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Abstract

We review the impact of control systems and strategies on the energy ef-
ficiency of chemical processes. We show that, in many ways, good control
performance is a necessary but not sufficient condition for energy efficiency.
The direct effect of process control on energy efficiency is manyfold: Reduc-
ing output variability allows for operating chemical plants closer to their lim-
its, where the energy/economic optima typically lie. Further, good control
enables novel, transient operating strategies, such as conversion smoothing
and demand response. Indirectly, control systems are key to the implemen-
tation and operation of more energy-efficient plant designs, as dictated by
the process integration and intensification paradigms.These conclusions are
supported with references to numerous examples from the literature.
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1. INTRODUCTION

The chemical industry turns raw materials into valuable products via chemical and/or physical
transformations. Profitability is paramount (1) and has spurred, on the one hand, the develop-
ment of ever-larger facilities (the economy of scale) and, on the other hand, the transition from the
manual operation and limited product slates of the 1960s to the heavily automated, highly flexible
operations of today. The latter represents the automation revolution, of which smart manufactur-
ing (2), a broad designation incorporating a variety of (generally computer-aided) manufacturing
technologies, is the latest embodiment.Chemical plant managers must be first and foremost safety
minded, with plant economic performance being the next prominent concern. Energy efficiency
is key to the latter for several reasons:

� Energy often represents a significant portion of operating cost (typically second only to the
cost of raw materials).

� Capital investment decisions concerning facility location and equipment design may hinge
on projected energy costs.

� Evolving environmental regulations penalize carbon dioxide emissions associated with fossil
fuel use for energy generation.

� As renewables (i.e., solar, wind, hydroelectric) make up an increasingly large percentage of
the generationmix on the power grid, electricity-intensive processesmust be able to adapt to
increased supply (and price) variability associated with these generation sources, while also
taking advantage of cost-savings opportunities, such as demand response (DR) programs
and even using electricity for process heating.

Improvements in energy efficiency may be achieved via (capital-intensive) design changes—
which often materialize in retrofits—that reduce energy intensity by improving equipment per-
formance (e.g., improved heat transfer for enhanced heat recovery). Alternatively, the operation of
a process can be modified to maximize production of valuable products at the designed operating
point with existing hardware, by, e.g., minimizing variability and wasted energy owing to off-spec
product. Responsibility for the latter falls mainly on the process control system.

At the fundamental level, process control systems are largely agnostic to process economics and
energy consumption or efficiency.However, as the primary interface with the physical process, the
performance of the control system is critical to the successful implementation of economics- and
energy-driven changes in both process design and business decisions, such as production schedul-
ing.Consequently, the effect of process control systems on plant economics (and energy efficiency)
is both challenging to quantify and important to understand. Furthermore, recent decades have
seen the development and widespread adoption of an array of advanced control solutions, notably
model predictive control (MPC), whose effect on plant (energy) performance metrics is worthy of
discussion. Edgar (1) provided a thorough review of the evolution of process control technology,
with an emphasis on its impact on plant economics. The objective of the present article is to dis-
cuss the impact of these technologies on process energy efficiency and to delineate commonalities
and differences between plant economics and energy efficiency.

2. BRIEF OVERVIEW OF PROCESS CONTROL

The primary functions of chemical process control systems are to (a) ensure stable operation at
all desired operating conditions, (b) drive the process to its desired state (setpoint tracking), and
(c) return the process to this state when disturbances occur (disturbance rejection) (3).These objec-
tives are typically accomplished using feedback control, in which the process inputs/manipulated
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Figure 1

Schematic of a single-input single-output feedback control loop (b), with a feedforward controller to mitigate
output disturbances (a).

variables (MVs), u(t ), are varied to drive the process states/controlled variables (CVs), x(t ), to
their desired values; feedback consists of using updated information from the process, the mea-
sured values of the CVs, xm(t ), to compute the values of the MVs. For simplicity, in this work we
assume state feedback, i.e., that the process states x(t ) are measured and controlled. In practice,
measurement is typically restricted to a set of process outputs, which are a function (or a subset)
of the process states, y(t ) = g[x(t )]. A single-input single-output feedback control loop is depicted
in Figure 1b.

Feedforward control, depicted in Figure 1a, may be employed to mitigate measurable process
disturbances, d(t ), e.g., changes in ambient temperature or condition of upstream units/utilities. In
the feedforward–feedback paradigm, the signal to the actuator consists of the sum of the outputs
of the feedback and feedforward controllers.

Single-input single-output loops that interface directly with the process physical actuators are
often referred to as regulatory control. By contrast, advanced process control consists of multi-
loop/multivariable configurations (including MPC, discussed later); regulatory controllers are
typically the foundation of any advanced control strategy.

2.1. Proportional-Integral-Derivative Control

Widespread industrial application of automatic feedback control first became possible in the 1930s
and relied on pneumatic actuation (electronic signaling followed in the 1950s). Early feedback
controllers were based on the PID (proportional-integral-derivative) control law (3):

p(t ) = p̄+ Kc
[
e(t ) + 1

τI

∫ t

0
e(t∗ )dt∗ + τD

de(t )
dt

]
, 1.

where parameters Kc, τI , and τD (controller gain, integral time constant, and derivative time con-
stant, respectively) can be chosen to determine the response time, degree of oscillation, and stabil-
ity of the closed-loop system. PID control remains the predominant regulatory control strategy in
modern chemical processes, with hundreds or even thousands of loops present in a typical plant.
According to Edgar (1), a minimalist view of the role of process control was initially adopted,
meaning that controllers were tuned to provide good performance at a particular setpoint then
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largely left alone. Further efforts were dedicated to understanding and minimizing control loop
interactions (i.e., the influence of the control action in one loop on the other control loops im-
plemented in the process). This led to the use of tools such as the relative gain array (RGA) and
singular value decomposition (3), among others, and to the introduction of the concept of self-
optimizing control (4). The latter is predicated on identifying variables that, if kept at their set-
points, ensure some degree of optimality at the level of the plant (5).

