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Abstract

Population balance modeling is undergoing phenomenal growth in its ap-
plications, and this growth is accompanied by multifarious reviews. This
review aims to fortify the model’s fundamental base, as well as point to a
variety of new applications, including modeling of crystal morphology, cell
growth and differentiation, gene regulatory processes, and transfer of drug
resistance. This is accomplished by presenting the many faces of population
balance equations that arise in the foregoing applications.
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INTRODUCTION

Population balance modeling is an area of ever-increasing application. Figure 1 shows papers
published in the area from 1984 to 2013 that clearly represent a steep increase in the application
of population balances. Even if the coverage of the literature behind the illustrated survey is
incomplete, the message is unmistakable that the impact of population balance modeling has risen
steeply in a relative sense. The same increasing trend is seen in the total number of citations in
Figure 2. In engineering, population balances have been used in the following areas:

1. crystallization and precipitation
2. dissolution
3. deposition (e.g., chemical vapor deposition and electrodeposition)
4. granulation, aggregation, and flocculation
5. milling
6. drying
7. mixing
8. pneumatic conveyance
9. polymerization

10. multiphase flow and reaction (e.g., fluidized bed reactor, flame, and micellar synthesis of
nanoparticles)

11. fermentation
12. cell growth, division, differentiation, and death.

Table 1 provides an interesting list of publications in various other fields of application that
have appeared over the years, beyond the more conventional ones listed above. The applications
are indeed widely dispersed, thus representing unlimited future potential. The first population
balance modeling conference was organized in Hawaii in 2000, following which there have been
conferences at intervals of approximately three years.
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Figure 1
Number of published articles on population balances per year (keyword: “Population Balances”; source:
Web of Knowledge, a Thomson Reuters product c©2013 Thomson Reuters. All rights reserved).
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Figure 2
Number of citations per year (keyword: “Population Balances”; source: Web of Knowledge, a Thomson
Reuters product c©2013 Thomson Reuters. All rights reserved).

The purpose of this review is to reflect on the current status of this area, critically examine
some chosen aspects of its growth, and identify directions for the future. A more comprehensive
treatment of this field would far exceed the size limit on articles in this journal. Toward this end,
we inquire into the area’s genesis to set the background for a general discussion, but only briefly,
as several treatments in the past have deliberated on the structure of population balance.

THE GENESIS OF POPULATION BALANCE

That population balance, in one form or another, had a beginning long preceding the appearance of
its general version in the publications of Hulburt & Katz (78), Randolph (79), and Fredrickson et al.
(80) has been discussed at length by Ramkrishna (81). There have been other extended discussions
of the origin of population balance equations [e.g., Jakobsen (82)]. This general formulation has
led to the burgeoning growth of population balances for diverse applications in more recent times.
Consequently, there have been numerous reviews in the literature (83–86). More recently, several
reviews have also appeared of population balances targeting specific application areas (Table 2).
Besides the early contribution of Randolph (87), which specifically addressed crystallization pro-
cesses, there have been books on population balance by Ramkrishna (81), who dealt with its generic
treatment; Hjortso (88), who focused on applications to biomedical engineering; and Christofides
(89), who wrote on the application of population balance to control of crystallization processes.

The population balance framework has been subject to considerable probing of many of its
attributes, which makes it incumbent on the authors to clearly define the scope of this review.
Consequently, we seek to discuss the following issues: Broadly, we seek to bring to light certain
modeling practices that have crept in with the growth of applications that require more delibera-
tion. These have to do with the manner in which the phenomenological implements of population
balances have been treated at large. In our view, these modeling issues take precedence over other
germane matters, such as solution methods, that have advanced considerably in the past few years.
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Table 1 Applications of population balance modeling in different areas

Areas of applications Specific details References
Agriculture engineering Fractionation of ground switchgrass, hydrolysis of cellulose, airborne dust

removal
1–4

Astrophysics and astronomy Population balance equations for levels of a quantum system, calculation
of highly excited hydrogen bn factor

5, 6

Biochemistry and molecular biology Gene regulatory processes, transcription, translation 7–13
Biomedical engineering Kidney stone formation, cancer treatment 14, 15
Biotechnology and bioengineering Cell cycle dynamics, cellulase production in airlift reactor, bioreactor

design, cell proliferation, cell morphology, aeration of bread dough,
growth of hairy roots, enzymatic lysis of cells

16–27

Cell biology Cell aggregation dynamics, cryopreservation, stem cell differentiation,
mammalian cell culture, neutropenia

28–36

Civil and environment engineering Water softening, deepwater plumes, dissolved air flotation, struvite
crystallization in urine, activated sludge flocculation, drag reduction

37–42

Electrochemistry Bubble dynamics at gas-evolving electrodes, chemical vapor deposition,
electrostatic precipitators

43–45

Energy fuels Gas-liquid-solid-phase reactor, silicon nanoparticles, oxy-coal jet flames,
hydrolysis of cellulose, Fischer-Tropsch synthesis, asphaltene
precipitation, reactive extractions, pyrolysis of wood, coal combustion,
enhanced oil recovery

3, 46–54

Geography Electrification of particles in dust storms, flocculation of colloidal
montmorillonite, soil respiration

55–57

Hematology Kinetics of platelet aggregation, leukemic cell proliferation 36, 58
Novel functional particles Single-walled carbon nanotube formation 59
Ophthalmology Pterygium formation, corneal epithelial maintenance and graft losses 60, 61
Personalized medicine Chemotherapy for leukemia 15, 58
Pharmaceutical engineering Polymorphic transformation, crystal morphology distribution, nucleation,

Ostwald ripening, continuous crystallization, dissolution, breakage,
aggregation, granulation, tablet manufacturing

62–72

Respiratory systems Modeling techniques for the deposition of inhaled particles 73
Telecommunications Impact evaluation of rare metals in waste mobile phone and personal

computer
74

Transportation Soot particle-size distribution emitted from diesel engine, soot formation,
CO2 emission

75–77

The second issue we wish to focus on is new applications with potential for wide impact. The
ensuing sections describe the system and the general form of the population balance equation and
identify its phenomenological components for further discussion.

