, however, requires knowledge about the uncertainty
of the inputs. In LCA-based process design, uncertain inputs often refer to uncertain mass and
energy balances for which chemical engineers have a good understanding, because they also af-
fect process economics.However, LCA suffers from further uncertainties less familiar to chemical
engineers. In our view, major uncertainties in LCA are due to the “unknown unknowns,” where
important elements are completely missing from the analysis and might reveal themselves only
after time. Important unknowns in LCA occur in LCIA because environmental impacts are often
not yet known for many chemicals, and novel impact categories are continuously developed to
capture all impacts of our actions on the environment. As a prominent example, early assessment
of biofuels focused on benefits for climate change and ignored potential negative consequences
of land-use change. Having quantified the uncertainty in LCA results, the LCA practitioner can
reduce the uncertainty by increasing data accuracy of key parameters using the methods discussed
in Section 3. A powerful method to identify these key parameters is global sensitivity analysis (181,
182), which analyzes how strongly each parameter affects the overall LCA results.

Depending on the scale of the LCA study, the practitioner should validate the input data and
LCA results on various levels of detail. Thinking about environmental impacts would have to
start during the development of the basic chemistry, e.g., by identifying and accounting for po-
tentially harmful side-products. On all levels, from individual unit operations to the total system,
the consistency of mass and energy balances should be evaluated (174). In addition, alternative
data sources can be combined, e.g., LCA databases, input–output tables, and historical emission
registers (183, 184). In particular, formats are needed to share actual industrial data. A role model
could be PlasticsEurope’s Eco-profiles for polymers (185). Other forms of validation include crit-
ical peer review as requested by the ISO norms for different types of LCA studies (ISO 14040).
Still, validation of LCA results remains a major challenge.

LCA-based design effectively compares different design alternatives. However, some uncer-
tainties are common to all alternatives (e.g., the carbon footprint of the future electricity mix).
Wei et al. (186) and Beltran et al. (187) therefore developed methods for calculating the prob-
ability that one alternative is better than others. These methods also allow for the inclusion of
uncertainty in decision making.

Decision making under uncertainty is therefore important for all LCA-based design ap-
proaches for choosing between process configurations, product specifications, and supply chain
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pathways. However, very little work has been done in considering uncertainty in LCA-based de-
sign. Guillén-Gosálbez & Grossmann (188) were the first to explicitly consider uncertainty in
environmental impacts in optimal design of chemical supply chains. More recently, Mota et al.
(141) addressed the improvement of sustainability reporting through the identification of the un-
certainty sources in LCAmethodologies and concluded that different LCIAmethods and different
normalization data sets result in significantly different supply chain business and environmental
strategies.

Gavanker et al. (189) highlighted the importance and critical components for clearly com-
municating uncertain LCA results. In general, there is a consensus in the LCA community that
uncertainty analysis is important; nevertheless, it is not yet common practice.We agree with Igos
et al. (190), who called for a more detailed review of uncertainty assessment in LCA.

9. CONCLUSIONS AND THE WAY FORWARD

Today, LCA is recognized as an important part of environmentally benign process design.The key
feature of LCA is its holistic approach,which considers all life cycle stages and impact categories in
the assessment. Thus, LCA avoids shifting of environmental impacts between life cycle stages and
impact categories. This life cycle thinking expands the design scope for environmentally benign
processes to an overall life cycle design that includes not only the process but also the product,
supply chains, and even market-mediated effects. Here, we have reviewed recent work toward the
integration of LCA into chemical engineering design.

A key prerequisite for its successful integration is a deep understanding of LCA. In particular,
LCA-based design needs a clear definition of (a) the functional unit, (b) benchmarks, and (c) system
boundaries. Although the present review aimed at being educational regarding LCA, we strongly
recommend that the chemical engineering curriculum should evolve from assessing only mass and
energy balances to life cycle thinking and environmental balances using LCA.

