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Abstract

New experimental technology and theoretical approaches have advanced
battery research across length scales ranging from the molecular to the
macroscopic. Direct observations of nanoscale phenomena and atomistic
simulations have enhanced the understanding of the fundamental electro-
chemical processes that occur in battery materials. This vast and ever-
growing pool of microscopic data brings with it the challenge of isolating
crucial performance-decisive physical parameters, an effort that often re-
quires the consideration of intricate interactions across very different length
scales and timescales. Effective physics-based battery modeling emphasizes
the cross-scale perspective, with the aim of showing how nanoscale physic-
ochemical phenomena affect device performance. This review surveys the
methods researchers have used to bridge the gap between the nanoscale and
the macroscale.We highlight the modeling of properties or phenomena that
have direct and considerable impact on battery performance metrics, such as
open-circuit voltage and charge/discharge overpotentials. Particular empha-
sis is given to thermodynamically rigorous multiphysics models that incor-
porate coupling between materials’ mechanical and electrochemical states.
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1. INTRODUCTION

Future lithium-battery technology targets a specific energy of 235 Wh/kg and energy density
of 500 Wh/L at the cell level, with a reduction of pack cost to $125 per kilowatt-hour (1). The
development of next-generation systems for vehicles also targets high cycling durability, resistance
to burning, good low-temperature performance, and fast charging capability.

Modern instruments allow detailed microscopic, spectroscopic, and tomographic characteri-
zation of individual materials within a battery cell, from the nanometer to the millimeter scale.
Precise control of active-material properties can be achieved by doping or defect engineering. On
a larger scale, mesostructural engineering has been enabled by manufacturing methods like three-
dimensional printing (2) or field-assisted sintering (3). For the promise of such developments to
be realized, microscopic phenomena must be correlated with macroscopic performance.

A cell’s macroscopic behavior results from many processes within materials and across inter-
faces, including local thermodynamics and reaction kinetics as well as transport of mass, charge,
momentum, and heat. Numerous experimental and computational studies report phenomena or
mechanisms relevant to battery materials, but only a fraction correlate these with macroscopic
observables—that is, factors that contribute distinct signatures in cell-level measurements. Key
macroscopic characteristics include a cell’s open-circuit voltage (OCV), current/voltage charac-
teristics during charge/discharge, impedance spectrum, overall mechanical state, and extent of
degradation.

Computational approaches such as density functional theory (DFT) and molecular dynamics
provide quantitative fundamental understanding at the atomic scale. Particle and mesoscale mod-
eling show how micrometer-scale phenomena transform ideal bulk-material properties into the
phenomenological properties seen in the laboratory. Continuum cell-level modeling uses both
fundamental and phenomenological information to predict macroscopic performance character-
istics, such as the state of charge, cycling efficiency, electrode utilization, and power capability.
Such models can be upscaled to create streamlined reduced-order models applicable to battery
management, testing, and control. Successful multiscale modeling should provide bridges to span
this wide range of applications.

This review first outlines the theories most commonly used in continuum models of bat-
tery performance. Within this framework, we discuss microscopic phenomena within different
components of a cell. Sections 3 and 4 then address the microscopic properties of electrodes
and electrolytes. Next, in Section 5, we consider chemomechanical interfacial phenomena,
including morphological instability and dendrite propagation; these are relevant to the lithium-
plating degradation pathway in lithium-ion batteries, but they also impede the development
of the lithium-metal anodes on which many next-generation battery architectures rely. Finally,
Section 6 touches on future technology, focusing on all-solid-state lithium batteries.

We highlight key properties as well as material-analysis and design strategies that might en-
hance performance on the macroscale.Generally, we present simpler models in detail, referencing
more sophisticated variations or detailed extensions in the accompanying discussion.We consider
only interfacial exchange or bulk transport of mass, charge, and momentum; interfacial charge
transfer is modeled with basic electrochemical kinetics, without detailed consideration of solid–
electrolyte interphase chemistry and structure. Recently, research on thermal processes relevant
to battery safety was reviewed by Feng et al. (4), and the solid–electrolyte interphase literature
was reviewed by Wang et al. (5). Although we touch on solid-state lithium batteries below, other
novel chemistries such as lithium–sulfur and lithium–air are not addressed; interested readers
are referred to the comprehensive reviews by Seh et al. (6), Wild et al. (7), and Aurbach et al.
(8).

278 Li • Monroe



CH11CH13_Monroe ARjats.cls May 19, 2020 10:16

2. CONTINUUM MODELS

2.1. Multicomponent Transport Phenomena

Contemporary lithium-ion cells comprise two porous electrode materials, whose different chemi-
cal states drive lithium intercalation or deintercalation during discharge. The electrodes sandwich
an inert porous separator; the pores in all three domains are permeated by a liquid electrolyte that
supports ion transport but blocks electron flow.Electrochemical potential differences between the
electrodes, which contain variable amounts of intercalated lithium,manifest as a voltage difference
that can drive electronic current in an external circuit. Almost all lithium-ion batteries use com-
posite electrodes, wherein active particles are connected by a conductive binder that provides a
percolation network for electrons, and an electronically insulating polymer separator. These solid
components are porous, permeated by an organic-liquid-solvated electrolyte. As the name implies,
all-solid-state batteries use solid electrolytes, which in principle allow lithiummetal to replace the
porous intercalation anode.

This section focuses on concentrated-solution theory, a transport modeling framework whose
principles apply generally across cell components. Most of the development here comes from the
foundational work of Newman (summarized, e.g., in 9), with a few minor modifications.

Any phase in a battery comprises n chemically distinct molecular or ionic species. The prod-
ucts of species molarities ck with velocities �vk form molar fluxes �Nk = ck�vk, which, together with
the external Cauchy stress tensor ��σ , determine the local dynamical state. Molar massesMk allow
definition of the mass density, ρ =∑

k Mkck, and mass-average velocity,�v, where ρ�v = ∑
k Mkck�vk.

Similarly, Faraday’s constant F and species equivalent charges zk lead to the excess charge density,
ρe = F

∑
zkck, and current density,�i = F

∑
k zkck�vk.

Balance equations express the local electrical state, as well as material and momentum conti-
nuity. Excess charge produces the mean field �E according to Poisson’s equation,

�∇ ·
(
ε �E
)

= ρe, 1.

where ε is the dielectric permittivity. Material balances for every species can be written as

∂ck
∂t

= −�∇ · �Nk. 2.

In a domain with constant permittivity, the momentum balance relates system dynamics to the
action of stress and the quasi-static Lorentz body force ρe

�E:

ρ
∂v

∂t
= −ρ�v · �∇�v − �∇ · ��σ + ρe

�E. 3.

In multicomponent materials, excess species fluxes can give rise to another apparent stress, similar
to a Reynolds stress (10). This diffusion stress is generally small and is neglected.

Hirschfelder et al. (11) applied irreversible thermodynamics to produce Onsager–Stefan–
Maxwell (OSM) diffusion equations, which identify the driving forces that induce relative mo-
tion of different species; Newman extended this framework to electrochemical systems (see 9).
Goyal & Monroe (10) produced modified driving forces that include deformation strain, which
the energy-dissipation functional suggests relate to species velocities as

−ck
[
�∇μk − Mk

ρ

(
�∇ p+��ε ′ : �∇��τ

)]
=
∑
j �=k

Kk j
(
�vk − �v j

)
, 4.
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where Kkj is a coefficient quantifying drag between species k and j. Here, p is the external pressure,
��ε ′ is the deformation-strain tensor, and ��τ = ��σ − p��I is the deformation stress (��I is the identity
tensor). Summing all nOSMequations recovers theGibbs–Duhem relation,

∑
ck�∇μk − �∇ p−��ε ′ :

�∇��τ = 0, so only n − 1 flux laws in the form of Equation 4 are independent.
The energetics of each species is characterized by an electrochemical potential μk, with con-

tributions from the mixing free energy, mechanical stress, and electric field:

�∇μk = RT
ck

∑
j �=n

χk j�∇c j +Vk

(
�∇ p+��ε ′ : �∇��τ

)
− Fzk �E. 5.

In this constitutive law, χ kj are so-called thermodynamic factors; the sum over �∇c j expresses that
any independent species-concentration gradient may affect the chemical-activity gradient of k.
Property Vk represents the partial molar volume. Extensivity of the total volume implies that∑

k ckVk = 1, which can be adopted as a volumetric equation of state.
Constraints derived from the Gibbs free energy, including the Gibbs–Duhem equation and

various Maxwell relations, reduce the number of independent entries in the thermodynamic ma-
trix χ kj. Constitutive laws expressing how Vk depends on stress and composition also satisfy a
Gibbs–Duhem relation and constrain the electrochemical potentials through Maxwell relations
(10). Equilibrium stress–strain relationships are also thermodynamic, and they vary by material
(e.g., for a Hookean solid,��ε ′ ∝ ��τ ; for a viscous liquid,��ε ′ = 0).

The OSM friction factors Kkj quantify irreversible energy dissipation due to mass transport—
that is, diffusional resistance to composition gradients or migrational resistance to current flow.
The kinetic theory of gases (11) suggests that Kkj relates to the corresponding binary diffusivity
through

Kkj = RT
cref

ckc j
Dk j

, 6.

whereDk j is the Stefan–Maxwell diffusivity of species k in species j. AnOnsager reciprocal relation
guarantees that Dk j = D jk (12). Usually, one takes the reference concentration cref to be the total
molarity cT = ∑

kck in liquids and the molarity of available lattice sites clattice in solid crystals;
Fornasiero et al. (13) have discussed conventions for polymers.

