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Abstract

The prediction of the crystal structures that a given organicmolecule is likely
to form is an important theoretical problem of significant interest for the
pharmaceutical and agrochemical industries, among others. As evidenced by
a series of six blind tests organized over the past 2 decades, methodologies
for crystal structure prediction (CSP) have witnessed substantial progress
and have now reached a stage of development where they can begin to be ap-
plied to systems of practical significance. This article reviews the state of the
art in general-purpose methodologies for CSP, placing them within a com-
mon framework that highlights both their similarities and their differences.
The review discusses specific areas that constitute the main focus of current
research efforts toward improving the reliability and widening applicability
of these methodologies, and offers some perspectives for the evolution of
this technology over the next decade.
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1. INTRODUCTION

The ability of organic molecules to crystallize into different solid-state forms (polymorphs) is
central to the discovery and manufacture of novel crystalline materials. The detailed study of this
phenomenon has led to an increasing understanding of the prevalence of polymorphism and of
its large impact on physicochemical properties, which, in turn, has led to the growth of an active
community of researchers focused on methods for crystal structure prediction (CSP).

The objective of CSP methods is generally to produce a small, yet complete, set of crystal
structures that are likely to be observed experimentally. In the context of product development
andmanufacture, this set of structures often needs to be obtained with little or no prior knowledge
of the investigated molecule(s) beyond its molecular connectivity diagram(s).

CSP can be an invaluable complement to experimental polymorph screening (1) in the
pharmaceutical and agrochemical industries, among others. It can provide useful insights for
the interpretation of experimental results (2), support the resolution of structures from powder
X-ray diffraction (PXRD) (3) or nuclear magnetic resonance (NMR) (4) patterns, and facilitate
the development of experimental protocols for the crystallization of previously unobserved
polymorphs (5, 6). An energy landscape produced using CSP can also enhance the understand-
ing of the behavior of a target molecule. For example, Abramov (7) concluded from a CSP
study that the pharmaceutical compound crizotinib is unlikely to be polymorphic due to large
energy differences between candidate structures. This knowledge can inform risk assessments
undertaken during the course of drug development or help in identifying a drug formulation or
manufacturing conditions that prevent costly interruptions of supply, such as those that occurred
with ritonavir (8). Beyond structural characterization, research is under way to enable the use of
CSP to investigate structure–property relationships (9–11) or as a large-scale screening method
to bypass expensive experimental efforts (12).

The development of CSP methods has been accelerated through lessons learned during the
CSP blind tests organized by the Cambridge Crystallography Data Centre. The results of the
most recent (sixth) blind test demonstrated the significant progress that has been achieved over
the past 2 decades, with more complex crystals now well within our predictive reach (13).

The sets of candidate crystal structures produced by CSP are ranked by increasing energy.
The metric most commonly used for this ranking is the lattice energy at 0 K and 0 Pa, that is,
the difference between the energy of a static lattice arrangement of molecules and that of static
molecules in the gas phase and at infinite separation. Typically, the crystal structures of practical
interest are those whose energy is within a certain cutoff limit of the global minimum in energy.
This approach is driven by the observation that the lattice energy difference between pairs of
experimentally observed polymorphs rarely exceeds 10 kJ/mol (14). It has proved effective inmany
cases, although the number of crystal structures predicted within such a cutoff is often greater
than the number of distinct structures that have been identified experimentally (15). Prediction
of the likely crystalline forms of many systems of practical relevance remains challenging due to
characteristics, such as molecular size and flexibility or the existence of multicomponent crystals
(e.g., solvates/hydrates with unknown or variable stoichiometry). For instance, the vast majority of
pharmaceutically relevant molecules exhibit significant flexibility: Of a data set of 5,941 structures
extracted from the Cambridge Structural Database (CSD) (16), of which 74% are drug-like, 92%
exhibited some flexibility (17).

Because of these complicating factors, effective CSPmethods need to achieve a delicate balance
between the dual goals of identifying all likely structures and obtaining an accurate energy rank-
ing. This requires the development of methods that enable both an extensive search of the space
of possible structures and an accurate evaluation of inter- and intramolecular interactions—two
potentially conflicting objectives in the context of finite computational resources.
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In this article, we discuss the generic features that are common to state-of-the-art CSP meth-
ods for organic molecules, aiming to reflect upon the key elements of successful CSPmethods and
to motivate further methodological advances. We focus on generally applicable algorithms and
models, and direct the reader to recent reviews (18, 19) for an overview of what can be achieved
with CSP methods today. The extensive literature on the prediction of the thermodynamics
and properties of specific crystal structures is considered only to the extent to which it has had a
more general impact on CSP methodologies.

In Section 2,we present a high-level blueprint for CSP,which is common tomost of the system-
atic methods available today. We review the various components of this blueprint in subsequent
sections. In Section 3, we summarize the methods that are used to generate candidate structures
in the early stages of CSP methods. In Section 4, we describe different approaches to modeling
the lattice energy within CSP approaches, as this is the most common metric for ranking candi-
date structures. However, in Section 5, we review recent efforts to embed free energy calculations
within the CSP framework. In Section 6, we describe how the elements considered in the pre-
vious sections have been synthesized to produce some of the CSP methodologies that are most
commonly used today. Finally, in Section 7, we present our perspectives on the state of the art in
CSP and some of the directions for future progress in this area.

2. CRYSTAL STRUCTURE PREDICTION FRAMEWORK

Practical CSP methods typically seek to determine low-lying minima of an energy function with
respect to optimization variables that define the crystal structure, namely the unit cell variables
(lattice lengths and angles) and the positions of all atoms in the unit cell. Optimization of each
crystal is often carried out with respect to 1 of 230 potential space group symmetries. Space group
symmetry allows the positions of all atoms in the crystal to be determined by knowledge of the
asymmetric unit cell, thereby drastically reducing the space of optimization variables to the num-
ber of atoms/molecules in the asymmetric unit cell. In this context, each space group symmetry
must be explored independently to identify all unique structural configurations. An examination
of the CSD indicates that the vast majority of crystal structures can be represented by a subset
of these symmetry groups; in fact, ∼60 space groups account for ∼97.9% of all organic crystal
structures (20). It is common for the asymmetric unit cell to contain only one molecule (Z′ = 1).
In such cases, the crystal structure depends on the position (e.g., of the molecular center of mass),
the orientation, and the conformation of that molecule. Up to 20% of organic polymorphs con-
tain more than one molecule in the asymmetric unit cell (17), while crystals with multiple species,
such as cocrystals, hydrates, and solvates, inherently contain multiple independent molecules. In
our experience, each additional molecule in the asymmetric unit typically increases the cost of an
effective CSP search by approximately four to five times.

For flexible molecules, packing forces lead to changes in the molecular conformation.Not only
is the number of variables larger than for a rigid molecule, but also one must achieve a sufficiently
accurate description of the interplay between intermolecular and intramolecular interactions (i.e.,
the cost of deforming a molecule from its in vacuo conformation). Currently, the practical limit
on the number of flexible degrees of freedom (torsional angles, bond angles, and bond lengths)
that can be treated in the context of a Z′ = 1 search is approximately 10 (6).

The computational cost of CSP would be prohibitive if all possible structural configurations
were evaluated at the full accuracy that would normally be required for reliable predictions. To
overcome this challenge, CSP methodologies employ a multistage approach (Figure 1). This ap-
proach reduces the polymorphic space to successively smaller sets of structures, so that the energy
of the structures in each set can be evaluated with increasingly accurate models. Each stage thus
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A flowchart of typical crystal structure prediction methodologies.

incorporates a different model of the crystal’s energy, given that the evaluation of energy (and usu-
ally its partial derivatives with respect to the variables defining the crystal structure) is the largest
component of the computational cost at each stage. The relative costs of these energy models can
span many orders of magnitude across the stages of an investigation. For example, using simple
force fields, one can evaluate the energy of a crystal structure in a matter of seconds, whereas more
accurate electronic structure methods may take many thousands of CPU hours per structure. Sig-
nificantly reducing the number of potential structures considered at each stage makes it feasible
to apply models approaching the desired level of accuracy in later stages without expending too
much computational effort on nonrelevant candidate structures during the earlier stages.

The initial candidate generation stage shown in Figure 1 is common to all CSP workflows.
Its purpose is to explore the energy landscape by generating structures that cover a broad range
of crystal geometries. The number of configurations that need to be explored depends on the
number of molecules in the asymmetric unit cell and the number of flexible degrees of freedom of
those molecules, and it must be sufficiently large to ensure that no practically significant structures
are missed. For example, the quasi-random search employed by our group requires approximately
105–106 minimizations (21) of the lattice energy function from different initial structures to gen-
erate a sufficiently complete list of candidates.