Although balance equations are natural to chemical engineers, the evaluation of multiple en-
vironmental impacts provides novel challenges. Aggregation of multiple environmental impact
categories should be avoided. However, major insight can be obtained using methods for dimen-
sionality reduction. At the same time, the designer must be aware that uncertainties differ greatly
between impact categories. LCA-based design thus requires a thorough understanding of the un-
derlying models of cause-and-effect chains.

The reviewed literature clearly shows that the scope of environmental assessment is currently
extended from solely assessing the process itself toward an integrated assessment of process, prod-
uct, and supply chain.Although this extension in scope is highly desirable to exploit new degrees of
freedom and to avoid problem shifting, a complete integration is often not yet possible for various
reasons: One reason are gaps in reliable LCA data that cannot yet be closed accurately by predic-
tion models. A second reason is the lack of accurate prediction models for molecular properties
hindering an LCA-based molecular product design. As a third reason, the design space cannot
be freely extended to cover processes, products, and supply chains simultaneously. For example,
strict regulations in drug approval require a sequential design approach and do not yet allow an
integrated design. Finally, a general framework for LCA-based product, process, and supply chain
design is still missing. Once a scientific consensus is established, the long-term challenge is to
transfer the scientific methods into industrial applications. For this purpose, user-friendly soft-
ware tools are needed that support both process design and LCA simultaneously, regardless of the
development phase. Even more, LCA and process design should be integrated not only in soft-
ware but also in the organizational structure of companies. Our vision is that the next generation
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of chemical engineers should no longer differentiate between process design and environmental
assessment, but process design should always aim for sustainability.

SUMMARY POINTS

� Environmental assessment in process design gains increasing importance.

� The scope of environmental assessment in process design is currently extended from
solely assessing the process itself toward an integrated assessment of process, product,
and supply chain.

� LCA-based design requires a thorough understanding of LCA and the underlyingmodels
of cause-and-effect chains.

� LCA-based design needs a clear definition of (a) the functional unit, (b) benchmarks, and
(c) system boundaries.

� Aggregation of multiple environmental impact categories into a single indicator should
be avoided.

� LCA is inherently uncertain, and communication of LCA results should therefore ac-
count for uncertainty.

� The education of chemical engineers should evolve from assessing only mass and energy
balances to life cycle thinking and environmental balances using LCA.

� The transfer of LCA methods into industrial application requires user-friendly software
to simultaneously support process design and LCA, regardless of the development phase.
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81. Ott D, Kralisch D, Denčić I, Hessel V, Laribi Y, et al. 2014. Life cycle analysis within pharmaceuti-
cal process optimization and intensification: case study of active pharmaceutical ingredient production.
ChemSusChem 7(12):3521–33

82. Gear M, Sadhukhan J, Thorpe R, Clift R, Seville J, Keast M. 2018. A life cycle assessment data analysis
toolkit for the design of novel processes—a case study for a thermal cracking process for mixed plastic
waste. J. Clean. Prod. 180:735–47

83. Salcedo R, Antipova E, Boer D, Jiménez L, Guillén-Gosálbez G. 2012. Multi-objective optimization
of solar Rankine cycles coupled with reverse osmosis desalination considering economic and life cycle
environmental concerns.Desalination 286:358–71

84. Gebreslassie BH, Guillén-Gosálbez G, Jiménez L, Boer D. 2009. Design of environmentally conscious
absorption cooling systems via multi-objective optimization and life cycle assessment. Appl. Energy
86(9):1712–22

85. Gebreslassie BH, Slivinsky M, Wang B, You F. 2013. Life cycle optimization for sustainable design
and operations of hydrocarbon biorefinery via fast pyrolysis, hydrotreating and hydrocracking. Comput.
Chem. Eng. 50:71–91

