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Abstract

This review article discusses the solution of population balance equations,
for the simulation of disperse multiphase systems, tightly coupled with
computational fluid dynamics. Although several methods are discussed, the
focus is on quadrature-based moment methods (QBMMs) with particular
attention to the quadrature method of moments, the conditional quadrature
method of moments, and the direct quadrature method of moments. The
relationship between the population balance equation, in its generalized
form, and the Euler-Euler multiphase flow models, notably the two-fluid
model, is thoroughly discussed. Then the closure problem and the use of
Gaussian quadratures to overcome it are analyzed. The review concludes
with the presentation of numerical issues and guidelines for users of these
modeling approaches.
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1. INTRODUCTION

Computational fluid dynamics (CFD) for simulation of disperse multiphase systems has gained
considerable importance in the last two decades because of its widespread application in chemical,
biochemical, pharmaceutical, and aerospace industries.Dispersemultiphase systems are formed by
separate entities, i.e., particles/crystals, drops, and bubbles, being dispersed in a continuous phase.
The characteristic properties of the disperse phase elements change in space and time due to
numerous particulate processes, such as collisions, aggregation/coalescence, breakage, nucleation,
dissolution/evaporation, and mass and heat transfer. As a result, disperse systems often feature dis-
tributions of elements with different properties, a situation identified as polydispersity. A compre-
hensive simulation of disperse systems must take into account polydispersity and therefore must
include the description of the above-mentioned processes. The most common computational ap-
proaches employed in this field can be categorized in three main groups: fully resolved interface-
tracking models, Lagrangian point-particle models, and Eulerian-Eulerian models. This review
focuses on the last group of methods, which has a simpler level of detail than the other two groups
but is suitable for CFD simulation of multiphase systems, particularly those of industrial scale.

Eulerian-Eulerian methods in their original formulation (in the 1990s) required the specifica-
tion of the mean size of disperse phase elements. Setting this number fixed and constant, it was
simply impossible to account for polydispersity and for the effect of particulate processes. It was
only in the 2000s that their coupling with population balance equations (PBEs) was realized and
the relationship between PBEs and Eulerian-Eulerian models was investigated and clarified. This
review reports a critical discussion of these issues. In particular, it explains how the solution of the
PBE provides a detailed level of description of the disperse phase, which is not accessible from
CFD models alone, leading to a more accurate simulation of the entire system. To this purpose, a
suitable method for the solution of the PBE should be selected, considering several factors such as
the nature of the system under study, the required level of description, and the available compu-
tational resources. The current review covers several methods for the solution of the PBE, which
belong to three main categories: the class or sectional method (CM), the method of moments
(MOM), and the quadrature-based moment methods (QBMMs). Further, a separate section ad-
dresses the implementation of PBEs in CFD and discusses some numerical issues concerning the
stability of simulations. The review concludes by discussing the most popular implementations in
commercial and open-source CFD-PBE codes.

2. GOVERNING EQUATIONS

2.1. Population Balance Equation

The PBE is a continuity statement that governs the evolution of a number density function (NDF),
which is postulated to exist for a population of disperse phase elements. The NDF defines the
distribution of the disperse phase elements over the properties of interest at any time instant and
physical position.These properties, called internal coordinates, characterize the disperse elements
and can include velocity, size, composition, temperature, etc. The choice of the internal coordi-
nates, denoted here by the vector ξ, is system dependent. The state of a generic element q at time t
can be determined by its position vector x(q) and internal coordinates ξ(q), jointly called the element
state vector (x(q), ξ(q) ). The state vector of a given element specifies the location of that element
in the so-called phase-space, which is a high-dimensional space consisting of the physical domain
of the system �x and the domain of the internal coordinates �ξ . Given an arbitrary point in the
phase-space (x, ξ), the NDF n(t, x, ξ) is defined as the expected number density of elements in the
infinitesimal volume dx dξ around that point at time t (1).
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First-order point
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process: a discrete
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Zero-order point
process: a discrete
event that does not
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At first, let the velocity of the disperse phase elements be known and excluded from the internal
coordinate vector. Then the PBE takes the following form (2):

∂tn+ ∂x · (Udn) + ∂ξ · (Gn) = S, 1.

whereUd(ξ) is the velocity of the disperse phase elements andG(ξ) is the rate of change of the in-
ternal coordinates due to continuous molecular processes, such as mass and heat transfer, growth
and dissolution of elements, and chemical reactions.The source term S (ξ) describes the discontin-
uous changes in the internal coordinates of the elements due to discrete events,which are generally
categorized as second-order, first-order, and zero-order point processes.

The mathematical form of S can be illustrated by the following example. If the only inter-
nal coordinate is the mass (or the volume) of the disperse phase elements that undergo aggre-
gation/coalescence and breakage, then the source term becomes (space and time dependency is
omitted for brevity) (1):

S (ξ )= 1
2

∫ ξ

0
a(ξ − ξ ′, ξ ) n(ξ − ξ ′ ) n(ξ ) dξ ′ − n(ξ )

∫ ∞

0
a(ξ , ξ ′ ) n(ξ ′ ) dξ ′

+
∫ ∞

ξ

b(ξ ′ )β (ξ |ξ ′ ) n(ξ ′ ) dξ ′ − b(ξ ) n(ξ ), 2.

where a(ξ , ξ ′) denotes the rate of aggregation/coalescence between pairs of elements whose inter-
nal coordinates are equal to ξ and ξ ′ (i.e., aggregation kernel) and b(ξ ) is the rate of breakage of
elements whose internal coordinate is equal to ξ (i.e., breakage kernel). In addition, β(ξ |ξ ′) is the
so-called daughter distribution and statistically defines the number of daughter elements whose
internal coordinate is equal to ξ , formed due to the breakage of an element whose internal coor-
dinate is ξ ′. On the right-hand side of Equation 2, the first and third terms describe the birth of
new elements due to coalescence and breakage, respectively, whereas the second and fourth terms
take into account the death of elements due to coalescence and breakage, respectively.

Equation 1 is a high-dimensional transport (or kinetic) equation that describes the evolution of
the NDF not only in time and physical space but also in the domain of internal coordinates. The
velocity of the disperse phase in Equation 1 (Ud) is assumed to be a known function of time, spatial
position, and internal coordinates (ξ). In addition, the flow fields of the continuous phase, e.g.,
velocity (Uc), are generally required by the closure relations for the description of both continuous
and discontinuous processes, i.e.,G and S. For this purpose, the velocity of both phases (Ud and
Uc) can be obtained by adopting an Eulerian CFD approach (see Section 2.3).

The velocity of the disperse phase elements (u) must be included within the internal coordinate
vector when different elements (with or without the same properties) located at the same position
x and at the time instant t move with different velocities. In this case, the NDF f (t, x, ξ,u) is
defined as the expected number density of elements in the infinitesimal volume dx dξ du around
the arbitrary point (x, ξ,u) at time t. The generalization of Equation 1 to include velocity as an
internal coordinate leads to the following generalized population balance equation (GPBE) (2):

∂t f + ∂x · (u f ) + ∂ξ · (G f ) + ∂u · (A f ) = S. 3.

In Equation 3,A(ξ,u) is the acceleration of the elements due to external forces, e.g., forces exerted
from the continuous phase on the elements. The source term S (ξ,u) is similar to that in the PBE
except that it also describes the discontinuous change in the velocity of the elements due to discrete
events (e.g., collisions).
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18μc ) to the
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It is noteworthy that Equation 3 is closely related to Equation 1. In fact, as highlighted in some
specific applications (3–8), the GPBE can be simplified by presuming a specific form for the NDF,
f (t, x, ξ,u) = n(t, x, ξ) δ(u − 〈u|ξ〉),which is called themonokinetic assumption.This is equivalent
to assuming that the elements with the same internal coordinates move with the same velocity [i.e.,
the mean velocity conditioned on the internal coordinates 〈u|ξ〉 (3)]. Clearly this mean conditional
velocity, defined as 〈u|ξ〉 = ∫

u f du / n(t, x, ξ), is identical toUd(ξ), where n(t, x, ξ) = ∫
f du is the

marginal NDF.The conditional velocity 〈u|ξ〉 can be calculated in different ways, by assuming for
example a continuous parametric functional defined over the space of a chosen internal coordinate
(2), or can be obtained by adopting Eulerian CFD models explained in Section 2.3.