2.2. Model Predictive Control

The 1973 energy crisis caused the price of oil to more than triple within a year, causing a signifi-
cant shock to the US manufacturing and energy sectors. Refineries were increasingly operated at
their capacity limits, typically represented by equipment throughput or safety constraints. Thus,
a major drawback of traditional PID control was exposed: the lack of a mechanism by which to
enforce process constraints. In response, control practitioners rapidly adopted solutions that made
use of ideas from modern control theory (i.e., optimization-based control using dynamic process
models), while circumventing some of the difficulties facing early applications (namely, the chal-
lenges of developing and maintaining first-principles models of complex,multivariable processes).
Several new algorithms were proposed that fall under the umbrella of what is now known asMPC.

MPC consists of solving, at each sample time, an online optimization problem for the optimal
sequence of control moves, subject to a (typically linear) dynamic model of the process and a set
of process constraints:

min
u

N−1∑
k=1

||xsp(k) − x(k)||2Q + ||u(k)||2R
s.t. x(k+ 1) = fMPC(x(k), u(k)) k ∈ I0:N−1 ,

(x(k), u(k)) ∈ Z k ∈ I0:N−1

2.

where fMPC : X × U → X is a model of the process dynamics (usually linear and obtained empir-
ically from tests/experiments carried out in the plant); the sets X and U denote the constraints
on the CVs and MVs, respectively; Z ⊆ X × U; and the set I0:N−1 denotes the set of integers
{0, 1, . . . , N − 1}. The quadratic objective function, borrowed from linear quadratic Gaussian
(LQG) theory, penalizes deviations from setpoint and the control effort according to the values
of the elements of the weighting matrices Q and R, respectively. Proper MPC tuning ensures the
process is driven quickly to its setpoint after a setpoint change or disturbance, while avoiding
excessive oscillation and respecting stability limits. The optimization problem in Equation 2 is
solved over a finite time horizon,N . A moving time window is used: At a sample time k, the first
optimal control move, u(k), is implemented; the optimization problem is then resolved at time
k+ 1, taking into account feedback in the form of the measured values of CVs.

MPC represents a significant improvement relative to traditional multi-loop PID control ow-
ing to (a) inherent handling of process constraints within the optimization framework and (b) the
ability to account for complex, multivariable interactions when determining the control action,
particularly in the context of nonsquare systems (having a different number of inputs and out-
puts). PID controllers do not have direct means to enforce bounds on CVs and cannot explicitly
account for interactions betweenmultiple input and output variables; at best, interactions are dealt
with by finding loop pairings that minimize them using, e.g., the aforementioned RGA.

Model predictive controllers became commercially viable in the 1980s as the cost of computing
hardware dropped, and their adoption continues to expand. Qin & Badgwell (6) reported that,
as of 1999, there were at least 4,500 MPC applications worldwide; this number is likely much
higher today. Numerous extensions of MPC have been proposed, designed to account for process
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economics [economic MPC (7)], process nonlinearities [nonlinear MPC (8)], and uncertainty
[stochastic MPC (9), robust MPC (10)].

2.3. Real-Time Optimization

Practitioners recognized early on that extracting the maximum economic value from MPC re-
quired real-time optimization (RTO) of the controller setpoints (11, 12). RTO consists of maxi-
mizing an economic objective by selecting the MPC targets/setpoints:

min
usp,xsp

V(usp, xsp)

s.t. 0 = fRTO(usp, xsp)
(xsp, usp) ∈ Z

, 3.

where the decision variables usp and xsp are the setpoints provided to the MPC. In contrast to
MPC, which uses a dynamic, but typically linear, model, the model fRTO used in RTO is generally
nonlinear and steady-state. Under the two-tiered RTO–MPC structure, real-time economically
relevant data (e.g., price and/or quality of feedstock and utilities) and plant-wide economic ob-
jectives inform the setpoints toward which the MPC must drive the process. The combination of
RTO and linear MPC is currently the de facto industry standard for advanced control of mul-
tivariable systems; however, significant gaps between the academic literature and the industrial
applications have been noted (13) and continue to persist. A relevant example is the relatively
recent development of RTO using dynamic models (14).

2.4. Quality Control

Along with the development of MPC, the 1980s and 1990s saw a renewed interest in quality con-
trol, building on statistical process control concepts first introduced in the 1920s (1). Reducing
variability in process operations became an important goal toward increasing competitiveness:
Latour et al. (15) demonstrated that variability could be controlled dynamically using advanced
control andmeasurement systems and emphasized the link between reducing variability andmaxi-
mizing equipment utilization (e.g.,mitigating high variability in product quality may be dealt with
by blending, which leads to product/energy waste). Reduction in output variance thus emerged as
a control performance metric (16).

2.5. Enterprise-Wide Optimization

As hardware and algorithmic capabilities have continued to improve since the 1990s, the role of
mathematical optimization in plant operations has increased considerably. Figure 2 depicts the
decision-making hierarchy of a chemical manufacturing enterprise, spanning multiple time and
spatial scales. The decisional layers have typically been implemented by separate entities/business
units within the enterprise—often with relatively little communication or information feedback—
likely leading to suboptimal (overall) process operations. For example, if equipment is designed
for a steady-state operating point where control (e.g., in the sense of disturbance rejection) is
difficult,much of the investment in that design will be unwarranted. In response to this realization,
enterprise-wide optimization,which seeks to optimize chemical process operations across all levels
of the hierarchy in Figure 2, has been the subject of a significant body of research in recent years
(17). The implications of the enterprise-wide optimization philosophy for the control layer might
include, e.g., consideration of controllability and design of the control system at the unit design
stage, as well as the integration of planning/scheduling/control layers.
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Hierarchy of decision making in the chemical process industries.