The System and Its Description

The population balance equation is concerned with modeling a system composed of a continuous
or discrete number of entities interacting with their environment, generally assumed to be a
continuous phase. The foregoing entities are usually particles, although, more abstractly, they
could be an ensemble of systems of states described by a vector. This vector may contain both
so-called internal coordinates, representing properties chosen to represent the entity, and external
coordinates, usually meant to describe the physical location of the center of mass of the entity.
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Table 2 List of review articles on population balances

Year Authors Title Area
2013 Solsvik & Jakobsen (90) On the solution of the population balance equation

for bubbly flows using the high-order least squares
method: implementation issues

Numerics (least squares method)

2012 Sporleder et al. (86) On the population balance equation General formulation (directions
and critiques)

2012 Sajjadi et al. (91) Review on gas-liquid mixing analysis in multiscale
stirred vessel using CFD

Population balance
equation–computational fluid
dynamics coupling

2011 Mortier et al. (92) Mechanistic modelling of fluidized bed drying
processes of wet porous granules: a review

Formulation (fluidized bed
drying), population balance
equation–computational fluid
dynamics coupling

2011 Bajcinca et al. (93) Integration and dynamic inversion of population
balance equations with size-dependent growth rate

Formulation and numerics
(direct and inverse problem)

2010 Kiparissides et al. (94) From molecular to plant-scale modeling of
polymerization processes: a digital high-pressure
low-density polyethylene production paradigm

Formulation and numerics
(polymerization)

2010 Sadiku & Sadiku (95) Numerical simulation for nanoparticle growth in
flame reactor and control of nanoparticles

Formulation, numerics, and
control (nanoparticle synthesis)

2010 Rigopoulos (96) Population balance modelling of polydispersed
particles in reactive flows

Formulation and numerics
(reactive precipitation)

2010 Liao & Lucas (97) A literature review on mechanisms and models for
the coalescence process of fluid particles

Formulation (coalescence)

2010 Yu & Lin (98) Nanoparticle-laden flows via moment method:
a review

Formulation (particle flow)

2009 Liao & Lucas (99) A literature review of theoretical models for drop and
bubble breakup in turbulent dispersions

Formulation (breakage)

2008 Tindall et al. (100) Overview of mathematical approaches used to model
bacterial chemotaxis II: bacterial populations

Formulation (chemotaxis)

2008 Ribeiro & Lage (101) Modelling of hydrate formation kinetics:
state-of-the-art and future directions

Formulation (hydrate
formation)

2007 Dukhin et al. (102) Gravity as a factor of aggregative stability and
coagulation

Formulation (coagulation)

2007 Roth (103) Particle synthesis in flames Formulation (reactive
precipitation)

2006 Maximova & Dahl (104) Environmental implications of aggregation
phenomena: current understanding

Formulation (aggregation)

2005 Taboada-Serrano et al.
(105)

Modeling aggregation of colloidal particles Formulation (aggregation)

2005 Vale & McKenna (106) Modeling particle size distribution in emulsion
polymerization reactors

Formulation (emulsion
polymerization)

2005 Cameron et al. (107) Process systems modelling and applications in
granulation: a review

Formulation and numerics
(granulation)

2003 Henson (10) Dynamic modeling of microbial cell populations Formulation (microbial cells)
2003 Somasundaran & Runkana

(108)
Modeling flocculation of colloidal mineral
suspensions using population balances

Formulation (flocculation)

(Continued )
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Table 2 (Continued)

Year Authors Title Area
2003 Kodera & McCoy (171) Distribution kinetics of plastics decomposition Formulation (depolymerization)
2002 Braatz (109) Advanced control of crystallization processes Identification and control
2002 Ramkrishna & Mahoney

(84)
Population balance modeling. Promise for the future Formulation and numerics

(status and future outlook)
2000 Mohanty (110) Modeling of liquid-liquid extraction column: a review Formulation (liquid-liquid

extraction)
1994 Kovscek & Radke (111) Fundamentals of foam transport in porous media Formulation (foam transport)
1993 Rawlings et al. (112) Model identification and control of solution

crystallization processes: a review
Identification and control

1991 Tavare (172) Batch crystallizers Formulation (crystallization)
1985 Ramkrishna (83) The status of population balances Formulation
1979 Ramkrishna (85) Statistical models of cell populations Formulation (microbial cells)

In our discussion, we use the terms entity and particle interchangeably. No spatial gradients of
any internal coordinate are assumed, although a more elaborate theory could include them. The
population is described through a number (or mass or any other quantitative) distribution of
the entities in the joint space of internal and external coordinates. Continuous distributions are
encountered when the state space, either internal or external, is continuous, so that a (suitably)
smooth number density is implied. This number density must be understood to be an expected
quantity, in contrast with the actual number density; the relationship between the two may be
found in References 81 and 113. In many applications, whether or not there is dependence on
external (i.e., spatial) coordinates, the number distribution of entities is a density in physical
space even if the internal coordinates are discrete. External coordinates are generally continuous,
although discrete versions are of course conceivable. The internal coordinates, however, can be
discrete or continuous. The total number of entities in the system at any instant t is obtained by
integration over the entire range of continuous coordinates and summed over the range of discrete
coordinates. The population balance equation is simply a number conservation of entities, on which
depends the behavior of the entire system, including the entities and their environment. The overall
description of the system is given by the usual partial differential equations of conservation of mass,
momentum, and energy for the continuous phase, coupled with the population balance equation.
The continuous phase variables are represented by a vector field, y, depending on r and t. The
population balance describes how existing entities change their states continuously, as well as how
they give rise to new entities at their own expense. The continuous change of individual entities may
be either deterministic, as described by ordinary differential equations, or stochastic, as determined
by stochastic differential equations. The reader is referred to Ramkrishna (81) for a detailed
discussion on these matters and for derivation of the equations. In presenting the population
balance equations, we distinguish between continuous and discrete internal coordinates.