2.2. Generalized Population Balance Equations in Turbulent Flow

In turbulent flows, in which turbulence is caused by instabilities in the continuous phase, the
velocity of the continuous phase Uc(t, x) is a random vector field characterized by fluctuations
that result in fluctuations of the NDF defined previously. The direct solution of the GPBE/PBE,
which resolves all the relevant length and time scales, is computationally expensive, and cheaper
solutions are often sought. One alternative is to define a Reynolds-averaged NDF 〈 f 〉(t, x, ξ,u)
over an infinitely large number of realizations of the continuous phase velocity Uc (2) and derive
the following equation:

∂t〈 f 〉 + ∂x · (u〈 f 〉) + ∂ξ · (〈G f 〉) + ∂u · (〈A f 〉) = 〈S〉, 4.

leading to a Reynolds-averaged Navier-Stokes multiphase formulation. The terms 〈G f 〉, 〈A f 〉,
and 〈S〉 are generally not closed because the relations describing the continuous and discontin-
uous events depend on the continuous phase velocity, Uc. The above-mentioned terms are usu-
ally expressed as the summation of a mean field contribution and an additional contribution due
to fluctuations, the latter of which needs a closure approximation. For example, Drew (9) used
a kinetic equation describing the evolution of particles in turbulent flows to derive the Eulerian
momentum balance equation, which includes a drag force due to the mean fields and an additional
contribution, called turbulent dispersion force, due to turbulent fluctuations. It is noteworthy that
spatial filtering (10) and large eddy simulation based on self-conditioned NDF (11) can be also
used to derive the GPBE of the form of Equation 4.

2.3. Eulerian Computational Fluid Dynamics

This section describes three main Eulerian approaches for CFD simulation of multiphase flows.
Generally, the applicability of CFD approaches depends on the multiphase properties, particularly
those of the disperse phase. As shown in Figure 1, two key factors in selection of appropriate
method are Stokes number and volume fraction of disperse phase elements. Another important
factor is polydispersity index, as illustrated by Figure 2.

2.3.1. Dusty gas model. When disperse phase elements are sufficiently small, i.e., having a very
small Stokes number, their trajectories are perfectly dictated by the velocity field of the contin-
uous phase, Uc (12). Thus, it is valid to assume that the elements move with a velocity equal to
Uc. In such cases, the multiphase system is represented with one single continuous phase, whose
properties, e.g., density and viscosity, are the same as the continuous phase for dilute systems, or
otherwise are modified to consider the presence of disperse phase elements.
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Figure 1

Applicability of the Eulerian computational fluid dynamics models for the simulation of multiphase flows.
When the disperse elements’ Stokes number is very small, the elements move with the same velocity of the
continuous phase (dusty gas model). As the Stokes number increases, the elements’ velocity may differ from
that of the continuous phase due to their inertia, and it can be predicted by adopting mixture, two-fluid, or
multifluid models. For the disperse elements with a large Stokes number, the equilibrium assumption of
Eulerian–Eulerian methods is not generally valid, and adopting the generalized population balance equation
(GPBE) is necessary to capture nonequilibrium phenomena. Last, in the case of dense flows,
element–element interactions are significant and can be described by the GPBE.

2.3.2. Mixture model. As the Stokes number of elements increases, the elements move with
a velocity that may differ from the one of the continuous phase. Under equilibrium assumption,
the relative velocity between the disperse elements and the continuous phase can be expressed as
an algebraic relation obtained from a force balance on the elements (usually drag and buoyancy
forces). When the disperse system is dilute enough, one momentum balance equation is solved
for the velocity of the continuous phase, and then the algebraic relation is used to calculate the
velocity of the disperse phase. This model is referred to as the equilibrium Eulerian approach (13).
Instead, when the number density of elements is higher, the disperse system is represented as one

ξ

n(
ξ)

Monodisperse

Polydispersity index

ξ

Low polydisperse

ξ

High polydisperse

Figure 2

The polydispersity index indicates how widely the disperse phase elements are distributed over the space of
the internal coordinate. The light blue arrows can be thought of as the nodes of the quadrature that
approximates the underlying number density functions (solid blue line) or as the number of element groups
required to consider the polydispersity appropriately.

www.annualreviews.org • Solution of PBEs Coupled with CFD 343



CH11CH15_Marchisio ARjats.cls May 19, 2020 9:44

GPBE

PBE

Moment transport equations

Boltzmann equation

Eulerian hydrodynamic description
Two-fluid model

Integrate out ξ Integrate out u +
monokinetic assumption

Integrate out ξ +
moment closure

Integrate out u + closure
for velocity fluctuations

Figure 3

The relationship between the generalized population balance equation (GPBE), population balance equation
(PBE), moments, and Eulerian computational fluid dynamics models.

mixture fluid, for which a momentum balance equation is solved. This balance equation requires
the knowledge of the relative velocities, which are specified by using the algebraic relation. This
approach is known as the mixture model (MM) (14, 15). An advantage of the MM is the possibility
of taking into account the polydispersity of multiphase systems by dividing the disperse elements
into groups based on an internal coordinate, e.g., size of elements. Then, the relative velocity
between each group (fluid) and the continuous phase can be expressed separately, which eventually
depends on the selected internal coordinate of elements.

2.3.3. Two- and multifluid models. The governing equations of the Eulerian two-fluid model
(TFM) can be derived from the GPBE (see Figure 3). The derivation can be found elsewhere (2).
For the sake of brevity, we report here only the mass and momentum balance equations for the
continuous and disperse phases (i = c, d):

∂t (ρiεi ) + ∂x · (ρiεiUi ) = 0, 5.

∂t (ρiεiUi ) + ∂x · (ρiεiUiUi ) = ∂x · (εiτ i ) − εi∂x p+ ρiεig + Mi, 6.

where ρ i, εi, and τ i denote the density, volume fraction, and stress tensor of the phase i, and p is the
pressure (generally assumed the same for the continuous and disperse phases). The term Mi rep-
resents the momentum exchange between the continuous and disperse phases due to interfacial
forces, such as drag and lift, and is generally modeled by closure relationships. For the disperse
phase, the stress tensor τ i represents the dispersion of the element velocity (u) around the mean
disperse phase velocity (Ud). If the Stokes number of the elements is low enough, this stress tensor
can be neglected; otherwise, it is necessary to solve transport equations for higher-order moments
of the disperse element velocity (2). For the continuous phase, the stress tensor is modeled as for
single-phase flows.When the flow is turbulent, the stress tensor of the continuous phase is gener-
ally closed by replacing the molecular viscosity with an effective one (16). The effective viscosity
is the sum of the molecular viscosity and the turbulent viscosity, the latter of which is usually
estimated by a two-equation model, e.g., the k−ε model, adapted for multiphase flows (17–20).

The TFM can be extended to consider more than two phases, e.g., dividing the disperse phase
into several groups (fluids) based on the value of an internal coordinate (usually size). This ap-
proach, called the multifluid model (MFM), is particularly useful when the system under study is
polydisperse (see Figure 2). The governing equations of the MFM have similar shapes to those
of the TFM and can be found elsewhere (3, 4, 6, 7).
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3. SOLUTION METHODS FOR POPULATION BALANCE EQUATIONS

Many methods are available in the literature for the numerical solution of PBEs; each has been
developed to address the challenges posed by the application of interest. Some notable challenges
include the number of internal coordinates, considering the element velocity as an internal coor-
dinate (i.e., solving the GPBE), and the physical and chemical phenomena involved. This section
describes three principal categories of methods for the solution of PBEs. Among the ones not
covered in this review, we should cite Monte Carlo methods (1, 2), which are currently too com-
putationally expensive to be compatible with CFD coupling.

3.1. Class or Sectional Method

The class or sectional method (CM) is based on the discretization of the internal coordinate space
into intervals (classes or sections), such that the PBE is transformed into a set of macroscopic
balance equations in the physical domain (1). This method has been widely applied to polydis-
perse systems governed by a univariate PBE. Let the space of the generic internal coordinate ξ

be divided into M intervals using M + 1 grid points (ξ 1, ξ 2, . . . , ξM + 1), therefore, the ith inter-
val is defined as Ii = [ξ i, ξ i + 1). The number density of elements in the interval Ii is given by
Ni(t, x) = ∫ ξi+1

ξi
n(t, x, ξ ) dξ , where n(t, x, ξ ) is the NDF in Equation 1. Then, the discretized for-

mulation of Equation 1 for the generic ith interval is

∂tNi + ∂x · (UiNi ) +
∫ ξi+1

ξi

∂ξ (Gn) dξ =
∫ ξi+1

ξi

S dξ , 7.

where Ui is the velocity by which the elements of the ith interval are transported in the physical
space. The integrals in Equation 7 are not closed, since they generally depend on the NDF and
cannot be expressed in terms ofNi (1). A closed form of Equation 7 can be achieved by assuming a
functional form for the NDF. Kumar & Ramkrishna (21) proposed a general procedure in which
the NDF is approximated with the following form:

n(t, x, ξ ) =
M∑
i=1

Ni δ(ξ − ζi ). 8.