A sequence of linear transformations maps multicomponent OSM equations into the form
of Nernst–Planck transport laws (14), which are useful for formulating transport problems that
consider simultaneous diffusion, convection, and migration. When combined with microscopic
balance equations (Equations 1–3) and an appropriate set of thermodynamic state equations, these
make up a transport model that applies generally to liquid or solid electrolytes.

2.2. Single-Ion Conductors and Binary Electrolytes

In materials that contain mobile charge carriers, analysis of Poisson’s equation (Equation 1) using
the Debye–Hückel theory shows that space charge disperses naturally on a length scale of the
Debye length. When applied across length scales much larger than a few nanometers, Poisson’s
equation can be approximated by local electroneutrality, ρe ≈ 0. By linearly combining the species
material balances and applying Faraday’s law, one can show that local electroneutrality implies a
divergence-free current density, �∇ ·�i = 0.

For a phase containing a single mobile carrier, such as an ideal ionically conductive solid elec-
trolyte or an electronic conductor, the single independent OSM transport equation implies that

�isol = σ �E; 7.

that is, charge conduction follows Ohm’s law, with the conductivity represented by σ .
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Battery materials are usually multispecies conductors. Canonical cell models treat the pore-
filling liquid as a simple binary electrolyte—a three-species phase comprising a neutral solvent,
k = 0 with z0 = 0, in which is dissolved a single salt at molarity c, dissociated fully into one cation,
k= +, and one anion, k= −. The salt satisfies ν+z+ + ν−z− = 0, where νk is the ion stoichiometry
in a formula unit; the total formula-unit stoichiometry is ν = ν+ + ν−. Local electroneutrality fur-
ther simplifies the analysis by relating the two ion concentrations: νc= c+ + c− and z+c+ = −z−c−.
A salt chemical potential μe can be defined through the dissociation equilibrium, as μe = ν+μ+ +
ν−μ−; generally taken to be independent of the electrical state, μe may depend on c and p (10).

For a locally electroneutral and isobaric binary electrolyte, there are two independent OSM
equations, which rearrange to produce a modified form of Ohm’s law:

�i
κ

= −�∇
(

μ+
Fz+

)
+ 1 − t0+
Fz+ν+

�∇μe, 8.

in which κ is the ionic conductivity and t0+ is the cation transference number relative to the solvent
velocity. It is typical to take �μ+/(Fz+) = �
, where 
 is the voltage measured by a reference
electrode reversible to cations (9, 15). Inversion of theOSM equations also produces a flux-explicit
transport law for cations with respect to the solvent velocity:

�N+ = − c+DcT
νRTc0

�∇μe + t0+�i
Fz+

+ c+�v0, 9.

where D is the thermodynamic diffusivity. The three phenomenological coefficients in
Equations 8 and 9 relate to the three Stefan–Maxwell diffusivities D0+, D0−, and D+− as

1
κ

= −RT
cTz+z−F2

(
1

D+−
+ c0t0−
c+D0−

)
, D = D0+D0− (z+ − z− )

z+D0+ − z−D0−
, t0+ = z+D0+

z+D0+ − z−D0−
. 10.

The model is closed by a thermodynamic constitutive law, which expresses �μe in terms of com-
position and pressure gradients. This relationship involves a single thermodynamic factor, χ , and
a combined partial molar volume for the salt,Ve = ν+V + + ν−V −.

2.3. Porous-Electrode Theory

Lithium-ion battery electrodes comprise a porous, electronically conductive solid backbone em-
bedded with active material, permeated with the liquid electrolyte. Equations and properties
within continuum models are usually homogenized (volume averaged) to account for this multi-
phasic nature.The typical approach accounts for pore architecture through two geometric factors,
the porosity, ε, and the ratio of pore surface to volume, a.

Doyle, Fuller, and Newman’s implementation of porous-electrode theory for lithium-ion
batteries (see 16–18) describes electrode domains as a superposition of two phases, in which
transport is described by models of the type outlined above. Inside simulation volume elements,
balance equations communicate through electrochemical-kinetic source terms, which account
for exchange processes between the two phases (9). Also, an additional dimension of the model
describes diffusional relaxations of intercalated lithium within active-material particles, as shown
in Figure 1.

Sulzer et al. (19) developed a nonisobaric porous-electrode model of a lead–acid battery. It
allows changes in average liquid composition and concomitant liquid-volume changes during cy-
cling and permits the electrode porosity to contract or dilate. Most lithium-ion battery models
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The multiscale battery models discussed in the text assume cell architectures with (a) a liquid electrolyte,
with a porous anode and cathode, or (b) a solid electrolyte, with a metallic anode and a porous cathode. Both
cases require (c) a local model of transport in active-material particles.

assume that average electrolyte composition and pore geometry remain constant, so we adopt
those assumptions here.

Liquid-phase cation flux �N+ and current density �iliq, as well as the solid-phase current density
�isol, are averaged across the entire two-phase volume element within the porous electrode. Cation
continuity in the pore-filling liquid is governed by

∂ (εc+ )
∂t

= a j+,n − �∇ · �N+, 11.

where j+, n is the net influx of cations normal to the pore walls and c+ represents the cation con-
centration in the pore-filling liquid. A law for charge continuity in the pore-filling liquid can be
derived by taking into account that anion continuity satisfies a similar law, then applying liquid-
phase electroneutrality and Faraday’s law:

�∇ ·�iliq = ain, in = Fz+ j+,n + Fz− j−,n. 12.

Charge continuity demands that the total current is solenoidal: �∇ ·�iliq + �∇ ·�isol = 0.
For isobaric electrodes with constant porosity permeated by a binary electrolyte, Equations 9

and 11 combine to show that

ε
∂c+
∂t

= �∇ ·
(
εDeff

�∇c+
)

−
�iliq · �∇t0+
z+F

+ a
(
1 − t0+

)
j+,n. 13.

The effective Fickian diffusivity Deff derives from D but also includes composition-dependent
thermodynamic information (15, 20) and dispersive effects due to pore tortuosity (see Section 4).
Liquid-phase current follows Equation 8, with κ replaced by an effective conductivity κeff and
μ+/Fz+ by the liquid-phase voltage 
liq. Current in the solid phase follows Equation 7, with the
conductivity replaced by an effective value σ eff and the solid-phase voltage 
sol defined through
the standard quasi-electrostatic formula �E = −�∇
sol.
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Faradaic current density at the pore surface, in, relates to c+, 
liq, and 
sol through electro-
chemical kinetics. Typically, kinetics is taken to follow the Butler–Volmer equation,

in(η) = i0
[
exp

(
αaz+F
RT

η

)
− exp

(
−αcz+F

RT
η

)]
, 14.

in which i0 is the exchange-current density and αa and αc are anodic and cathodic transfer coeffi-
cients, respectively. Generally, i0 is a function of composition (that is, c+, and perhaps the surface
concentration of intercalated lithium). The surface overpotential η is defined as

η = 
liq − 
sol −U , 15.

in whichU stands for a composition-dependent (and state-of-charge-dependent) OCV relative to
the same reference electrode used for 
liq. Sometimes effects due to film resistance or interfacial
capacitance are added to this expression (9). Given a half reaction involving ne− electrons with
lithium-ion stoichiometry s+, the relation

j+,n(η) = − s+
ne−F

in(η) 16.

can be used to replace interfacial source terms with functions of η and composition.
Finally, lithium diffusion within the active materials is considered (17). As well as depending on

c+,OCV is a functional of the intercalated-lithiumdistribution (cf. Section 3.1).The concentration
of intercalated lithium at the active-particle surface, cLi|surf, is found through a transport model
within the particle under a boundary condition where j+, n determines the surface flux. Typically,
intercalated lithium is assumed to be neutral, and intercalation is modeled as a binary diffusion
process. Thus, particle interiors evolve as

∂cLi
∂t

= −�∇ · �NLi, 17.

and a single OSM equation governs the diffusive flux of intercalated lithium.

3. ELECTRODE ACTIVE MATERIALS

3.1. Equilibrium Energetics

Active materials are generally intercalation compounds or alloys that provide host structures for
lithium atoms. Desirable materials afford high energy density, fast lithium transport, and good
electrochemical and chemical stability (or metastability). These characteristics are determined by
the atomic structures of the materials.

For a given system in which nLi lithium atoms are intercalated, the Gibbs free energy,

G = E − TS+ pV , 18.

in whichE is the internal energy,S the entropy, andV the volume, contains all relevant information
about equilibrium material properties. Computational methods acquire Gibbs energies systemat-
ically from ab initio calculations. Once G is known, the OCV,U, can be measured by differencing
the electron electrochemical potentials in the electrodes:

U = μcathode
e− − μanode

e−

Fze−
. 19.
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Figure 2

(a) Open-circuit voltage of LixCoO2 at T = 0 K and T = 300 K. Finite temperature smears the sharp discontinuities apparent in the
0 K energetics. (b) Predicted ground-state ordered vacancy structures and energetics of LixCoO2. Formation enthalpies �H for
random (dotted line) and ordered AAA-stacking (dashed line) arrangements of Li in vacancies are compared with the energy-minimizing
structures predicted by density functional theory (solid line). Two-dimensional representations of some predicted structures are shown
schematically (filled circles indicate Li; empty circles, vacancies). Figure adapted with permission from Reference 22; copyright 1998
American Physical Society.