For the purposes of this review, we denote the state of the distributed entity by vector z, which
includes both internal coordinates (x) and external coordinates (r). Thus, this vector includes as
its components particle properties, such as size (e.g., mass) and physical space coordinates. We
use the notation f1(z, t | y) to represent the number density, which deserves some explanation,
as it deviates from that commonly employed in the literature. First, the subscript 1 allows for
distinction from multiparticle densities required when interactions exist among particles (113).
Second, the inclusion of y as a conditional argument in the number density is an expression of its
dependence on the environment without it being a density in y-space.
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The Population Balance Equation: Deterministic Internal Coordinates

We first consider the case of continuous internal coordinates. As stated earlier, the external coor-
dinates remain continuous in all cases.

Continuous internal coordinates. When particle properties change in a deterministic way, in
accord with a velocity field Ż(z, y, t) that accounts for rate of change of internal coordinates as
well as physical motion, the population balance equation is given by

∂ f1(z, t | y)
∂t

+ ∇ · Ż(z, y, t) f1(z, t | y) = h(z, t | y), z ∈ �, t > 0, 1.

where � ≡ �x × �r, with �x defining the domain of internal coordinates and �r representing
the physical domain in which the entities are present. The right-hand side accounts for various
ways in which the number of entities can change with a conditional dependence on y. Its eluci-
dation depends on the processes responsible for change in numbers (e.g., breakage, aggregation,
and primary and secondary nucleation). The performance of the model is clearly related to the
veracity of both Ż(z, y, t) and h(z, t | y). If we denote z = [x, r], then this notation allows us to
write Ż(z, y, t) = [Ẋ(z, y, t), Ṙ(z, y, t)], where Ẋ(z, y, t) represents the rates of change of internal
coordinates and Ṙ(z, y, t) represents the spatial velocity.

Discrete internal coordinates. For discrete internal coordinates, the population balance equa-
tion takes a form slightly different from Equation 1. We consider a denumerable set of states,
each designated by a single integer subscript i, which could represent either one or many discrete
internal coordinates by suitable ordering. A simple example is that of discrete particle sizes in des-
ignated bins. In contrast with continuous changes of internal coordinates implied in Equation 1,
we envisage here that the entity undergoes a jump process from one state to another without
the creation of more entities. In the current context, these jumps are regarded as deterministic,
occurring at average time intervals (although the classical jump process is generally a stochastic
process, which is considered below in the section on Continuous Internal Coordinates). For a
slightly more complicated second example, consider an entity comprising two types of molecules,
A1 and A2, and an irreversible reaction that transforms A1 to A2 with transition rate k. Suppose
the total number of molecules is two in the entity. Denoting the internal coordinate of the entity
by {a1, a2}, where aj is the number of molecules of Aj, we have three discrete states denoted as
i = 1 : {a1 = 2, a2 = 0}, i = 2 : {a1 = 1, a2 = 1}, and i = 3 : {a1 = 0, a2 = 2} for this entity. If
at most one A1 molecule can undergo reaction in an infinitesimal time interval, then the rate of
transition from state 1 to state 2 is 2k and from state 2 to state 3 is k, with all other transition rates
being zero. The foregoing discussion should set the tone for formulating more general discrete
states. We now return to the population balance equation for the general discrete case.

Retaining the continuity of spatial coordinates, which could accommodate continuous motion
of the entities through physical space, we define the number density f1,i (r, t | y). Insofar as this
number density is still the expected density, it is a suitably smooth function of both r and t for
each i. The population balance equation can be readily identified as

∂ f1,i (r, t | y)
∂t

+
∞∑
j=1

[�i→ j (r | y) f1,i (r, t | y) − � j→i (r | y) f1, j (r, t | y)] +

∇r · Ṙi (r, y) f1,i (r, t | y) = hi (r, t | y), r ∈ �r, t > 0,

2.

where � j→i
(
r | y

)
is the (average) rate at which an entity transitions from state j to state i, with

no implications as to its symmetry with respect to the subscripts. For the second example above,
we have �1→2 = 2k, �2→3 = k, and �1→3 = �2→1 = �3→1 = �3→2 = 0. The summation term
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on the left-hand side of Equation 2 is the discrete equivalent of the convective divergence term
with respect to internal coordinates on the left-hand side of Equation 1. Thus, it is not meant to
describe processes that cause a change in the number of entities. Instead, the term on the right-
hand side of Equation 2 is the discrete equivalent of the right-hand side of Equation 1, and it will
account for the net source of entities of state i as a result of processes that create new entities at
the expense of existing ones. The examples of particle breakage and aggregation are well known
to population balance modelers, and the reader is referred to the literature for how hi (r, t | y) is
formulated for these processes (81, 86). Before we close this section, we should reflect on how the
discrete state of a specific entity changes with time. The use of transition rates from one discrete
state to another is in fact the basic implement of a Markov chain, and in this sense, the state of a
given entity changes randomly. However, when there are a large number of entities, the average
rate of any given transition is the same as that attributed to that in a single entity. From this point
of view, the difference between this class of models and those in the section on Discrete Internal
Coordinates, below, is only one of a notable increase in complexity in the latter.

The Population Balance Equation: Random Internal Coordinates

As in the previous section, we first consider the case of continuous internal coordinates.