The above approximation implies that all the elements belonging to the interval i are concen-
trated at a pivotal point ζ i inside the interval. Another common approximation assumes a con-
stant number density in each interval, i.e., n(t, x, ξ ) = Ni for ξi < ξ < ξi+1 (22). In the following,
we introduce the procedure proposed by Kumar & Ramkrishna (21) without going into full detail.
For the sake of simplicity, the system is assumed to be homogeneous, i.e., the variables of interest
(such as the NDF) have no dependency on the physical space. Moreover, the contribution due to
the continuous changes is neglected at this stage and will be touched upon later.

In the case of aggregation and breakage, the right-hand side of Equation 7 can be written in
the following closed form by assuming ξ to be a conserved property (1):

∫ ξi+1

ξi

S dξ = 1
2

i−1∑
j=1

Nj

∑
k

(ζ j+ζk )∈Ii

a(ζ j , ζk )Nk −Ni

M∑
j=1

a(ζi, ζ j )Nj

+
M∑
j=i

b(ζ j )Nj

∫ ξi+1

ξi

β (ξ |ζ j ) dξ − b(ξi )Ni. 9.
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Kumar & Ramkrishna (21) explained in detail that the above formulation is not internally consis-
tent, i.e., it does not generally preserve the integral properties of the NDF such as its moments. It
is noteworthy that low-order moments of the NDF are associated with the conserved properties
of the disperse phase. The cause of this internal inconsistency lies in the assignment of a pivotal
point to the born elements, produced by the birth (first and third) terms in Equation 9. For in-
stance, let two elements belonging to the intervals Ij and Ik with pivotal points ζ j and ζ k coalesce
to form a new element i with ξ i = ζ j + ζ k. Then, the value ξ i determines which interval the el-
ement i belongs to. However, in an arbitrarily discretized space, ξ i may not necessarily coincide
with the pivotal point of the assigned interval. The same issue may arise when an element breaks
into two daughter elements, which should be assigned to two intervals. Kumar & Ramkrishna (21)
proposed to assign the born elements to the nearby pivotal points, such that two integral proper-
ties of the NDF are preserved. This approach, known as the fixed-pivot approach, is quite general
and is internally consistent as far as two integral properties of the NDF are concerned (21). It
is noteworthy that the number of conserved moments can be increased by distributing the born
elements to more than two pivotal points as formulated by Alopaeus et al. (23).

Despite the competitive advantages of the fixed-pivot approach over previously developed ap-
proaches (24), Kumar & Ramkrishna (21) illustrated that the fixed-pivot approach overpredicts
the NDF, particularly in the case of aggregation/coalescence. They stated that the overpredic-
tion issue arises due to the fixed pivotal points and proposed a new approach based on moving
pivotal points. This method involves the solution for the number density (or a property of the
NDF) at moving pivotal points, the location of which is governed by a differential equation. The
locations of pivotal points change in such a way as to ensure preservation of the targeted prop-
erties. In another attempt to improve the predictions, a new technique was developed, called the
cell-averaging technique, which assigns the born elements to the pivotal points on the basis of the
average value of their internal coordinates (25). Numerical tests showed that the cell-averaging
technique improves the results considerably (25). More details on this technique can be found
elsewhere (25).

Concerning the continuous change of the internal coordinate, the third term on the left-hand
side of Equation 7 can be written as

∫ ξi+1

ξi

∂ξ (Gn) dξ = (Gn)|ξi+1 − (Gn)|ξi , 10.

and it can be interpreted as the net flux of elements to/from the interval Ii, which is equal to the
difference between the fluxes at the bounds of Ii. However, the NDF at the bounds of intervals
is not known and must be approximated by interpolating the values at two neighboring pivotal
points. The upwind scheme is the simplest interpolation approach. Consider a generic bound
ξ i at which the number density n(ξ i) is needed. If the rate of continuous process at the bound
G(ξ i) is positive, then n(ξ i) = Ni − 1; otherwise n(ξ i) = Ni. The upwind scheme is first order, and
therefore it suffers fromnumerical diffusion (2).Numerical diffusion can be avoided by integration
over the characteristic curves (26), but this method is not suited for being incorporated in CFD
codes. A more viable alternative is employing high-order schemes (27–29), which, however, do
not guarantee the positivity of the Ni (26). To overcome this issue, numerous methods have been
proposed (1, 26).

Last, class or sectionalmethods can be extended to bi- andmultivariate PBEs (30, 31).However,
these extensions are not covered here as they are currently not compatible with CFD implemen-
tations because of their exceedingly large computational cost (16, 32, 33).
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3.2. Method of Moments

The previous section mentioned several difficulties in tracking the evolution of the NDF through
the direct solution of the PBE, which mainly arise due to the discretization of the internal co-
ordinate space. In a pioneering work, Hulburt & Katz (34) argued that the NDF contains too
much information for many engineering applications and proposed an approximate system of de-
scription that tracks the evolution of moments of the NDF instead of the NDF itself. In the most
general form, the moments of the NDF are defined as

mk1,k2,...,kd ,kd+1,kd+2,kd+3 (t, x)=〈ξ k11 ξ
k2
2 . . . ξ

kd
d u

kd+1
1 ukd+2

2 ukd+3
3 〉

=
∫

�ξ

∫
�u

ξ
k1
1 ξ

k2
2 . . . ξ

kd
d u

kd+1
1 ukd+2

2 ukd+3
3 f (t, x, ξ,u) dξ du, 11.

where k = (k1, k2, . . . , kd , kd+1, kd+2, kd+3) is the exponent vector. Each element of k is the order of
the moment with respect to the corresponding internal coordinate or velocity component. The
moments offer two key advantages that make the method of moments (MOM) attractive. First, the
moments are functions of only time and space, i.e., they are Eulerian fields, and therefore an ap-
proach based on the moments is perfectly compatible with the solution methods readily available
in CFD codes. The second advantage is that the low-order moments are related to some macro-
scopic properties of the disperse phase, which are physically meaningful and generally measurable.
It is noteworthy that, in many applications, the ultimate aim of solving the PBE is to predict these
macroscopic properties of the disperse phase.

A simplified example helps to elaborate on the subject without loss of generality. Let the in-
ternal coordinates be comprised of the mass of the elements ξ = M and the velocity. Then, the
MOM involves the solution of a number of transport equations written in terms of the moments
of the NDF. The moments 〈ξ 0u01u

0
2u

0
3〉, 〈ξ 1u01u

0
2u

0
3〉, and 〈ξ 0u11u

0
2u

0
3〉, 〈ξ 0u01u

1
2u

0
3〉, and 〈ξ 0u01u

0
2u

1
3〉 ex-

emplify the importance of low-order moments, since they represent respectively the total particle
number density, the average particle mass density, and the three components of the total particle
momentum density.

The transport equation for a generic moment, 〈ξ k1uk21 uk32 uk43 〉, is derived by multiplying the
GPBE, Equation 3, with the function g(ξ ,u) = ξ k1uk21 u

k3
2 u

k4
3 , and by integrating over the internal

coordinate phase space:

∂t

(∫
R+

dξ
∫
R3
g f du

)
+ ∂x ·

(∫
R+

dξ
∫
R3

ug f du
)

+
∫
R+

dξ
∫
R3
g ∂ξ (G f ) du +

∫
R+

dξ
∫
R3
g ∂u · (A f ) du =

∫
R+

dξ
∫
R3
gS du. 12.

The first term is the derivative of the moment with respect to time, ∂t〈ξ k1uk21 uk32 uk43 〉. The second
term is the moment transport in the physical space, which appears as the spatial derivative of a
higher-order moment,

∂x ·
(∫

R+
dξ

∫
R3

ug f du
)

= ∂x1 〈ξ k1uk2+1
1 uk32 u

k4
3 〉 + ∂x2 〈ξ k1uk21 uk3+1

2 uk43 〉

+ ∂x3 〈ξ k1uk21 uk32 uk4+1
3 〉, 13.
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giving rise to the closure problem described below. The third term on the left-hand side of
Equation 12 can be simplified further by integration by part (2):

∫
R+

dξ
∫
R3
g ∂ξ (G f ) du = −

∫
R3
(gG f )|ξ=0 du −

∫
R+

dξ
∫
R3

∂ξ (g)G f du. 14.