In half-reaction equilibrium with a lithium-ion-containing electrolyte, intercalated lithium in an
electrode satisfies μelectrode

Li = μ
electrolyte
Li+ + μelectrode

e− . Practically,μelectrode
Li is calculated by removing a

lithium from the lattice: μelectrode
Li (T , p, nLi ) = G (T , p, nLi ) −G (T , p, nLi − 1).

Electrostatic energy accounts for most of the chemical potential for isothermal, isobaric
intercalation. DFT calculates the minimum electrostatic energy of a stable supercell at zero
temperature in vacuum, Estatic (T = 0, p = 0), generally presented as the formation energy with
respect to stable phases, Ef (LixX) = Estatic (LixX) − xEstatic (Li0) − Estatic (X), in which Li0 and
X are pure lithium and pure fully delithiated intercalation material, respectively. This formation
energy approximates the system’s internal energy well when the temperature is not too high.
Ignoring entropic and mechanical contributions, the chemical potential of intercalated lithium
is μLi (x) = �Ef (LixX)/�x; since the lithium-oxidation half reaction requires that μLi (x) = FU,
this directly yields the OCV with respect to a metal reference. Thus, an OCV curve for a specific
lithium-hosting solid follows from DFT calculations of the minimum energy lattice structures at
all stable lithium contents; Figure 2a shows an example.

The OCV curves of many intercalation compounds exhibit discontinuities, which correspond
to phase transitions, as shown by the example in Figure 2b. Phase transitions can occur due to
sublattice structure reforming (first order) or through ordering of intercalated atoms (second
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order). The early DFT calculations for lithium–tin alloys by Courtney et al. (21) clearly revealed
first-order phase transitions and agreed well with experiments. Layered intercalation compounds
such as LixCoO2 (22) usually go through second-order order–disorder phase transitions, requiring
Monte Carlo simulations (23) to sample the configurational space and identify minimum-energy
orderings. For materials with many available intercalation sites, huge numbers of possible interca-
lation configurations may exist, in which case cluster-expansion techniques can be exploited (24).

At finite temperatures, configurations above the minimum energy will be excited following a
Boltzmann distribution, pi = e−Ei/kBT /Z, where kB is Boltzmann’s constant and Z = ∑

i e
−Ei/kBT

is the partition function. Internal energy then becomes an ensemble average of excited states,
〈E〉 = ∑

piEi. Energies of excited states are usually approximated by the zero-temperature ener-
gies of their configurations, Ei 	 Ei (T = 0, p = 0). For materials that allow large numbers of
configurations, the configurational entropy S = −kB

∑
pi ln pi will contribute significantly to the

Gibbs energy, stabilizing disordered phases. These finite-temperature effects smear discontinu-
ities in OCV curves, as shown in Figure 2a.

DFT also allows electronic conductivity to be analyzed fromband structures.Although thermal
excitation of electrons minimally affects G, heat can excite electrons from covalent bands into
conductive bands, strongly affecting the conductivity’s temperature dependence (25). Intercalation
can be accompanied by substantial changes in band structure.Ménétrier et al. (26) showed that Li
deintercalation from LiCoO2 can cause an insulator–metal transition. Electron entropy can also
stabilize phases, as found by Zhou et al. (27) for LiFePO4.

3.2. Transport in the Crystal Lattice

Atomistic computation provides insight into intercalated-lithium transport, which is relatively
slow and is consequently crucial to a cell’s power capability. Solid diffusion can be regarded as a
site-hopping process, whose rate is given by transition state theory as (28)

k(T ) = ν∗e−
�G‡
RT , 20.

where ν∗ is an attempt frequency of 1011–1013 Hz (29) and �G‡ is the activation barrier, defined
as the energy difference between the initial state and the transition state. Calculations find the
transition state by locating the saddle-point energy on the potential energy surface that contains
the initial and final states, as shown in Figure 3.

The thermodynamic diffusivity of lithium is taken to be the jumping diffusivity from a random-
walk process (30). For a one-dimensional channel in the dilute-carrier limit,D (T ) = a2k(T ) (31).
When interactions between states are more complex, gradients in concentration do not precisely
mirror gradients in mobile-species activity, mandating the use of a chemical diffusivity D = DχLi.

Activation barriers and thermodynamic factors are both important. Van der Ven & Ceder (32,
33) predicted that Li diffuses through a divacancy mechanism in LixCoO2 for 0 < x < 1, whose
activation barrier depends strongly on x, causingD to vary across orders of magnitude. In LixTiS2,
accounting for lithium–lithium interaction energetics shows that χLi varies by a factor of 104

between the dilute-lithium and dilute-vacancy limits (29). Lithium transport pathways can extend
in multiple spatial dimensions, which also affect diffusivity: There is a one-dimensional pathway
in LiFePO4 (31), a two-dimensional pathway in LiCoO2 (32), and a three-dimensional pathway
in Li7La3Zr2O12 (LLZO) (34). Higher-dimensional pathways tend to have larger diffusivities.

Microscopic lithium transport correlates with some macroscopic effects. Malik et al. (35)
revealed that one-dimensional diffusion in LiFePO4 makes lithium diffusivity particle size
dependent because longer paths are more likely to be blocked by defects. Besides direct hopping,
concerted or collective mechanisms have been reported with lower �G‡. He et al. (36) surveyed
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(a) Parameters describing a diffusion barrier in a crystal lattice. The energies of the initial state, final state, and intermediate state are
denoted by E1, E2, and Eact, respectively. The migration barrier �EB generally depends on the direction of the hopping process,
indicated by an arrow; �EKRA illustrates the direction-independent kinetically resolved activation (KRA) barrier defined by Van der
Ven et al. (149). Circles and squares denote lithium atoms and vacancies, respectively. Panel a adapted with permission from Reference
149; copyright 2001 American Physical Society. (b) Migration barriers for hops between neighboring octahedral sites in LiTiS2 spinel.
The yellow circles denote sulfur anions coordinating titanium cations, and the red circles denote lithium atoms. Panel b adapted with
permission from Reference 150; copyright 2013 American Chemical Society.

ion diffusion in a series of fast ion conductors, revealing that mobile ions occupying high-energy
sites can activate concerted migration with a reduced diffusion barrier.

More information about computational methods in battery materials research can be found in
the recent reviews by Islam & Fisher (37) and Urban et al. (38). Van der Ven et al. (39) provided
a clear discussion of computational methods for multicomponent crystalline phases, and Li &
Chueh (40) surveyed the computations on intercalation materials.

3.3. Transport in Particles

The solid matrix of a porous electrode comprises active-material particles, a binder, and a conduc-
tive filler, but formation of an electron-percolation network requires only a very sparse network
of the filler and binder, so the active material is almost entirely surrounded by liquid electrolyte.
Most continuum models assume roughly spherical, isotropic solid particles, in which lithium in-
tercalation is a one-dimensional diffusion process; Equation 2 becomes

∂cLi
∂t

+ 1
r2

∂

∂r
(
r2NLi

) = 0. 21.

Reaction kinetics (Equations 14–16) determines fluxes at the particle’s surface; fluxes vanish at its
center. Intercalated lithium is usually neutral: In the simplest case, we have NLi = −DLi�cLi/�r.

Particle size affects lithium transport profoundly. Darling & Newman (41) studied a porous
intercalation electrode with two characteristic particle sizes following various distributions and
confirmed that smaller particles are utilizedmore at larger current densities.Nonuniform particle-
size distributions usually affect capacity versus rate behavior negatively, with a more pronounced
effect at constant voltage than at constant current.

3.3.1. Chemomechanics. A notable volume change usually accompanies active-material lithia-
tion or delithiation. Lithiation induces volume expansion of about 5% in LiMn2O4 (42) and 10%
in graphite (43). High-energy-density materials such as alloys can expand as much as 310% (44).
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At the particle level, varying lithium occupancy between the surface and the core induces strain,
leading to cracking or mechanical fatigue (45). At the cell level, active-material expansion can
affect pore geometry and particle connectivity. Diffusion-induced stress is a current problem in
particle modeling, reviewed recently by Zhao et al. (46).

Research into chemically induced stress began in the 1960s (47), but Christensen & Newman
(48) were among the first battery researchers to consider it. They modeled intercalation in a par-
ticle with a freely moving boundary. In a spherical particle, gradients of the local state of charge
(SOC) induce both radial and tangential stress, as shown in Figure 4b. The maximum stress de-
pends on the charge rate, particle size, and lithium diffusivity. Christensen (49) later incorporated
stress diffusion into a porous-electrode cell model, showing pressure diffusion to be less important
for conventional intercalation materials and significant when volume expansion is much larger.
Zhang et al. (50) studied shape effects: Intraparticle stresses are lower in smaller particles and in
ellipsoidal particles with high aspect ratios.

As well as requiring a stress–strain law to model mechanics, deformation can bring about cou-
pled transport through the pressure and strain terms in Equations 4 and 5. In a spherical particle
comprising lithium (k = Li) and sites (k =∗), lattice continuity requires that

∂c∗
∂t

+ 1
r2

∂

∂r
(
r2N∗

) = 0. 22.