At the end of each stage, the set of structures produced is typically processed using clustering
algorithms to remove crystallographically equivalent structures, thereby preventing unnecessary
duplication of refinement calculations in subsequent stages. Structures are also screened to remove
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those whose energy difference from the structure of lowest energy exceeds a specified cutoff;
the value of the latter depends both on the expected polymorph energy differences and on the
confidence in the accuracy of the model used. Several studies in this area can help suggest suitable
energy cutoffs. For example, using a hybrid quantummechanical (QM) force field–type approach,
Nyman & Day (14) found that in a set of 508 polymorphic molecules the free energy differences
between polymorphs did not exceed 10 kJ/mol in 99.5% of cases. In a smaller data set of 55 flexible
polymorph pairs and with the use of more accurate electronic structure calculations, Cruz-Cabeza
et al. (17) also reported that the energy difference never exceeded 10 kJ/mol. Thus, a cutoff of
10 kJ/mol appears reasonable for an analysis of the final landscape generated by CSP. In contrast,
at earlier stages of the process, it may be necessary to apply less stringent cutoffs to compensate
for the lower accuracy of the energy models used at those stages.

At the end of each stage, all clustered structures not eliminated via the energy cutoff criterion
are passed to the following stage. Following the initial candidate structure generation stage, it is
common for one or two refinement stages to be used. A final assessment is then typically applied to
the structures resulting from the last refinement stage by using a highly accurate model of either
lattice or free energy. Ideally, the model should reminimize the structure energies by using the
corresponding geometries from the last refinement stage as initial guesses. However, the energy
model employed may be too expensive for such optimization calculations, in which case it is used
only to recalculate the structure’s energy at the fixed geometry determined at the last refinement
stage. The final output of the CSP investigation is a ranked list of likely polymorphs.

The general approach outlined in Figure 1 encompasses a broad range of modern CSP
methodologies. An important extension of this simple sequential workflow incorporates an el-
ement of feedback, where information from later stages can be fed back to the candidate structure
generation stage to improve the search in an iterative fashion (22, 23). For example, structural and
energetic data at the dispersion-corrected density functional theory (DFT-D) level can be used
to improve the accuracy of the simpler energy models used at the candidate generation stage, or
statistical information can be employed to adjust the energy cutoffs used to select structures for
further refinement. Next, we consider the individual stages of the general framework introduced
in this section in more detail.

3. CANDIDATE GENERATION

3.1. Overview

The general methodology shown in Figure 1 starts by conducting a global search to generate
an initial set of candidate structures. State-of-the-art algorithms for candidate structure genera-
tion can be grouped into two broad categories, namely unbiased and biased search methods (see
Sections 3.2 and 3.3). In all cases, given the high dimensionality of the problem and the large
number (hundreds of thousands to millions) of structures that must be evaluated, relatively cheap
energy models with limited accuracy are often used at this stage. As a result, a relatively high
refinement cutoff of 20–30 kJ/mol is typically applied (13) to the list of candidate structures ob-
tained in order to ensure that relevant structures are not excluded from consideration at the later
refinement stages. The number of structures taken from the candidate generation stage to the first
refinement stage is typically of the order of hundreds to thousands.

3.2. Unbiased Search Methods

In unbiased search methods, numerous initial structures are generated with the aim to achieve
broad sampling of the space of possible crystal structures. Each such structure is then used as a
starting point for a local energy minimization so that the candidate generation step results in a
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first ranked list of putative structures. Several methods have been proposed to achieve an effective
sampling. Their common characteristic is that equal computational effort is devoted to areas of
high and low energy, although in some cases starting points with a particularly high energy rel-
ative to the structure of lowest energy identified so far in the search are discarded without local
minimization (24).

The simplest form of unbiased search is performed by constructing a regular grid in the space
of the variables defining the crystal structure. Because the number of points in the grid increases
exponentially with the number of variables, the applicability of this method is limited. Only 3 of
the 25 groups taking part in the sixth blind test made use of such an approach (13).

An alternative strategy is to generate starting structures randomly as samples from a uniform
probability distribution over the variable ranges. Albeit simple to implement, pseudorandom sam-
pling may lead to nonuniform coverage of the variable space. Quasi-random, low-discrepancy se-
quence techniques, such as that by Sobol’ (25), lead to a more even coverage of the domain of
interest for a given number of generated points. Moreover, unlike in regular grid methods, termi-
nation of a Sobol’ search after sampling any number of points generally results in the best possible
sampling of the domain that is achievable with that number of points. As a result, it becomes pos-
sible to later continue the search to consider additional points while maintaining the quality of the
sampling, implying that the number of points to be sampled does not need to be fixed in advance.
These methods have been successfully implemented by several groups in investigations of organic
molecules (24, 26, 27).

3.3. Biased Search Methods

Biased search methods attempt to limit the set of structures that are generated and assessed to the
more promising areas of the lattice energy surface. They include several classes of algorithms, as
outlined below.

The Monte Carlo simulated annealing (MCSA) approach (28, 29) involves the exploration
of the energy landscape starting from a random structure and moving from one structure to a
neighboring one. A new structure is accepted unconditionally if its energy is lower than that of
the previous structure (30). In contrast, if its energy is higher than the previous structure, the new
structure is accepted with a probability defined as an increasing function of a so-called temperature
parameter. Successive search cycles performed at different temperatures are used to explore the
energy landscape. Starting from an initially high value, which allows many moves to be accepted,
the temperature is gradually reduced so that only moves to similar- or lower-energy configura-
tions are accepted. The temperature is then increased again to allow the search to move into a
different area of the energy landscape, and the process is repeated in a cyclic manner. Any promis-
ing (i.e., low-energy) configurations identified during the search may serve as starting points for
lattice energy minimization to determine crystal geometries that correspond to local minima in
the energy surface.

A methodological development of the MCSA approach is that of parallel tempering (31, 32),
wherein multiple MCSA simulations are run in parallel, each at a different temperature. At each
step, it is possible for the current configurations to be exchanged between two different simula-
tions; the probability of such an exchange taking place is computed according to the Metropolis
criterion. Overall, the use of parallel tempering ensures a more thorough exploration of the space,
and has proved to be successful in the GRACE CSP implementation (33).

Evolutionary algorithms (34, 35), of which genetic algorithms are the most common, attempt
to mimic the principles of natural selection: The global minimum energy crystal structure is anal-
ogous to the best-fit species. From a population (i.e., set) of crystal structures, those with a high
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fitness (i.e., low lattice energy) are allowed to procreate (i.e., exchange structural features between
the two parent structures to create a new structure) and mutate (i.e., be modified via Monte Carlo
moves). In this way, the relevant low-energy structures are discovered over successive generations.
There has been some success in using genetic algorithms in the prediction of crystal structures
of inorganic (36, 37) and small organic (38) molecules. However, perhaps due to the large separa-
tion between minima on the organic crystal potential energy surface, genetic algorithms can get
trapped at local minima, and may oversample restricted areas of configurational space. Evolution-
ary niching has been successfully applied to diversify the sampling of crystal structures (39), but
these developments need to be tested further, particularly on large, flexible molecules, before any
firm conclusions can be drawn.

Particle swarm optimization (PSO)methods (40) operate on a population of particles, each cor-
responding to an evolving crystal structure. At each step, the algorithm tracks the lowest-energy
structure pi encountered by each particle i so far, as well as the lowest-energy structure g identi-
fied by the entire population. Each structure i is then updated via a randomized move informed
by both its own pi and the global g. While PSO methods have been applied primarily to the pre-
diction of inorganic crystal structures, they have recently been used in the prediction of flexible
organic molecules (23), in combination with MCSA.

In general, biased search methods can save computation by focusing the search on the more
promising areas of the energy landscape.However, their efficacy depends crucially on the choice of
the parameters that determine the way in which the search moves within the landscape. Selecting
an appropriate set of values of these parameters for any particular system under consideration in a
CSP study is a nontrivial undertaking. In contrast, unbiased methods may spend significant parts
of their computation on areas of the energy landscape that may ultimately be found not to contain
any low-energy crystal structures. However, they may be more reliable and universally applicable
as they do not involve any arbitrary parameters.

3.4. Handling Molecular Flexibility in Global Search

There are two broad approaches to dealing with molecular flexibility during the initial candidate
generation stage. The first attempts to identify a number of crystallographically relevant molecule
conformers before the start of the global search; it then performs a number of separate global
searches, each based on a different conformer and treating it as a rigid molecule. The second
approach is to treat flexible degrees of freedom as additional optimization variables within the
global search.

Albeit simpler to implement, the use of multiple rigid searches suffers from some serious de-
ficiencies. In particular, it may result in candidate structures that are more constrained and hence
exhibit higher lattice energies (41), as there is no possibility for the energy to be reduced via
small adjustments in the molecular confirmation. Overall, this may cause some potentially rele-
vant structures to be eliminated at the end of the initial candidate structure generation stage as
their energy is found to be above the cutoff.

Furthermore, choosing a finite set of distinct molecular conformers that will not result in any
relevant crystal structures being excluded is itself a nontrivial task. In many cases, it is sufficient to
include conformers with intramolecular energy up to 20 kJ/mol above that of the lowest-energy
conformation. However, such a criterion may cause some relevant conformers to be overlooked
(19), since intermolecular energy gains have been reported to compensate for intramolecular en-
ergy costs of up to 57 kJ/mol (42).

For these reasons, handling flexibility in terms of a set of continuous variables being optimized
simultaneously with the rest of the variables determining the crystal structure is generally a more
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reliable approach. However, it requires reasonably accurate and efficient methods for computing
intramolecular energy during lattice energy minimization. We consider this topic in more detail
in the next section.