3. ENERGY EFFICIENCY OF CHEMICAL PROCESSES

Economic considerations notwithstanding, energy efficiency has become a matter of public and
policy interest owing to growing concerns regarding the finite supply of carbon-based fuel sources
and the role of CO2 emissions in climate change. Nevertheless, in the United States and around
the world, efforts to reduce aggregate energy consumption across the economy have largely been
eschewed in favor of technological solutions that make processes and products more (energy)
efficient (18). At a high level, energy efficiency typically refers to using less energy to produce the
same quantity of goods or useful outputs (19):

EE = useful output of a process
energy input to a process

. 4.

More specific definitions of energy efficiency have been proposed, e.g., based on the first law of
thermodynamics:

EE�H = �Hout

�Hin
, 5.

where �Hout and �Hin are the enthalpies of the process outputs and inputs, respectively.However,
the definition in Equation 5 does not consider the quality of the energy inputs and outputs, and
processes with different energy inputs cannot be meaningfully compared using this metric. Thus,
for the purpose of comparing two processes (e.g., at the design stage), it is generally more useful
to consider metrics based on the second law of thermodynamics, such as exergy efficiency (19).

A more practical definition is based on the amount of energy required to produce a certain
quantity of final goods:

EEecon = quantity of valuable product
�Hin

. 6.

Discussions on energy efficiency often implicitly emphasize a reduction in energy consumption
from carbon-based fuel sources. The inclusion of renewable energy sources (e.g., solar, wind)
is viewed as socially and environmentally positive because such renewables reduce CO2 emis-
sions, even though their use is not necessarily more thermodynamically efficient, according to
Equation 5.
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3.1. Energy Intensity of Chemical Processes

A (unit of a) chemical plant can be modeled as an open thermodynamic system that transfers
energy and mass across its boundaries. The energy sources and sinks within these units may be
endogenous, e.g., related to enthalpy of reaction or enthalpy of solution, or exogenous, carried by
utilities or in the form environmental losses. The energy intensity of a process, a closely related
concept to energy efficiency (Equation 4), can be defined as the amount of energy required to per-
form a specified operation at a given throughput. Chemical processes can be broadly categorized
based on the nature of their energy-intensive characteristics:

� High utilization of hydrocarbon fuel (e.g., distillation, catalytic cracking)
� High electricity use (e.g., ammonia, electrolysis)
� High-temperature operation (e.g., glass, metal processing)
� Low-temperature operation (e.g., cryogenic air separation, natural gas liquefaction)

There are numerous other reasons for high energy intensity, and combinations thereof must be
taken into account when considering the entire (chemical) supply chain (e.g., energy consumption
associated with transportation of raw materials). Energy intensity and total energy use also vary
considerably across industries. Refining, for example, involves processing significant volumes
of crude material (the largest refineries in the United States process hundreds of thousands of
barrels per day), using primarily hydrocarbon fuels to drive separation and high-temperature
reaction of components. In such cases, the economy of scale can be leveraged to improve energy
use performance: Even a small (e.g., 1%) relative decrease in energy consumption is significant
in absolute terms.

3.2. Process Control, Energy Efficiency, and Plant Economics

Continued investment in modern control systems can ultimately be attributed to the belief among
control engineers and plant managers that improved control increases profitability (Figure 3). Al-
though reducing cost often involves reducing energy consumption (per unit product), improving
energy efficiency is rarely a goal in its own right. Furthermore, the macroeconomic impacts of im-
provements in energy efficiency are uncertain. When reduced energy costs decrease the price of
final products, user demand may increase, resulting in higher total production and possibly higher
net energy use.This phenomenon, known as the rebound effect (20),may negate relative improve-
ments in energy efficiency in a free market system. There are even scenarios in which economics
and energy efficiency appear completely at odds. For example, demand response (DR) (discussed
later in this article) operation of electricity-intensive manufacturing processes entails increasing
production at off-peak hours (when electricity is cheap) and storing excess product, which is then
used to fulfill demand during peak hours when electricity is more expensive. Although DR may
improve process economics, it generally requires a net increase in energy consumption, owing to
increased storage demands (e.g., in the case of cryogenic air separation, storage entails energy-
intensive liquefaction of products). Proponents argue, however, that DR enables a more extended
adoption of carbon-neutral (and time-varying) electricity sources, such as wind and solar, by pro-
viding load-shifting services to the grid. As such, DR is associated with increased total energy
consumption but decreased carbon emissions.

The discussion above emphasizes that the relationship between the control system and realized
energy efficiency of a process is complex and multifaceted. Their interaction is fourfold:

1. Direct effects, whereby reducing variation allows operating points to be shifted in the di-
rection of higher energy efficiency.
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Figure 3

Selected developments in chemical process control (top) and energy management (bottom) since 1960. Abbreviations: DCS, distributed
control system; LQG, linear quadratic Gaussian; MPC, model predictive control; PID, proportional-integral-derivative.

2. Direct effects, whereby energy minimization is an explicit objective of the process control
system.

3. Indirect effects, whereby process control enables more energy-efficient operational
paradigms.

4. Indirect effects, whereby process control systems facilitate the implementation of more
energy-efficient integrated/intensified process designs.

These effects are considered in detail in the next sections.

4. THE DIRECT LINK BETWEEN PROCESS CONTROL
AND ENERGY EFFICIENCY

Process (particularly regulatory) control systems are rarely designed to explicitly reduce energy
consumption or improve energy efficiency (21). Relatively little attention has thus been given in
the literature to the direct relationship between control and energy efficiency: That is, what effect
do the design and performance of the control system have on the realized energy efficiency of the
process? In industry, however, advanced control has long been recognized by practitioners as one
of the most cost-effective means by which to improve process performance (22) and, potentially, to
reduce energy consumption. Such cost/energy savings occur when process control reduces output
variability and enables operation closer to constraints.