The local SOC y is defined as y= cLi/c∗. As an equation of state for volume, one takes the lattice-site
concentration c∗ to depend on both the local SOC and the Cauchy stress:

c∗ = c0∗ (y) g
(
��σ
)

= 1

yV
0
Li +V

0
∗
g
(
��σ
)
, 23.

where V
0
∗ = ρ|y=0/M∗ and V

0
Li = ρ|y=1/(M∗ +MLi ) are derived by assuming that the material’s

mass density depends linearly on its lithium concentration (M∗ and V ∗ allocate the mass and
volume, respectively, of the superstructure surrounding a lattice site to the site itself ). Christensen
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Figure 4

(a) Illustrations of stresses in charge and discharge processes. (b) The stress distribution in an active-material particle. Dashed lines
indicate the case without stress driving diffusion, and solid lines indicate the case with stress driving diffusion. Figure adapted with
permission from Reference 48; copyright 2006 Springer Nature.
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& Newman (48) proposed that deformation affects concentration through

g
(
��σ
)

= exp

[
− (1 − 2νP)

(
σr + 2σt − 3pθ

)
EY

]
, 24.

where σ r and σ t are the radial and tangential stresses, pθ is the ambient pressure, νP is Poisson’s
ratio, and EY is Young’s modulus. Diffusion follows a single OSM equation,

KLi∗

(
�NLi

cLi
−

�N∗
cLi

)
= −χ �∇cLi − cLi

(
V Li − MLi

ρ

)(
�∇ p+��ε ′ : �∇��τ

)
, 25.

in which KLi∗ is the drag the lattice puts on lithium and ��ε ′(��τ ) is determined through Hooke’s
law. The last term on the right describes stress diffusion, which can also be influenced both by
the uneven distribution of forces across species and by disparate partial molar volumes. In liquids,
stress diffusion is usually negligible, because viscous stresses are small (19). In high-modulus solids,
stress diffusion can be significant.

Surface mechanics can affect intraparticle stress as well. Cheng & Verbrugge (51) brought in
these phenomena, replacing the free-surface condition with a fixed surface stress,

σ surf
r = −2σ surf

θ

r0
, σ surf

θ = γ + Ksεθ , 26.

where r0 is the particle radius, γ is the zero-strain surface tension, andK s is a surfacemodulus from
the linear-elastic model by Miller & Shenoy (52). Observations universally show that nanoparti-
cles exhibit properties that differ from those of bulk materials, in part because of their enormous
surface-to-volume ratios (53, 54). Deshpande et al. (55) rationalized the surprisingly good cycling
performance of Si nanowires (56) by showing that intraparticle stress—especially tensile stress—is
reduced by surface phenomena.

The mechanical properties of both cathode and anode materials can vary with lithium con-
tent (42). Deshpande et al. (57) simulated a cylindrical electrode particle with a concentration-
dependent Young’s modulus, finding that lithium stiffening can impede surface cracking during
delithiation and that lithium softening reduces the tendency to crack at the center during lithia-
tion. Yang et al. (58) studied Cu-coated Si anodes to show that volume change and composition-
dependent moduli both affect stress fields.

At the cell level, Steingart and colleagues (59, 60) leveraged the significant changes in mechan-
ical properties during cycling to measure SOC and state of health with acoustic time-of-flight
experiments. This method holds promise for almost any closed battery system. Such approaches
highlight the significance ofmacroscopicmechanical effects due to chemical composition changes,
and they have great potential for applications in battery management.

3.3.2. Phase separation. As discussed in Section 3.1,many intercalationmaterials exhibit one or
more phase changes during the charging/discharging process. Phase transitions strongly influence
the lithium distribution inside particles and also change intercalation dynamics.

Shrinking-core models provide the simplest illustrations of phase change; metal-hydride sim-
ulations by Zhang et al. (61) and Subramanian et al. (62) were among the earliest applied to batter-
ies. The latter supposed that a phase with uniform H content appears if surface flux causes lattice
saturation, showing that a Fickian diffusion model underestimates the discharge duration for a
phase-change cathode with 5-µm particles by more than 10% at a C/4 rate. (A C/x rate means an
applied current that will charge or discharge the total rated capacity of the battery in x hours.)
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Zhang & White (63) built a shrinking-core model with two phases into a porous-electrode
model. They proposed that LixCoO2 supports an α phase at small x and a β phase at large x,
both of which can support diffusion. The maximum lithium content of the α phase is ceq, α ; the
minimum in the β phase is ceq, β . Spherical diffusion spans two spatial domains,

∂cα
∂t

= 1
r2

∂

∂r

(
r2Dα

∂cα
∂r

)
, −Dα

∂cα
∂r

∣∣∣∣∣
r=0

= 0, cα|r=ri (t ) = ceq,α , 27.

∂cβ
∂t

= 1
r2

∂

∂r

(
r2Dβ

∂cβ
∂r

)
, −Dβ

∂cβ
∂r

∣∣∣∣∣
r=r0

= jn
F
, cβ |r=ri (t ) = ceq,β , 28.

and motion of the interphase boundary is determined by a material balance,

Dα

∂cα
∂r

∣∣∣∣∣
r=ri (t )−

−Dβ

∂cβ
∂r

∣∣∣∣∣
r=ri (t )+

= (
ceq,β − ceq,α

) dri (t )
dt

. 29.

A phase transition within a given particle goes through three stages, shown in Figure 5a: When
ri (t)= r0, the whole particle is in the α phase; when ri (t)= 0, it resides in the β phase; and between
these limits, there is a two-phase mixture.

Srinivasan & Newman (64) studied discharge of LixFePO4 by incorporating a two-stage
shrinking-core model at the particle level into a porous-electrode model, also considering two
particle sizes in the cathode domain. Subsequent experiments revealed an asymmetric response,
whose mechanism is sketched in Figure 5b, whereby the particle utilization on charge could be
larger than on discharge at transport-limited current densities (65).

Large stresses at phase boundaries are common in phase-transition materials. Christensen &
Newman (66) applied a shrinking-core model to LixMn2O4, including stresses due to lithium
intercalation along the 4-V plateau and phase change along the 3-V plateau. Fracture at 4 V is
likelier at higher currents, whereas the LiMn2O4/Li2Mn2O4 phase ratio controls fracture at 3 V.
Deshpande et al. (67) investigated diffusion-induced stress in phase-transforming electrodes with
a moving-boundary model, finding that concentration jumps at phase boundaries lead to stress
discontinuities that can cause cracking.

Phase-field models provide another way to simulate phase transitions. These exploit a Cahn–
Hilliard chemical potential, with an energy penalty for composition gradients:

μ = μ0 + RT ln
y

1 − y
+ RTχ (1 − 2y) − k

(
�∇y · �∇y

)
. 30.

Unlike shrinking-core models, which presuppose a sharp phase boundary at a particular compo-
sition threshold, phase-field models produce phase-separation dynamics naturally, at the expense
of describing diffusion with a higher-order partial differential equation. As an early application
to batteries, Han et al. (68) examined whether diffusion in a phase-separated material would fol-
low Fickian behavior and affect the experimental measurement of diffusivity. They found that the
galvanostatic and potentiostatic intermittent titration techniques (69, 70) still yield accurate dif-
fusivities in systems described by phase-field models, even with significant gradient-energy terms.
Singh et al. (71) extended the formulation of Han et al. by incorporating surface-reaction kinetics
and anisotropic lithium diffusion. The gradient energy affects reaction kinetics by changing the
apparent overpotential. In LiFePO4, a typical diffusive shrinking core forms when the dynamics
is bulk transport limited, but a new regime of surface-reaction-limited dynamics exists where the
phase boundary extends from surface to surface along planes of fast ionic diffusion. Bai et al. (72)

www.annualreviews.org • Multiscale Lithium-Battery Modeling 289



CH11CH13_Monroe ARjats.cls May 19, 2020 10:16

C/25
C/25

3C

Rest

0 20 40 60 80 100 120 140 160 180
Capacity (mAh/g)

Po
te

nt
ia

l (
V

) v
er

su
s 

Li
2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

i iii
Single (α) Core (α)

r = 0 r = R

ii

r = 0 r = Rr = r(t)

Single (β)Shell (β)

r = 0 r = R

Radius

Co
nc

en
tr

at
io

n

Initial α + β Single β phaseSingle α phase End

Li+

Li+

Li+ Li+

Li+ Li+

Li+

b

a

FePO4 LiyFePO4

LiyFePO4

Li1 – xFePO4

Li1 – xFePO4
100% SOC 50% SOC

Discharge Charge

LiFePO4

LiyFePO4

0% SOC 50% SOC

Charge Charge

Figure 5

(a) The three-stage shrinking-core model of an intercalation particle. Panel a adapted with permission from Reference 63; copyright
2007 The Electrochemical Society. (b) Path-dependent charging in a particle with phase separation. The electrode is charged from a
0% state of charge (SOC) to 50% at a C/25 rate, after which a 3C charge is performed (solid red line). (A rate of C/x means that the
current will charge or discharge the entire rated capacity in x hours.) The electrode is then fully charged at C/25 (solid blue line), then
discharged to 50% at C/25, after which a 3C charge is performed (dashed red line). Finally, the electrode is fully discharged at C/25
(dashed blue line). The two 3C charge steps follow different paths. Panel b adapted with permission from Reference 65; copyright 2006
The Electrochemical Society.

created a theory of reaction-limited intercalation to show that higher currents can suppress phase
separation, explaining an experimentally observed current-induced transition from particle-by-
particle to concurrent intercalation (73).