4. LATTICE ENERGY MODELS FOR USE IN CRYSTAL
STRUCTURE PREDICTION

Lattice energy is the most frequently used metric in predicting and ranking candidate crystal
structures (13). This approximation is reasonable at 0 K and ambient pressure due to the small
differences in relative zero-point energy (ZPE) between different crystal structures (43, 44). Due
to the large number of lattice energy calculations required, the availability of reliable yet com-
putationally tractable models becomes paramount in the early stages of any CSP study. At the
later stages of the CSP, the number of candidate structures is reduced, allowing the use of more
accurate but more expensive energy models. For this reason, it is desirable to develop a spectrum
of energy models of increasing accuracy and cost. This has led to the use of both force fields and
affordable periodic DFT-D methods across the various stages of CSP. These two types of models
and their use within CSP are discussed in the following subsections.

4.1. Force Field Models of Lattice Energy

Force field methods are the most prevalent in the early stages of CSP studies because of their
computational simplicity in comparison to alternatives such as electronic structure methods
(Section 4.2). In particular, their relatively low computational cost enables the handling of the
additional computational complexity arising from increasing molecular size and flexibility.

In force field models, the lattice energy of a crystal, �U latt, is broken down into contributions
arising from the internal structure of eachmolecule (i.e., intramolecular interactions) and from the
interactions with other molecules in the crystal environment (i.e., intermolecular interactions):

�U latt = �E intra + E inter. 1.

Here, �Eintra denotes the difference between the intramolecular energy of the molecule(s) in the
crystal and the minimum intramolecular energy of the molecule(s) in vacuo, and Einter denotes the
intermolecular energy.�Eintra depends on the molecular conformation, while Einter is additionally
a function of the geometry of the asymmetric unit cell and the position(s) of the molecule(s) within
it.

To achieve the accuracy required for successful CSP, it is often necessary to tailor the most
important interactions to the system of study. In this section, we review some common methods
for deriving models for the intra- and intermolecular contributions, and for integrating them into
effective lattice energy models for CSP.

4.1.1. Intramolecular energy. The intramolecular energy contribution (�Eintra) is relevant for
flexible organic molecules. It can be viewed as the energetic cost of deforming a molecule from its
gas-phase ground state into its geometry in the crystal.The choice of model for the intramolecular
energy is critical for ensuring that the energetics are appropriately balanced with intermolecular
terms so that crystal geometries are found to correspond to minima in the lattice energy landscape
(45).

A classical description of intramolecular energy is provided by transferable force fields, such as
DREIDING (46). In this approach, the intramolecular energy is evaluated using a simple function
of atomic distances and angles. Early CSP studies (e.g., 47) made use of functions with transferable
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parameters characterizing different types of atom–atom interactions (e.g., bond stretching, bend-
ing). More recently, this approach has lost ground to methodologies based on more customized
approaches (13). In particular, due to the nature of valence shell electron interactions in covalent
bonds and their conformation-dependent coupling, intramolecular energy can best be character-
ized using a QM description based on the specific system being studied.

Therefore, the derivation of force fields from a limited set of QM computations of the
molecule(s) of interest has emerged as a key element of most modern CSP frameworks. Two main
classes of approaches for such a parameterization have been proposed: those that rely on the so-
called isolated-molecule assumption, namely that the internal interactions of a molecule can be
evaluated independently of the other molecules in the crystal, and those that do not, requiring
more demanding calculations of the energy of a periodic crystal.

Under the isolated-molecule assumption, QM calculations are carried out for a range of con-
formers and used to build a model that relates intramolecular energy to conformational degrees
of freedom (26, 45, 48, 49). The influence of the crystalline environment is sometimes taken into
account by imposing an external field on the molecule, specifically by using the polarizable con-
tinuum model (PCM) (50) and specifying a dielectric constant value, typically ranging from 3 to
11 (51, 52). By restricting the analysis of flexibility to the small number of unique molecules that
appear in a given crystal and treating them as isolated (i.e., non-spatially-extended) systems, the
use of DFT or even more accurate post-Hartree-Fock calculations to evaluate ab initio geome-
tries and energies becomes relatively affordable and readily accessible via modern QM software
packages, such as Gaussian 09 (53). Nevertheless, directly evaluating the intramolecular energy of
an isolated molecule ab initio for each molecular geometry being considered during the course of
a CSP study is prohibitively expensive; more sophisticated approaches are therefore required.

In the simplest practical realization of the isolated-molecule strategy, several conformers are
identified at the start of the CSP study, their internal energy is computed, and a separate rigid-
molecule crystal structure search is conducted for each conformer (e.g., 48). Conformational flex-
ibility is thus reduced to a small set of discrete choices. To limit computational cost further, force
fields can be used to generate conformers, while single-point DFT calculations are used to re-
fine the energy evaluation. However, as explained in Section 3.4, focusing on a fixed set of rigid
conformers may result in loss of reliability of the global search stage of the CSP.

An alternative approach is to use information derived from specific conformers to build amodel
that provides a locally valid approximation of the relationship between conformational flexibility
and intramolecular energy.This approach was implemented in the programUPACK (54) by use of
a second-order Taylor expansion of the energy as a function of all atomic positions. This requires
the ab initio computation of the gradients and second derivatives of the intramolecular energy
with respect to internal degrees of freedom at a given conformation and reusing this information
in theminimization of the lattice energy over a neighborhood of conformations close to this point.
The conformers at which the intramolecular energy and its derivatives are computed at the QM
level are essentially sampling points of the intramolecular energy function. While this approach
can provide a highly accurate approximation of the intramolecular energy, the need to compute
first and second derivatives with respect to all conformational degrees of freedom at all sampling
points renders it computationally impractical, even for moderately sized molecules (54).

The computational cost of performing ab initio isolated-molecule calculations can be drasti-
cally reduced by recognizing that only a few molecular degrees of freedom (often a subset of the
molecule’s torsion angles) are typically flexible enough to have an appreciable impact on a crys-
tal’s geometry and energy. It is thus possible to conduct the search for possible conformations in
the reduced space of these variables (the independent conformational degrees of freedom). For
any given set of values of these variables, the values of the other, dependent, variables (i.e., the
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bond lengths, bond angles, and remaining torsion angles) and of the intramolecular energy at
each sampling point can be obtained by minimizing the intramolecular energy with respect to
the dependent variables. Overall, this minimization defines the dependent variables and the in-
tramolecular energy as functions of the independent variables. Two strategies have been proposed
for constructing suitable approximants to these functions: restricted Hermite interpolants (24)
and local approximate models (LAMs) based on second-order Taylor expansions combined with
optimality conditions (45).

The mapping proposed by Karamertzanis & Pantelides (24), based on restricted Hermite in-
terpolants, avoids the need for partial derivative information above first order, so that the cost
of evaluating each sampling point is quite small. However, Hermite interpolants require that the
sampling points be constructed on grids, which limits the practical applicability of the approach
to molecules containing up to three or four independent degrees of freedom due to the result-
ing computational cost. Nevertheless, larger molecules can be handled if they can be partitioned
into nearly independent groups of torsion angles so that each group can have up to three or four
independent variables (26).

To handle larger and more flexible molecules, LAMs have been developed to make use of
second-order Taylor expansions constructed from partial derivatives, ensuring quadratic accuracy
regardless of dimensionality (45, 49).The cost of constructing and using such LAMs can be further
reduced by storing LAMs in databases so that they can be reused across multiple computations
involving the same molecule (45) and by developing adaptive strategies for determining the points
at which the LAMs are generated (55).These advances, combined with the introduction of contin-
uous and differentiable models derived from weighted combinations of LAMs (56), have enabled
accurate and efficient modeling of the intramolecular energy of flexible molecules with up to seven
or eight independent degrees of freedom.

As an alternative to the isolated-molecule approach, one can derive a force field based on QM
calculations of periodic crystals. Neumann (22) has developed a methodology to parameterize a
DREIDING-type force field using periodic DFT-D calculations for a set of crystal structures that
contain different conformers of the molecules of interest. A number of sampling points are used
to fit parameters that include stretching, bending, torsional, inversion, and angle-bend-inversion
coupling terms. The resulting tailor-made force field (TMFF) provides an approximate lattice
energy function that takes into account the crystalline environment, but the need to sample a suf-
ficiently broad range of conformers and corresponding crystal structures comes at a significant
computational cost. The methodology recently developed at XtalPi (23) follows a similar strategy,
using cloud computing to carry out a large set of monomer, dimer and periodic DFT-D calcula-
tions for force field parameterization.

4.1.2. Intermolecular energy. On the basis of the dominant interactions between molecules in
the crystalline phase (57), the intermolecular energy can be partitioned into separate contributions
from electrostatic (Eelec), inductive (Eind), and repulsive/dispersive (Erep/disp) interactions:

E inter = Eelec + E ind + Erep/disp. 2.

