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Abstract

Adaptive immunity is mediated by lymphocyte B and T cells, which respec-
tively express a vast and diverse repertoire of B cell and T cell receptors
and, in conjunction with peptide antigen presentation through major histo-
compatibility complexes (MHCs), can recognize and respond to pathogens
and diseased cells. In recent years, advances in deep sequencing have led to a
massive increase in the amount of adaptive immune receptor repertoire data;
additionally, proteomics techniques have led to a wealth of data on peptide–
MHC presentation. These large-scale data sets are now making it possible
to train machine and deep learning models, which can be used to identify
complex and high-dimensional patterns in immune repertoires. This arti-
cle introduces adaptive immune repertoires and machine and deep learning
related to biological sequence data and then summarizes the many applica-
tions in this field, which span from predicting the immunological status of a
host to the antigen specificity of individual receptors and the engineering of
immunotherapeutics.
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INTRODUCTION

Immune Receptors in Adaptive Immunity

The ability of the adaptive immune system to recognize foreign pathogens and diseased cells is
driven by lymphocytes: B and T cells, which can identify specific molecular structures (antigens
or epitopes) on foreign pathogens. Specificity to these antigenic epitopes is achieved through a
group of adaptive immune receptors belonging to the immunoglobulin superfamily: B cell re-
ceptors (BCRs) and their secreted version antibodies and T cell receptors (TCRs). BCRs and
TCRs cover a large functional sequence space, enabling them to recognize the myriad of different
pathogens and antigenic determinants (epitopes) an individual gets exposed to throughout life.
Because these receptors belong to the immunoglobulin superfamily, both constitute a disulfide
bond–linked heterodimer of either typically a heavy and light chain (BCR) or an α and β chain (in
some cases γ and δ chain; TCR) and are thus structurally related. BCRs bind to antigen directly,
whereas TCRs recognize antigen presented as peptides on major histocompatibility complexes
(MHCs).

Adaptive Immune Receptor Repertoires

For both BCRs and TCRs, amino acid sequence diversity is largely confined to variable region
domains, which consequently drives their antigen recognition. Owing to their common structural
protein ancestry, primary variable region receptor diversity results from the imprecise somatic
recombination [also called V(D)J recombination] of distinct germline gene segments by the en-
zyme RAG recombinase, which joins different variable (V), diversity (D), and joining ( J) segments
together during the cellular development of lymphocytes (1–3) (Figure 1). For each segment,
multiple variants/alleles exist in the respective genomic loci. The variable regions of heavy and β

chains are formed by recombining a V, D, and J segment, whereas light and α chains use only a V
and J segment (Figure 1). It is estimated that these recombination events in humans can generate
a theoretical diversity of 5 × 1013 naïve BCRs and 1018 α:β TCRs (4). In addition to V(D)J recom-
bination, which takes place in the bone marrow and the thymus, B cells, unlike T cells, can further
undergo secondary diversification in the peripheral lymphoid tissues (primarily spleen and lymph
nodes) through somatic hypermutation (5, 6) and class-switch recombination (7), which repre-
sent highly regulated enzymatic processes that lead to BCRs with higher affinity to target antigen
(8). In most cases, B and T cell clones are defined based on the site of junctional recombination
known as complementarity determining region 3 (CDR3); CDR3 of the heavy (CDRH3) and β

(CDRβ3) chains are the main paratope components, which means they contribute to much of the
binding specificity of BCRs and TCRs, respectively. The clonal population of lymphocytes and
their recombined BCRs and TCRs in an individual represents their immune repertoire. Recent
developments in deep sequencing technologies have enabled unprecedented insight into the diver-
sity and distribution of immune repertoires. Immune repertoire sequencing provides the ability to
monitor the dynamic changes in the immune repertoire landscape, ranging from clonal expansion
to germline recombination and somatic hypermutation (Figure 1).

B cell receptors and antibody repertoires.Unlike traditional methods of antibody analysis (i.e.,
serological binding assays), targeted deep sequencing of BCR variable regions in combination
with a carefully chosen experimental design (9) can capture a wealth of quantitative information
on repertoires, including clonal selection and expansion, clonal diversity, clonal convergence,
and clonal evolution via somatic hypermutation. BCR repertoire sequencing has been used to
shed light on basic questions in immunobiology and development across various species (10–12).
Furthermore, BCR repertoire sequencing has also been used for medical and biotechnological
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Figure 1