Diffusion-induced stress shapes the dynamics of phase transitions profoundly, especially in
nanoparticles. Tang et al. (74) incorporated mechanics into phase-field theory to model amor-
phization in nanoscale olivines (75). They predicted a critical particle size, below which a low-
surface-energy amorphous phase forms to relieve stress. Experiments show that the miscibility
gap of nanoscale insertion materials depends on the particle size (76) and SOC (77). Zhang &
Kamlah (78) rationalized the size dependence of the miscibility gap in terms of the ratio between
the thickness of the interface between phases and the particle size, and they related its average-
concentration dependence to the global gradient-energy evolution.

4. LIQUID ELECTROLYTES

4.1. Binary-Electrolyte Models

Nernst–Planck dilute-solution theory provides the simplest dynamical model of a liquid elec-
trolyte, ignoring solute–solute interactions and the finite volume occupied by salt. Newman’s
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concentrated-solution theory (outlined in 9) applies better to battery electrolytes, which are gen-
erally moderately concentrated. At the 1 M concentration typical for lithium-ion battery elec-
trolytes, dissolved salt occupies 5–10% of the liquid volume (20). When current passes through
such a solution, the induced salt flux can drive bulk convection.Newman&Chapman (79) clarified
this phenomenon by introducing the volume-average velocity �v� as a reference for convection.
For a binary electrolyte,

�v� = V e

[(
1 − t0+

) �N+
ν+

+ t0+
�N−
ν−

]
+V 0

�N+. 31.

With this and Faraday’s law, the cation flux law from Equation 9 for an isobaric system becomes

�N+ = −D�∇c+ + t0+�i
Fz+

+ c+�v�, 32.

where D = Dχ cT/c0 is the Fickian diffusivity. Insertion into a cation balance in the form of
Equation 2 shows that the evolution of salt concentration follows

∂c
∂t

+ �∇ · (c�v�) = �∇ ·
(
D�∇c

)
−

�i · �∇t0+
z+ν+F

, 33.

as expected. Together, the three material balances also imply volume continuity:

�∇ · �v� +Ve

�i · �∇t0+
z+ν+F

= −D
�∇c · �∇Ve

1 − cVe

. 34.

In the Doyle–Fuller–Newman lithium-ion battery model (16–18), the volume occupied by salt is
explicitly neglected, by an assumption that Ve ≈ 0, in which case �v� ≈ �v0 and both vanish uni-
formly.

Finite salt volume does affect liquid-phase transport, however. The most significant phe-
nomenon is faradaic convection, a bulk flow induced by heterogeneous electrochemistry. For a
surface reaction

∑
skM

zk
k � ne−e−, the interfacial volume balance is (80)

(
�v� · �n)∣∣surf = �V

sol
rxn

Fze−ne−

(
�i · �n

)∣∣∣
surf

+ (�vconv · �n)∣∣surf , 35.

where �vconv describes interfacial motion due to swelling/contraction or deposition/stripping of

solid material, and �V
sol
rxn = ∑

Vksk is the liquid-volume change of the reaction. Liu & Monroe
(20) identified a dimensionless ratio that measures how convection in Equation 33 compares with
diffusion, which equals the salt volume fraction for typical lithium-battery electrolytes. Faradaic
convection raises limiting currents and lowers concentration polarization, possibly explaining the
high apparent cation transference of ultraconcentrated electrolytes (81, 82).

4.2. Beyond Binary Electrolytes

Practical battery electrolytes contain more than three chemical species. Ion transport is con-
strained by charge continuity, a limitation that can be alleviated by adding a supporting electrolyte.
Yariv & Almog (83) studiedNernst–Planck charge transport in such a system, finding an enhanced
concentration of reactive cations near the electrodes. Species–species interactions in concentrated
solutions can be important, even when concentrations are relatively low.Monroe (84) showed that
interactions between dissolved salt and oxygen in metal–air battery electrolytes can manifest sub-
stantial diffusion potentials.
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Ion association can produce additional charged or neutral species (such as solvent–ion com-
plexes, ion triplets, or ion pairs), the presence of which has been considered as a possible source
of some phenomena observed in concentrated electrolytes. Gebbie et al. (85) and Lee et al. (86)
discussed how ion pairing can dilate ionic-liquid double layers. Richardson et al. (87) considered
how ion pairing might explain negative transference numbers acquired from inverse modeling of
concentration profiles with Nernst–Planck equations.

More complex pairing equilibria can occur in multicomponent electrolytes. Clark et al. (88)
developed a framework to account for mobile species in local chemical equilibrium, treating equi-
librated groups as quasiparticles that move together. Cell-level performance of pH-buffered aque-
ous electrolytes in zinc–air batteries was modeled within the framework, showing that slow mass
transport limits the effectiveness of the pH buffer.

Solvation is another important factor in electrolytic transport, whose impact on macroscopic
transport properties can be assessed with molecular dynamics (89). Li et al. (90) studied transport
properties and Li+ solvation in an solution of lithium bis(trifluoromethanesulfonyl)imide (LiNtf2)
salt in an ionic liquid comprising Ntf2− anions and N-methyl-N-propylpyrrolidinium (pyr13+)
cations; all the diffusivities fall sharply as the lithium-salt mole fraction rises. This correlates with
an increasing bulk viscosity and the formation of [Li(Ntf2)n](n − 1) − solvation structures. Solvation
near surfaces is also of interest. Abe et al. (91) pointed out the importance of Li+ desolvation in
interfacial kinetics at the graphite anode.Landstorfer et al. (92) matched specific-capacitance mea-
surements for metal–electrolyte interfaces with a model of adsorption and partial solvation near
surfaces. Ultraconcentrated solvent-in-salt solutions may be promising replacements for organic
electrolytes (93). McEldrew et al. (94) developed a modified Poisson–Fermi theory for water-
in-salt electrolytes that considered electrosorption, solvation, and ion correlations, which repro-
duced double-layer structures simulated by molecular dynamics. Li+-solvation-sheath structure
also appears to change the formation chemistry of, and the Li+-migration dynamics within, the
solid–electrolyte interphase; the review by Xu (95) provides more details.

4.3. Porous Media

Macroscopic transport in porous media is greatly influenced by pore-network microstructures.
TheMacMullin numberNM quantifies the effective conductivity of an electrolyte in an insulating
porous medium relative to that of the pure electrolyte:

NM = κ

κeff
= D
Deff

= τ

ε
. 36.

Tortuosity τ quantifies how pore structures lengthen diffusion paths.The ensemble-averaged ratio
of the shortest path connecting two points in a pore network to the linear distance between them
is called geometrical tortuosity, τ geo. A constriction factor β further accounts for cross-sectional
area variation along paths: τ = τ geo/β.Geometrical tortuosity has been calculated for simple struc-
tures like channel networks (96) or agglomerated spheres (97); recently, three-dimensional X-ray
tomography has enabled the calculation of τ geo from real samples (98).

Most often, Equation 36 is used to measure tortuosity phenomenologically, by comparing
the effective conductivity measured in an inert porous-solid matrix of known porosity to the
conductivity of a pure electrolyte. This knowledge is critical for understanding transport rates
in electrolyte-permeated porous separators. Landesfeind et al. (99) recently measured the Mac-
Mullin numbers of some commonly used separators with impedance spectroscopy (cf.Figure 6a).
Simple models of structured composite materials can provide insight about how microstructures
determine MacMullin numbers. Wiener found bounds on the conductivity κ̄ of an anisotropic
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(a) A comparison of tortuosity models, showing predictions of percolation theory alongside the standard Bruggeman, Hashin-
Shtrikman, and Wiener models. Panel a adapted with permission from Reference 104; copyright 2012 The Electrochemical Society.
(b) The tortuosities of various commercial porous separators and their standard deviations, determined via high-frequency resistance
measurements. Labels adjacent to the marks identify various commercial separators produced by Celgard (CG), Freudenberg, and
Separion. Two samples from anonymous suppliers are labeled Com 1 and Com 2. Three tortuosity–porosity correlations are shown as
gray lines. Panel b adapted with permission from Reference 99; copyright 2016 The Electrochemical Society.

binary composite: (ε1/κ1 + ε2/κ2)−1 ≤ κ̄ ≤ ε1κ1 + ε2κ2 (see 100), with the limits achieved when
the two materials are arranged in series or in parallel, respectively. For isotropic aggregates, the
effective conductivities are bounded more tightly, as explained by the Hashin–Shtrikman (HS)
model, which assumes random space filling by coated spheres (100). Conductivity is maximized
when the coating is more conductive and minimized when it is less conductive. The minimum
effective tortuosity of an anisotropic composite is τWiener

min = 1, while that of an isotropic aggregate
is τHS

min = 2
3−ε1

.
Percolation models apply statistical methods to determine conductivity (101). The simplest

suppose a constant-density lattice, within which sites are randomly colored as conductive with
a probability equal to the porosity. Conductivity is then calculated from clusters with infinite
spanning. Percolation models predict a percolation threshold εc, above which these clusters have
vanishingly small probability. A simple tortuosity correlation is given by τ perc 	 1−εc/ε

1−εc
for ε > εc.

Bruggeman (102) proposed the most widely used tortuosity correlations, τB = ε−0.5 for randomly
packed spheres and τB = ε−1 for cylinders, derived by a recursive random embedding process (103).
Ferguson & Bazant (104) compared several tortuosity models, as shown in Figure 6b. Laplace’s
equation has also been solved on real, experimentally determined three-dimensional microstruc-
tures (105), and effective transport properties have been extracted from fine-grained simulations
(106, 107).