4.1.2.1. Electrostatic interactions. Electrostatic interactions are present in all organic crystals,
but they make a particularly important contribution to the lattice energy in crystals that involve
polar and/or charged compounds. In classical force fields, the electrostatic term (Eelec) accounts
for the interactions of the charged particles (protons and electrons) in different molecules in the
crystalline phase. A key modeling decision is the framework to be used to approximate the electro-
static potential arising from the charge distribution within the molecule. The range of approaches
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used in existing CSP methods includes atom-centered point charges, off-atom point charges, and
multipoles.

Point charges are a useful first approximation of the charge distribution and hence are used
in several CSP force fields. As with the intramolecular energy contribution, it is advantageous to
tailor the electrostatic contributions to the molecule(s) of interest. Atom-centered point charges
can be fitted to the electrostatic potential obtained via periodic DFT-D calculations (22) or, alter-
natively, to the electron density of an isolated molecule computed at DFT or (post-)Hartree-Fock
levels of theory. The point charges derived in this manner interact through a classical Coulomb
potential. Although there is a plethora of charge fitting schemes in the literature, including real-
space (58) and basis-space (59) approaches, empirical fitting schemes such as ChelpG (60) or HLY
(61) are often used in practice. Importantly in the context of flexible molecules, the LAMs that
have been developed to model the dependence of the intramolecular energy on conformational
degrees of freedom have also been extended to model the dependence of point charges on con-
formation (55, 62), leading to a more accurate representation of the electrostatic energy.

To achieve an even more accurate approximation of the full electrostatic potential, researchers
have proposed more detailed schemes, such as the discretization of the electron density (63) and
off-atom satellite charges (62), although these approaches are not currently in widespread use in
CSP methods. Another approach is to include a hydrogen-bonding term, as in the DREIDING
force field and, optionally, in the TMFF (22). Finally, the explicit modeling of higher-order
orientation-dependent interactions, such as lone pair (dipole moment) and π–π stacking
(quadrupole moment) interactions, via multipole expansions has been used extensively in the CSP
context. By placing amultipole expansion of the charge density on each atom site, one can substan-
tially improve the accuracy of the potential (64). The parameterization of multipole expansions
for a given electrostatic potential relies on a partitioning scheme to isolate atomic fragments. Such
partitioning schemes can be viewed as somewhat arbitrary; the effectiveness of each procedure is
judged on the basis of the accuracy and the convergence speed of the expansion. For over a decade,
distributed multipole analysis (DMA) (65, 66) has been the most popular method for calculating
atomic multipoles within CSP methods. More recent partitioning schemes may produce expan-
sions with faster convergence but have yet to be commonly incorporated in CSP methods. These
include the basis-space implementation of the iterated stockholder atom algorithm (67) proposed
byMisquitta et al. (68) and the iterative Hirshfeld partitioning scheme (Hirshfeld-I) (69, 70). Such
approaches may result in a partitioning of the electron density that produces more chemically rea-
sonable multipole distributions (68). In any case, once multipole moments have been derived, they
can be used within lattice energy models to provide a good trade-off between accuracy and effi-
ciency of calculations. As with point charges, the dependence of multipoles on conformational
degrees of freedom can be represented via LAMs (45), providing an inexpensive model of the
impact of flexibility on electrostatic interactions.

The so-called molecular electrostatic potentials derived from isolated-molecule QM calcula-
tions depend on whether the latter computations are carried out in vacuum or in an electric field
[i.e., using a PCM to represent the effect of the crystalline environment on the electrostatic po-
tential of individual molecules (51)]. In the latter case, the electrostatic potential attributed to each
molecule is affected by induced polarization as a result of the uniform electric field imposed by
the dielectric constant. Regardless of the approach used, the effect of the crystal geometry on the
induction energy is neglected during the crystal structure optimization. An additional term may
therefore be required to capture this effect, as described in the next section.

4.1.2.2. Induction energy. Inductive effects constitute a relatively small yet nonnegligible pro-
portion of a crystal’s cohesive energy, contributing approximately 20–40% of the electrostatic
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interaction (71) in both polar and nonpolar molecules. Due to the costs and complexity associated
with rigorously incorporating inherently non-pairwise-additive inductive effects in CSP, the Eind

term in Equation 2 is usually omitted. Although this is often a reasonable approximation, for some
systems, such as those involving hydrates or salts, accounting for this term may be important for
achieving a sufficiently accurate evaluation of lattice energy and, consequently, more accurate sta-
bility rankings among the low-energy forms (72). Recently, several approaches aiming to capture
this contribution to the lattice energy have emerged.

One strategy is to embed an additional term in the classical force field model in order to repre-
sent polarizability. In the same vein as distributed multipoles, the induction energy in a system of
molecules can thus be modeled in a classical force field by use of distributed polarizabilities. This
approach has sometimes been applied in the context of CSP, where a self-consistent set of induced
multipoles is derived at each crystal configuration as a function of the polarizability of each site
(71, 72). Accurate atomic polarizabilities have been derived from symmetry-adapted perturbation
theory based on density functional theory [SAPT(DFT)] calculations by usingmethods such as the
Williams–Stone–Misquitta (WSM) localization scheme (73, 74). However, this approach comes
at a significant computational penalty, both because of the cost of deriving atomic polarizabilities
using SAPT(DFT) (72) and because of the additional computational complexity of the resulting
lattice energy model.

Alternatively, the charge density can be derived from calculations in the crystal phase or an
approximation thereof. This approach is exemplified by the self-consistent electronic response to
point charges (SCERP) method (71) and the use of q-grids (75); the latter approach was applied
in the most recent blind test (13). Such methods circumvent the need to define atomic polarizabil-
ities, although the calculation of the electrostatic density is more demanding because it must be
carried out with either molecular clusters (71) or periodic calculations (75). Furthermore, because
the electrostatics thus derived depend on the specific crystalline environment, they may not be
applicable if there are significant changes to the geometry of the crystal.

4.1.2.3. Repulsive/dispersive energy. The Erep/disp term in Equation 2 accounts for close-range
repulsive and long-range dispersive interactions. The repulsive energy arises from the Pauli ex-
clusion principle and decays exponentially at long range, while dispersion is generally an attrac-
tive force caused by correlated electron density fluctuations. With regard to first-order interac-
tions, dispersion decays with interatomic distance rij between atom sites i and j as r−6

i j . As a result,
a popular functional form used to describe the repulsive/dispersive interactions in CSP is the
Buckingham potential:

Erep/disp =
∑

i j

Ai j exp(−Bi jri j ) −
Ci j
r6i j

, 3.

where Aij, Bij, and Cij are atom-specific parameters. These parameters can be estimated either
from experimental data representative of organic crystals or from computational data for the spe-
cific molecule(s) of interest. In the former case, transferable parameters for pairwise interactions
between atom types are estimated by fitting to crystalline geometries and sublimation enthalpies.
This estimation requires the selection of a suitable training set, a task made difficult by the scarcity
of data for some atom types and, sometimes, the presence of large and unknown experimental un-
certainties, particularly for sublimation enthalpies (76). Furthermore, the choice of atom types
requires careful consideration. On one hand, transferability is improved by treating atoms of the
same chemical element as different atom types in order to account for environmental dependence
(e.g., hybridization). On the other hand, it is important to keep the number of atom types small
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enough to avoid overparameterization in view of the relatively limited quantity of available exper-
imental data.

Commonly used force field parameterizations based on experimental data include the FIT
(77–82) and W01 (83) potentials. These parameter sets were derived using a model of the lattice
energy that does not account for intramolecular energy (�Eintra = 0) and in which the only electro-
static interactions considered are Coulombic (charge–charge) in nature; the charges were derived
from an electrostatic potential computed at the Hartree-Fock level of theory. Recent efforts have
highlighted the importance of using parameters in Erep/disp that are consistent with the level of the-
ory/basis set and specific functional form (the DMA multipole expansion) used in obtaining Eelec

(with Eind set to zero) (84, 85). Moreover, the common practice of employing combining rules to
evaluate cross interactions between unlike atom types in most parameterizations of the Bucking-
ham potential does not always have a sound physical basis; instead, the fitting of unlike parameters
directly to experimental data has been found to lead to more reliable models (84, 85). A benefit
of fitting to experimental data is that the resulting empirical term in the force field accounts not
only for repulsive/dispersive interactions but also, to some extent, for features of the lattice energy
that are poorly understood or difficult to model, such as electrostatic penetration, charge transfer,
many-body contributions, and even induction (86).

The second strategy for parameterizing the Buckingham potential is to tailor the parameters
to the molecule(s) under study. In this case, a set of crystal structures for the latter is generated
using DFT-D calculations, and the resulting geometries and lattice energies are used to estimate
the potential parameters, thereby accounting more closely for the environmental dependence of
the interatomic interactions. The repulsive/dispersive potential parameters can be estimated si-
multaneously with other potential parameters, such as bond strengths or point charges (22), or
independently in combination with electrostatic contributions derived from isolated-molecule
calculations (87). In either case, a sufficiently large and diverse set of structures needs to be used
in order to ensure that the derived potential is applicable to other crystal structures of the same
system. In contrast, given the high computational cost of DFT-D calculations, it is important to
keep the number of such structures as low as possible.