The first term on the right-hand side takes into account the appearance/disappearance of the
disperse phase elements at the origin, which may be nonzero depending on the sign of G, i.e., if
g(ξ ) is not zero and negative at the origin (2, 35). Likewise, the integration by part simplifies the
fourth term on the left-hand side of Equation 12:

∫
R+

dξ
∫
R3
g ∂u · (A f ) du = −

∫
R+

dξ
∫
R3

A f · ∂u(g) du. 15.

The moment transport equations, i.e., Equation 12, are not in closed form, except in a few sim-
ple cases (2). One reason is that a set of transport equations written for a number of moments may
contain terms which depend on higher-order moments. The addition of new moment transport
equations for the higher-order moments would not solve the problem because the new equations
give rise to new higher-order moments. However, the higher-order moments can be readily cal-
culated if the NDF is known. In general, the knowledge of the NDF is also needed to calculate the
source term and transport terms in the space of internal coordinates and velocity (see Equation 12).
This is the main issue raised by the MOM and is known as the closure problem. Several meth-
ods have been developed to close the moment transport equations, such as interpolative closures
(36), reconstruction of the NDF with an assumed functional form (37–39), and approximating the
NDF using a quadrature formula (40–42). The reader can find more details on developed closures
elsewhere (2, 43). This work focuses on the closures based on the quadrature formula, known as
quadrature-based moment methods (QBMMs), which have more general applicability than other
proposed closures.

3.3. Quadrature-Based Moment Methods

In QBMMs, the NDF is approximated with an N-node quadrature formula, i.e., a summation of
N weighted kernel density functions, each centered on a node/abscissa of a Gaussian quadrature
approximation. The most commonly employed kernel density function is the Dirac delta func-
tion. The idea originated with McGraw (40), who employed an N-node Gaussian quadrature to
approximate the integrals in the moment transport equations for the solution of a univariate PBE
and named the approach quadrature method of moments (QMOM). The algorithm calculates
the N abscissas and N weights of the quadrature from the 2N transported moments. Marchisio &
Fox (42) developed a similar method, named direct quadrature method of moments (DQMOM),
by which the quadrature approximation is transported in space and time such that the moments
evolve according to the proper transport equations. In the following sections, both approaches
are explained in detail. Moreover, the extension of the QMOM to bi- and multivariate PBEs (i.e.,
the conditional quadrature method of moments, CQMOM) is also discussed. Last, we introduce
the extended quadrature method of moments (EQMOM), which is useful in applications that
require a continuous reconstruction of the NDF.

3.3.1. Quadrature method of moments. McGraw (40) proposed that the unclosed integrals of
the moment transport equations can be approximated by employing anN-node Gaussian quadra-
ture formula. It is equivalent to assuming the following functional form to approximate the NDF
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(for a univariate problem):

n(t, x, ξ ) ≈
N∑
p=1

wp(t, x) δ[ξ − ξp(t, x)], 16.

where wp(t, x) and ξp(t, x) are the weight and abscissa of the node p. In the above expression,
δ denotes the Dirac delta function. The moment of order k of the approximated NDF can be
expressed as follows:

mk =
∫
R+

ξ kn(ξ ) dξ ≈
N∑
p=1

wp ξ
k
p , 17.

wheremk is an alternative notation for 〈ξ k〉. The above relationship implies that knowledge about
the first 2N moments enables us to determine the N weights and N abscissas of the quadrature
approximation in Equation 16 by solving the following set of nonlinear equations:

m0 =
N∑
p=1

wp , m1 =
N∑
p=1

wp ξ
1
p , . . . m2N−1 =

N∑
p=1

wp ξ
2N−1
p . 18.

The above set of nonlinear equations is usually solved by employing well-conditioned recursive
inversion algorithms such as the product-difference (PD) algorithm (44) and the Wheeler algo-
rithm (45). The latter has the advantage of being applicable to distributions with zero mean value,
i.e., m1 = 0, in contrast to the PD algorithm (2). It is noteworthy that the weights and abscissas
obtained from the solution of Equation 18 reproduce exactly the moments up to order 2N − 1.

The QMOM employs an N-node quadrature approximation to solve the transport equations
for a set of moments of a PBE. The QMOM procedure can be explained by writing the transport
equation of a generic moment of order k derived from the PBE (Equation 1):

∂t (mk ) + ∂x · (Ud,kmk ) = δk,0G(0) n(0) + k
∫
R+

ξ k−1Gn dξ +
∫
R+

ξ kS dξ , 19.

where δk, 0 is the Kronecker delta and Ud,k denotes the transport velocity of the k-order moment
defined by

Ud,k = 1
mk

∫
R+

ξ kUd(ξ ) n dξ . 20.

The first term on the right-hand side of Equation 19 appears only in the transport equation
of the zeroth-order moment. This term is particularly challenging in the case of negative G, or
in other words when the disperse phase elements are shrinking and disappearing. More detailed
discussion on the subject can be found in References 6 and 46. In the latter reference, a method is
suggested to reconstruct a continuous NDF by using the maximum entropy maximization, which
enables the evaluation of the NDF at the origin (i.e., ξ = 0). In addition, a robust and efficient
quadrature-based method was developed by Yuan and coworkers (47) to reconstruct a continuous
NDF (see Section 3.3.4). The second term on the right-hand side of Equation 19 can be approx-
imated using the N-node Gaussian quadrature formula:

k
∫
R+

ξ k−1G(ξ )n(ξ ) dξ ≈ k
N∑
p=1

wpξ
k−1
p G(ξp). 21.
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The source term in the case of aggregation/coalescence and breakage is approximated likewise
(assuming that ξ is a conserved property such as mass or volume of elements) (2):

∫
R+

ξ kS dξ ≈ 1
2

N∑
p=1

wp

N∑
q=1

(ξp + ξq )ka(ξp, ξq )wq −
N∑
p=1

ξ kp a(ξp, ξq )wp

+
N∑
p=1

(∫
R+

ξ kβ (ξ |ξp) dξ
)
b(ξp)wp −

N∑
p=1

ξ kp b(ξp)wp. 22.

The weights and abscissas of the quadrature formula in Equations 21 and 22 are determined
by inverting the first 2Nmoments. Therefore, it is necessary to track the evolution of the first 2N
moments by solving the corresponding transport equations. At each time step, the quadrature for-
mula is determined by means of an inversion algorithm, which uses the 2N transported moments
available from the previous time step or the initial conditions. It is noteworthy that the inversion
algorithm fails if the moments are not realizable, i.e., the moment set is not inside the moment
space (see the sidebar titled Moment Space). The realizability issue is mainly due to the numerical
methods that deal with the discretized moment transport equations, which are not the same as the
exact equations. This fact necessitates employing numerical methods that are designed to prevent
the realizability issue (48–52).

In general, a quadrature formula with more nodes yields a more accurate approximation of
integrals in the moment transport equations and an approximation of higher quality for the NDF.
However, a quadrature with more nodes means more moments to be tracked, hence the need
for more computational resources. In addition, the recursive algorithms for the calculation of
the weights and abscissas become less stable as the number of nodes increases, and convergence
gets difficult for typically N > 10 (2). However, Marchisio and colleagues (41, 53) showed
that satisfactory predictions can be achieved by employing a quadrature approximation with
2 ≤ N ≤ 4 for simple aggregation and breakage problems. Moreover, QMOM predictions
have acceptably small overall error not only for the tracked moments but also for higher-order
moments (41).

Concerning bi- and multivariate PBEs, the main challenge is the determination of the weights
and (multidimensional) abscissas of the quadrature from the mixed moments, since the PD and
Wheeler algorithms are applicable only to univariate quadratures. The next section focuses on the
extension of the QMOM to such cases by using conditional moments.