Continuous internal coordinates. If particle properties change randomly in accord with the Itô
stochastic differential equations,

dz = Ż(z, y, t)dt +
√

2D(z, y, t)dWt, 3.

then, following Reference 81, the population balance may be written as

∂ f1

∂t
+ ∇ · Ż(z, y, t) f1 = ∇∇ : D̃ f1 + h(z, t | y), z ∈ �, t > 0, 4.

in which we let D̃ ≡
√

DDT . In Equation 3, D represents a matrix coupling the various Wiener
processes in the differential vector dWt (see Reference 114) and must arise from various consid-
erations.1 The phenomenology in Equation 4 is represented by the functions Ż, D, and h. The
effectiveness of the population balance model depends on these functions.

The partial differential equation in y to which the population balance Equation 1 or Equation 4
will be coupled must include in general all the transport equations for multiphase flow. The form
of these equations will vary greatly with the application, making it inconvenient to present a
general formalism without straying far afield. We therefore focus for the present only on the
phenomenological components of the population balance equation, even when it is coupled with
the transport equations for environmental variables.

Discrete internal coordinates. When the internal coordinates of the entity are discrete and
behave stochastically, the temporal evolution of its state is described by a master equation (114,
115). The internal state of an entity may be described by a discrete vector field {x(t) ∈ �n}, where
the components of x may be integers. Several (e.g., m) processes (see sidebar, Processes with
Discrete Internal Coordinates), occurring randomly, are envisaged to create discrete changes in
the state vector x. (For example, the entity may be a cell or a microemulsion particle, and x may

1For example, Equation 3 could come about by Fokker-Planck approximations of the master equation for the discrete system
in the entity using van Kampen’s system size expansion or Moyal’s expansion.
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PROCESSES WITH DISCRETE INTERNAL COORDINATES

Application of this class of models is imaginable for somewhat disparate situations. For example, it could apply to
a machine or a process that functions when all of its components do. The components could fail in the course of
time with different time-dependent propensities (transition rates). In this case, the ith component would define two
states of its own, one functioning and the other not.

represent the number of molecules of n different chemical species in it undergoing m reactions.)
Let the kth process add an integral increment of vk to x at a rate of λk(x). The master equation for
an entity is then given by

∂ P (x, t)
∂t

=
∑

k

[λk(x − vk)P (x − vk, t) − λk(x)P (x, t)], t > 0, 5.

where P (x, t) is the probability that the entity has state x at time t. Equation 5 must of course be
subject to an initial condition expressing the initial state of the entity. In formulating Equation 5,
we ignored any possible role of the environment of the entity (i.e., the vector y). Through physical
transport of environmental species across the boundary of the entity, an environmental dependence
could be envisaged so that Equation 5 could be modified to read as

∂ P (x, t | y)
∂t

=
∑

k′
[λk′ (x − vk′ | y)P (x − vk′ , t | y) − λk′ (x | y)P (x, t | y)], t > 0. 6.

The index k′ in the above equation is different from k appearing in Equation 5 to accommodate
new sources and sinks owing to transport across the surface of the entity. Thus, the range of
k′ subsumes that of k. The conditional dependence on y holds only for those added processes
accounting for transport across the boundary. Thus, when k′ = k, the transition rates do not
involve y, although the notation shows dependence.

The population balance equation of interest is to describe a population of entities, each of
which is associated with master Equation 6. We define an expected number density f1(x, r, t | y)
by N (r, t)P (x, t | y), where N (r, t) is the total population density of entities at location r and time
t. Note in particular that no explicit spatial dependence is incorporated in Equation 6, although,
insofar as there is dependence on y, an implicit spatial dependence is inherited. The population
balance equation for this situation can be written as

∂ f1(x, r, t | y)
∂t

+
∑

k′
[λk′ (x | y) f1(x, r, t | y) − λk′ (x − vk′ | y) f1(x, r, t | y)] +

∇r · Ṙ(x, r, y) f1(x, r, t | y) = ∇r∇r : D̃r f1(x, r, t | y) + h(x, r, t | y).
7.

The diffusion term on the right-hand side is concerned only with physical space. Equation 7
must of course be coupled with the transport equations for the environmental vector y. For a
general discussion of boundary conditions, the reader is referred to Reference 81, which applies
to all the cases considered above. Finally, we remark that population balance equations can be
formulated for any entity whose dynamics can be described by a master equation by adopting
the procedure that has been followed in this article. Thus, the classical jump process, in which
continuous stochastic motion is interrupted randomly by jumps, can also be formulated into a
population balance equation. However, the solution of population balance equations becomes very
complicated if it is left in the form of Equation 7. In fact, even the solution of the master equation
is extremely difficult. Consequently, there have been attempts to convert the master equation to a
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Fokker-Planck equation (and hence a set of stochastic ordinary differential equations, which can
be solved for sample paths using well-established stochastic algorithms). In meeting the first goal
of this review, which is a critical examination of the phenomenological implements of population
balances, we have laid out the domain of the latter in sufficient generality for a focused discussion
of this issue.

Stochastic Analysis of Populations

The previous sections concerned deterministic and stochastic internal coordinates of individual
entities. The population of entities was assumed to be sufficiently large that deterministic behavior
could be expected of their number. If, however, the number of entities in the system is itself small,
then it would also behave randomly owing to randomness in the behavior of individual entities. The
modeling of such systems would need stochastic population balances, which have been discussed
in Reference 113, as well as in chapter 7 of Reference 81. Some applications of this framework
have been considered in the past (116, 117), and its application to cancer treatment is discussed
briefly in Personalized Medicine, below.