A problemwith the use of the Buckinghampotential inCSP is that it predicts unphysical behav-
ior at very close ranges. This issue can be addressed by modifying the dispersive interaction using
appropriate damping functions (88). Higher-order dispersion interactions of the forms r−8

i j and
r−10
i j can also be influential, as can three-body interactions modeled through the Axilrod–Teller–
Muto (ATM) equation (89). Such interactions may lead to the stabilization of certain systems,
such as benzene crystals (90). The repulsive part of the interaction can also be modified to ac-
count for anisotropic interactions at short range (72), which is particularly relevant for heavier
atoms. However, although it is relatively straightforward to incorporate such extended potentials
within CSP algorithms, it is usually difficult to fit models that incorporate higher-order dispersion
and anisotropic interactions with transferable force fields because of the significant increase in the
number of parameters and their high degree of correlation (91).

Tailored potentials derived fromSAPT(DFT) calculations have been proposed as an alternative
that circumvents these challenges. Specifically, SAPT(DFT) can be applied to a large number
(hundreds or thousands) of different configurations of pairs of molecules (dimers) at different
relative distances and orientations.The resulting energies can then be used to fit an analytical force
field tailored to the molecule(s) under consideration (92, 93). Alternatively, dispersion coefficients
can be calculated from frequency-dependent polarizabilities obtained via methods such as the
WSM localization scheme (73, 74).

SAPT(DFT)-fitted potentials offer a high level of accuracy for the computation of energy of
noncovalent interactions and have already been applied to CSP for several small organicmolecules
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(72, 91–95), including some submissions in the most recent blind test (13).However, even for rela-
tively small rigid molecules, deriving potentials via SAPT(DFT) methods involves the estimation
of hundreds of parameters from the results of tens of thousands of expensive dimer calculations
(92). Thus, the application of this approach to larger, flexible molecules may be problematic at
present. Repulsive/dispersive parameters derived in a transferable way from experimental data or
fitted to molecule-specific DFT-D calculations seem to be a more practical proposition for sys-
tems of the size and complexity of interest to current CSP investigations.

4.2. Electronic Structure Methods

Electronic structure methods offer a different treatment of molecular interactions based on an en-
tirely QM approach. Instead of partitioning molecular interactions into intra- and intermolecular
contributions, the total energy of the crystal is calculated from atomic positions in the periodic
crystalline environment, naturally taking account of the effect of molecular conformation on the
intermolecular potential and hence the energy. In general, standard electronic structure calcu-
lations are significantly more expensive than their force field counterparts. Nevertheless, some
cheaper alternatives have been proposed for use in CSP.

4.2.1. Periodic density functional theory calculations. Periodic DFT methods are prevalent
in modern material design approaches because they offer a good compromise between accuracy
and cost compared with competing QM methods. Periodic DFT is becoming more routinely
applied in CSP. The number of research groups using periodic DFT calculations in blind test
CSP calculations increased from 2 in 2011 to 12 in 2016, demonstrating the growing popularity
of these methods (13).

Several programs for periodic DFT calculations exist, differing mainly in the basis sets used to
represent the electron density. Plane waves are the most commonly used (96), but atom-centered
Gaussians (97) and natural atomic orbitals (98) have also been implemented in commercial and
academic packages. The success of periodic DFT methods is contingent on an accurate approx-
imation of the exchange-correlation energy based on the electron density of the system. A hier-
archy of exchange-correlation functions (otherwise known as density functionals) was originally
proposed by Perdew & Schmidt (99), and most solid-state programs embed a variety of these,
including local density approximations, generalized gradient approximations (GGAs), and meta-
GGAs, each of which offer various levels of accuracy and computational cost. Hybrid functionals
are also commonly available in these programs, but, at least in the context of plane wave–based
codes, they can typically be used only for single-point energy calculations, even with the aid of
large computational resources.

Unlike post-Hartree-Fock methods, DFT methods do not offer a systematic way to improve
the results to ensure convergence toward the exact solution. In addition, DFT functionals suffer
from self-interaction errors (100), and as a result of their (semi)local nature, long-range disper-
sion interactions are not accounted for. In fact, without some means of incorporating dispersion,
periodic DFTmethods produce largely overestimated crystal energies (i.e., underbound crystals).
Using the Perdew–Burke–Ernzerhof (PBE) functional, average errors of approximately 50% of
the total interaction energy are observed if dispersion corrections are neglected (101). Overall,
periodic DFT methods can be less accurate than their cheaper force field counterparts despite
their much higher cost.

In view of the above deficiencies, significant efforts have been directed toward DFT-D meth-
ods. Klimeš & Michaelides (102) provide an excellent review of the hierarchy of dispersion cor-
rections. In some of the most successful and cost-efficient dispersion corrections currently in use,
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contributions due to dispersion are treated in a classical manner, invoking r−6
i j and higher-order

interaction terms between atom sites. For these interactions to be modeled effectively, the local
atomic environment should be considered in the calculation. In the D3 correction (103), disper-
sion coefficients for the r−6

i j and r−8
i j terms are calculated by scaling the interaction according to

the coordination number of the atom site. More recent developments include the modification
of the D3 correction to take into account a scaling dependent on atomic partial charge (104). In
the exchange dipole moment model (105), Fermi hole moments are used to derive r−6

i j , r
−8
i j , and

r−10
i j terms, while in the Tkatchenko–Scheffler (TS) method, scaled r−6

i j terms are calculated using
Hirshfeld (106) or Hirshfeld-I (107) partitioned electron densities.

Beyond pairwise corrections, dispersion can be included by use of long-range density func-
tions that include nonlocal correlation terms in the energy, in so-called van der Waals density
functionals (102). Grimme et al. (103) also consider the use of three-body interactions through
the ATM equation (89), while Tkatchenko et al. (106) address the treatment of many-body dis-
persion (MBD) interactions by extending the TS scheme with the MBD correction, which has
shown promise in correctly predicting the relative stability of polymorphs (108–111).

4.2.2. Cheap electronic structure methods. The cost associated with standard periodic DFT-
D calculations is often too high for all but the last stages of a CSP study, which involve signifi-
cantly reduced numbers of candidate structures. Therefore, researchers have developed electronic
structure methods that are orders of magnitude cheaper than most periodic DFT methods while
retaining a reasonable level of accuracy.Thesemethods notably includeminimal basis set Hartree-
Fock (HF-3c) (112, 113) and dispersion-corrected density functional tight binding (DFTB-D)
(114, 115). Such approaches hold promise for bridging the gap between electronic structure and
force field methods; with further development, they may find use in intermediate stages of CSP
investigations (116).

4.3. Assessing the Accuracy of Lattice Energy Models for Crystal
Structure Prediction

Several quantities can be used to assess the accuracy of lattice energy models by comparing their
predictions with available experimental evidence. These include the crystalline geometry, the en-
ergy difference between two polymorphs, and the lattice energy (or, often, sublimation energy).
It is generally accepted that geometry is easiest to predict, although periodic DFT-D methods
can occasionally perform worse than force field methods (112, 117). Moreover, the relative ener-
gies of polymorphs are often easier to predict accurately than absolute energies (118), thanks to
cancellation of errors.

In an effort to assess the impact of modeling choices on lattice energy calculations, Reilly &
Tkatchenko (119) used a test set comprising 23 crystal structures to compare the computed lattice
energies with corresponding values derived from experimental sublimation energies. The authors
showed that PBE (120), a GGA functional; TPSS (121), a meta-GGA functional; and others per-
form well when combined with D3 or MBD dispersion corrections, achieving a mean average
deviation (MAD) of the lattice energies in the region of 4 kJ/mol, which is close to the uncer-
tainty of the reference data (119, 122). Improved results could be achieved by considering hybrid
functionals and, within the plane wave basis set formulation, performing single-point evaluations
on (meta-)GGA-optimized structures.Unfortunately, hybrid functionals cannot be routinely used
for structure optimization within plane wave codes because of their high computational cost.

Brandenburg & Grimme (44) developed a different test set (POLY59) in order to investigate
predictions of the relative energies of crystal structures. This test set focused on the five systems

www.annualreviews.org • Crystal Structure Prediction Methods for Organic Molecules 607



considered in the sixth blind test. In addition to the 9 experimentally resolved polymorphs for
these systems, the test set included 10 low-energy structures for each system determined compu-
tationally using a combination of force field (26, 45, 123) and periodic DFT-D calculations for
refinement. The authors found that the PBE-D3 and TPSS-D3 schemes successfully predict the
most stable experimentally resolved polymorph of each system as the one of lowest energy.

Cheaper electronic structure methods, such as HF-3c, result in significantly larger errors of
approximately 7 kJ/mol (112), while DFTB-D is several thousand times faster than standard DFT
techniques but yields a MAD of more than 10 kJ/mol, with particularly poor results obtained for
crystals exhibiting hydrogen bonding. In agreement with this assessment of DFTB, Iuzzolino et al.
(116) observed that the energy rankings produced by DFTB-D for a set of six flexible molecules
are worse than those achieved by some force field methods. However, they demonstrated that the
good reproduction of geometries with DFTBmeans that it may be suitable for producing reliable
starting points for DFT refinement calculations. The use of these cheap DFT methods within a
CSP workflow needs to be investigated further.