The immune receptor repertoire and immune peptidome. (a) B cell receptors (BCRs) and T cell receptors (TCRs) generate diversity in
their variable regions via the process of V(D)J recombination, which assembles different variable (V), diversity (D), and joining ( J)
segments together to create distinct variable region combinations, which are then followed by the constant regions (CL/CH1–3) that
comprise the rest of the receptor. In BCR variable heavy (VH) and TCR variable beta (Vβ) chains, all three V, D, and J genes are used,
whereas in the BCR variable light (VL) and TCR variable alpha (Vα) chains, only V and J genes are used. Library preparation from
recombined genomic DNA or mRNA of variable regions is coupled to deep sequencing to enable quantitative analysis of the immune
receptor repertoire. Key interrogated features relate to clonal selection and expansion, clonal evolution by somatic hypermutation,
germline recombination, repertoire architecture, and more. (b) Major histocompatibility complexes (MHCs) present peptides to TCRs
on T cells. Each cell carries multiple MHC alleles on its surface, and each allele presents multiple peptides forming a cell peptidome—a
sum of all peptides presented on a surface by MHCs. Peptidomes can be obtained by purifying peptide–MHC complexes with
subsequent peptide elution. The resulting peptide pool sequences then can be identified via mass-spectrometry methods (i.e., liquid
chromatography-mass spectrometry, LC-MS/MS). Figure adapted from Cell Receptors (Alpha and Beta Chains) and B Cell Receptors
(Light and Heavy Chains) by BioRender.com (2020), retrieved from https://app.biorender.com/biorender-templates.

purposes, such as vaccine profiling (13–15) and discovery of monoclonal antibodies (16, 17).
Substantial recent progress in the field of droplet microfluidics has enabled single-cell sequencing
of lymphocytes, therefore providing detailed insights into the landscape of natively paired
heavy-/light-chain BCR repertoires (18) and their associated phenotypic properties. Several
sophisticated strategies have been devised to directly link paired BCR or TCR sequences to
antigen specificity (19–22).

T cell receptor repertoires. Similar to that of BCRs, deep sequencing of TCR repertoires pro-
vides a quantitative framework to understand and harness this information to address questions
in fundamental immunology, as well as applications in molecular diagnostics and immunothera-
peutics. TCR repertoire sequencing has been instrumental for profiling clonal selection across a
variety of T cell populations, including effector, memory, and exhausted cytotoxic CD8+ T cells
and a wide range of helperCD4+ Tcell subsets (Th1,Th2,Th17,T follicular helper cells) (23–26).
These studies have been pivotal in understanding how clones either can coexist or are exclusive
to certain T cell subsets, thereby informing selective pressures shaping cell-mediated adaptive
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immunity. In addition to profiling distinct T cell subsets, new quantitative insight on T cell re-
sponses during various infection, immunization, and disease conditions has been obtained from
TCR repertoire sequencing. In most of these studies, TCR repertoire parameters are described
based on clonal expansion, germline gene usage, and a range of sequence and biophysical prop-
erties (polarity, acidity, and sequence length) (25–28). TCR repertoire sequencing has similarly
demonstrated a usefulness in more applied settings, with substantial promise in T cell engineer-
ing, immunodiagnostics, and TCR discovery (29–32).

Immune repertoire databases.To organize the output of immune repertoire sequencing ex-
periments, the Adaptive Immune Receptor Repertoire (AIRR) community was founded to bring
together academic researchers, industry partners, data experts, and others to manage immune
repertoire sequencing data in a standardized fashion (33). The AIRR community defined min-
imal experimental information guidelines for data set annotation, such as V(D)J usage, species,
diagnosis, and standard file formats for the annotated data, thus supporting high workflow re-
producibility and greater ease for meta-analysis across data sets. The AIRR Data Commons API
is also available for easy access, querying, and implementation across several immune repertoire
sequencing data repositories (34). The current main repositories are the iReceptor and Observed
Antibody Space (OAS) databases, the latter of which is maintained by the Oxford Protein Infor-
matics Group, who have also established the Structural T-Cell Receptor Database for curated sets
of TCR sequences and their confirmed structures (35–37). Other independent repositories of in-
terest include VDJServer, a platform that offers a complete analysis workflow for preprocessing,
annotation, and characterization of BCR sequences, and the Pan Immune Repertoire Database
(PIRD), which collects annotated TCR and BCR sequences from the China National GeneBank
(38, 39). For further databases of interest, the AntiBodies Chemically Defined (ABCD) database
offers manually curated sequences of antibodies and their known targets; the VDJdb aggregates
antigen specificities of TCR sequences from published T cell specificity assays as well as TCR
motifs to be used in specificity prediction; and the PIRD contains a database of TCRs and BCRs
with confirmed specificity toward specific antigens or diseases (39–42).