5. INTERFACES

Coupling between diffusion and interfacial reactions appears to be the crucial dynamic that deter-
mines battery performance. Interfacial electrochemical reactions are driven by the overpotential,
but several physical processes can cause the local overpotential to differ from macroscopically ex-
pected values. Since double layers are very thin compared with the lengths across which diffusion
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occurs, they are usually ignored in porous-electrode models, although interfacial charging can be
accounted for by a capacitive term in Equation 15 (9). Surface passivation can be included as well,
by incorporating an ohmic overpotential loss (108).

Lithium plating from a liquid onto metallic lithium causes the formation of mossy or needle-
like lithium dendrites, which can ultimately cause short circuits. This dendritic lithium can
also form on intercalation-electrode surfaces. If the working current is too high, the reaction
speed can exceed the intercalation flux, causing lithium plating. An understanding of interfacial
electrodeposition is needed to raise battery power density and cycle life.

5.1. Morphological Stability

One mode of dendrite formation owes to the fact that deposition through a diffusion medium
produces naturally unstable surface morphology. During deposition, peaks on a rough surface
experience higher salt concentration than do valleys. As a result, deposition on peaks is faster,
amplifying roughness. At liquid–metal interfaces, the higher surface-energy cost associated with
increased roughness counters this tendency.Mullins & Sekerka (109, 110) developed a pioneering
theory to analyze themorphological stability of growing spherical particles and plane solidification
fronts in molten binary alloys. Aogaki &Makino (111) and Aogaki (112) applied Mullins–Sekerka
analysis to galvanostatic electrodeposition, comparing a three-dimensional, semi-infinite stability
analysis to scanning electron micrographs of real interfaces.

Sundström& Bark (113) performed a linear stability analysis of electrodeposition in a parallel-
electrode electrochemical cell. Following dilute-solution theory, salt concentration c and potential

 were found by solving

∂c
∂t

= D�∇2c, �∇ ·
[
c�∇
(
Fz+


RT

)]
+ P�∇2c = 0, 37.

where D = D0+D0− (z+−z− )
D0+z+−D0−z−

and P = z+(D0+−D0− )
D0+z+−D0−z−

arise from the assumptions that c/D+− → 0, χ =
1, and c � c0. Two-dimensional galvanostatic transport was analyzed, assuming that the average
current flowed in the y direction and the electrode surface height was a function of position along
the x-axis. The surface shape f (x, t) evolves over time as

(
∂ f
∂t

+ u
)
�ey · �ns = − isV

Fz+
, 38.

where V is the molar volume of the metal electrode, �ns is a surface-normal vector (in the x–y
plane), and �ey is a unit vector in the y direction; u is an average convective velocity proportional
to the average current, which moves the inertial reference frame to keep the interface at position
y = 0. The faradaic current is is given by Butler–Volmer kinetics, with an overpotential modified
to account for the energy cost of surface roughness,

ηs = η + V γ

rF
, 39.

in which η = 
 − 
eq is the overpotential that would exist across a smooth interface, γ is the
surface energy of the solid–electrolyte interface, and r is the surface’s radius of curvature [ob-
tained by analyzing f (x, t)]. To assess morphological stability, the surface is subjected to a periodic
perturbation, f (x, t) = f exp (αt + jkx). Then, for a given current and wavenumber k, the eigen-
value α obtained by solving the linearized transport model yields a stable decay (α < 0) or unstable
growth (α > 0) speed for the roughness, shown in Figure 7a. Sundström&Bark found that for any
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applied current, there always exists some component of the roughness that will be amplified, so
that the liquid–lithium interface is always unstable and the roughening process cannot be pre-
vented by surface forces alone.

Monroe & Newman (114) later incorporated interfacial deformation into electrodeposition
kinetics and showed that the stress produced by elastic deformation can stabilize the interface.
They extended Equation 39 to include viscous and elastic surface stresses:

ηs = η + �μ
α,α′
e−

F
. 40.

The stability parameter �μ
α,α′
e− reflects how the electrochemical potential of electrons in the elec-

trode changes when the electrode–electrolyte interface is transformed from a smooth, unstressed
state to a rough, deformed, and stressed state. Through a force balance across the interface, which
was taken to be conformal,Monroe & Newman applied thermodynamic principles to show that

�μ
α,α′
e− =−

⎛
⎝V α′

Li +V
β ′
Li+

2z+

⎞
⎠[2γH + �eα

n ·
(
�eα
n · ���τ

α,β)]

+
⎛
⎝V α′

Li −V
β ′
Li+

2z+

⎞
⎠(�pα,α

′ + �pβ,β
′)
, 41.

whereV
α′
Li andV

β ′
Li+ are the partial molar volumes of Li in the undeformed electrode (α′) and Li+ in

the undeformed electrolyte (β ′);���τ
α,β

is the change in the deformation stress across the deformed
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(a) The decay or growth speed of the roughness wavenumber k at different currents i; iL is the limiting current from Equation 43.
Panel a adapted with permission from Reference 113; copyright 1995 Elsevier. (b) The stability parameter �μ defined after
Equation 42 as a function of the shear modulus ratio Gs/Ge between the separator and the electrode. Lines stand for different separator
Poisson’s ratios νs. Panel b adapted with permission from Reference 115; copyright 2005 The Electrochemical Society.
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interface (α,β);�pα,α′ and�pβ,β ′ are the changes in the gauge pressure on either side of the surface
due to interfacial deformation; andH = − (1/r1 + 1/r2) /2,where r1 and r2 are the principal radii
of curvature at the interface. For dilute liquid electrolytes at a two-dimensional interface, the stress
and pressure from interfacial deformation vanish, r2 goes to infinity, and Equation 40 reduces to
Equation 39.

Through the use of this overpotential model, the morphological stability of an interface
between lithium and a polymer electrolyte (a solid–solid interface) was examined. Monroe &
Newman (115) compared the interfacial current density at a flat, undeformed surface with the
current in the presence of a sinusoidal deformation with wavenumber k in the small-amplitude
limit, showing that

ideformed

iundeformed
= exp

[
(1 − αa )�μ

α,α′
e−

RT

]
. 42.

The parameter�μ plotted in Figure 7b divides�μ
α,α′
e− by the shape of the sinusoidal deformation,

allowing the stability to be assessed with a single number that is positive when the interface is stable
and negative when it is unstable. For a polymer material with a Poisson’s ratio similar to that of
polyethylene oxide, interfacial roughening is mechanically suppressed when the separator shear
modulus is about twice that of lithium (115).

5.2. Dendrite Propagation

Once an electrode surface roughens, the natural concentration and potential gradients induced
by cathodic currents encourage the propagation of dendrites toward the opposing electrode. The
detailed study of dendrite propagation began with research into zinc electrodeposition (116); the-
ories confirmed for zinc, silver, and copper have been extended to lithium.

Morphological instability acts as an initiation mechanism for dendrites. Other mechanisms are
also important, including diffusion-limited aggregation (fractal growth) and space-charge accu-
mulation. Applied current generally polarizes the salt concentration whenever the transference
number deviates from 1 (typically t0+ < 0.5 for lithium electrolytes). Above the limiting current
density iL, given for a planar binary-electrolyte slab by

iL = 2FDceq(
1 − t0+

)
L
, 43.

reactive cations are completely consumed at the cathode surface. At current densities above iL,
the morphology of zinc dendrites is clearly fractal. Diffusion-limited aggregation models have
employed random-walk statistics to simulate these fractal shapes and model the growth of de-
posits (117). Using a route based on dilute-solution transport analysis, Chazalviel (118) analyzed
dendrite growth above iL with a Nernst–Planck model in which local electroneutrality was relaxed
by incorporating Poisson’s equation. At high currents, a space-charge layer with a vast excess of
cations forms near the metal surface, leading to a large overpotential driving dendrite growth,
as shown in Figure 8c. Chazalviel also considered the distributions of ions between filaments,
finding that wider spacing allows anions to enter the interstices between filaments, encouraging
branching.When the spacing of filaments is small, all cations are consumed at their tips; thus, only
taller filaments will grow, as shorter ones are starved of ions. In this limit, dendrites are expected
to attain bush-like shapes.

The propagation of a needlelike dendrite in a liquid electrolyte has been modeled as a pro-
cess mitigated by both surface tension and concentration overpotential, which adds the Nernst
potential associated with concentration polarization very near the tip to the surface-energy cost

296 Li • Monroe



CH11CH13_Monroe ARjats.cls May 19, 2020 10:16

lnt = 1 to 7

Quasi-
neutral

Space
charge

Neutral

ca
cc

λb

III

Co
nc

en
tr

at
io

n 
(m

ol
/m

3 )

300

500

1,000

1,500

2,000

Distance (μm)
0 20 40 60

Po
te

nt
ia

l, 
V

0

δV

Position ahead
of the tips, x

Io
n 

co
nc

en
tr

at
io

n,
c/
c 0

0

1

0 x180 100

D
en

dr
it

e 
po

si
ti

on
 (μ

m
)

102

101

100

10–1

10–2

10–3

10–4

Time (s)
100 101 102 103 104 105 106

Slope |E0|

a b c

0.05i L

0.
95

i L

0.50i L

Figure 8

(a) Transient development of a salt-concentration profile within a 100-µm-thick binary-electrolyte slab polarized at 99% of the limiting
current density (iL). (b) Dendrite growth under different applied currents. Panels a and b adapted with permission from Reference 122;
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E0, respectively. Panel c adapted with permission from Reference 118; copyright 1990 American Physical Society.

associated with the tip’s sharpness. Models of this type were first developed by Barton & Bockris
(119) and later improved by Diggle et al. (120), who leveraged them to describe dendrite growth
in well-supported electrolytes. These models have an advantage over Chazalviel’s, in that they ra-
tionalize how dendrite growth can occur below the limiting current, as seen whenmossy dendrites
form in polymer electrolytes (121).