While periodic DFT-D methods perform excellently in many CSP applications, some
molecules have proven challenging as a result of the underlying limitations of DFT functionals.
For instance, for the highly polymorphic ROY molecule, one experimental form appears unstable
when modeled using the PBE (120) functional (117), and computed polymorph energies indicate
a ranking of polymorphs that significantly deviates from experimental observations (124).

The X23 test set has also been used (125) to evaluate the performance of a force field model
based on isolated-molecule QM calculations/LAMs, multipole electrostatics, and experimentally
derived repulsive/dispersive potentials. Several competing parameter sets were used for the re-
pulsive/dispersive term. The best parameter set was found to be FIT, with a MAD of less than
10 kJ/mol, similar to that observed with cheap DFT methods (112). Newer parameter sets, such
as that proposed by Gatsiou et al. (85), have yet to be evaluated against the X23 test set. Never-
theless it is possible that, with further development of force field methods, the gap between these
and DFT calculations can be bridged, perhaps by utilizing concepts from the recent success of
classical dispersion corrections in DFT (125).

5. FREE ENERGY EVALUATION FOR CRYSTAL STRUCTURE
PREDICTION

As mentioned above, lattice energy, evaluated at 0 K, is the most commonly used metric for rank-
ing structures generated in CSP studies. However, at finite temperature and pressure, stability is
determined by the Gibbs free energy, which provides a more direct link to practically important
and experimentally measurable properties such as solubility and specific heat capacity.

TheGibbs free energy of a perfect crystal (�G) is defined in relation to the ground-state energy
of an isolated molecule with no thermal or zero-point motion, given by

�G(T ,P) = �U (T ,P) + PV (T ,P) − TS(T ,P). 4.

Here,�U is the difference in internal energy with respect to the isolated-molecule reference state
at given temperature T and pressure P, V is the molar volume, and S is the specific entropy of the
bulk crystal at T and P. The lattice energy, �Ulatt, is equal to �U (0 K, 0 Pa) minus the ZPE.
For the given temperature and pressure, the most stable crystal form corresponds to the global
minimum in the Gibbs free energy, while local minima correspond to metastable structures. The
PV term in Equation 4 can usually be neglected under ambient conditions because of its small
contribution to the overall free energy. In such cases, the Helmholtz free energy is approximately
equal to the Gibbs free energy and can used as the stability ranking criterion.
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Consideration of free energy in CSP studies is not yet widespread because of the often limited
accuracy of the computed free energy values and the high computational cost of obtaining them.
In the following subsections, we review the free energy models that have been used as part of
multistage CSP methodologies (Figure 1).

5.1. Free Energy Calculations with Lattice Dynamics

Lattice dynamics (LD) theory (126, 127) provides a formalism for the description of lattice vibra-
tions within a crystal. Estimates of both the ZPE and thermal contributions to vibrational free
energy, F vib(T ), can be obtained from phonon frequencies, including the effects of both entropy
and thermal energy. Within the LD framework, the Gibbs free energy of a crystal is given by

�G(T ,P) = �U latt + F vib(T ) + PV , 5.

where F vib(T ) quantifies the ZPE and thermal contributions to free energy.

5.1.1. Lattice dynamics. The simplest form of LD is the one based on the harmonic approxi-
mation (HA) (126), which approximates the potential energy of the crystal by using a second-order
series expansion around an equilibrium position (local minimum) of the lattice energy hypersur-
face. Under the assumption that the atoms/molecules in the crystal oscillate harmonically around
their equilibrium positions, vibrational (phonon) frequencies can be calculated and used in an an-
alytical expression for the free energy of the crystal. The equilibrium geometry and volume are
obtained from a lattice energy minimization and are fixed at all temperatures. Because of this re-
striction, HA is limited to the calculation of properties at constant volume, such as the isochoric
heat capacity (CV). Moreover, HA performs well at low temperatures but becomes less accurate
at elevated temperatures as thermal expansion and anharmonic vibrational contributions become
more significant.

The quasi-harmonic approximation (QHA) (128–131) is an extension of HA that can account
for either isotropic or anisotropic thermal expansion (132) and facilitates the evaluation of proper-
ties such as isobaric heat capacity (CP).The free energy of each structure is obtained byminimizing
�G(T, P), as defined in Equation 5, with respect to the crystal geometry. QHA can be more reli-
able than HA for determining relative stability and evaluating thermodynamic properties, but it
comes with a significant increase in cost, as multiple HA calculations have to be performed for
each unit cell volume considered.

Another extension of LD is the anharmonic approximation (AA), the aim of which is to model
anharmonic contributions to the free energy (110, 111, 133).Most commonly, contributions from
higher-order terms in the expansion series are used to capture the nonparabolic shape of the po-
tential well.

5.1.2. Application of lattice dynamics in crystal structure prediction. LD is by far the most
commonly used approach for taking account of free energy in CSP studies. Although AA can pro-
vide more accurate results, HA and QHA are usually preferred because of their relative simplicity
and lower computational cost (21, 111, 134).

In the most recent blind test (13), 6 of 25 participating groups employed LD as part of estab-
lishing the stability ranking of low-energy crystal structures. The number of structures examined
in this context depended strongly on the approximations and cost of the underlying lattice energy
model and free energy method used. For example, using rigid-body force fields, Nyman & Day
(14, 131) applied HA to a total of 992 structures by using the coprime linear splitting method.
In contrast, groups relying on DFT or HF-3c were typically able to study only a few structures.

www.annualreviews.org • Crystal Structure Prediction Methods for Organic Molecules 609



The Pickard group (13) accounted for the effects of anharmonicity by utilizing vibrational self-
consistent field theory (133) for the evaluation of ZPE; they reported the application of this ap-
proach to only a single structure, possibly because of the very high computational cost.

In general, the use of the Helmholtz free energy in the sixth blind test led to relative rankings
of the experimental polymorphs that were more accurate than rankings based on lattice energy.
For molecules XXII, XXV, and XXVI, the experimental structures were predicted as the global
minima in free energy by three of the groups using HA. Form B of molecule XXIII was predicted
as the global minimum by Brandenburg & Grimme using the HA free energy at 0 K (13).

Beyond the results reported in the context of the sixth blind test, Nyman (134) refined 100
structures of chloridazon by using the coprime linear splitting method and rigid-body force fields.
Vasileiadis (135) used an atomistic force field to refine 200 structures of tetracyanoethylene and
imidazole. In a recent study (111), the target molecules of the sixth blind test were revisited and
vibrational free energies were calculated using PBE+TS phonon frequencies. In all cases other
than the polymorphic target XXIII, the abovementioned free energies were employed for four
to eight structures per molecule, and the experimental forms were found to be the ones with the
lowest free energy. For target XXIII, HA was applied to 46 structures, while QHA and AA were
employed for 9. Interestingly,QHA andAA predicted that an as-yet-undiscovered form is themost
stable. Throughout these studies, free energy refinement generally led to an improved ranking of
the experimental form(s).

5.1.3. The importance of vibrational free energy in crystal structure prediction. Re-
searchers have attempted to quantify the contributions of ZPE and temperature to the enthalpy
and entropy of polymorphs. Nyman &Day (14) have conducted the largest study to date of rigid-
body vibrational free energies. They found that in 9% of the 601 polymorphic pairs examined,
the inclusion of these terms caused a reranking of polymorphic stability between 0 K and room
temperature, indicating an enantiotropic phase transition. The study also confirmed that the dif-
ferences in ZPE and isochoric heat capacities between polymorphs are small, and highlighted the
role of entropy as the main contribution to free energy. In a later study (131), the Gibbs free ener-
gies of 864 crystal structures (475 polymorphic pairs) were evaluated between 0 K and the melting
point using bothHA andQHA.Approximately 20%of the polymorphic pairs were reranked, again
demonstrating the importance of including temperature effects on polymorphic stability.

Overall, the inclusion of ZPE and thermal contributions is an important consideration if we
are to bridge the gap between computed and experimental crystal structure landscapes. To this
end, free energy contributions have been incorporated within benchmark tests, such as POLY59
(44) and X23 (119).

5.2. Free Energy Calculations with Molecular Simulations

Molecular dynamics (MD) allows for ergodic sampling of various thermodynamic ensembles
(136); it provides a natural method for capturing the effects of anharmonicity, such as thermal
expansion or temperature-dependent frequencies, on the free energy at finite temperature and
pressure (137). The reliability of MD simulations is, however, inherently restricted by the accu-
racy of the force field (109). Furthermore, the presence of free energy barriers and the necessarily
short simulation timescales inhibit the study of rare events such as solid–solid transitions (136).
To overcome these limitations, several advanced MD methods have been applied to polymorphic
stability studies, including adiabatic free energy dynamics (138, 139), path-integral MD (140),
orthogonal space random walk (141), and multistate Bennett acceptance ratio (MBAR) (137, 142).

To date, MD simulations have rarely been employed as part of a CSP study. In the sixth
blind test (13), only the Tuckerman group carried out MD calculations. These authors used a
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SAPT(DFT)-generated force field to perform a free energy ranking of 30 structures for molecule
XXII by using crystal–adiabatic free energy dynamics (138). They found the experimental struc-
ture to be the fourth-lowest-energy structure among the set of 30.