86. Gonzalez-Garay A,Guillen-Gosalbez G. 2018. SUSCAPE: a framework for the optimal design of SUS-
tainable ChemicAl ProcEsses incorporating data envelopment analysis.Chem. Eng. Res. Des. 137:246–64

87. Rodríguez-Vallejo DF, Galán-Martín Á, Guillén-Gosálbez G, Chachuat B. 2019. Data envelopment
analysis approach to targeting in sustainable chemical process design: application to liquid fuels. AIChE
J. 65(7):e16480

88. HelmdachD,Yaseneva P,Heer PK,SchweidtmannAM,Lapkin AA.2017.Amultiobjective optimization
including results of life cycle assessment in developing biorenewables-based processes. ChemSusChem
10(18):3632–43

89. Goedkoop MJ, Spriensma R. 2001. The Eco-Indicator 99: A Damage Oriented Method for Life Cycle Impact
Assessment—Methodology Report. Amersfoort, Neth.: PRé Consult. BV. 3rd ed.

90. Guillén-Gosálbez G. 2011. A novel MILP-based objective reduction method for multi-objective opti-
mization: application to environmental problems. Comput. Chem. Eng. 35(8):1469–77

91. Grossmann IE, Guillén-Gosálbez G. 2010. Scope for the application of mathematical programming
techniques in the synthesis and planning of sustainable processes. Comput. Chem. Eng. 34(9):1365–76

92. Chen Q, Grossmann IE. 2017. Recent developments and challenges in optimization-based process syn-
thesis. Annu. Rev. Chem. Biomol. Eng. 8:249–83

93. Wang B, Gebreslassie BH, You F. 2013. Sustainable design and synthesis of hydrocarbon biorefinery via
gasification pathway: integrated life cycle assessment and technoeconomic analysis with multiobjective
superstructure optimization. Comput. Chem. Eng. 52:55–76

94. Gong J, You F. 2014. Global optimization for sustainable design and synthesis of algae processing net-
work for CO2 mitigation and biofuel production using life cycle optimization. AIChE J. 60(9):3195–
210

228 Kleinekorte et al.



CH11CH10_Bardow ARjats.cls May 19, 2020 9:30

95. Demirhan CD,TsoWW,Powell JB, Pistikopoulos EN. 2019. Sustainable ammonia production through
process synthesis and global optimization. AIChE J. 65(7):e16498

96. Gopalakrishnan V, Bakshi BR, Ziv G. 2016. Assessing the capacity of local ecosystems to meet industrial
demand for ecosystem services. AIChE J. 62(9):3319–33

97. Gopalakrishnan V, Bakshi BR. 2018. Ecosystems as unit operations for local techno-ecological synergy:
integrated process design with treatment wetlands. AIChE J. 64(7):2390–407

98. König A, Ulonska K, Mitsos A, Viell J. 2019. Optimal applications and combinations of renewable fuel
production from biomass and electricity. Energy Fuels 33(2):1659–72

99. Voll A, Marquardt W. 2012. Reaction network flux analysis: optimization-based evaluation of reaction
pathways for biorenewables processing. AIChE J. 58(6):1788–801

100. Ulonska K, Skiborowski M, Mitsos A, Viell J. 2016. Early-stage evaluation of biorefinery processing
pathways using process network flux analysis. AIChE J. 62(9):3096–108

101. Balakrishnan M, Sacia ER, Sreekumar S, Gunbas G, Gokhale AA, et al. 2015. Novel pathways for fuels
and lubricants from biomass optimized using life-cycle greenhouse gas assessment.PNAS 112(25):7645–
49

102. Dahmen M, Marquardt W. 2017. Model-based formulation of biofuel blends by simultaneous product
and pathway design. Energy Fuels 31(4):4096–121

103. Caldeira C, Freire F, Olivetti EA, Kirchain R, Dias LC. 2019. Analysis of cost-environmental trade-
offs in biodiesel production incorporating waste feedstocks: a multi-objective programming approach.
J. Clean. Prod. 216:64–73