PHENOMENOLOGICAL ISSUES

Table 3 identifies the main phenomenological quantities of the population balance model under
various circumstances. Particularly important to note is that the phenomenology is governed by
functions that describe the behavior of individual entities over a broad range of their internal and
external coordinates. We review the general features of each quantity shown in the rightmost
column in Table 3.

Motion in Internal Coordinate Space

We organize our discussion as it appears in categories along the rows in Table 3 from the top to
the bottom.

Continuous internal coordinates (deterministic). In many situations, there is good under-
standing of the behavior of individual entities in isolation, which may be sufficient for incorpora-
tion into a population balance model as long as a satisfactory model exists to account for the joint
effect of the entities on the local environment. This is because in such cases the behavior of an
individual entity in the presence of others is influenced only by the intervening continuous phase.

Table 3 Phenomenological components of population balance models

Internal coordinates
Number
density

Population balance
equation number Phenomenological quantities

Deterministic
continuous

x ∈ �n f1(x, r, t | y) Equation 1 Ẋ(x, r, y), Ṙ(x, r, y), h(x, r, t | y)

Discrete deterministic i = 1, 2, . . . , n f1,i (r, t | y) Equation 2 Ṙi (r, y), �i→ j (r | y), hi (r, t | y)
Stochastic continuous x ∈ �n f1(x, r, t | y) Equation 4 Ẋ(x, r, y), Ṙ(x, r, y), D̃,

h(x, r, t | y)
Stochastic discrete x ∈ I × I × · · · × I (n

times) I ≡ {0, 1, 2, . . .}
f1(x, r, t | y) Equation 7 Ṙ(x, r, y), D̃r, λk′ (x|y),

h(x, r, t | y)
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The formulation is accomplished by the usual transport equations involving chemical reaction
and convective diffusion. For example, in dispersed-phase gas-liquid reaction systems, there al-
ready exist transport rates of gaseous components to (or from) the liquid phase that can be readily
incorporated into population balance models in which the entities are bubbles (118).

An example of recent activity is the modeling of crystal morphology in crystallization processes.
A description of crystal morphology requires the specification of all its faces from the crystal cen-
ter, which contribute to the entity’s (crystal’s) internal coordinates, x. In this situation, avenues
frequently exist for identifying Ẋ(x, r, y); thus, dependence on both internal and external coordi-
nates may be dispensed with in favor of including only the local supersaturation, which would be
a component of y.

When the behavior of individual entities is uncertain and subject to speculation, satisfactory
performance of the population balance model cannot be taken for granted. If mechanistic insight
is available, affording expressions with phenomenological parameters, fitting population data to
the model to obtain parameter values naturally allows identification of the model. An example of
this may be found in Reference 119. However, note that parameter fitting with prescribed forms
could risk the loss of details that may reveal themselves in the solution of inverse problems (65).

Discrete and continuous internal coordinates (deterministic). The entry in the second row
of Table 3, which corresponds to discrete transitions, has interesting applications. Thus, the
production of nanoparticles in microemulsion droplets considered by Bandyopadhyaya et al. (120–
122) is an example. As another very elementary example, consider a reactor regenerator system
(123) in which catalyst particles circulate between a reactor, where reaction deactivates the catalyst,
and a regenerator in which catalyst activity is regenerated. The particles have two discrete states:
the presence in the reactor unit, or presence in the regenerator unit, and the catalytic activity
as a continuous internal coordinate. There is a transition from one unit to the other, which
may be described by transition rates (shown in Table 3) as a function of the time (age) spent
in the unit. The fouling of the catalyst in the reactor is a function of its environment, and the
reactivation of the catalyst is a function of its environment in the regenerator. The catalyst activity
is a dynamic variable in both units. Although this problem is readily formulated, one may envisage
numerous more challenging problems in chemical reactor engineering. Modeling of Fischer-
Tropsch synthesis presents a complex scenario with four different phases: solid dispersed-phase
catalyst particles; two liquid phases, one an organic dispersed phase and the other an aqueous
continuous phase; and a dispersed gas phase as bubbles.

Continuous internal coordinates (stochastic). The earliest example in the application of con-
tinuous, stochastic internal coordinates appears to have arisen in crystallization (124). Thus, crys-
tals of a given size seemed to display growth-rate dispersion about a mean value. Ulrich (125)
presents a review of the phenomenon. When there is growth-rate dispersion, the population bal-
ance equation using a diffusion term along the size coordinate provides an appropriate description
of the observed crystal size distribution (126). More generally, the use of Itô stochastic differen-
tial equations for continuous internal coordinates naturally leads to the appearance of diffusion
terms (81). Of course, this begs the question of how one formulates a physical model that leads
to the stochastic differential equation. Usually, it is done by assuming an idealized stochastic pro-
cess (such as white Gaussian noise) to model a source of fluctuation. A classic example is that
of Langevin, who modeled Brownian motion of a particle subject to a random force from the
molecular environment (127). Footnote 1 refers to a procedure described in References 114 and
115 that generates Equation 3 from the master equation. The master equation is readily identified
for reaction/diffusion systems. This equation, in confluence with the system size expansion or
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Moyal’s expansion, leads to Equation 3 for applications in which a continuous approximation is
available for the discrete random internal coordinates. The solution of Equation 3 must draw on
sample path-wise simulation algorithms available in the literature (128, 129).

Discrete internal coordinates (stochastic). When continuous approximation of discrete
stochastic coordinates is untenable, it would be necessary to seek the solution of Equation 7.
As pointed out earlier, this would be a considerably demanding task, and it would be essential to
resort to Monte Carlo simulation techniques. In this connection, the Gillespie algorithm (130)—
or equivalently, the method of quiescence intervals by Shah et al. (131), with embellishments such
as the tau-leap strategy of Gillespie and coworkers (132)—becomes a viable strategy in such cases.