4.1. Reducing Process Variance via Improved Control

From the pragmatic perspective of the plant engineer, a primary benefit of control is the reduction
of process output variance. Harris (16) first proposed benchmarking the (closed-loop) output

430 Simkoff et al.



CH11CH18_Baldea ARjats.cls May 19, 2020 10:11

variance achieved by a controller against the value reachable with a theoretical minimum variance
controller (the latter estimated using a time series analysis of closed-loop process data):

η = σ 2
y

σ 2
MV

, 7.

where σ 2
y is the variance of the observed outputs under the given control scheme and σ 2

MV is the
theoretical minimum variance.

Extensions have been proposed for multivariate systems (23, 24) and to account for trade-offs
between input and output variance (i.e., the LQG benchmark) (25, 26). Although minimum vari-
ance controllers are rarely implemented in practice [they tend to be overly aggressive, among
other limitations (27)], output variance can be reduced to an acceptable level by proper tuning of
PID controllers (28); use of advanced control structures, such as feedforward and cascade designs
(1); improved sensing capabilities (29); and use of model-based control (30). In fact, reduction in
output variance can be understood as a primary motivation for the development of MPC: Because
dynamics are accounted for explicitly, the process can transition to a new setpoint or can reject dis-
turbances more effectively compared with a control structure (e.g., multi-loop PID) in which the
process dynamics are captured at best indirectly in the form of control loop pairing and controller
tuning parameters.

4.2. Energy-Efficiency Benefits of Reduced Process Variance

Economically optimal operating points often lie at (the intersection of ) process con-
straints/bounds, which in many cases are correlated with energy consumption. Historically, oper-
ators have tended to operate plants conservatively (i.e., away from such limits) to avoid violating
critical constraints. A controller that reduces output variance therefore enables operation closer
to constraints without violating them (Figure 4).

In one of the earliest works to explicitly link control and energy efficiency, Shinskey (31) iden-
tified several conservative operating policies in the petrochemical industry, including (a) excessive
reflux in distillation operations (to avoid penalties associated with off-spec production), (b) overly
conservative column pressure targets (to avoid flooding of distillation column trays), and (c) ex-
cessive combustion air in furnace operation (to avoid violation of emissions constraints and to
prevent explosions). These situations exemplify opportunities to save energy by implementing
control strategies that reduce variance.
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Reducing output variance allows processes to be operated closer to constraints/bounds.
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Operating closer to constraints can improve energy efficiency by increasing throughput at a
given product quality. Consider a gas-fired heater that is constrained by an upper bound on the
tube skin temperature (22). A controller that reduces temperature variance allows the operator
to set a higher temperature target (i.e., closer to the maximum tube skin temperature). This, in
turn, enables either (a) higher throughput of the unit, at a fixed exit temperature, or (b) higher exit
temperature of material processed in the unit, at a fixed throughput.

In the first case, the energy efficiency of the unit is directly increased by improved control,
because less energy is expended per unit of processed material. In the second case, the economic
value of products is directly increased by improved control. This latter scenario may still represent
an improvement in energy efficiency if, in the absence of improved control, the material would
require, e.g., increased recycle or processing in downstream units to meet quality requirements.

White (32) presents another example, pointing out that operating targets need not change in
order to improve energy efficiency when process energy use is a nonlinear function of the pro-
cess variable(s).White illustrates this idea with a distillation column operated at constant bottoms
composition, where the reflux rate is varied to control the distillate composition. The total energy
consumption rate is an approximately linear function of the reflux rate; distillate composition,
however, is a nonlinear function of reflux rate (and thus energy consumption), because further in-
creases to reflux rate yield diminishing returns as the rate tends to infinity. A low-variance distillate
composition controller will lead, on average, to lower energy consumption than a controller that
results in higher variance, for the same average product quality.

4.3. Energy Savings Under Model-Based Control

Richalet et al. (33) described one of the first MPC applications, IDCOM (for “identification and
command”), and described its implementation in a series of distillation columns in a PVC plant. It
was claimed that reduced variance of the controlled temperatures and robustness to disturbances
under IDCOM allowed operators to reduce constraints on minimum column outflow rate while
maintaining product quality. This led to a 15% reduction in steam flow rate, with combined an-
nual energy savings across two columns reported to be $220,000 (1978 dollars). Another early
MPC product, Dynamic Matrix Control (DMC) (34), was demonstrated on a furnace tempera-
ture control application, yielding improved performance comparedwith conventional feedforward
strategies. Later, Kano & Ogawa (35) presented the example of an olefins unit at the Mitsubishi
Chemical Co. (MCC) Mizushima plant, where a large-scale MPC/RTO application enabled vari-
able column pressure operation. This translated into significant energy savings relative to the
constant pressure operation that operators had favored for decades: The authors claimed a 3–
5% reduction in energy use across the complex. Working on the same MCC facility, Gao et al.
(27) claimed an 18% reduction in energy consumption for a para-xylene unit following MPC
implementation.

Energy-intensive plants outside the chemical industry can also benefit fromMPC. In the metal
processing realm [nearly 6% of US industrial energy consumption (36)], Ganesh et al. (37) pro-
posed the use of MPC in an austenitization furnace operating at high temperatures, where the
temperature of the processed parts at exit is controlled as a proxy for mechanical properties that
are subject to strict quality specifications. The authors demonstrated that MPC reduced part tem-
perature variability, allowing for the target exit part temperatures to be lowered relative to the
(conservative) heuristic target that furnace operators had historically enforced to ensure part qual-
ity. Total energy savings were estimated at 5.3%. Worrell et al. (38) discussed the application of
advanced control to (high-temperature) cement clinker production [a sector responsible for ap-
proximately 1.6% of US industrial energy usage (36)], reporting energy savings between 2.5%
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and 10% and payback periods as low as three months. Energy savings from implementing MPC
on a glass melting furnace [glass makes up 1.1% of US industrial energy use (36)] were estimated
at 2–3%, with payback under six months (39).