104. Gerber L, Gassner M, Maréchal F. 2011. Systematic integration of LCA in process systems design:
application to combined fuel and electricity production from lignocellulosic biomass. Comput. Chem.
Eng. 35(7):1265–80

105. Tock L,Maréchal F, Perrenoud M. 2015. Thermo-environomic evaluation of the ammonia production.
Can. J. Chem. Eng. 93(2):356–62

106. Tock L, Maréchal F. 2015. Thermo-environomic optimisation strategy for fuel decarbonisation process
design and analysis. Comput. Chem. Eng. 83:110–20

107. Nguyen T-V, Tock L, Breuhaus P, Maréchal F, Elmegaard B. 2016. CO2-mitigation options for the
offshore oil and gas sector. Appl. Energy 161:673–94

108. Pavão LV,Costa CBB,RavagnaniM, Jiménez L. 2017.Costs and environmental impacts multi-objective
heat exchanger networks synthesis using a meta-heuristic approach. Appl. Energy 203:304–20

109. Zhang L, Babi DK, Gani R. 2016. New vistas in chemical product and process design.Annu. Rev. Chem.
Biomol. Eng. 7:557–82

110. Zhang L, Fung KY, Wibowo C, Gani R. 2018. Advances in chemical product design. Rev. Chem. Eng.
34(3):319–40

111. Gani R, Ng KM. 2015. Product design—molecules, devices, functional products, and formulated prod-
ucts. Comput. Chem. Eng. 81:70–79

112. Linke P, Papadopoulos A, Seferlis P. 2015. Systematic methods for working fluid selection and the de-
sign, integration and control of organic rankine cycles—a review. Energies 8(6):4755–801

113. Kümmerer K. 2007. Sustainable from the very beginning: rational design of molecules by life cycle
engineering as an important approach for green pharmacy and green chemistry.Green Chem. 9(8):899–
907

114. Mehrkesh A, Karunanithi AT. 2014. New perspective on computer aided molecular design: a life cy-
cle assessment approach. In Proceedings of the 8th International Conference on Foundations of Computer-
Aided Process Design - FOCAPD 2014, ed. MR Eden, JD Siirola, GP Towler, pp. 369–74. Amsterdam:
Elsevier

115. Rosenbaum RK, Bachmann TM,Gold LS,Huijbregts MAJ, Jolliet O, et al. 2008.USEtox—the UNEP-
SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater eco-
toxicity in life cycle impact assessment. Int. J. Life Cycle Assess. 13(7):532–46

116. Schilling J, Tillmanns D, Lampe M, Hopp M, Gross J, Bardow A. 2017. From molecules to dollars:
integrating molecular design into thermo-economic process design using consistent thermodynamic
modeling.Mol. Syst. Des. Eng. 2(3):301–20

www.annualreviews.org • LCA for Chemical Engineering Design 229



CH11CH10_Bardow ARjats.cls May 19, 2020 9:30

117. Papadopoulos AI, Shavalieva G, Papadokonstantakis S, Seferlis P. 2019. A framework for the integra-
tion of holistic sustainability assessment in computer-aided molecular design. In Proceedings of the 29th
European Symposium on Computer Aided Process Engineering, ed. AA Kiss, E Zondervan, R Lakerveld,
L Özkan, pp. 13–18. Amsterdam: Elsevier

118. von der AssenN,LampeM,Müller L,BardowA.2014.Life cycle assessment principles for the integrated
product and process design of polymers from CO2. In Proceedings of the 8th International Conference on
Foundations of Computer-Aided Process Design - FOCAPD 2014, ed. MR Eden, JD Siirola, GP Towler,
pp. 1235–40. Amsterdam: Elsevier

119. Calvo-Serrano R, Guillén-Gosálbez G. 2018. Streamlined life cycle assessment under uncertainty inte-
grating a network of the petrochemical industry and optimization techniques: Ecoinvent versus mathe-
matical modeling. ACS Sustain. Chem. Eng. 6(5):7109–18