Motion in Physical Space

The motion of entities in physical space has been denoted in Table 3 as Ṙ(x, r, y) or Ṙi (r, y). It
is basically hindered motion of polydisperse particles, and it represents a problem of considerable
complexity. Confrontation of this complexity will depend on advances in multiphase flow; we do
not discuss this issue further, as other reviews have addressed it at length (91).

Sources and Sinks

The notation h(x, r, t | y) or hi (r, t | y), used to represent sources and sinks of entities, does not
display its inherent dependence on the number density. This dependence manifests either as a
function or as a functional of the number density. The processes contributing to this term are
generally (a) nucleation, (b) breakage (fission), and (c) aggregation. Similar processes occur in other
systems, although with different terminologies.

Combination of breakage and aggregation processes. Although the phenomenological de-
scription of breakage and aggregation processes is well established, the manner in which they are
often put to use deserves more introspection. Breakup processes are generally viewed as linear,
although nonlinear breakage models have also been of interest (133). However, aggregation pro-
cesses are usually nonlinear. In modeling these processes, we are concerned with the state of the
particle environment and envision the circumstances leading to breakage or aggregation. These
circumstances are generally different for breakage and aggregation. But when both breakage and
aggregation occur, the population balance equation features the rates of these processes, ignor-
ing the foregoing differences. Stated another way, events leading to either process could exclude
those leading to the other. The source and sink terms for breakage and aggregation are invariably
summed together; for such summation to be admissible, the two processes must be independent
of each other, which is not always a secure assumption for reasons just articulated. In the real
system, these processes are often segregated in different zones to a greater or lesser extent, but this
is not always a conscious input to the model. This is particularly true of systems where population
balances must be combined with computational fluid dynamics to model the environmental phase.

Aggregation by multiple mechanisms. The first derivation of an aggregation kernel came from
the work of von Smoluchowski (134, 135), who was concerned with the aggregation of particles by
Brownian motion. The procedure is one of considering a pair of particles; viewing from a frame
of reference, mounted on one of the particles, the motion of the other particle; and examining the
probability of their intersection. Whereas von Smoluchowski’s work was concerned with spheres
between which no force existed, Spielman (136) showed how to include viscous interaction between
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the particles on their aggregation. Numerous studies have analyzed coalescence frequencies for
drops in a stirred dispersion. Of these, the most popular has been that of Coulaloglou & Tavlarides
(137), who produced the first interesting synthesis of how coalescence between two droplets in
a liquid-liquid dispersion must occur when (random) drainage of the intervening film occurs
down to a critical thickness. Subsequent papers (138–141), which have included more mechanistic
considerations of film drainage, as well as the effects of surface charge in a dynamic Langevin
equation framework, have potential for accommodating more diverse coalescence phenomena.

Consider now aggregation by different mechanisms in the same system. Relative motion of
any two particles can be most conveniently analyzed by the Langevin equation, accounting for
all forces on the particles by summing them (70, 81). The aggregation kernel can be obtained
from the Fokker-Planck equation, which corresponds to the foregoing Langevin equation. Brow-
nian motion and gravitational settling provide an ideal example. Simons et al. (142) analyzed this
problem with the Fokker-Planck equation for the combination of the two mechanisms and ar-
rived at an aggregation frequency that exceeds considerably that obtained by simply adding the
two frequencies. The addition of aggregation frequencies is therefore a practice that requires
circumspection.

Scaling behavior and inverse problems. Numerous instances of scaling behavior have been
observed with population balance equations. Many classical references of scaling behavior are
provided in chapter 5 of Reference 81. This behavior not only is interesting for its own sake but
has several attributes. First, it provides definitive validation of the formulated model. Second, it
makes for efficient predictions of dynamic behavior. Third, it allows for the identification of the
behavior of single entities, especially when it is influenced notably by its fellows. Fourth, it often
facilitates through the solution of inverse problems the identification of breakage and aggregation
kernels (41, 143, 144). When scaling behavior exists, it can contain information about aggregation
behavior sensitive enough to correctly reproduce even singular behaviors of aggregation kernels
obtained by an inverse problem. This is shown in Reference 145. An interesting application to
self-similar growth of cell populations is shown in Reference 146. There is currently gradually
mounting interest in inverse problems, as evidenced by the sporadic appearance of publications
on their applications to population balances (147–150).

Because of inherent sensitivity of inverse problems to errors in input data, the effort calls for ju-
dicious choice of regularization strategies so that the information obtained is robust. Investigation
of scaling is still felt to be a worthwhile endeavor for its potential benefits. For example, compu-
tational data obtained from population balance coupled with computational fluid dynamics could
be examined for compression by the local volumetric energy dissipation or other hydrodynamic
quantities, as may be appropriate.

MORE RECENT APPLICATIONS OF POPULATION BALANCES

Recently, there have been several new applications of population balances. We briefly review them
here.

Population Balances and Computational Fluid Dynamics

The combination of computational fluid dynamics and population balances is but a natural effort
to accommodate heterogeneity in process equipment. The thrust in this area has been largely
computational, and comparison with experiments, to the extent it has been possible, has shown
only qualitative agreement. Although this may be a reflection of system complexity, some of the
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issues raised in the section on Sources and Sinks, above, could potentially influence quantitative
conformance. Computational methods have relied on the use of the quadrature method of mo-
ments (151) in this effort. Although this method has facilitated computation, it cannot make full
use of the distribution of internal coordinates, a limitation rightly pointed out by Marchisio et al.
(151). Bubble columns have been modeled (152) with discretization methods (153), but not without
other compromising simplifying assumptions. Chen et al. (154) showed various features of bubble
columns with a detailed population balance model, including discrete bubble sizes. Whereas the
model related well to some measurements, other data for validation were unavailable. Vikhansky &
Kraft (155) modeled a rotating-disc liquid-liquid contactor with population balance coupled to a
k − ε turbulence model, including breakage and coalescence. They used Monte Carlo simulations
for solution, but comparison with data appeared somewhat sketchy.