Major Histocompatibility Complexes and Antigen Presentation

MHC I and MHC II molecules are located on cell surfaces and present peptides to cytotoxic
CD8+ T cells and helper CD4+ T cells, respectively. Both MHC types share similar structure;
however, theMHC I groove is closed and accommodates only short peptides (8–10 amino acids in
length),whereas the open groove ofMHC II binds longer peptides (from 13 to 25 amino acids) (43,
44). MHC I is expressed on every nucleated cell and presents fragments of intracellular proteins.
In contrast, MHC II expression is restricted to antigen-presenting cells such as dendritic cells,
macrophages, and B cells, which take up extracellular proteins by phagocytosis or endocytosis and
present their peptide fragments to T cells through the MHC II pathway. The difference in the
source of the peptides is reflected inMHC I andMHC II pathway dissimilarities that are described
below.

In brief, the classical MHC I pathway starts with the degradation of defective cytosolic and
nuclear proteins by the proteasome protein complex (4). Resulting peptides are released back
to the cytosol, where some of them are translocated to the endoplasmic reticulum (ER) by the
transporter associated with antigen processing (TAP) complex. In the ER, high-affinity peptides
are bound to MHC I molecules prefolded on the ER membrane (4). Once the peptide–MHC I
complex is formed, it is transported to a cell surface through the Golgi apparatus. The MHC II
pathway is initiated when antigen-presenting cells uptake extracellular proteins into endosomes,
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where they are degraded by pH-dependent proteases.MHC II molecules are preassembled in the
ER and, together with the other proteins necessary for peptide loading, are transported to endo-
somes (4). In endosomes, MHC II is loaded with digested protein fragments and then transferred
to the surface to present its ligands to CD4+ T cells.

Importantly, MHC I and II molecules are both polygenic and polymorphic, meaning cells
express multiple MHC alleles, and thousands of alleles are found in the human population.More-
over,MHCmolecules are extremely promiscuous and, in theory, can bind more than a million dif-
ferent peptides (45). Such complexity of peptide presentation by MHC has thus made it challeng-
ing to obtain comprehensive peptide–MHC data sets and predict peptide presentation on MHC.

There are two primary ways to characterize peptide presentation on MHC, either by mea-
suring the affinity of the interaction of synthetic peptide–MHC or by mass spectrometry (MS)
from cells expressing peptide–MHC (Figure 1). Full details on these methods and emerging
technologies based on cellular display of recombinant peptide–MHC libraries can be found in
Joglekar & Li’s recent review (46). Regardless of the method used, the vast majority of data from
experimental peptide–MHC binding assays are collected and stored in the Immune Epitope
Database (47). As of July 2020, this database contains in total ∼1,630,000 MHC ligand data
points, from which ∼1,300,000 were identified via MS and more than 300,000 were obtained
from MHC binding assays.

MACHINE AND DEEP LEARNING ON BIOLOGICAL SEQUENCES

Introduction to Machine Learning

Machine learning (ML) is a category of algorithms that identify and learn patterns in data with-
out being explicitly programmed. ML and statistics are closely related fields, and the difference
between them is often quite subtle. Statistics is focused more on making conclusions about a pop-
ulation based on a given sample, whereas ML specializes in discovering patterns in existing (train-
ing) data that then can be used to make predictions on new (test) data (48). To make a statistical
model, usually, some preexisting knowledge is required to assume a data-generating distribution.
InML,no rigid assumptionsmust bemade, and thus it becomes possible to find complex nonlinear
dependencies (48).

ML can perform a variety of tasks, such as classification, regression (predicting a numerical
value), clustering, and outlier detection (49). Classification and regression are the most common
tasks in theML field that are applied to predict an outcome on the new data. Classification models
aim to assign a label to a given data sample, such as to predict cell type based on a gene expression
profile. Regression tasks are similar, but instead of a label, a model predicts numerical value,
for example, antibody affinity to an antigen of interest given the antibody sequence. Clustering
is another common problem and refers to finding and grouping similar data points within a
data set, for example, clustering TCR sequences associated with antigen specificity. A variety
of ML algorithms exist for each of these tasks, such as support vector machines (SVMs) and
decision trees (random forests) for classification and regression, and k-means for clustering (49)
(Figure 2). Independent of the ML algorithm, input data should be described through the vector
of numerical variables or features that are curated manually. Feature examples include an amino
acid composition of a protein or its physicochemical properties or functional motifs. Not all
features are equally informative for a given task; thus, feature selection is performed to discard
nonrelevant features from an existing set. Moreover, several features can be combined by a linear
function or transformed into a lower dimension, a process termed feature extraction. Feature
selection and extraction can be used together or interchangeably depending on a task. The
quality and relevance of the curated features play a pivotal role in ML model performance, and
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Figure 2