120. Hellweg S, Milà i Canals L. 2014. Emerging approaches, challenges and opportunities in life cycle as-
sessment. Science 344(6188):1109–13

121. Blass V, Corbett CJ. 2018. Same supply chain, different models: integrating perspectives from life cycle
assessment and supply chain management. J. Ind. Ecol. 22(1):18–30

122. Guide VDR, Harrison TP, van Wassenhove LN. 2003. The challenge of closed-loop supply chains.
Interfaces 33(6):3–6

123. Mentzer JT, DeWitt W, Keebler JS, Min S, Nix NW, et al. 2001. Defining supply chain management.
J. Bus. Logist. 22(2):1–25

124. Mahbub N, Oyedun AO, Kumar A, Oestreich D, Arnold U, Sauer J. 2017. A life cycle assessment of
oxymethylene ether synthesis from biomass-derived syngas as a diesel additive. J. Clean. Prod. 165:1249–
62

125. von der Assen N, Sternberg A, Kätelhön A, Bardow A. 2015. Environmental potential of carbon dioxide
utilization in the polyurethane supply chain. Faraday Discuss. 183:291–307

126. Kätelhön A, Meys R, Deutz S, Suh S, Bardow A. 2019. Climate change mitigation potential of carbon
capture and utilization in the chemical industry. PNAS 116(23):11187–94

127. You F, Tao L, Graziano DJ, Snyder SW. 2012. Optimal design of sustainable cellulosic biofuel supply
chains: multiobjective optimization coupled with life cycle assessment and input-output analysis.AIChE
J. 58(4):1157–80

128. Yang M, Tian X, You F. 2018. Manufacturing ethylene from wet shale gas and biomass: comparative
technoeconomic analysis and environmental life cycle assessment. Ind. Eng. Chem. Res. 57(17):5980–98

129. Stock JR. 1992. Reverse logistics. White pap., Counc. Logist. Manag., Lombard, IL
130. Gu F, Guo J, Zhang W, Summers PA, Hall P. 2017. From waste plastics to industrial raw materials: a

life cycle assessment of mechanical plastic recycling practice based on a real-world case study. Sci. Total
Environ. 601–2:1192–207

131. Laurent A, Bakas I, Clavreul J, Bernstad A, Niero M, et al. 2014. Review of LCA studies of solid waste
management systems—part I: lessons learned and perspectives.Waste Manag. 34(3):573–88

132. Laurent A, Clavreul J, Bernstad A, Bakas I, Niero M, et al. 2014. Review of LCA studies of solid waste
management systems—part II: methodological guidance for a better practice.Waste Manag. 34(3):589–
606

133. Guide VDR, van Wassenhove LN. 2009. OR FORUM—the evolution of closed-loop supply chain re-
search. Oper. Res. 57(1):10–18

134. Govindan K, Soleimani H, Kannan D. 2015. Reverse logistics and closed-loop supply chain: a compre-
hensive review to explore the future. Eur. J. Oper. Res. 240(3):603–26

135. Hanes RJ, Bakshi BR. 2015. Process to planet: a multiscale modeling framework toward sustainable
engineering. AIChE J. 61(10):3332–52

136. Barbosa-Póvoa AP, da Silva C, Carvalho A. 2018. Opportunities and challenges in sustainable supply
chain: an operations research perspective. Eur. J. Oper. Res. 268(2):399–431

137. Barbosa-Póvoa AP,Mota B,Carvalho A. 2018.How to design and plan sustainable supply chains through
optimization models? Pesqui. Oper. 38(3):363–88

138. Mota B, Gomes MI, Carvalho A, Barbosa-Póvoa AP. 2015. Towards supply chain sustainability: eco-
nomic, environmental and social design and planning. J. Clean. Prod. 105:14–27