MOMENT SPACE

Any number density function n(ξ ) defined on a support �ξ can be associated with a positive measure (μ) such that
dμ = n(ξ ) dξ . One can consider all the possible measures defined on the same support �ξ , which together form a
space of measures denoted by P . Then, each possible measure μ ∈ P determines a possible vector of k moments
(from order 0 to k): mk = (m0,m1, . . . ,mk ). Eventually, the kth-order moment space (Mk) on the support �ξ is
defined as the space formed by all the possiblemk, each corresponding to a μ ∈ P , or mathematically:Mk = {mk =∫

�ξ
(ξ 0, ξ 1, . . . , ξ k ) dμ|μ ∈ P}. A set of moments (m0, m1, . . . , mk) should belong to the moment space Mk to be

realizable; otherwise, no positive measure can be found with such a set of moments. The characterization of the
moment spaceMk for three common supports�ξ = (−∞,∞),�ξ = (0,∞), and�ξ = (0, 1) is found in Reference 87.
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3.3.2. Conditional quadrature method of moments. This section deals with the application
of theQBMM to the solution of bi- andmultivariate PBEs.Let theNDF be defined over the space
(�ξ) of d internal coordinates, ξ = (ξ1, ξ2, . . . , ξd ). Then, the NDF can be approximated with the
following functional form:

n(t, x, ξ) ≈
N∑
p=1

wp(t, x) δ[ξ − ξp(t, x)], δ[ξ − ξp(t, x)] =
d∏

α=1

δ[ξα − ξα;p(t, x)], 23.

wherewp(t, x) is the weight of the node pwith abscissas ξp = (ξ1;p, ξ2;p, . . . , ξd;p) located in the joint
space of the internal coordinates.The reader should bear inmind that the above quadrature is not a
Gaussian quadrature. Moreover, univariate inversion methods such as PD orWheeler algorithms
are not applicable to multivariate density functions. The moments of the above approximation
can be expressed as follows:

〈ξ k11 ξ
k2
2 . . . ξ

kd
d 〉 = mk1,k2,...,kd =

N∑
p=1

wp

d∏
α=1

ξ
kα
α;p. 24.

The closure problem can be overcome by determining the quadrature approximation of order
N, defined by N weights and N d-dimensional abscissas/nodes. The weights and abscissas of the
quadrature nodes can be found by using a set of N(d + 1) moments. The inversion approach is
desired to have some main properties of univariate inversion algorithms (2).

First, it should be noniterative—otherwise its application to practical CFD simulations will be
computationally expensive. Second, it should construct a mathematically and physically meaning-
ful quadrature approximation—in other words, abscissas should be located in the support of the
internal coordinates and weights should be nonnegative. Last, the weights and abscissas obtained
from the moments of an N-point density function should represent exactly the same N-point
density function. Several methods have been developed to determine the high-dimensional
quadrature points, such as the brute-force algorithm (54), the tensor-product algorithm (55–58),
and the CQMOM (59, 60), just to cite the most popular. Only the last method is discussed here,
since it is generally more stable and accurate.

For the sake of brevity, the explanation focuses on the bivariate NDF. The extension of the
following procedure tomore than two internal coordinates can be found elsewhere (2). In addition,
the application of the CQMOM to the kinetic equations, i.e., three velocity components as the
internal coordinates, is discussed by Yuan & Fox (60). In the CQMOM, the NDF is approximated
by the following functional form:

n(t, x, ξ) ≈
N1∑
p1=1

N2∑
p2=1

wp1 (t, x)wp2,p1 (t, x) δ[ξ1 − ξ1;p1 (t, x)] δ[ξ2 − ξ2;p2,p1 (t, x)], 25.

where wp1 and ξ1;p1 are the weights and abscissas calculated from the pure moments with respect
to the first internal coordinate (ξ 1) by using a univariate inversion algorithm. Instead, wp2,p1 and
ξ2;p2,p1 are the conditional weights and abscissas to be obtained by conditioning the second internal
coordinate (ξ 2) on each abscissa of the first one (ξ1;p1 ). The calculation of the conditional weights
and abscissas exploits the relationship between the mixed moments and the conditional NDF
(n2|1). First, the conditional NDF is defined by

n2|1(ξ2|ξ1) = n(ξ1, ξ2)
n1(ξ1)

, 26.
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where n1(ξ1) = ∫
�ξ2

n(ξ1, ξ2) dξ2 is the marginal NDF of ξ 1. The moments of n1(ξ 1) are the same
as the pure moments of n(ξ 1, ξ 2) with respect to ξ 1 and therefore can be expressed in terms of wp1
and ξ1;p1 . Then, the mixed moments can be written as follows:

mk1,k2 =
∫

�ξ1

ξ
k1
1 n1(ξ1) dξ1

∫
�ξ2

ξ
k2
2 n2|1(ξ2|ξ1) dξ2

=
N1∑
p1=1

wp1ξ
k1
1;p1

∫
�ξ2

ξ
k2
2 n2|1(ξ2|ξ k11;p1 ) dξ2 =

N1∑
p1=1

wp1ξ
k1
1;p1 〈ξ

k2
2 〉(ξ1;p1 ), 27.

where 〈ξ k22 〉(ξ1;p1 ) denotes the conditional moments. Using the above relationship, the N1(2N2 −
1) conditional moments can be obtained from the solution of the linear systems of the following
form written for k2 = 0, . . . , 2N2 − 1:

⎡
⎢⎢⎢⎢⎣

1 . . . 1
ξ1;1 . . . ξ1;N1
...

...
...

ξ
N1−1
1;1 . . . ξ

N1−1
1;N1

]

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

w1

w2

...
wN1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

〈ξ k22 〉(ξ1;1)
〈ξ k22 〉(ξ1;2)

...
〈ξ k22 〉(ξ1;N1 )

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

m0,k2
m1,k2
...

mN1−1,k2

⎤
⎥⎥⎥⎥⎦ . 28.

The above linear system of equations, known as the Vandermonde linear system, is nonsingular
as long as the abscissas ξ 1; p1 are distinct. The reader is referred to Reference 61 for an efficient
algorithm to solve the linear systems of the Vandermonde form. Finally, for each ξ 1; p1, a univariate
inversion algorithm is applied to the corresponding set of conditional moments to find the cor-
responding conditional weights (wp2,p1 ) and abscissas (ξ2;p2,p1 ). Although the pure moments can
be kept realizable by employing an appropriate numerical scheme, the realizability of the condi-
tional moments is not guaranteed. In this case, the realizability issue can be overcome by applying
the 1-D adaptive quadrature technique proposed by Yuan & Fox (60). With this technique, the
maximum number of conditional moments belonging to the moment space is determined, and
consequently, the number of nodes for the second internal coordinate (at each ξ 1; p1) is adjusted
accordingly.

One should pay attention to the selected order of internal coordinates’ conditioning as it
changes the set of controlled moments (i.e., moments used in the reconstruction of the NDF).
Nevertheless, all the moments controlled in the CQMOM belong to the optimal moment set; see
Section 3.3.3 for the definition and importance of such a set.

3.3.3. Direct quadrature method of moments. The DQMOM was first introduced by
Marchisio & Fox (42) to avoid the need for an inversion algorithm, particularly in the case of
bi-/multivariate problems. Although the inversion of moments in bi-/multivariate problems was
later overcome by the CQMOM, the DQMOM has received considerable attention from the
scientific community. Furthermore, the DQMOM can be applied to univariate problems.

In contrast to the QMOM and CQMOM, the DQMOM employs transport equations written
in terms of the weights wp and weighted abscissas ςα; p = wpξα; p. Therefore, there is no need to
employ an inversion algorithm except for the initialization of the weights and abscissas according
to the initial conditions of the moments. Let the NDF be defined over the space of two internal
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coordinates and governed by the following bivariate PBE:

∂tn+ ∂x · (〈u|ξ1, ξ2〉n) + ∂ξ1 (G1n) + ∂ξ2 (G2n) =
∫

S du. 29.

The DQMOM approximates the NDF with the functional form in Equation 23. Then, the
following transport equations can be written for the weights and weighted abscissas (42):

∂twp + ∂x · (〈u〉pwp)= swp ,

∂t (ς1;p) + ∂x · (〈u〉pς1;p)= sς1,p,

∂t (ς2;p) + ∂x · (〈u〉pς2;p)= sς2,p, 30.

where 〈u〉p = 〈u|ξ1,p, ξ2,p〉 denotes the velocity of the quadrature node p, and swp , s
ς

1,p and s
ς

1,p are
the source terms of the transport equations to be determined. The unknown source terms can
be found by first replacing the NDF in Equation 29 with the functional form in Equation 23
specialized for a bivariate problem and then applying the moment transformation of a generic
order k = (k1, k2) (42):

N∑
p=1

(1 − k1 − k2)ξ
k1
1,pξ

k2
2,ps

w
p −

N∑
p=1

k1ξ
k1−1
1,p ξ

k2
2,ps

ς

1,p +
N∑
p=1

k2ξ
k1
1,pξ

k2−1
2,p sς2,p = h̄k1,k2 , 31.

where h̄k1,k2 takes into account the change of the moment due to the continuous and discon-
tinuous events and therefore is problem dependent. A system of 3N linear equations (equal to
the number of unknowns) can be formed by writing Equation 31 for 3N moments of different
order. The solution of the linear system can be expressed in the matrix form s = A−1h, where
s = [sw1 . . . swN s

ς

1,1 . . . sς1,N s
ς

2,1 . . . sς2,N ]
T andA is the coefficient matrix. The matrixA should be non-

singular and therefore requires some considerations. First, the abscissas must remain distinct in
order to prevent singularity. Thus, using too many nodes is not recommended, since the proba-
bility of two nodes approaching each other increases with the addition of more nodes (2). Another
important point is the choice of the moment set, which Fox (62) discusses in detail. Fox estab-
lished a methodology to choose a set of moments, called the optimal moment set, that results in a
nonsingular coefficient matrixA. Eventually, Fox reported the optimal moment sets for problems
with 1 ≤ d≤ 3. The concept was developed by usingN= rd nodes for r ∈ Z>0, which treats all the
internal coordinates equally. It is noteworthy that other choices for the moment set might work
as well, which are valid but not optimal. However, one should try to use a moment set that cov-
ers the important moments, i.e., those with physical significance, and that includes enough mixed
moments to avoid losing the correlation between the internal coordinates. For more details, the
reader is referred to the discussion of choosing the moment set in Reference 2.