Monroe & Newman (122) extended prior models to unsupported polymer electrolytes. The
effect of dendrite tip curvature was incorporated into the dendrite’s propagation kinetics. The
surface overpotential driving the interfacial reaction at the tip follows

ηs = η + γV Li

rF
+ RT

F
ln

(
cδLi+
cδ′
Li+

)
; 44.

mass transport to the tip causes lithium’s surface concentration cδ′
Li+ to differ significantly from the

nearby bulk concentration cδLi+ . Assuming pseudosteady spherical diffusion, one obtains

in = DF
(
cδLi+ − cδ′

Li+
)

(
1 − t0+

)
r

45.

for a hemispherical dendrite tip of radius r. A Butler–Volmer equation at the dendrite tip then
shows how the current density varies with the surface energy, tip radius, and overpotential:

in
i0,ref

=
exp

(
2γV Li
rRT

)
exp

(
αaz+F
RT η

)
− exp

(
− αcz+F

RT η
)

(
cref
cδ′
Li+

)αa

+ (1−t0+ )ri0,ref
FDcδ′

Li+
exp

(
− αcz+F

RT η
) . 46.

By assuming a worst-case scenario in which the tip radius maximizes the growth rate, one can solve
for how the dendrite propagates by coupling the transient salt concentration profile yielded by a
diffusion model, shown in Figure 8a, with the interfacial kinetics, yielding the growth profiles
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shown in Figure 8b. Simulations show that cell short circuit would be expected during typical
charges above 75% of iL. The interelectrode distance can be increased to slow cell failure, but the
advantages decrease as distance increases. Surface forces have little effect on cell failure—a factor
of 1,000 increase in γ delays cell failure by only 6%.

6. ALL-SOLID-STATE BATTERIES

All-solid-state lithium batteries, which employ solid electrolytes, have recently become a popu-
lar research topic. By solid electrolytes, we specifically mean inorganic ceramic or ceramic-glass
lithium-ion conductors, rather than polymers. Solid electrolytes are generally nontoxic and non-
flammable. They tend to have high elastic moduli and good toughness, supporting more stable
interfaces that suppress surface roughening during cycling. These favorable properties could en-
able lithium-metal anodes, supporting a potential doubling of energy density on the cell level.

Most solid electrolytes act as single-ion conductors, meaning that lithium ions carry almost all
of the current. This feature eliminates the diffusion polarization that fosters dendrite growth in
liquid electrolytes (123) and theoretically suggests that mass transfer should never limit operating
power. Oxide garnets (e.g., LLZO) and sulfides (e.g., argyrodite) are promising candidate elec-
trolytes due to their impressive room-temperature ionic conductivities.Atomistic simulations have
been widely employed to seek such materials, not only with high conductivity but also with wide
stable voltage windows (124). Zhang et al. (125) reviewed contemporary work on solid-electrolyte
materials.

Kornyshev & Vorotyntsev (126) were among the first to develop an equilibrium theory for
solid single-ion conductors, putting forward a model based on Fermi-distributed charge carriers.
Yamamoto et al. (127) probed electric fields near electrode–garnet boundaries, suggesting that
space charge penetrates relatively far into the ceramic. Braun et al. (128) attributed these extended
space-charge domains to site saturation by mobile cations.

We recently proposed a chemomechanical model of single-ion conductors to study current-
induced stresses (129). A single-ion conductor comprises two species: mobile cations (concentra-
tion c+) and stationary, countercharged sites in the sublattice (c−). The site concentration puts an
upper bound on the maximum local cation concentration and is roughly constant (c− = c0−) for
sublattices with a high bulk modulus that accommodate cations without swelling. In such a lattice,
Ohm’s law takes the form

�i
κ

= �E − RT
Fz+

�∇ ln
(

c+
c0− − c+

)
+ M+
Fz+ρ

�∇ p, 47.

where the strain energy due to deformation has been neglected. In the presence of a field �E, space
charge experiences a force balanced by mechanical pressure, so that �∇ · ��σ = ρe �E establishes the
local momentum balance.

In the bulk of a solid single-ion conductor, local electroneutrality imposes a uniform cation
distribution, so transport occurs in a one-in-one-out manner, reducing Ohm’s law to �i = κ �E (cf.
Equation 7); profiles of the concentration, electric field, and pressure are uniform in the bulk, as
seen in Figure 9. Within double layers at the electrolyte’s edges, more complex coupling exists
between diffusion, migration, and pressure diffusion, as shown by Equation 47. Whether a solid
electrolyte acts more like a double-layer capacitor or a bulk resistor is determined by the character
of its interfaces—that is, by its interfacial resistance Rint and capacitance Cint.

Impedance measurements suggest that solid electrolytes behave more like capacitors from an
electrical standpoint because their interfacial capacitances are very high (129). Equations 1 and
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Profiles of (a) lithium-ion occupancy, (b) electric potential, and (c) pressure in an artificially thin film with the properties of
Li7La3Zr2O12 (LLZO), assuming different interfacial properties: RintCint = 0 s, 0.3 µs, 1 µs, and ∞. Figure adapted with permission
from Reference 129; copyright 2019 PCCP Owner Societies.

3 show that space charge produces a surface pressure (Maxwell stress) relative to the bulk. Since
interfacial roughness has a much larger length scale than the Debye length, this can be computed
with a one-dimensional analysis (129), yielding

σsurf − σbulk ≈ ε

2
(
E2
surf − E2

bulk

)
, 48.

where

Ebulk = i
κ
, Esurf = RintCinti. 49.

This surface stress affects the overpotential across the space-charge layer at the interface, similar
to Chazalviel’s (118) approach to dendrite growth.

Solid electrolytes indeed inhibit morphological instability and have achieved very good cycling
performance at low currents. These materials still suffer from dendrite formation when operated
above a critical current, however. The mechanism of this dendrite-formation process does not
arise from morphological instability and is not considered within the Monroe–Newman model.
Extensive relevant research was done decades ago to understand dendrite formation and critical
currents in sodium β alumina. De Jonghe and coworkers (130) defined two degradation modes
by experimental observation. Mode I is a rapid penetration of the electrolyte by a sodium-filled
crack, while mode II is a slow bulk deposition of sodium, attributed to electronic conductivity of
the solid (131).Dendrites in lithium electrolytes tend to fall in themode I category. Feldman&De
Jonghe (132) built amechanical model to describe how preexisting sodiumfilaments propagate.An
elliptic-cylindrical crack, shown inFigure 10a, is taken to be filled withmetal.The average surface
current density is found with Laplace’s equation and is related to the metal’s average velocity v̄

through

j̄ = j∞ (l/r + 1) = zM+ cMv̄, 50.

where cM is the metal concentration and zM+ is the ion charge. The metal is lighter and softer
than the solid electrolyte and will flow out of the electrolyte crack to the metal side as deposition
proceeds. A Poiseuille viscous flow with viscosity τ is assumed, so that

dP
dx

= −3τ v̄

r2 (1 − x2/l2)
, 51.
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which integrates to

P (x) = −3τ v̄l
r2

tanh−1
(x
l

)
= P0 tanh

−1
(x
l

)
. 52.

The flow produces a back pressure at the dendrite tip. Nonuniformity of the current distribu-
tion causes the tip pressure to be significantly greater than the ambient pressure, as shown in
Figure 10b. Dendrite propagation is expected when the tip pressure is greater than the fracture
stress of the solid. Critical-current measurements analyzed using this model suggest that the frac-
ture toughness associated with dendrite penetration is about two orders smaller than the toughness
determined bymechanical testing, implying that mechanical back pressure is probably not enough
to crack the solid electrolyte.

Recently, Porz et al. (133) derived a dendrite-propagation model similar to De Jonghe’s (131),
assuming that the current focuses on the tip of the dendrite. They related the tip stress to the
tip overpotential σtip = −Fη/VLi and showed that an overpotential of 16 mV is already enough
for a 1-µm-long, 0.2-µm-wide dendrite to grow in polycrystalline Li2S-P2S5 (LPS). According
to this analysis, a short circuit should occur if a narrow filament is formed. Thus, unlike for liquid
electrolytes, roughening instability at the interface does not initiate dendrite formation. Rather,
an initial needlelike structure must exist first. Engineering efforts should therefore target the pre-
vention of filament formation at interfaces between lithium and solid electrolytes.

At a pristine interface, both the high shear modulus and unit transference of the electrolyte
successfully improve the interfacial morphological stability at low currents, supporting the very
stable cycling performance observed below the critical current.The reason for interfacial failure at
high currents is not clear. Ahmad & Viswanathan (134) pointed out the importance of the partial
molar volume in Equation 41, of the Monroe–Newman model, which can destabilize interfaces.
Kasemchainan et al. (135) discovered different critical currents for the stripping and plating pro-
cesses in a symmetric cell using lithium electrodes and an argyrodite electrolyte. The stripping
critical current is lower than the plating one, because stripping at large currents creates cavities in
the metal at the interfaces (lithium pitting), which raises the effective current density at points of
metal–electrolyte contact during subsequent plating events.