230 Kleinekorte et al.



CH11CH10_Bardow ARjats.cls May 19, 2020 9:30

139. Yue D, Pandya S, You F. 2016. Integrating hybrid life cycle assessment with multiobjective optimization:
a modeling framework. Environ. Sci. Technol. 50(3):1501–9

140. Suh S, Huppes G. 2005. Methods for life cycle inventory of a product. J. Clean. Prod. 13(7):687–97
141. Mota B, Carvalho A, Gomes MI, Barbosa-Póvoa AP. 2019. Business strategy for sustainable develop-

ment: impact of life cycle inventory and life cycle impact assessment steps in supply chain design and
planning. Bus. Strategy Environ. 29. https://doi.org/10.1002/bse.2352

142. Mota B, Gomes MI, Carvalho A, Barbosa-Póvoa AP. 2018. Sustainable supply chains: an integrated
modeling approach under uncertainty. Omega 77:32–57

143. Ekvall T, Weidema BP. 2004. System boundaries and input data in consequential life cycle inventory
analysis. Int. J. Life Cycle Assess. 9(3):161–71

144. Earles JM,Halog A.2011.Consequential life cycle assessment: a review. Int. J.Life Cycle Assess.16(5):445–
53

145. Zamagni A, Guinée J, Heijungs R,Masoni P, Raggi A. 2012. Lights and shadows in consequential LCA.
Int. J. Life Cycle Assess. 17(7):904–18

146. Palazzo J,Geyer R, Suh S. 2020.A review ofmethods for characterizing the environmental consequences
of actions in life cycle assessment. J. Ind. Ecol. In press. https://doi.org/10.1111/jiec.12983

147. Weidema BP, Frees N, Nielsen A-M. 1999.Marginal production technologies for life cycle inventories.
Int. J. Life Cycle Assess. 4(1):48–56

148. Fraunhofer Inst. Solar Energy. 2019.Monthly electricity generation in Germany in 2020. Energy Charts,
Fraunhofer Inst. Solar Energy, Frieburg, Ger. https://www.energy-charts.de/energy.htm

149. Ger. Fed. Gov. 2012. Progress Report 2012, Climate and Energy. Berlin: Ger. Fed. Gov. https://www.
bundesregierung.de/

150. Marshall A. 1890. The principles of economics. Pap., Arch. Hist. Econ. Thought, McMaster Univ., Hamil-
ton, Ont. https://econpapers.repec.org/bookchap/hayhetboo/marshall1890.htm

151. Spitz PH. 2003. The Chemical Industry at the Millennium. Maturity, Restructuring, and Globalization.
Philadelphia: Chem. Heritage Press

152. Yang Y, Heijungs R. 2018. On the use of different models for consequential life cycle assessment. Int. J.
Life Cycle Assess. 23(4):751–58

153. Thonemann N, Pizzol M. 2019. Consequential life cycle assessment of carbon capture and utilization
technologies within the chemical industry. Energy Environ. Sci. 12(7):2253–63

154. Mathiesen BV, Münster M, Fruergaard T. 2009. Uncertainties related to the identification of the
marginal energy technology in consequential life cycle assessments. J. Clean. Prod. 17(15):1331–38

155. Kätelhön A, Bardow A, Suh S. 2016. Stochastic technology choice model for consequential life cycle
assessment. Environ. Sci. Technol. 50(23):12575–83

156. Larrea-Gallegos G, Vázquez-Rowe I, Wiener H, Kahhat R. 2019. Applying the technology choice
model in consequential life cycle assessment: a case study in the Peruvian agricultural sector. J. Ind.
Ecol. 23(3):601–14

157. Budzinski M, Sisca M, Thrän D. 2019. Consequential LCA and LCC using linear programming: an
illustrative example of biorefineries. Int. J. Life Cycle Assess. 24(12):2191–205