3.3.4. Extended quadrature method of moments. The previous QBMMs approximate the
NDF with an N-point discontinuous distribution, i.e., a summation of N weighted Dirac delta
functions. However, some applications require a continuous reconstructed NDF to correctly
model the phenomena involved, e.g., evaporating sprays (46). Yuan et al. (47) suggested a method,
called the extended quadrature method of moments (EQMOM),which employs a parametric con-
tinuous kernel density function (KDF) instead of the Dirac delta function:

n(t, x, ξ ) ≈
N∑
p=1

wp(t, x) δσ [ξ ; ξp(t, x)], 32.
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where δσ (ξ ; ξ p) is a chosen KDF, which depends on the parameter σ . The weights and abscissas
associated with the KDF are denoted bywp and ξ p. The determination of the parameter σ requires
that one additional moment should be tracked, in comparison to the 2N moments tracked in the
QMOM. The KDF is required to reduce smoothly to the Dirac delta function in the limit of
σ → 0,meaning that the quadrature can be reconstructed from the first 2Nmoments when σ = 0.
The choice of the KDF is problem dependent, i.e., the support of the KDF should be consistent
with the support of the internal coordinate. Common KDFs are Gaussian distribution with infi-
nite support (−∞, ∞), gamma and log-normal distributions with semi-infinite positive support
[0, ∞), and beta distribution with finite support [0, 1]. Moreover, it is practically important that
the selected KDF can be defined in terms of the weight function w(θ ) for a known family of
orthogonal polynomials. In the following, the algorithm for the calculation of the weights and
abscissas of the quadrature approximation as well as the parameter σ are explained for a univariate
NDF with semi-infinite positive support. The application of the EQMOM to problems with
infinite or finite supports is similar and can be found elsewhere (2, 47). In addition, the reader is
referred to Reference 2 for the extension of the EQMOM to multivariate problems.

As mentioned, a suitable choice of KDF for problems with support of [0, ∞) is the gamma
distribution. Then, the NDF is approximated by the following summation of N weighted param-
eterized gamma distributions:

n(ξ ) ≈
N∑
p=1

wp
ξλp−1e−ξ/σ

�(λp)σλp
and λp(t, x) = ξp

σ
, 33.

where � is the gamma function. The moments of the NDF can be expressed as

mk(t, x) =
N∑
p=1

wp
�(λp + k)

�(λp)
σ k =

N∑
p=1

wpξ
k
p +

N∑
p=1

wpPk−1(ξp, σ ), 34.

where Pk − 1(ξ p, σ ) is a homogeneous polynomial of order k − 1 with respect to ξ p and σ . The
summation

∑N
p=1 wpξ

k
p is indeed the kth-order moment of the quadrature in the limit σ = 0, and

here is denoted by m∗
k . Equation 34 can be written for the first 2N + 1 moments to calculate the

weights and abscissas as well as the parameter σ of the quadrature.An important observation is that
the right-hand side of Equation 34 can be rewritten in terms of only m∗

k and σ . Subsequently, the
two sets of moments m = (m0,m1, . . . ,m2N ) and m∗ = (m∗

0,m
∗
1, . . . ,m

∗
2N ) can be related through

the matrix form m = B(σ )m∗. The matrix B(σ ) is a lower-triangular matrix, which allows us to
calculate the moment m∗

k from the moments (m0, m1, . . . , mk) for a given value of σ . Eventually,
the following iterative approach can be used to determine the quadrature approximation (47):

1. Guess the parameter σ and calculate the first 2Nmoments (m∗
0,m

∗
1, . . . ,m

∗
2N−1) usingm∗ =

B−1(σ )m
2. Find the weights wp and abscissas ξ p from the moments (m∗

0,m
∗
1, . . . ,m

∗
2N−1) by employing

the adaptive quadrature algorithm
3. Use the weights and abscissas to calculate m∗

2N = ∑N
p=1 wpξ

2N
p

4. Calculate the scalar function J(σ ) = m2N −m∗
2N − ∑N

p=1 wpP2N−1(ξp, σ )
5. Guess a new σ until the convergence J(σ ) = 0 is achieved for the smallest σ

In the above approach, the adaptive quadrature algorithm allows us to cope with the nonre-
alizable set of moments. Once the quadrature is determined, it can be used to close the terms
appearing in the moment transport equations, i.e., Equation 32. For this purpose, a general
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integral of the NDF is considered:

∫
�ξ

g(ξ )n(ξ ) dξ =
N∑
p=1

wp

∫
�ξ

g(ξ )δσ (ξ ; ξp) dξ =
N∑
p=1

N ′∑
q=1

wpw
(p)
q g(ξ (p)

q ), 35.

where g(ξ ) is a generic function of the internal coordinate. In Equation 35, the integral of the
KDF δσ (ξ ; ξ p) is approximated by a quadrature formula, for which the weights w

(p)
q and abscissas

ξ
(p)
q can be calculated from the recursion coefficients that are known in advance. Moreover, the
number of nodes of the second quadrature (N ′) does not depend on N and can be increased
independently to improve the accuracy.

3.4. Selection of the Solution Method

A key factor in selection of the solutionmethod is the number of internal coordinates. For univari-
ate problems, the CM and QMOM are regarded as the first candidates. The CM is more suitable
for simulation of systems in which the NDF can be measured directly. In contrast, the QMOM
provides information about some (usually measurable) integral properties of the NDF. From the
computational point of view, theQMOM is normally less demanding than the CM. In fact, achiev-
ing a reasonable accuracy by the CM generally requires a large number of intervals/classes, which
is computationally expensive, particularly when disperse phase elements span a wide region of
the phase space (41). Therefore, the QMOM is the preferred method for the CFD simulation of
spatially heterogeneous systems, specifically those of large scale (5). Furthermore, the CM should
use high-order schemes when the system under study involves continuous events, in particular if
the number of intervals cannot be increased sufficiently.However, employing high-order schemes
usually leads to instabilities. In contrast, QBMMs handle continuous events easily, if the growth
rate is positive. In cases of negative growth rates, e.g., evaporation/dissolution, the EQMOM can
be used to estimate the value of the NDF at the origin of the relevant internal coordinate. More-
over, the EQMOM should be generally used when the particulate processes of interest are highly
localized in the phase space (63). In fact, with other QBMMs, some phenomena may be ignored if
there is no node/abscissa in the region where they are active. Furthermore, the addition of nodes
does not necessarily improve the situation, as the QMOM shows unpredictable behavior in re-
sponse to the increase in the number of nodes, when highly localized phenomena are present (63).
In such cases, the CM or EQMOM are more appropriate.

In the case of bi- and multivariate PBEs, QBMMs are generally the preferred methods. Both
the DQMOM and CQMOMwere developed to overcome the difficulties of moment inversion in
bi- and multivariate problems. However, the CQMOM has some advantages over the DQMOM.
Firstly, the equivalence between the DQMOM and QMOM/CQMOM is lost in pure hyperbolic
PBEs (2), in contrast to spatially homogeneous systems. Moreover, the DQMOM is not valid
for purely hyperbolic PBEs in the presence of (spatial or time) discontinuity in the weights and
abscissas, because the transport equations in Equation 30 are derived on the assumption that the
weights and abscissas are continuous functions of time and space (2). Another point is that the
DQMOM does not guarantee the conservation of the moments except for the moments of order
zero and one, and needs corrective terms to respect the conservation of the moments of higher
order (2). Last, when a continuous NDF is needed, the CQMOM can be extended to use a KDF
other than the Dirac delta function, i.e., the extended CQMOM (2).
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4. IMPLEMENTATION IN COMPUTATIONAL FLUID DYNAMICS

As mentioned above, the solution of the GPBE/PBE provides detailed information about the dis-
perse phase, which can result in a more accurate solution. For instance, a more accurate estimation
of the drag force can be obtained by using the instantaneous size distribution of the disperse phase
elements instead of a fixed constant element size. At the same time, the solution of the GPBE/PBE
requires knowledge of the flow fields. Therefore, it is necessary to adopt a suitable approach to
couple CFD and the GPBE/PBE, as explained in the following section.