Numerous other publications could have been cited here but were omitted because of limits
placed on the size of this review. It is hoped that the general conclusions from the cited papers
are not seriously in conflict with the spirit of those omitted. However, an important outcome
of research in this area is the extent to which classical idealizations, such as perfect mixing, can
misrepresent the behavior of engineering equipment.

Modeling of Crystal Morphology

Control of the shape or morphology of crystals is an important issue in crystallization processes
owing to its high impact in determining the quality of commonly used crystalline materials, such
as pharmaceutical drugs, food products, fertilizers, specialty chemicals, cosmetics, electronics, and
optical materials. Therefore, there is a need to develop efficient morphological population bal-
ance models (MPBMs) for model-based control of morphology distributions in crystallizers. The
internal coordinates for morphology distributions are perpendicular distances (known as h-vector)
of crystallographic families of faces from an appropriately chosen crystal center. The dimensions
of MPBMs, and hence the computational efforts required to simulate them, increase with the
number of internal coordinates. One of the challenges in developing MPBMs is to account for
dynamically varying numbers of internal coordinates owing to appearances and disappearances
of crystal faces. Therefore, some of the earlier efforts (156) focused on the study of morphology
evolution with no transformations (i.e., the number of internal coordinates remains invariant).
Efforts have also been made to reduce the dimension of MPBMs for computability and measur-
ability. At fixed supersaturation, when relative growth rates are constant, the dynamic changes in
h-vector can be represented by the dynamics of the h of a reference family, hence reducing the
dimension of MPBM to one (157). Equivalently, under similar conditions, the dynamics of h-vector
can be expressed using the age of crystals, which also gives rise to 1D MPBM (158). Briesen (159)
transformed the 2D MPBM of parallelepiped-shaped crystals in length-width coordinate systems
to volume-shape factor coordinates. Integration over the shape-factor coordinate yielded a 1D
MPBM in volume (measurable quantity) space, and the dynamic changes in the shape factor were
inferred assuming initial Gaussian distribution of shape factors. Such transformations are conve-
nient under specific situations, but it is worth noting that the solution of MPBMs, not involving
crystal breakage or aggregation, but otherwise under fairly general morphologies, can always be
readily obtained through the method of characteristics (81). Wang and coworkers (160) applied
3D MPBM to potash alum, in which the internal coordinates are the hs of three families of faces.
Subsequently, they performed principal component analysis to reduce the h-vector dimension of
potash alum, which resulted in 3D MPBM in principal component space (161). In this case, there
is no effective reduction in the number of internal coordinates, as it is the same as the dimension
of symmetry-reduced h-vector. The works cited above are restricted to a single morphology and
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CHALLENGES IN MODELING CRYSTAL MORPHOLOGY DISTRIBUTIONS

Application of population balances to predict morphological evolution in crystal populations has greatly advanced
in recent years. It has been used successfully for model-based control of 2D crystals in industrial crystallizers
(173). The current challenges in this area are (a) development of advanced sensors to monitor populations of
multifaceted crystals; (b) techniques to reduce the dimension of MPBM; and (c) formulation, nucleation, breakage,
and aggregation of kernels for faceted crystals.

do not consider morphology transformations. Wan et al. (162) introduced an ad hoc way to ac-
count for morphology transformations by exchanging the number distribution between different
morphologies. They showed transformation of alum crystals with three families to those with one
family of faces. Because the crystal state space for alum was not identified, the transition of crys-
tals from three families to two families was missed completely. Ramkrishna and coworkers (64)
demonstrated the construction of crystal state space for asymmetric octagonal crystals and devel-
oped coupled population balance equations accounting for morphology transformations. Their
framework was built for a few morphologies of asymmetric octagonal crystals and requires more
generality to be applicable to other crystalline materials (see sidebar, Challenges in Modeling
Crystal Morphology Distributions). Recently, they have developed a comprehensive framework
for deriving MPBMs solely from the information about crystal structure and F-faces (63). Their
framework uses a set-theoretic approach to generate morphology domains and flux maps and
subsequently develops MPBMs that are amenable to solution by the method of characteristics.

Population balance analysis of precipitation processes. The use of population balances has
been relatively sparse for precipitation processes for which supersaturation is built up by a set of
chemical reactions. This application requires treatment of the reaction system before the super-
saturation can be calculated. The papers of Bandyopadhyaya et al. (120, 121) provide a proper
setting.

New Applications in Biology

The application of population balances to microbial cells dates back to the early 1960s. Although
this activity continues unabated, we focus on newer applications, which are of considerable interest
to population balance modelers (see sidebar, Population Balances Needed in Tissue Engineer-
ing). We discuss three application areas that represent exciting opportunities. The first discusses
modeling of growth and differentiation of stem cells in the bone marrow, the second concerns the
modeling of gene regulation, and the third considers personalized medicine.

POPULATION BALANCES NEEDED IN TISSUE ENGINEERING

The area of tissue engineering, which involves growth and differentiation of cells on a scaffold, provides an ideal
setting for the formulation of population balances. Indeed, the phenomenological elements of such a model would
call for more fundamental understanding than may be currently available, but advances in this field occur at an
impressive pace. A similar scenario also exists in the growth of solid tumors.
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Growth and differentiation of stem cells. The prospect of clinical applications makes this
domain of application a very important area of research (163). Quantitative modeling plays an
important role in enabling personalized medicine (to be discussed below). Stem cells, generated
in the bone marrow, multiply as well as differentiate into other cell types. This transformation
of stem cells through a series of different cell types before discharge into the peripheral blood
has been subject to population balance modeling (164, 165). The models would ideally fall in the
categories of deterministic discrete and continuous internal coordinates, above. Cell age is used
as a continuous internal coordinate for transition rates in the above models. However, insofar
as signaling is a precursor to differentiation, modeling strategies discussed in Modeling of Gene
Regulation, below, would be relevant to the calculation of transition rates from one cell type to
another. Despite the fact that cell age is virtually impossible to observe, Sherer et al. (21) have
shown that age-dependent transition rates can be estimated from experimental data by exploiting
quasi-static behavior of age distributions in a cell cycle.