Machine learning (ML) and deep learning (DL) model implementations. (a) ML models are based on a set of algorithms that discover
patterns in the data without making rigid assumptions about their distribution. To train ML models, data must be described through
numerical variables or features relevant for the given learning task. An example of relevant features are CDR3 sequences, which can be
used for model training. A common ML classification model is a support vector machine (SVM), which optimizes the decision surface
that separates two classes. (b) DL is a subfield of ML that takes advantage of multilayered neural networks to extract relevant data
variables in an automated manner. Thus, the fundamental difference between the two is that ML requires a feature extraction step. In
the context of immune receptor repertoires, data consist of nucleotide (nt) or amino acid (a.a.) sequences, which can be converted into
numerical vectors using one of the encoding schemes. In one-hot encoding, each nt or a.a. is assigned to a unique position marked with
a one in an otherwise all-zeros vector. DL models are based on neural networks composed of the layers of nodes connected by weights
or parameters. (c) During the training, the SVM and neural network parameters are tuned to reduce the difference between true and
predicted outcome on a given training data set. ML and DL models are validated on new unseen data (test data), and their performance
is estimated by different metrics that are calculated based on the discordance between predicted and true labels. One of the widely used
metrics is an area under a receiver operating characteristic curve (AUC ROC) plotted in false- and true-positive rate coordinates and
calculated at multiple thresholds for label assignments. Figure adapted from images created with BioRender.com.

feature-selection techniques are an active area of research. For more details on ML algorithms,
please refer to the valuable resource by Murphy (49).

Introduction to Deep Learning

ML can be very powerful for data analysis and predictions.However, one of its major limitations is
that the feature extraction step can be tedious and often requires domain-specific knowledge (50).
This becomes increasingly difficult when large amounts of data are generated containing hundreds
of potential features. This bottleneck has been overcome by the emergence of a subclass of ML
known as deep learning (DL). DL uses a class of algorithms that find a relevant set of features
required to perform a particular task in a more automated manner (50). DL algorithms are based
on artificial neural networks that are organized in hierarchical layers that transform input in a
nonlinear fashion (Figure 2). Owing to the layered structure, the computed result of one layer
acts as an input to the next layer, resulting in an increasingly abstract data representation (50).
Such architecture allows DL algorithms to discover complex patterns in high-dimensional data,
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which has led to breakthroughs in image and speech recognition as well as improved performance
over ML on a variety of problems. One disadvantage of many ML algorithms, especially those
that utilize neural networks and DL, is the lack of interpretability (51).

A wide spectrum of DL and neural network architectures have been developed that differ in
areas such as activation and loss functions, weight sharing, and connectivity between nodes. Con-
volutional neural networks (CNNs) have been employed extensively for image processing and
capture local patterns in the data independently of their position. This property also proved to be
valuable formany biological problems, as CNNs have been applied to classify binding sites of tran-
scription factors (52) or microRNA targets (53). Another major class of DL models are recurrent
neural networks (RNNs), which have made a breakthrough in speech and language processing
tasks and found their application in a variety of biological tasks, including protein engineering
(54). DL architectures are also used to reduce data dimensionality or generate novel sequences,
with variational autoencoders (VAEs) and generative adversarial networks (GANs) being the main
algorithms applied to such tasks. Full coverage of DL models is outside the scope of this review;
the interested reader could refer to several additional resources (50, 51, 55).

Training and Testing Machine and Deep Learning Models

In biology, ML and DL models are widely applied to omics data and drug discovery; examples
include ML models that predict the function of genomic noncoding variants (56), transcription
factor binding sites (57), protein structure (58), small-molecule drug inhibitors (59), and novel
antibiotics (60). Independent of the application, building an ML model typically includes the fol-
lowing steps: (a) collection and processing (cleaning) of training data, (b) extraction of meaningful
variables (features), (c) model training, and (d) model evaluation (testing). To explain how ML
algorithms work, we briefly go through each of these steps.