There are several considerations to keep in mind when assessing the potential benefits of im-
plementing MPC. First, model-based control systems require accurate process models; these are
generally obtained in a series of (typically costly and time-consuming) plant step tests. Second,
dedicated maintenance of the underlying models is needed to retain good performance over time.
Lastly, as Richalet (40) and Qin & Badgwell (6) pointed out, MPC reduces process variance and
enables operation closer to constraints, but appropriate targets/setpoints must be provided (e.g.,
via RTO) for a meaningful economic/energy-efficiency impact. Despite these caveats, it is reason-
able to state that, with thousands of MPC applications worldwide (6), cumulative energy savings
owing to model-based control are significant.

4.4. Energy Savings Related to Proportional-Integral-Derivative Control Loops

PID controllers remain the fundamental feedback control mechanism in the process industries;
even the output of MPC systems is often a set of setpoints provided to regulatory PID control
loops that interface with the physical actuators. Tuning and maintenance of these regulatory loops
are thus critical to ensuring good (advanced) control performance, so that process targets can
be shifted in the direction of improved energy efficiency. Most modern PID controllers come
equipped with auto-tuning (41) and, increasingly, controller performance monitoring capabilities
(42). In the 1990s, spurred by the introduction of the minimum variance and related benchmarks,
control researchers introducedmethods for detecting and diagnosing the root cause of oscillations
in single-input single-output control loops (43, 44).

Desborough & Miller (45) presented a survey of the state of industry in control loop manage-
ment, with an emphasis on business and energy drivers. The authors noted that only a third of
control loops exhibited good control performance, according to control practitioners, and pro-
vided practical recommendations for implementing plant-wide control loop monitoring. Of note
for this review, the authors listed energy savings as a desirable outcome of improved (regulatory)
control performance and estimated that implementation of the proposed monitoring tools could
reduce plant-wide energy usage by 1% (a “conservative” estimate of $300 million in potential an-
nual energy savings across the US process industries was also provided). More recent literature
contributions from industrial practitioners and control hardware/software providers continue to
place emphasis on maintenance of PID control loops as a complement to advanced control (28).
Bonavita (46) reported a 10% reduction in energy consumption at an advanced materials plant as
a result of software-assisted retuning of hundreds of PID control loops. Lang et al. (47) described
the diagnosis of poor control performance in a distillation column at a petrochemical plant, trac-
ing the origin of plant-wide oscillations to a regulatory pressure control loop. Importantly, these
oscillations were neither caused nor dealt with by the MPC system, emphasizing the importance
of regulatory control loops to fully realize the benefits of advanced control.

4.5. Improved Sensing for Energy Efficiency

Control systems are fundamentally limited by the existence, placement, dynamics, and precision of
sensors, which measure the physical process variable levels and relay this information to the con-
troller. A full discussion of optimal sensor design and placement is beyond the scope of this review
(the reader is referred to, e.g., References 48 and 49). However, it is important to acknowledge
the role that improved and innovative sensing plays in enabling a more energy-efficient operation.
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Kumar et al. (29) proposed a distributed temperature sensing approach for furnace balancing (i.e.,
minimizing variability of tube-wall temperatures) in a steam methane reformer with hundreds of
tubes and dozens of burners. An array of infrared cameras was used to reconstruct the spatial tem-
perature distribution in the furnace. This information was provided as an input to an optimization
problem that determined (based on a reduced-order process model) the appropriate fuel distribu-
tion to the furnace. A 44% reduction in tube-wall temperature variability was demonstrated under
this framework (with significant implications for energy savings), compared with the case where
the temperatures of only a few tubes were periodically but infrequently measured by an operator.

In addition to sensors that directly measure the CV of interest, it is often prudent to use soft
sensors, meaning that a (set of ) secondary, easier-to-measure variable(s) is used as a proxy for
a difficult-to-measure CV (1); control using soft sensors is referred to as inferential control. A
canonical example is in distillation, where temperature is used to infer composition to avoid the
long time delays associated with direct composition measurement. Although models based on
first principles can be used when available (50), soft sensors tend to rely on data-driven (black box)
models; these include classical techniques from multivariate statistics (e.g., principal component
analysis and partial least squares, which are also common in fault detection) and computational
learning methods (artificial neural networks, neuro-fuzzy systems, and support vector machines)
(51). Soft sensors often attempt to shift the burden in difficult measurement problems from in-
stallation of new sensors (capital intensive, especially in severe process environments, but easy
to interpret) to increased modeling efforts (typically reducing implementation cost but requiring
sophisticated model development and maintenance).

5. EXPLICIT OPTIMIZATION OF ENERGY CONSUMPTION USING
ECONOMIC MODEL PREDICTIVE CONTROL

Economic model predictive control (EMPC) bridges the gap between RTO and supervisory pro-
cess control by directly optimizing some process performance metric (7, 52). Although it was orig-
inally aimed at improving economic performance, EMPC can explicitly consider energy and/or
utility consumption, thereby enhancing process energy efficiency.We summarize the key features
of EMPC that pertain to improving process energy efficiency; the reader is directed, e.g., to the
work of Ellis et al. (53) for a comprehensive review of EMPC.