158. Bouman M, Heijungs R, van der Voet E, van den Bergh JCJM, Huppes G. 2000. Material flows and
economic models: an analytical comparison of SFA, LCA and partial equilibrium models. Ecol. Econ.
32(2):195–216

159. Adams D, Alig R,McCarl BA,Murray BC. 2005. FASOMGHG conceptual structure, and specification: docu-
mentation. Pap., Tex. A&M, College Station, TX. https://agecon2.tamu.edu/people/faculty/mccarl-
bruce/papers/1212FASOMGHG_doc.pdf

160. Kløverpris J, Wenzel H, Nielsen PH. 2008. Life cycle inventory modelling of land use induced by crop
consumption. Int. J. Life Cycle Assess. 13(1):13–21

161. Hedal Kløverpris J, Baltzer K, Nielsen PH. 2010. Life cycle inventory modelling of land use induced by
crop consumption. Int. J. Life Cycle Assess. 15(1):90–103

162. Voll A, Sorda G, Optehostert F, Madlener R, Marquardt W. 2012. Integration of market dynamics
into the design of biofuel processes. In Proceedings of the 11th International Symposium on Process Systems
Engineering, ed. IA Karimi, R Srinivasan, pp. 850–54. Amsterdam: Elsevier

www.annualreviews.org • LCA for Chemical Engineering Design 231

https://doi.org/10.1002/bse.2352
https://doi.org/10.1111/jiec.12983
https://www.energy-charts.de/energy.htm
https://www.bundesregierung.de/
https://econpapers.repec.org/bookchap/hayhetboo/marshall1890.htm
https://agecon2.tamu.edu/people/faculty/mccarl-bruce/papers/1212FASOMGHG_doc.pdf


CH11CH10_Bardow ARjats.cls May 19, 2020 9:30

163. Gong J, You F. 2017. Consequential life cycle optimization: general conceptual framework and applica-
tion to algal renewable diesel production. ACS Sustain. Chem. Eng. 5(7):5887–911

164. Suh S, Yang Y. 2014. On the uncanny capabilities of consequential LCA. Int. J. Life Cycle Assess.
19(6):1179–84

165. Bonabeau E. 2002. Agent-based modeling: methods and techniques for simulating human systems.
PNAS 99(Suppl. 3):7280–87

166. Singh A, Chu Y, You F. 2014. Biorefinery supply chain network design under competitive feedstock
markets: an agent-based simulation and optimization approach. Ind. Eng. Chem. Res. 53(39):15111–26

167. Bichraoui-Draper N, Xu M, Miller SA, Guillaume B. 2015. Agent-based life cycle assessment for
switchgrass-based bioenergy systems. Resour. Conserv. Recycl. 103:171–78

168. Eur. Comm.-Joint Res. Cent., Inst. Environ. Sustain. 2010. International Reference Life Cycle Data System
(ILCD) Handbook—General Guide for Life Cycle Assessment—Detailed Guidance. EUR 24708 EN. Luxem-
bourg: Publ. Off. Eur. Union. 1st ed.

169. Sugiyama H, Fischer U, Hungerbühler K. 2008. Decision framework for chemical process design in-
cluding different stages of environmental, health, and safety assessment. AICHE J. 54(4):1037–53

170. Patel AD,Meesters K, den Uil H, de Jong E, Blok K, Patel MK. 2012. Sustainability assessment of novel
chemical processes at early stage: application to bio-based processes. Energy Environ. Sci. 5:8430–44

171. GoedkoopM,Heijungs R,Huijbregts M,De Schryver A, Struijs J, Van Zelm R. 2009.ReCiPe 2008: a life
cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint
level. Rep., Minist. Volkshuisv. Ruimt. Ordening Milieu, Neth.