Although this demonstration was made for cells going through a regular cell cycle, the method-
ology appears to be extendable to the bone marrow scenario, in which cell differentiation defines
transitions to different states. Sherer et al. (58) also demonstrated that such age-structured tran-
sition cell-cycle models can be used to strategically administer drugs with phase-specific activity.

Modeling of gene regulation. Gene regulation occurs within the cell in response to the ap-
pearance of a signaling molecule in the cell’s environment. The associated intracellular reactions
satisfy a system of stochastic differential equations, such as Equation 3. The methodology for
arriving at this equation was discussed briefly in the section on Continuous Internal Coordinates
(Stochastic), above. The reaction system is stochastic because of the small number of molecules
involved in it. At high extracellular levels of the signaling molecule, gene regulation will result in
the synthesis of a specific intracellular protein, giving rise to an on cell. At low concentrations of
the signaling molecule, the intracellular protein will be at a very low level, producing an off cell.
For intermediate levels of the signaling molecule, a region of bistability exists in which a cell may
eventually be either off or on. This occurrence of bistability in gene regulatory processes usu-
ally has been modeled at the level of a single cell (with a proportional piece of the environment)
to interpret experiments at the population level. The steady-state Fokker-Planck equation for
Equation 3 with the bistable system will display bimodal behavior, implying that the population
will comprise a mixture of on and off cells. This dynamic steady state will feature individual cells
commuting randomly between off and on states. The single-cell analysis ignores the fact that even
cells, identical at the beginning, will subsequently behave differently from each other because of
stochasticity, thus creating changes in their shared environment. Clearly, only population balance
analysis can deal with this scenario. When population balance of the type in Equation 4 is used, a
unimodal distribution is sometimes predicted for the population, because the well-stirred signal-
ing environment maintains a state between off and on (see References 8 and 9 for demonstration).
Gene regulation is a vast area of biology, and population balance will be an indispensable tool
in its analysis. A significant application lies in the transfer of drug resistance from one bacterial
species to another, where gene regulation enables conjugation between the two species, thus pro-
viding for exchange of resistance-bearing plasmids. Understanding of this phenomenon is of great
importance for the future development of antibiotic drugs.

Growth in biofilms. The modeling of gene regulation in the previous section is of great con-
sequence to modeling of growth of cell populations in planktonic (well-stirred) and biofilm
(diffusion-limited) environments. In biofilm growth, the equation for the environment will fea-
ture diffusion terms for the extracellular variables that are exchanged with cells. The models are of
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the type encountered in the section on Discrete Internal Coordinates (Stochastic). An upcoming
publication by Shu et al. (166) discusses results of a stochastic biofilm model.

Personalized medicine. The issue of personalized medicine in the treatment of disease has arisen
out of the realization that the action of a drug is specific to the genomic and metabolic profile of
a patient. Testing of blood samples focuses on measurement of specific plasma constituents that
evolve from processes in the bone marrow. Although a full realization of personalized medicine
would entail modeling methodologies beyond population balances, the latter are an essential part
of evaluating the effect of drugs on cells that enter the circulating blood from the bone marrow.
For example, during a treatment phase called maintenance therapy in the treatment of children
with acute lymphoblastic leukemia, children are tested on a regular basis for the mean cell volume
(MCV) of their red blood cells. The change in MCV from normal-sized cells to that of cells
during maintenance therapy has been shown to have the highest correlation with treatment (167).
Sherer (168) has developed population balance models based on cell volume and cell age to relate
MCV to different drug levels and addressed the reverse dependence of measured MCV drug
levels through the use of Bayes’s theorem. This modeling can help diagnose the effectiveness of
the dosage administered. It also has the potential to detect noncompliance.

The containment of side effects is an important issue to add to our consideration of medical
treatment. Thus, relating side effects to drug dosage is another aspect of modeling in this area. The
death rate of cells as a function of drug concentration and cell age can then be used to investigate
within a stochastic population balance framework the response of cancer cells to treatment (15).
Of particular interest to designing drug dosage would be the probability with which all cancer
cells will have been killed over a treatment period, which determines the acceptable level of side
effects.

CONCLUDING REMARKS

Population balance modeling is undergoing phenomenal growth in its applications, with virtually
unlimited scope for further expansion. Although engineering applications continue to grow, this
article has focused more on biological applications of population balances because of (a) the
opportunities to develop new facets of the methodology and (b) the potential for extraordinary
impact on specific areas, which were omitted from discussion to contain the length of this article.

We have identified areas for improvement in the phenomenological implements of population
balance modeling. Sources and sinks can conspire to provide adequate fits of data under specific
sets of conditions without the capacity to extend into predictive domains. Of course, in a system
with diverse aspects of complexity, modeling must be viewed more to provide broad guidance
on what can be expected than to snugly confront data. However, in the spirit of minimizing
empiricism, it is well to explore methods to relate phenomenological implements more closely to
the actual scenarios being modeled. Whereas flow cytometry provides strong experimental support
for the development of multidimensional population balance models in biology, the situation in
engineering particulate systems is less impressive. Understanding single-particle behavior calls for
the development of experimental methods, such as the use of improved imaging techniques (169).
An example is contained in the use of confocal microscopy in determining crystal shapes (170).
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