QHA LD calculations were found to be in good agreement with free energies obtained by
analyzing the velocity autocorrelation for imidazole and 5-azauracil (143). A comparison of free
energies obtained with QHA LD and MBAR has also been conducted for a set of polymorphic
molecules (137) using point charges. For rigidmolecules up to room temperature, these twometh-
ods yield free energy values that are in reasonable agreement; however, the differences in predicted
values are larger for flexible and/or disorderedmolecules at elevated temperatures, especially close
to the melting point.

Metadynamics (144, 145) is a powerful enhanced sampling method based on collective vari-
ables that facilitates the study of rare events, which may be useful to identify transitions between
forms.The key challenge in the case of CSP is the identification of appropriate collective variables.
Metadynamics has been employed to refine the candidate structures generated by CSP searches
for two molecules, 5-fluorouracil (146) and an industrial pigment (PR179) (147). In the case of
5-fluorouracil, 60 free energy minima derived from lattice energy minimization at 0 K and 0 Pa
were investigated usingmetadynamics.The thermal fluctuations at ambient conditions led to 25%
fewer free energy minima, indicating the presence of shallow minima in the lattice energy land-
scape. Form II was predicted as the most stable structure at 0 K and 0 Pa and did not undergo a
phase transition during the metadynamics simulation. In contrast, the most stable experimental
structure, form I, transformed into a disordered structure after a few metadynamics steps. In the
case of PR179, 18 candidate structures generated from CSP at 0 K and 0 Pa were used as initial
configurations for metadynamics simulations. The most stable form (phase I) was predicted as the
global minimum in both the lattice energy and free energy landscapes. The study (147) concluded
that another predicted form lies in a deep free energy minimum, making it a plausible metastable
polymorph, although no experimental evidence for this polymorph has yet been found.

5.3. Disorder in Molecular Crystals

In addition to the effects of vibrational motion on free energy, a key consideration is disorder in
crystals, which occurs in approximately a quarter of all structures in the CSD (148). Disorder can
add a considerable configurational entropy contribution to crystalline stability as a result of an
exponential increase in the number of accessible microstates in the ensemble of configurations.
Distinct static structures that are generated as part of a CSP study can belong to the same ensem-
ble of configurations, often leading to significant stabilization of seemingly metastable structures.
However, modeling and predicting disorder are challenging, even with experimental guidance;
therefore, it has been difficult to incorporate this phenomenon within CSP methods.

Both dynamic and static disorder were investigated for dimethylsulfoxide:carbamazepine sol-
vates (149) using static models of disorder and MD simulations in a combined experimental and
CSP study. This study found that static disorder is dominant at lower temperatures whereas dy-
namic disorder becomes more dominant above room temperature.

A suitable technique for modeling substitutional and orientational static disorder is the
symmetry-adapted ensemble technique (SAET) (143). The importance of configurational free
energy in disordered systems has been demonstrated through studies of several organic molecular
crystals, such as caffeine (150), eniluracil, and dichloro/dibromobenzene (151). In CSP studies,
SAET has also been applied alongside experiments for loratadine (152) and gandotinib (153). For
loratadine (152), a CSP study using the GRACE program resulted in the prediction of ordered
form II as the global lattice energy minimum, in contrast with experimental measurements that
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indicated form I to be the most stable structure. Consideration of isolated-site disorder analysis
and SAET led to the prediction of disordered form I as the energetically most favorable. The
appearance of the disordered form II was attributed to nonequilibrium effects (frozen-in crystal-
lization). For gandotinib (153), the experimental study revealed a polymorph-rich landscape. The
CSP study on neat polymorphs predicted an undiscovered form to be the lowest lattice energy
structure. Form I matched a highly populated family of similar structures, whereas form II was
not found in the CSP search.Consideration of vibrational free energies, at the PBE(0)-MBD+Fvib

level, and SAET demonstrated that the structure predicted to be the most stable is not consid-
erably more stable than form I. The case of gandotinib highlights the importance of considering
configurational free energy in disordered systems, and illustrates some of the continuing compu-
tational and experimental challenges in the exploration of solid-form landscapes.

6. BUILDING AN EFFECTIVE CRYSTAL STRUCTURE PREDICTION
METHODOLOGY

Most current systematic approaches to CSP for organic molecules are built around the overall
scheme presented in Figure 1 by combining selected methods among those discussed in Sec-
tions 3–5. Table 1 lists several leading programs designed to generate exhaustive lists of candi-
date structures at the first stage of the CSP methodology.With the exception of XtalPi’s recently
developed approach (23), all of these programs were applied with various degrees of success in the
most recent blind test (13). As indicated in the table, the distinguishing characteristics of these
programs are primarily (a) the search method used to find low-energy structures, (b) the type of
energymodel used to construct the energy landscape, and (c) the way in whichmolecular flexibility
is incorporated into the search.

As shown in Table 1, each of the search algorithms discussed in Section 3 is employed in at
least one code. The computational cost of these methods tends to be very system dependent (e.g.,

Table 1 Existing programs used in the candidate generation stage of crystal structure prediction for organic
molecules in recent studies

Candidate generation
program

Search
method Energy model Handling of molecular flexibility

CrystalPredictor I (24, 26) QR Isolated-molecule QM Selected torsions (potentially partitioned
in semi-independent torsion groups)Restricted Hermite interpolants

Atomic/off-atom charges
Buckingham potential

CrystalPredictor II (49, 55, 56) QR Isolated-molecule QM Selected torsions (all other molecular
conformation variables adjusted via
LAMs)

LAMs
Atomic charges
Buckingham potential

GLEE (27)/DMACRYS (123) QR Isolated-molecule QM Rigid searches for selected conformers
Distributed multipoles
Buckingham potential

GRACE (22) MC TMFF (22) All variables
Genarris (154)/GAtor (155) EA Periodic DFT-D [FHI-aims (98)] All variables
XtalPi (23) PSO/MC Tailored FF (23) All variables

Abbreviations: CSP, crystal structure prediction; DFT-D, dispersion-corrected density functional theory; EA, evolutionary algorithm; FF, force field; LAM,
local approximate model; MC, Monte Carlo; QM, quantum mechanical; QR, quasi-random (Sobol’) search; PSO, particle swarm optimization; TMFF,
tailor-made force field.
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the degree of flexibility or the value of Z′); the main distinguishing characteristics are the speed of
convergence and the reliability with which all relevant structures are sampled. Through the use
of the CrystalPredictor I and II programs, which utilize quasi-random search, 105–107 local mini-
mizations were performed for each system in the sixth blind test. For the GRACE program,which
makes use of Monte Carlo parallel tempering, of the order of >107 trials or energy evaluations
were carried out for flexible molecules in the sixth blind test, as discussed in the supplementary
information provided in Reference 13.The quasi-random search used in GLEE has been found to
reach convergence with respect to the number of unique structures generated within a few thou-
sand minimizations per space group (27) for a rigid search. The XtalPi methodology employs
two complementary search techniques—a Monte Carlo method that aims to provide a reliable
coverage of the landscape and a particle swarm algorithm with fast, but potentially premature,
convergence—in an attempt to ensure that polymorphs are not missed due to the biases of one
particular method (23). Publications available in the open literature on more recent approaches,
such as Genarris/GAtor and XtalPi, do not yet provide detailed information on how many struc-
ture calculations are required for convergence of the candidate generation.

The energy models used in candidate generation are predominantly force field methods, as
described in Section 4.This is because, once constructed, energy evaluations with these force fields
are often cheap enough to enable extensive exploration of the lattice energy landscape. A notable
exception is GAtor (155), which relies on DFT-D calculations with low numerical tolerances to
evaluate and minimize the lattice energy. Notwithstanding the use of loose numerical tolerances,
the cost of these calculations typically far exceeds that of their force field counterparts, which may
cause difficulties when attempting to undertake a global search.

The global search algorithms also differ in their treatment of conformational flexibility. Most
modern codes handle flexibility to some extent by including flexible torsions as optimization vari-
ables. This is the case for CrystalPredictor, GRACE, and XtalPi. In GLEE/DMACRYS, however,
all conformational variables are fixed during the local search, and instead one relies on multiple
fixed-conformer searches to explore the extent of flexibility. This is less computationally demand-
ing and often effective, but it can sometimes cause some conformers to be erroneously dismissed
as a result of their large intramolecular energy, particularly for systems containing intramolecular
hydrogen bonds (19). In the case of GAtor, flexibility is included by default as a result of the use of
a DFT energy model. Nevertheless, the extent of the exploration of the conformational space is
dependent on the pool of structures used to initialize the evolutionary algorithm; the pool is gen-
erated using Genarris (154), which relies on rigid conformer selection. Furthermore, in its current
state, GAtor is designed primarily to investigate molecules that either are rigid or exhibit a mild
degree of flexibility (e.g., target XXII of the sixth blind test, which may incur some bending in its
central six-membered ring) (119, 155).