Similar to conventional MPC (Equation 2), EMPC is cast as an optimization problem solved
on a receding horizon. Thus, at each sampling time (we utilize the notation in Reference 7),

min
u

VEMPC(x,u)

s.t. x(k+ 1) = fEMPC(x(k), u(k)) k ∈ I0:N−1

(x(k), u(k)) ∈ Z k ∈ I0:N−1

x(0) = x0

, 8.

where fEMPC : X × U → X. A key departure from conventional MPC (Equation 2) is the objective
function:

VEMPC(x,u) =
N−1∑
k=0

�(x(k), u(k)), 9.

where � : X × U → R represents the stage cost and is a generic cost metric—potentially related
to energy efficiency—for the process states and control inputs. The economically optimal steady
state xs is theminimizer of �(·) satisfying xs = fEMPC(xs, us ).We note that representationsmay differ
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slightly in the literature. The optimal control problem in Equation 8 is typically accompanied by
terminal conditions, such as a terminal equality constraint, x(N ) = xs; a terminal region constraint,
x(N ) ∈ X f ; or a terminal cost penalty,Vf ,EMPC (x), as an additional term in the objective function.

5.1. Economic Model Predictive Control and Process Energy Efficiency:
Impact and Limitations

Several case studies available in the open literature discuss the energy-efficiency benefits of EMPC
implementations. Amrit et al. (54) studied the benefit of directly optimizing process economics
relative to standard tracking MPC using a simple prototype process consisting only of physical
transformations. Gopalakrishnan & Biegler (55) demonstrated improved economic performance,
relative to trackingMPC, for periodic operation of gas pipeline networks (which in this case trans-
lated directly to compressor energy savings) under nonlinear EMPC. Nonlinear EMPC has also
been proposed for control of air separation units (56, 57) and water distribution networks (58). In-
terestingly, several authors highlighted the tendency of EMPC systems to impose cyclic operating
regimes (53, 59) as a means to improve process economics.

As an emerging technology,EMPC is competing with a large base of conventionalMPC imple-
mentations and well-established and industry-tested MPC software packages. Practitioners also
appear to be wary of the associated need to solve (nonlinear) optimization problems (Equation 8)
online and in real time. EMPC case studies discussed in the open literature generally deal with
low-complexity, low-dimensional processes. By contrast, the application of conventional MPC to
large-scale systems with dozens of input and output variables is by now routine. At the theoretical
level, EMPC lacks widely applicable theoretical guarantees for closed-loop stability (60). Cur-
rent developments in stability rely on synthesizing appropriate terminal conditions (applicable at
the end of the prediction horizon), an endeavor that involves significant process knowledge and
computational effort. It is worth mentioning that this may not be a hurdle per se: Although the
stability of conventional MPC systems is by now well understood, this was not the case when the
first industrial implementations were reported.

5.2. HVAC Energy Management via Economic Model Predictive Control

Buildings [which consume nearly 40% of the total energy used in the United States (61)] and
their HVAC systems are particularly well suited for EMPC implementation for several reasons:
(a) System dynamics are relatively simple (not involving, e.g., chemical reactions, phase equilibria),
slow, and dissipative, and (b) it is sufficient to control building temperature to within a range (rather
than to a specific setpoint) to ensure the comfort of occupants. Furthermore, electricity prices and
relevant disturbances (weather, building occupancy) can be forecasted relatively accurately. Under
EMPC, these forecasts are used to shift energy loads to off-peak hours via thermal energy storage,
whichmay be passive (precooling/preheating of building zones) or active (using, e.g., chilledwater)
(62).

We note that EMPC is not guaranteed to increase energy efficiency of HVAC systems, be-
cause it is usually designed to minimize energy cost; thermal losses associated with thermal energy
storage also tend to require an increase in total energy consumption. The load-shifting services
provided to the grid are nonetheless important for fully leveraging renewable energy sources and
reducing dispatch of (hydrocarbon-fueled) peak-load plants. However, maintaining indoor tem-
peratures within a range (rather than tracking a constant setpoint) can directly reduce energy con-
sumption by allowing temperatures to reach the upper/lower bounds during the hottest/coldest
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hours of the day. Several works have reported economic savings under EMPC in commercial (63–
66) and residential (67, 68) buildings.

6. PROCESS SCHEDULING, CONTROL, AND ENERGY EFFICIENCY

In this section, the intersection of scheduling/operations and energy efficiency in the literature
is reviewed, focusing on the role of control. Energy-efficient scheduling paradigms work either
by reducing overall energy usage or by temporally redistributing energy usage to reduce emis-
sions and/or waste. The resulting schedules tend to be highly dynamic, featuring relatively rapid
transitions between operating points. Satisfactory control performance is therefore essential for
executing the schedules and realizing the associated energy benefits.

6.1. Reducing Energy Consumption

Scheduling activities can contribute to reducing total energy use in chemical and manufactur-
ing plants by (a) improving transitions between operating points and/or products in the product
wheel (mainly relevant to continuous processing) and (b) energy-optimized plant configuration
and resource/task assignment (discrete manufacturing and batch processes).

6.1.1. Continuous processes. In the case of continuous processes, scheduling decisions
amount to establishing the timing and sequencing of making the products in a product wheel
and inevitably include transitions between the corresponding operating points. Another poten-
tial scheduling application entails modulating the production rate of the same product(s) over a
continuous range of values based on an exogenous signal (e.g., energy prices). It is generally as-
sumed that the process can transition between the operating states identified at the scheduling
level, with the transitions being imposed by the control system. Poor closed-loop performance
can render such transitions a cause of energy inefficiency; for example, improperly tuned con-
trollers may have excessive settling times, resulting in wasted product and increased energy use.
Process nonlinearity can also make certain transitions more expensive than others. These factors
require that production scheduling models consider explicitly the dynamics of the process and the
performance of its control system.