The application of external pressure effectively suppresses cavity formation and increases the
stripping critical current. Krauskopf et al. (136) proposed that vacancies effused from within the
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lithium metal accumulate at the interface to create cavities.Wang et al. (137) observed that signif-
icant voltage polarization occurs at a current-dependent critical stack pressure and associated this
pressure with lithium metal’s creep rate, which allows it to flow and fill in voids. The mechanical
and transport properties of lithium metal are still not firmly known, especially on the microscale.
This limits the development of phenomenological theory. A very detailed report of lithium’s me-
chanical properties was just put forward by Masias et al. (138). Despite the remaining questions
about lithium mechanics, metal deformation and flow during the stripping process significantly
affect interfacial stability and likely control the critical stripping current.

It should not be ignored that dendrites can form during a single charge step, and themechanism
behind the critical plating current is still uncertain.Once the stripping critical current is mitigated,
plating critical currents will become the key factor that limits power performance of all-solid-state
lithium-battery electrolytes.

Various experimental routes have been attempted to achieve high critical currents; most hinge
on the careful treatment and polishing of interfaces. For the tougher garnet material LLZO,
lithium roughening is not observed after long cycling, implying that morphological instability
is indeed suppressed and is not responsible for dendrite nucleation. Sharafi et al. (139) measured
the critical current at different temperatures and identified interfacial resistance as a key factor
that determines critical currents. In a later paper, Sharafi et al. (140) related the interfacial resis-
tance to the adhesive energy, which can be measured via wettability experiments. Removing the
Li2CO3 surface layer that air exposure forms on LLZO improves its lithium wettability and re-
duces the interfacial resistance. Fu et al. (141) added an ultrathin layer of a lithium alloy at the
interface between lithium and the solid electrolyte, showing that it improved lithium wetting and
reduced the interfacial resistance significantly.

As shown in Figure 11a, Cheng et al. (142) observed that dendrites form along grain bound-
aries in LLZO, which highlights how solid electrolyte microstructure affects failure mechanisms.
Voids and grain boundaries offer space for lithium plating and possible paths for dendrite propa-
gation. Polycrystalline LLZO samples prepared by different synthetic routes can have vastly dif-
ferent distributions of grain shape and grain-boundary misorientation angle, inducing different
grain-size dependences for critical currents (143, 144). Yu & Siegel (145) simulated grain bound-
aries in LLZO with molecular dynamics, reporting that the grain-boundary energy and diffusion-
activation energy vary for different misorientation angles.Ma et al. (146) revealed severe structural
and chemical deviations across a domain about two to three unit cells thick at the grain boundaries
of garnet, which could be responsible for slow ion transport at grain boundaries. Recently, Han
et al. (123) observed bulk plating of lithium in solid electrolytes and linked smaller electronic con-
ductivity to higher critical currents. It is noteworthy that this hypothesized electron-induced bulk
plating is consistent with the mode II mechanism De Jonghe et al. (130) suggested for sodium β

alumina.
We proposed a grain-coating mechanism that could rationalize the energetics of dendrite nu-

cleation in mode II, which is schematized in Figure 11b (129). Using Equation 48, we calculated
the interfacial stresses corresponding to experimentally determined critical currents. Unlike in
mode I dendrite propagation, this interfacial stress is not large enough to open a crack; rather, it
raises the overpotential required to plate lithium at the metal surface, as shown in Figure 11b. A
comparison between the lithium plating overpotential in a bulk grain boundary, ηGB, bulk, and at
the lithium–electrolyte interface, ηsurf, yields

ηsurf − ηGB,bulk = V Li

FzLi+
[
psurf − pbulk + aV (γGB − 2γsurf )

]
, 53.
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(a) The microstructure of a metallic filament in Li7La3Zr2O12 (LLZO). Panel a adapted with permission
from Reference 142; copyright 2017 Elsevier. (b) A diagram illustrating the grain-coating mechanism of
dendrite formation. Applied current densities (i) greater than the critical current density (ic) induce stress
that causes the Gibbs free energy cost for lithium plating (�G) to be higher at the interface (location A) than
in grain boundaries (location B). Panel b adapted with permission from Reference 129; copyright 2019
PCCP Owner Societies.

where γ surf and γGB, respectively, represent the surface energies of the lithium–electrolyte inter-
face and the grain boundary, and aV quantifies the surface-to-volume ratio of the grains; lithium
plating at the grain boundary is assumed to replace the interface between grains with two new
interfaces between solid electrolyte and lithium. Above the critical current, the pressure at the
interface induced by space charging makes bulk plating in grain boundaries have lower overpo-
tential; when electrons are available in the bulk, electrochemical coating of lithium around the
grain boundaries will occur, providing the initial trigger for mechanical failure.

For porous-electrode composites made up of intercalation compounds and solid electrolytes,
the volume change of intercalation particles can produce severe problems, such as fracture
or interfacial delamination, because solid electrolytes are generally stiff and some are brittle.
Bucci et al. (147) modeled the mechanical degradation of all-solid-state electrodes caused by
intercalation-induced expansion of active particles. They suggested that the combination of a
low particle-volume expansion and a tough solid electrolyte could prevent interfacial fracture.
Counterintuitively, compliant solid electrolytes appear to be more susceptible to microcracking;
harder oxides may therefore be more suitable than sulfides for use in composite electrodes,
despite sulfides’ higher conductivity. Bucci et al. (148) later developed a one-dimensional particle
model based on the cohesive theory of fracture to investigate the mechanical stability of the
interface between intercalation particles and solid electrolytes. In most cases, delamination occurs
if active particles undergo a volume change of about 7.5%. Very compliant electrolytes with large
interfacial fracture energy can afford up to a 25% volume change. Interfacial fracture reduces the
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contact area with the electrolyte, which slows lithium transport, increases apparent kinetic losses,
and affects the charge/discharge rate capability significantly. Materials with a lower yield stress
(less than half of the interfacial cohesive strength) may be able to release deformation-induced
stress by deforming plastically before delamination happens.

7. CONCLUSION AND OUTLOOK

Multiscale modeling aims at showing howmicroscopic phenomena can bemodified to achieve im-
provements in macroscopic battery performance. Modern experimental and computational tech-
niques provide a very comprehensive view of individual physical processes that occur at many
length scales, and engineering tools exist to understand and predict how these processes inter-
act when materials are assembled into a device. Thermodynamics is the central physical tool that
helps to elucidate battery performance and degradation in a complete and consistent way. In equi-
librium, the open-circuit potential of a battery is determined by the Gibbs free energy of electrode
materials, which may go through various phase changes relating to lattice structure and/or micro-
scopic ordering. Away from equilibrium, thermodynamic principles can be exploited to underpin
transport models. Lithium diffusion inside intercalation materials is a bottleneck that places a
limit on operating currents. At the particle level, the chemomechanics of active-material particles,
especially diffusion-induced stress, plays a central role in electrode degradation.

Practical batteries incorporate concentrated liquid electrolytes, and there is even a hypothe-
sis that solvent-in-salt systems might be beneficial at high powers. The independent transport
properties and microscopic structures of highly concentrated liquid electrolytes are generally not
well characterized. More theoretical and experimental efforts are needed to understand physical
phenomena such as solute-volume effects, which can become relevant at higher concentrations.
The microstructures of porous media can greatly influence ion transport in the electrolyte-filled
pores. Three-dimensional imaging technology allows a more detailed characterization of porous
media, but more effort is needed to provide better universal empirical descriptions of tortuosity to
support continuummodeling and device engineering. Diffusion polarization in liquid electrolytes
is a dominant factor that drives degradation, for instance, by dendrite formation.The reduction of
diffusion polarization by using high-transference electrolytes may impede dendrite growth. Den-
drite formation is inevitable at the interface between lithium metal and liquid electrolytes, but
morphological instability can be inhibited by introducing stiff and stable interfacial coatings. It is
possible to inhibit morphological instability entirely through the use of solid ceramic electrolytes,
several of which have suitably high elastic moduli.

Much recent work has shown the promise of all-solid-state lithium batteries. Since diffusion
polarization is eliminated in solid ceramic electrolytes, and because they have very high elastic
moduli, the interfacial stress that arises in the presence of a voltage bias becomes a crucial factor
that determines whether dendrites grow.The lithium diffusivity (conductivity) of solid electrolytes
is less important with regard to degradation, whereas the interfacial properties (particularly, sur-
face capacitance and interfacial resistance) and bulk dielectric properties are more relevant. Both
crack propagation and bulk plating are important modes of dendrite growth in solid electrolytes.
Since dendrite propagation is generally hard to suppress, preventing dendrite nucleation would
be more effective. The achievement and retention of good contact between the electrolyte and
active-electrode materials are critically important to the design of all-solid-state batteries.Within
lithium electrodes, slow lithium flow, which leads to pitting, becomes a limiting performance fac-
tor. In composite electrodes, contact loss due to the mechanical fracture between active-material
particles and electrolytes will cause performance degradation. A better understanding of chemo-
mechanics would facilitate great improvements in all-solid-state battery development.
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