Once a list of initial candidate structures has been generated, the multistage CSP method-
ology proceeds to one or more refinement stages. Table 2 lists some of the currently available
refinement programs. DMACRYS (123) uses a force field with multipole analysis to minimize
the intermolecular component of the lattice energy with respect to the unit cell variables. The
molecular conformation is kept fixed at this stage, allowing many structures to be rapidly evalu-
ated. CrystalOptimizer (45) is a force field–based program that relies on a combination of accu-
rate intramolecular energy and semiempirical intermolecular interactions. The use of LAMs in
CrystalOptimizer, and the reduction of the number of calculations through the storage of LAMs
in database, means that the program can be used to refine on the order of 1,000–2,000 structures
within much more modest computational times than periodic DFT.

Most other refinement codes are general periodic DFT packages, such as VASP (96),
CRYSTAL (97), and FHI-aims (98). These packages can both optimize crystal geometries and
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Table 2 Existing programs used in refinement stages of crystal structure prediction for
organic molecules

Refinement stages Energy model type Handling of molecular flexibility
DMACRYS (123) Distributed multipoles Rigid molecules only

Buckingham potential
CrystalOptimizer (45) Isolated-molecule QM Selected torsions and bond angles and lengths

(all other molecular conformation variables
adjusted via LAMs)

LAMs
Distributed multipoles
Buckingham potential

VASP (96) Periodic DFT-D All variables
FHI-aims (98) Periodic DFT-D All variables
CRYSTAL (97) Periodic DFT-D/HF-3c All variables
DFTB+ (156) Periodic DFTB3-D All variables

Abbreviations: DFT-D, dispersion-corrected density functional theory; DFTB, dispersion-corrected density functional
tight binding; HF, Hartree-Fock; LAMs, local approximate models; QM, quantum mechanical.

perform free energy calculations. The use of a DFT package can impose quite strict limits on
the number of structures that can be refined at this level; the balance between cost and reliability
is often adjusted through the selection of numerical tolerances and the choice of functional. For
example, in the sixth blind test (13), the Neumann group considered ∼500 structures per system
using loose numerical tolerances, but only 25 structures with tighter tolerances. More recently,
larger numbers of DFT optimizations (up to ∼3,000) have been undertaken in CSP investigations
through the large-scale cloud-based implementation of XtalPi (23).Cheaper QM approaches such
as HF-3c (112, 113) and DFTB-D (114, 115) are available in CRYSTAL and DFTB+ (156), re-
spectively, and were used by the Grimme group in the sixth blind test (13).

Overall, CSP remains in a state of significant evolution. A variety of methodologies are still
being explored in the literature, differing, for example, in the energy models used at each stage
of the workflow and sometimes in the workflow structure itself. For instance, single-point energy
calculations have been employed as an additional intermediate refinement step (135) or at the
final stage in a CSP investigation (157). Also, sophisticated DFT hierarchies have been used to
calculate both lattice and free energy contributions (13, 110). In contrast, the recent emergence of
commercial software codes such as GRACE andXtalPi may be an indication that, notwithstanding
the continuing developments in research, the technology may soon be able to yield commercially
valuable results in the hands of sufficiently experienced industrial practitioners.

7. PERSPECTIVES

The emergence of systematic CSP methods has been driven by a combination of scientific curios-
ity, industrial need and the building of a community around the series of blind tests. Significant
progress has been achieved in recent years (18, 19), with a notable increase in the size and com-
plexity of molecules that can be studied. With rigid molecules containing more than 100 atoms
(158) and flexible molecules with 10 flexible torsions (6) now within the scope of the available
techniques, we have now reached the point where many pharmaceutically relevant molecules can
be studied with a reasonable degree of confidence, opening the door to increasing use in industry.

At the heart of this progress has been the emergence of general CSPmethodologies that can be
applied to a wide range of systems without relying on substantial expert insight or intuition regard-
ing the particular system under investigation. Most of the approaches that have been successful
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in practice share a common multistage workflow consisting of an initial generation of candidate
structures followed by successive refinements of an energy landscape. In this review, we have at-
tempted to identify, compare, and contrast the different methods that have been used at each stage
of this workflow.We have also considered the ways in which these individual methods have been
combined to produce software codes for practical use. We hope that this analysis will stimulate
further investigation into more efficient and effective codes.

On a more detailed level, it is clear that the initial candidate generation step is fundamental
in the success of any CSP methodology: If a practically relevant crystal structure is missed at this
stage, it will not be identified at any later one. Missing a structure may be the result of either
failing to identify it, due to an incomplete exploration of the energy landscape, or identifying it
with an energy that is so high that it cannot proceed to the subsequent refinement stages. Thus,
advances in search methodologies and the incorporation of increasingly accurate energy models
at the global search stage have been, and will continue to be, particularly important in this context.
As more powerful computational resources become available, we should be able to perform more
extensive searches while simultaneously increasing the sophistication of the energy models used at
this initial stage (e.g., via improved force fields or cheapDFTmethods). A systematic evaluation of
the efficacy of different search methods toward the complete exploration of the energy landscape
could also be very useful in this context.

At the other end of themultistage CSPmethodologies considered in this review, the final struc-
ture assessment stage is equally important. Practical experience with currently available method-
ologies indicates that, even when they succeed in identifying all low-energy structures with a rea-
sonable prediction of their geometries, the relative stability rankings of these structures are often
incorrect. Therefore, it is important to perform a final assessment of these structures by using
the most accurate energy models that are practically affordable. Such an assessment may take the
form of a single-point evaluation of the energy of each structure followed by a final reranking. If
computational cost permits, a better option would be a final refinement of each structure using the
accurate energy model in the context of either an energy reminimization calculation or an MD
simulation (93).Overall, this final step will determine a corrected structure geometry as well as the
corresponding energy.Moreover, it is possible that refinements of two or more structures will pro-
duce the same final structure, thereby resulting in a simplification of the polymorphic landscape.

For this reason, it may be worth highlighting some promising advances on the horizon in
the area of highly accurate energy models (159), even if their computational cost is currently
prohibitive for use in CSP. Post-Hartree-Fock incremental fragmentation methods have been
applied to systems such as benzene (160, 161), para-diiodobenzene (162), urea, and hexamine (163).
Other approaches, such as the hybrid many-body interaction fragmentation model, have shown
promise with estimated accuracies of approximately 1–2 kJ/mol (164, 165) and have also been
used in the prediction of the solid-state phase diagram of methanol (166). Another class of highly
accurate models that are also applicable to solid-state systems consists of those based on quantum
MonteCarlo approaches (167), in particular fixed-node diffusiveMonteCarlo (168).Due to recent
reductions in computational cost, diffusive Monte Carlo has been applied to systems of the size of
naphthalene and anthracene by use of single-point calculations, but it has the potential to tackle
much larger systems (168). Uncertainties are estimated to be approximately 1 kJ/mol (169).

Beyond accurate lattice energy computations, entropic and ZPE contributions are important in
determining polymorph stability (14, 131). In addition, free energies of the crystalline phase are a
prerequisite for establishing a link between crystal structure and practically important properties
including phase diagrams of pure substances (170), solid–solid transitions, solubility (141), and
specific heat capacities (14). Free energy considerations, as well as the characterization of the
effects of disorder, will be the focus of significant attention in CSP over the next decade.
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Overall, it is encouraging that much greater accuracy can now be achieved in the context of
single-structure evaluations of lattice or free energy. However, continued creativity in models,
algorithms, and the use of high-performance computational resources will be required to translate
this progress into significant advances in CSP, which requires such accurate energy predictions
for very large numbers of crystal structures. A key consideration in this context is the ability to
derive surrogate computationally efficient models that can match the predictions of much more
expensive ones for the system of interest over a restricted range of their inputs. Additionally,
the deployment of such models within mathematical optimization frameworks may require that
they possess properties such as continuity and differentiability, and that their computation be
free of numerical noise. The development of surrogate models, such as LAMs and TMFFs
derived from isolated-molecule QMmodels or periodic crystal DFT-D models, has been a major
enabling factor extending CSP to systems of practical significance over the past decade. The
application of systematic machine learning techniques may also provide new impetus in this area
(171).

Finally, we note that the recent theoretical developments in CSP have been complemented by
an increasing quantity of accessible experimental data, with the CSD now containing more than
one million crystal structures (16, 148). As illustrated by the blind tests, the ability to compare
the final results of CSP studies with accurate experimental information is essential for assessing
the current state of CSP technology and motivating further research. However, to date there has
been relatively little emphasis on systematic techniques for integrating experimental information
within the CSP workflow itself. As discussed in Section 4.1.2.3, one area that has received some
attention in this context is that of the estimation of parameters for repulsive/dispersive potentials
for atom–atom interactions from experimental data, typically taken from the CSD.However, even
in that case, the emphasis has been on the generation of tables of transferable parameter values
that can then be used universally across all CSP studies with no further modification.

Arguably, what is needed are more nuanced techniques which are capable of taking account
of experimental information that is more directly relevant to the specific system under consid-
eration, for instance, relating to already resolved solid forms of the same or similar molecules.
Because such system-specific information is unlikely to be available in sufficient amounts to allow
the reliable estimation of all relevant parameters, it may need to be combined within a Bayesian
estimation framework with prior information in the form of transferable parameter values. The
development of reliable and efficient algorithms and codes that could be routinely used for the es-
timation of energymodel parameters from large numbers of experimental crystal structures would
be an important advance in this context.
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