Work by Bhatia & Biegler (69) and later by Terrazas-Moreno et al. (70) demonstrated that
significant economic benefits arise from accounting for process dynamics at the scheduling stage.
Prata et al. (71) extended the grade transition problem to include flowsheet changes that are de-
pendent on the optimal production sequence. Du et al. (72) introduced computationally efficient
modeling approaches for representing the scheduling-relevant closed-loop dynamics of a process
and its control system. Using a multiproduct continuous stirred tank reactor (CSTR) as an exam-
ple, Costandy et al. (73) were able to identify both an upper bound on potential economic gains
by improved process control and specific areas of a process where improved control performance
was needed, using total transition time and transition time between products as metrics. They
concluded that the improved economic performance of the process, owing to reducing product
waste during transitions, implied that more energetically favorable operating schedules can be
generated when process control performance is improved.

6.1.2. Discrete manufacturing. A direct way to reduce energy consumption via optimal
scheduling involves turning off idle machines/equipment and using optimal scheduling princi-
ples to determine when to bring machines on-/offline. Prabhu et al. (74) characterized energy dy-
namics as they relate to machine- and production-level control in an exploratory study of energy
efficiency in discrete manufacturing systems. A simulation model with bi-level integrated control
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policies demonstrated that parameters in the production control (scheduling) policies drastically
changed the energy performance (as it relates to energy losses) (74). Mouzon et al. (75) developed
optimization algorithms for a set of dispatching rules for machine-level controllers, considering
the energy (and time) required to start up, idle, use, and shut down manufacturing equipment,
and paired these algorithms with an artificial neural network to determine when a product order
would arrive. The authors found that energy-efficient scheduling was most effective when equip-
ment bottlenecks were reduced and machines following any remaining bottlenecks were turned
off until sufficient input (intermediate product) was ready for processing (75).

6.2. Temporal Redistribution of Energy Usage

From a thermodynamic perspective, large, rapid changes in process energy use can increase energy
waste. Conversion smoothing represents an operational strategy that seeks to minimize the rate
of change of energy use over time. Rager et al. (76) applied this scheduling philosophy to textile
manufacturing systems with parallel machines.

Energy storage is another means for shifting process energy use in time.Numerous works have
considered the DR operation of chemical processes as a means of storing energy in the form of
product. DR involves overproducing and storing product(s) when electricity demand (and price)
is low. When electricity demand (and prices) peaks, the chemical process can operate at a lower
production level and use previously stored product to meet customer demand. DR programs are
well suited to electricity-intensive chemical processes, such as air separation (77, 78) and chlor-
alkali plants (79, 80). The economic incentive for DR operation is provided by the discrepancy
between peak and off-peak electricity prices,which can be quite significant in deregulatedmarkets.
Furthermore, electricity prices fluctuate hourly (or more frequently) during the day, requiring that
the operating state (and electricity demand) of the plant change at a similar pace (81).DRoperation
therefore calls for a new production scheduling strategy: a transient operation regime is implicitly
assumed by selecting scheduling time slots that are significantly shorter than the settling time of
the process.

Naturally, the performance of the control system and its ability to impose the frequent tran-
sitions prescribed by the scheduling calculations are paramount to the engagement of a chemical
plant in DR operation schemes. As a consequence, many applications seek to explicitly include a
description of the process dynamics and control in the scheduling model. Using first-principles
processmodels can increase schedulingmodel size (and solution time) significantly (77).Consider-
able research efforts have been invested in devising computationally parsimonious representations
of process dynamics and control in scheduling calculations. System identification techniques were
proposed for building scale-bridging models, i.e., low-order nonlinear surrogate dynamic mod-
els of the closed-loop process dynamics. The structure of the model can be selected using either
empirical arguments (77) or machine learning techniques (82). Exact linearizations of such rep-
resentations were discussed by Kelley et al. (83), and extensions to closed-loop scheduling were
presented by Pattison et al. (84). In a different vein, Huang et al. (85) developed a model-free
industrial DR scheme, which used a Markov decision process and an actor-critic-based reinforce-
ment learning algorithm for optimal energy management of steel powder manufacturing. Zhang
et al. (86) used a resource-task network model to perform scheduling of steel plants while also
considering their interaction with the power grid.

As pointed out earlier, although DR does not improve the energy efficiency of a plant, DR ini-
tiatives are beneficial at the level of the power grid. They enable increased use of renewables and,
consequently, can lower greenhouse gas emissions associated with power generation and trans-
mission (87, 88).
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7. THE RELATIONSHIP BETWEEN PROCESS DESIGN, CONTROL,
AND ENERGY EFFICIENCY

Although the above operational benefits of process control are important considerations, the en-
ergy efficiency of a chemical process is ultimately limited by its design and the physical character-
istics of the process units. As we argue below, the control of a process may become more difficult
with improvements in equipment-level energy efficiency, which usually require tighter heat in-
tegration and therefore, e.g., higher dynamic interactions between units and minimal physical
driving forces. Advances in process control technology have played an indirect, but crucial, role in
improving energy efficiency at the process design stage by enabling the safe and reliable operation
of apparently less controllable (but more energy-efficient) process designs.

7.1. Control of Integrated Processes

Energy and material integration in process design can significantly reduce waste products, de-
crease energy consumption from utilities/external sources, and maximize process throughput.
Tight energy (and material) integration seeks to maximize these process efficiency benefits but
results in complex, multiple-timescale dynamic behavior, as well as potential losses in control de-
grees of freedom (89). The latter can be attributed to newly introduced interdependencies (e.g.,
preheating a stream with a warm process stream in a feed-effluent heat exchanger versus using
a steam heater). Safe and reliable operation of these energy-efficient but highly interconnected
designs thus typically requires model-based controllers that can properly account for the relevant
dynamic interactions, such as MPC, discussed earlier.

Alternatively, decentralized/distributed-model control strategies have been proposed to handle
large-scale, interconnected processes. Such strategies have an intuitive motivation, as they divide
control systems using knowledge of the interconnected component subprocesses, but coordination
of the individual control systems introduces new challenges with respect to stable and optimal
operation of the entire system. Techniques such as distributed MPC (90, 91), cooperative MPC
(92), and agent-based control (93) have been proposed to provide coordination between subsystem
controllers. Recent works (94) have used concepts from network theory to detect the optimal
decomposition of subsystems for decentralized control strategies.