172. Huijbregts MA, Norris G, Bretz R, Ciroth A, Maurice B, et al. 2001. Framework for modelling data
uncertainty in life cycle inventories. Int. J. Life Cycle Assess. 6(3):127–32

173. Huijbregts MAJ. 1998. A general framework for the analysis of uncertainty and variability in life cycle
assessment. Int. J. Life Cycle Assess. 3(5):273–80

174. Björklund AE. 2002. Survey of approaches to improve reliability in LCA. Int. J. Life Cycle Assess. 7(2):64
175. Lloyd SM,Ries R. 2007.Characterizing, propagating, and analyzing uncertainty in life-cycle assessment:

a survey of quantitative approaches. J. Ind. Ecol. 11(1):161–79
176. Groen EA,Heijungs R, Bokkers EA,De Boer IJ. 2014.Methods for uncertainty propagation in life cycle

assessment. Environ. Model. Softw. 62:316–25
177. Heijungs R. 2010. Sensitivity coefficients for matrix-based LCA. Int. J. Life Cycle Assess. 15(5):511–20
178. Jung J, von der Assen N, Bardow A. 2014. Sensitivity coefficient-based uncertainty analysis for multi-

functionality in LCA. Int. J. Life Cycle Assess. 19(3):661–76
179. Sonnemann GW, Schuhmacher M, Castells F. 2003. Uncertainty assessment by a Monte Carlo simula-

tion in a life cycle inventory of electricity produced by a waste incinerator. J. Clean. Prod. 11(3):279–92
180. Heijungs R, Lenzen M. 2014. Error propagation methods for LCA—a comparison. Int. J. Life Cycle

Assess. 19(7):1445–61
181. Groen EA, Bokkers EA,Heijungs R, de Boer IJ. 2017.Methods for global sensitivity analysis in life cycle

assessment. Int. J. Life Cycle Assess. 22(7):1125–37
182. Lacirignola M, Blanc P, Girard R, Perez-Lopez P, Blanc I. 2017. LCA of emerging technologies: ad-

dressing high uncertainty on inputs’ variability when performing global sensitivity analysis. Sci. Total
Environ. 578:268–80

183. Stadler K,Wood R, Bulavskaya T, Södersten CJ, Simas M, et al. 2018. EXIOBASE 3: developing a time
series of detailed environmentally extended multi-regional input-output tables. J. Ind. Ecol. 22(3):502–
15

184. Perkins J, Suh S. 2019. Uncertainty implications of hybrid approach in LCA: precision versus accuracy.
Environ. Sci. Technol. 53(7):3681–88

185. PlasticsEurope. 2014. Eco-profiles. Resour., PlasticsEurope. https://www.plasticseurope.org/en/
resources/eco-profiles

186. Wei W, Larrey-Lassalle P, Faure T, Dumoulin N, Roux P, Mathias JD. 2016. Using the reliability
theory for assessing the decision confidence probability for comparative life cycle assessments. Environ.
Sci. Technol. 50(5):2272–80

232 Kleinekorte et al.

https://www.plasticseurope.org/en/resources/eco-profiles


CH11CH10_Bardow ARjats.cls May 19, 2020 9:30

187. Beltran AM, Prado V, Font Vivanco D,Henriksson PJ, Guinée JB, Heijungs R. 2018. Quantified uncer-
tainties in comparative life cycle assessment: What can be concluded? Environ. Sci. Technol. 52(4):2152–
61

188. Guillén-Gosálbez G, Grossmann IE. 2009. Optimal design and planning of sustainable chemical supply
chains under uncertainty. AIChE J. 55(1):99–121

189. Gavankar S, Anderson S, Keller AA. 2015. Critical components of uncertainty communication in life
cycle assessments of emerging technologies: nanotechnology as a case study. J. Ind. Ecol. 19(3):468–79

190. Igos E, Benetto E, Meyer R, Baustert P, Othoniel B. 2019. How to treat uncertainties in life cycle as-
sessment studies? Int. J. Life Cycle Assess. 24(4):794–807

www.annualreviews.org • LCA for Chemical Engineering Design 233