4.1. Monokinetic Models

Monokinetic models, e.g., the TFM and MFM, assume zero velocity dispersion around the mean
velocity (or mean velocities) of elements located at the same spatial coordinates at a given time
and characterized by the same internal coordinate values. This assumption is valid for elements
with small Stokes numbers (below 1) (13). Within this context, the simplest approach assigns
one velocity, Ud(t, x), to all elements of the disperse phase, which depends only on the spatial
coordinates and time and not on the internal coordinates. The common methods for obtaining
the velocity of the disperse phase, required to solve the PBE, include the MM and TFM (5, 32,
64–71), although the dusty gas approach (72) and the equilibrium Eulerian approach (13) can be
used for sufficiently small elements (12). At the same time, the polydispersity of the elements can
be described through the solution of the PBE, Equation 1, by using a suitable method described
in the previous section.When the CM is used to solve the PBE, the coupling terms are evaluated
using the properties of each class of disperse elements. In contrast, if we adopt the QMOM, the
coupling terms are calculated by using either the average properties of the disperse elements,
which are associated with the moments, or the quadrature nodes separately (16).

The assumption of identical element velocity can be relaxed partially by employing a multifluid
approach, where the elements are grouped into several phases based on the value of an internal
coordinate (usually size). When the CM is chosen to solve the PBE (3, 65, 73–75), each class is
assumed to move with its own velocity. In the case of the QMOM or DQMOM (5, 8, 76, 77), each
node of the quadrature moves with a unique velocity. The velocity of each class (or node in the
case of the QMOM or DQMOM) is obtained either by solving a momentum balance equation
written for the corresponding class (or node) or by adopting the MM (see Section 2.3).

The monokinetic assumption is not valid in the case of elements with large Stokes numbers,
since large elements do not adapt quickly to the surrounding fluid velocity and therefore the
effect of their initial conditions lasts for a long time (13). For instance, this assumption may lead
to nonphysical predictions in dilute systems consisting of particles characterized by large Stokes
numbers, where particle trajectory crossing (PTC) can occur (48, 57). A possible approach to
describing such systems is adoption of a polykinetic model.

4.2. Polykinetic Models

It is necessary to include the element velocity as an internal coordinate, when dealing with dis-
perse systems far from equilibrium or composed of elements characterized by very large Stokes
numbers. In such cases, the evolution of the disperse phase in space and time is entirely governed
by the GPBE, Equation 3, while the continuous phase is described by Equations 5 and 6. The in-
teraction between the phases is taken into account through the exchange terms in the governing
equations of both phases. The quadrature-based methods are preferred to solve the GPBE, since
the application of the CM to this equation is not tractable. In this regard, the QMOM,DQMOM
and specifically CQMOM are promising tools to solve the GPBE (2, 6, 48, 57–60).
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When the disperse system is very dilute, the effect of the disperse phase on the flow field of the
continuous phase can be assumed negligible (2, 78). Thus, one-way coupling suffices to describe
the effect of the continuous phase on the evolution of the disperse phase elements. The flow fields
of the continuous phase are predicted by the solution of the single-phase Navier-Stokes equations.
At each time step, the governing equations of the continuous phase are solved to predict the flow
fields of the continuous phase, which eventually will be used to estimate the closure relations in
the GPBE. It is possible to advance the GPBE with several smaller time steps within each time
step of the CFD solver, if the timescale of the phenomena affecting the elements is comparably
smaller than the characteristic timescale of the continuous phase (78).

However, the effect of disperse elements on flow fields of the continuous phase becomes signif-
icant as the number density of elements increases. Thus, governing equations of the continuous
phase should include exchange terms due to the presence of the disperse phase elements, e.g.,
Equations 5 and 6 (79, 80). Convergence issues may arise in the two-way coupling due to the ex-
plicit exchange terms included in the governing equations. For instance, the drag force generally
depends on the relative velocity of the phases and, if handled explicitly, hinders convergence. The
convergence rate can be improved by adopting the partial elimination algorithm (81).The applica-
tion of the partial elimination algorithm to CFD-QMOM simulations is explained by Passalacqua
and coworkers (78, 79).

4.3. Numerical Issues of Quadrature-Based Moment Methods

Efficient numerical methods for solving the PBE must provide sufficiently accurate solutions as
well as ensure the stability of the simulation. A major reason for simulation instabilities is the ap-
pearance of nonphysical solutions during the simulation, i.e., the realizability issue associated with
the QBMM. The realizability issue appears mostly when standard high-order schemes are em-
ployed for the independent advection of the moments (82). These schemes aim mainly at achiev-
ing high-order and oscillation-free solutions for transported variables. However, the moments are
linked variables that belong to the moment space; therefore, a selected numerical schememust ad-
ditionally ensure that themoment space is preserved.Unfortunately, only first-order schemes, e.g.,
the upwind scheme, are guaranteed to yield realizable moment sets provided that the Courant–
Friedrichs–Lewy (CFL) condition is satisfied (48). It is noteworthy that the CFL condition gen-
erally serves as the criterion for the stability of the CFD simulations. The first-order schemes,
despite being very stable, generally produce diffused solutions for computationally affordable grid
sizes. Therefore, if high-order solutions are required, one must employ high-order schemes that
are specifically designed to overcome the realizability issue.

In a pioneering work, Vikas and coworkers (49) proposed the quasi-high-order realizable
scheme, which interpolates separately the weights and abscissas of the quadrature (instead of the
moments) from the cell centers to the faces. In this approach, the quadrature weights on the faces
are obtained with a high-resolution (HR) total variation diminishing (TVD) scheme, whereas
the quadrature abscissas on the faces are obtained by using the first-order upwind scheme. With
this technique, it is possible to avoid the realizability issue if a criterion for the time step is
fulfilled (49). This approach works for the solution of both the PBE and GPBE. Moreover, it
can be simply implemented in CFD codes, regardless of the spatial dimensionality and mesh
type. Another notable approach preserves the moment space by advecting a sequence of positive
variables, called ζ , which are connected to the moments (51). The application of the original
version of this approach to arbitrary unstructured grids is not straightforward. Nevertheless,
Passalacqua and coworkers (85) extended the applicability of this approach to unstructured
meshes.
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In addition to the realizability issue, the boundedness of the solution is another important nu-
merical aspect because the low-order moments are associated with some average physical prop-
erties of the elements, which are bounded in nature (86). This aspect should be considered in
the selection of the numerical solution method if a bounded solution for the moments is desired.
For instance, Shiea and coworkers (52) observed oscillations in the solution for the advection of
moments in a one-dimensional Riemann problem obtained by using a quasi-second-order real-
izable scheme. They argued that an oscillation-free solution for the moments is not necessarily
guaranteed when the HRTVD schemes are not applied directly to the moments. Eventually, they
suggested that it is possible to apply the HR TVD schemes directly to the moments without en-
countering the realizability issue by using an identical limiter (equal limiter) for all the transported
moments (52). They additionally showed that the boundedness of the moments is guaranteed if
the equal limiter is set to the smallest limiter among those calculated independently for the trans-
ported moments.

4.4. Computational Fluid Dynamics–Population Balance Equation Codes

Apart from the numerous in-house codes reported in the literature, there are several commercial
and open-source CFD codes, which incorporate the PBE. Table 1 summarizes some available
CFD-PBE codes along with their main features.