7.2. Control of Intensified Processes

Process intensification encompasses developments in process design or operation that lead to
cleaner, smaller, and more energy-efficient technology (95, 96). It can be viewed as a limit case of
process integration [i.e., as the flow rates of recycle streams tend to infinity (97)]; this relationship
is depicted in Figure 5. Intensified processes thus present similar (or greater) control challenges
as integrated processes: complex nonlinear behavior, strong interdependencies, and fewer degrees
of freedom. In addition, many intensified process designs create strong driving forces by minia-
turizing unit operations, introducing the additional control challenge of fast dynamics/small time
constants. Research in the control of intensified processes generally follows the paradigm of first
systematically identifying avenues for process intensification (i.e., process design) (98) and, second,
establishing the appropriate control strategies, using, e.g., an operability analysis (99, 100).

A common theme in process intensification ismultifunctional units, or combining the function-
ality of two or more conventional unit operations into a single physical device (101). For example,
reaction and separation can be carried out concomitantly, such as in the case of reactive distillation.
Reactive distillation columns pose a challenging control problem owing to nonlinearity/steady-
state multiplicity and dynamic interactions; advanced control strategies are needed as a result
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Figure 5

Conceptual reaction–separation–recycle process configurations illustrate the challenges of process control
(loss of degrees of freedom) associated with tight process integration and process intensification. Figure
adapted with permission from Reference 97; copyright 2015 Elsevier.

(102, 103). The dividing-wall column (DWC) is another case of an intensified, multifunctional
unit (performing a ternary separation in a single column) that improves energy efficiency by ad-
vanced heat integration. Advances inMPC have enabled operation of DWCs closer to the optimal
point in terms of energy efficiency (104), but deployment of DWCs remains limited by control
challenges (105–107).

Dynamic process intensification (108) can yield substantial energy-efficiency improvements.
Specifically, dynamically intensified process units are designed to operate at a cyclic steady state
that exhibits more economically advantageous (i.e., lower energy use) time-averaged behavior
compared with a unit having the same production characteristics but operated at steady state (109,
110). Process control plays a prominent role in the operation of dynamically intensified systems
by (a) imposing the cyclic behavior and (b) ensuring the key variables, such as product purity, are
kept at their (time-varying) target values at all times.

7.3. Integrated Design and Control

The control challenges associated with process integration and intensification have motivated
research on the simultaneous (optimal) design of process units and their operating/control poli-
cies (111–113). The explicit integration of design and control calculations attempts to reconcile
two competing interests: economic/energy efficiency and process controllability. For example,
maximizing thermodynamic reversibility (i.e., minimal entropy production) improves the energy
efficiency of a process but requires minimal driving forces (112) that lead to control challenges
(e.g., saturation). The resulting multi-objective, mixed-integer dynamic optimization problems
are computationally challenging to solve [especially when the physical process models are spa-
tially distributed (114)]; solution methods typically rely on sequential (115) or simultaneous (116)
procedures. Integration of design and MPC has also been proposed using explicit MPC (117).
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However, although producing controllable plant designs is an important issue, surveys of current
practices have revealed that the primary goal of the chemical industry is to obtain the best design
from an economic perspective and that process control is typically addressed once the design is
complete (118).

8. DISCUSSION AND CONCLUSIONS

Energy use will remain a prominent concern in the process industries; in this work, we attempted
to summarize the (direct and indirect) ways that process control systems can support energy effi-
ciency. From a practical perspective, bulk chemicals plants and refineries have by now almost fully
adopted the MPC paradigm; in their case, controller maintenance will likely account for most
of the control-related work done toward improving energy/economic efficiency. Other energy-
intensive process industries that continue to rely on conventional control setups may significantly
benefit from advanced control solutions like MPC and EMPC.

The process systems engineering community must continue to innovate to support the
evolving needs of chemical production. One topic that merits investigation is the integration of
process control and equipment monitoring. Equipment degradation (e.g., fouling, deactivation,
mechanical wear) is a primary source of efficiency loss, because it causes the process to operate
away from its (optimal) design conditions. At present, equipment maintenance typically follows
a fixed schedule (or is carried out when performance has degraded so severely that it may cause
a costly shutdown). We posit that process systems researchers are uniquely well-positioned to
use the big data sets collected by process historians to actively monitor equipment condition and
inform proactive maintenance policies.

Installation of new sensors will be critical to improve energy efficiency: Better sensing provides
better information that can be used to improve control and reduce wasted energy. These sensors
are often expensive, however, especially when process conditions are severe. Existing process mod-
els and soft sensors can be used to make the best use of scarce resources/limited sensing capabili-
ties, including across multiple units. Future systems and devices should be designed explicitly for
ongoing monitoring of energy efficiency and performance, e.g., by directly measuring/inferring
energy flows where possible.

We also suggest cooperation across businesses as an emerging avenue for reducing energy
waste. Technological advances in data collection and information exchange make possible en-
hanced coordination between energy/utility suppliers and users. As an example, a steel mill can
communicate its oxygen demand forecast to an upstream air separation plant. The air separation
plant can then operate more efficiently by increasing the production of gas product when de-
mand is high (i.e., avoiding unnecessary vaporization of energy-intensive liquid products owing
to misalignment of demand and supply) (119).

At the policy level, it will be necessary to explore new energy pricing strategies and incentives.
Organizations will increasingly be able to directly incorporate energy consumption/sustainability
metrics in their operational strategies. However, policy shifts (in the form of incentives, taxes, and
regulations) may be necessary to fully align process economics with energy-efficiency goals.
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