5. SUCCESS STORIES

As mentioned before, the formulation of classical Eulerian-Eulerian CFD methods is not capable
of fully addressing the polydispersity, i.e., the distribution of disperse elements, that is a feature of
manymultiphase systems and needs a joint CFD-PBE approach to be taken into account. Further-
more, even monodisperse or slightly polydisperse systems can take advantage of the CFD-PBE
approach when the average elements’ size (or other properties of interest) evolves under the effect

Table 1 Commercial and open-source computational fluid dynamics (CFD) codes with the
implementation of population balance equations (PBEs)

CFD code
Governing
equations

Solution
methods Notes

OpenFOAMa Equation 1
Equation 3

CM
QMOMb

CQMOMb

EQMOMb

Multifluid approach is available
Possibility of solving several population balances
Realizable advection schemes are implemented

Ansys Fluent Equation 1 CM
QMOM
DQMOM

Multifluid approach is available

Ansys CFX Equation 1 CM Multifluid approach is available
PBE is written in terms of mass-based NDF
Continuous events and nucleation are not available

StarCCM Equation 1 CM Multifluid approach is available
Adaptive discretization

aOpen-source.
bPart of the OpenQBMM project (https://www.openqbmm.org).
Abbreviations: CM, class method; CQMOM, conditional quadrature method of moments; DQMOM, direct quadrature
method of moments; EQMOM, extended quadrature method of moments; NDF, number density function; QMOM,
quadrature method of moments.
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Figure 4

(a) Schematic representation of a pseudo–two-dimensional bubble column, in which the oxygen is absorbed 
from the air bubbles into the water. (b) The predictions for the average concentration of oxygen in water 
versus time obtained by the fixed bubble size CFD simulations and the CFD–PBE simulation are compared 
with the experimental data taken from Reference 120. Abbreviations: CFD, computational fluid dynamics; 
PBE, population balance equation.

of the aggregation/coalescence, breakage, and growth/shrinkage. For instance, Figure 4 depicts a 
pseudo–two-dimensional bubble column in which the oxygen is dissolved from the disperse phase 
(air bubbles) into the continuous phase (water). The absorption process continues until the dis-
solved oxygen reaches saturation. The generated bubbles belong to a narrow size distribution and 
therefore the system can be assumed to be monodisperse. An important key factor for the de-
sign of such mass-transfer processes is the bubble size. In fact, the mass-transfer rate depends on 
the interfacial area that, in turn, depends on the bubble size. In addition, the bubble size deter-
mines the terminal velocity of the bubbles and consequently their residence time in the system. 
Figure 4 illustrates the effect of the bubble size on the dynamics of the oxygen absorption in 
the depicted bubble column. Each colored curve represents the prediction by a monodisperse 
CFD simulation, i.e., with a fixed bubble size. The purple curve, instead, is the prediction by 
the CFD-PBE approach. The comparison of the predictions with the experiments (hollow 
circles) shows that the proper setting of the bubble size is necessary to reproduce the 
experimental data. However, the PBE can estimate this important property of the bubbles when 
it is not known in advance. Moreover, Figure 4 implies that simulations with a fixed bubble 
size (linked with the classical CFD method) can misrepresent the dynamics of the system if the 
bubble size distribu-tion is too wide, i.e., the system is polydisperse. In this case, the PBE is an 
appropriate tool to address the polydispersity of bubbles.

The literature offers countless applications of the PBE coupled with the CFD, which include 
a variety of disperse systems. Gas–liquid systems, e.g., bubble columns, bubbly flows, and stirred 
tanks, have been studied extensively by the CFD-PBE approach, mostly with a univariate NDF 
in terms of the bubble size (67, 74, 88–93). In addition, several works solved for PBEs written in 
terms of multivariate NDFs, e.g., joint mass–velocity (94, 95) and joint size–concentration (32, 
69, 96) NDFs. Other relevant works involve the application of the PBE in the CFD simulation 
of boiling flows with heat and mass t ransfer (97–99). Another popular category of CFD-PBE 
applications concerns gas–solid systems, including fluidized b eds ( 5, 1 00–102), r iser reactors
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(103), and soot formation in flames (66, 104, 105). Furthermore, the CFD-PBE was successfully
applied to simulate dilute gas–particle flows, for which the assumption of equilibrium may hardly
apply, and therefore, the classical Eulerian-Eulerian approach fails to capture nonequilibrium
phenomena, e.g., PTC. Other notable applications of the CFD-PBE include the simulation
of liquid–liquid dispersions (71, 106–112), precipitation of particles (59, 113–115), evaporating
sprays (7, 116), bioreactors (117, 118), and porous media (119).

It is noteworthy that there exist numerous other applications of the PBE in the literature, in
which the PBE is employed to follow the evolution of (mostly homogeneous) disperse systems
without being coupled with the CFD. In fact, disperse systems evolve under the simultaneous
effects of different phenomena, e.g., mixing, aggregation/coalescence, breakage, and reaction. In
general, when the timescales associated with the involved phenomena are comparable, the cor-
responding governing equations should be coupled and solved together. However, if the rate of
mixing is much faster than that of the other phenomena, its effect can be decoupled from the
solution of the PBE. An example helps to illustrate this point. Let us consider the liquid–liquid
contactor, shown in Figure 5, that operates under turbulent conditions. The disperse phase con-
sists of octanol droplets that are kept immersed in the continuous phase (water) by the rotating
impeller.The size distribution of the droplets is determined by the coalescence and breakup,which
depend on the turbulence generated by the impeller’s rotation. The intensity of rotation deter-
mines also the mixing of the entire system. If the timescale of mixing is much smaller than the one
associated with the coalescence and breakup of droplets, the assumption of spatial homogeneity
holds. In this case, the PBE (Equation 1), with no convective term, can be used to describe the
disperse system. This framework is known as the zero-dimensional model. As the volume fraction
of the disperse phase increases, the rate of coalescence and breakup of droplets increases—in other
words, the timescale associated with the combination of the coalescence and breakup decreases
(see Figure 5).When the timescales of the mixing and coalescence/breakup become comparable,
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Figure 5

(a) Schematic representation of an agitated liquid–liquid contactor with water as the continuous phase and
octanol as the disperse phase (droplets). (b) Comparison between the timescale of mixing (blue shaded area)
and the one associated with the combination of coalescence and breakup (red shaded area) (109). When the
disperse system is dilute, it can be assumed homogeneous, since the mixing timescale is much smaller than
the one associated with the combination of the coalescence and breakup. In this case, it is possible to adopt a
zero-dimensional model to describe the disperse system. However, the denser the disperse system, the faster
the rate of the coalescence and breakup, hence the necessity of coupling the computational fluid dynamics
(CFD) and population balance equation (PBE).
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the two-way coupling of the CFD and PBE is generally required to correctly describe the behavior
of the disperse system (110).

6. CONCLUDING REMARKS

We have introduced some main numerical methods for the solution of the PBE coupled with
the CFD and highlighted the advantages of the CFD-PBE method for the simulation of disperse
systems. In particular, it is currently the only tractable method, from the computational point of
view, for the description of disperse systems consisting of a large number of disperse elements, usu-
ally seen in industrial-scale multiphase systems. Moreover, as the available computational power
increases and the associated cost decreases, the CFD-PBE offers a fast predictive tool for the
simulation of disperse systems in comparison to other detailed but computationally expensive al-
ternatives. However, the successful application of this approach relies on the adopted numerical
method and on the employed constitutive relations to describe the involved physical phenomena.
Therefore, both aspects deserve attention in order to improve the predictability and generalize
the applicability of the CFD-PBE approach.We hope that this review helps researchers of diverse
communities to exploit the introducedmethods in their field of interest and additionally motivates
further research on the development of new techniques, which take into account various aspects
such as robustness, stability, realizability of moments, order of accuracy, solution boundedness,
and applicability to unstructured grids.

SUMMARY POINTS

1. We describe the governing equations for the Eulerian CFD-PBE simulation of disperse
multiphase systems.

2. We explain the common methods for the solution of the PBE and present a guideline to
select a suitable one.

3. When the Stokes number of elements is sufficiently small (<1), themonokinetic assump-
tion is valid and the velocity of the disperse phase is predicted by a multiphase CFD
solver. Otherwise, the GPBE governs the evolution of the distribution of the elements
over the space of the internal properties, including the velocity.

4. In the QBMM, the realizability issue is the main cause of simulation instability and can
be addressed by adopting the numerical schemes mentioned in this review. In addition,
particular attention should be paid to the boundedness of the solution of the moment
transport equations, when realizable schemes are employed.

5. Some discussed approaches for the simulation of disperse multiphase systems are acces-
sible through several available commercial and open-source CFD-PBE codes; we report
the leading ones.

FUTURE ISSUES

1. Despite the existing advances, the development ofmore robust numericalmethods which
increase simultaneously the accuracy and the stability of simulations, e.g., realizable nu-
merical schemes, continues to be an interesting subject.
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2. It is fruitful to develop efficient CFD-PBE codes or contribute to improve the existing
ones, particularly the open-source codes as in the OpenQBMM project (https://www.
openqbmm.org). These codes expand the application of the PBE to vast relevant sub-
jects spanning broad scientific and industrial communities,which ultimately lead to rapid
advances in different aspects of PBEs.
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