Training data.The size and quality of training data are at the heart of all ML and DL models
and largely determine their performance, robustness, and accuracy. The structure of training data
also dictates which type of learning can be performed: supervised or unsupervised (51). Supervised
learning requires labeled data, meaning that each data point is paired with a certain output, such
as class or quantitative value. For example, a library of antibody variants with known amino acid
sequences (e.g., features) are stratified to binders and nonbinders (two output classes). Supervised
learning algorithms, such as SVMs or random forest, are then used to predict an outcome on
new data, such as whether a new antibody sequence is a binder or nonbinder to target antigen.
On the contrary, in unsupervised learning, only input features are given, and an algorithm must
make sense of data without guidance. Typical unsupervised learning tasks are data clustering and
dimensionality reduction performed with methods such as principal component analysis or k-
means clustering (51). Note that the division between supervised and unsupervised learning is
formal, and many algorithms can do both tasks as well as perform semisupervised learning; the
interested reader is directed to several other valuable reviews on applications of ML and DL in
biology (55, 61–63).

Features.The next essential step after data collection is feature selection and extraction.This step
is necessary to remove redundant (e.g., highly correlated) features and select the most relevant
ones for the specific learning task. Reducing the number of features speeds up learning time by
decreasing computational burden as well as simplifying themodel.An example of different features
given to an algorithm could be distinct ways of antibody sequence representation: whole sequence
or only CDR3 region or frequency of amino acid substrings present in a sequence.
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Model training.Model training, supervised or unsupervised, refers to iteratively adjusting model
parameters or weights. It is based on a loss function that estimates the performance of the current
model and an optimization method that gradually corrects weights toward better performance
based on a loss. In supervised learning, the loss function is usually defined as a difference be-
tween true and predicted labels. In unsupervised learning, a definition of the loss function is not
as straightforward, as there are no true labels.Nevertheless, one can still determine that the model
performs well if it simplifies the original data representation while keeping as much information
as possible and, thus, define a loss based on this criterion. Therefore, even though loss and opti-
mization methods are implemented differently in unsupervised learning, the algorithms can still
be thought of in these terms.

Model evaluation and testing.Once a model is trained, it must be evaluated on a new set of
test data. The reason for this is that ML and DL models could have so many parameters that
they could memorize training data. However, such a model would have little value when applied
to a new data set owing to its low generalization ability and poor real-world performance. This
phenomenon, referred to as overfitting, represents a fundamental challenge in ML and DL. To
avoid bias in model evaluation, the data set is usually split into two parts: training and test set,
with no data overlap between the sets. A common practice of random data split may not be a valid
approach in biology (64). For example, training data based on protein sequences should consider
sequence homology when determining training and test splits, as related proteins (defined by their
sequence or structure similarity) should be located to the same split.

Metrics to evaluate model performance depend on several factors, such as problem type (re-
gression or classification) and the proportion of the classes in a data set. The most commonly
applied metrics for classification problems are metrics based on the confusion matrix values
(true positive, false positive, true negative, and false negative), for instance, precision and recall
(true positive rate). Another widely used metric is an area under receiver operating characteristic
curve (AUC ROC). AUC ROC is plotted in true positive rate–false positive rate coordinates that
are calculated at different confidence thresholds for label assignment. AUC ROC values of 0.5 in-
dicate a random classifier, and a value of 1.0 indicates a perfect classifier. As a rule of thumb, several
performance metrics should be computed to get a complete picture of the model performance.

Encoding Biological Sequence Data

To train any algorithm, input data must first be transformed into numerical vectors. For example,
an image can be encoded into numbers through the color intensity values of its pixels. In biology,
typical data sets consist of sequences (either nucleotide or amino acid) or protein structures. Pro-
tein structures are rich in information that can be used to predict protein function and possible
interaction partners. However, the number of available structures, especially for BCRs and TCRs,
is minuscule in comparison to the number of known sequences. Therefore, in this review, we focus
primarily on the numerical encoding of biological sequences and MLmodels trained on sequence
data (Figure 2).

One-hot encoding.One-hot encoding represents a simple way to encode categorical values such
as the 20 canonical amino acids (49). In one-hot encoding, each category (amino acid length) is
converted into a vector of length equal to the number of categories (20 amino acids). For the given
amino acid residue, 19 of the categories will be filled with a 0, whereas a 1 will be used for the one
category with the corresponding amino acid. One-hot encoding is widely used to transform cate-
gorical values and provides a good baseline; however, it is not computationally efficient, because it
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is sparse and high dimensional (65). High dimensionality of encoded input is also associated with
model overfitting, as the number of features exceeds the number of data points, a phenomenon
known as the curse of dimensionality (65). Additionally, one-hot encoding treats all amino acids
equally without taking their physical and biochemical properties into account.

k-mer encoding. In k-mer encoding, the sequences are split into substrings of length k, and a
frequency of every unique k-mer is calculated (66).Therefore, each sequence is encoded as a vector
indicating the frequency of k-mers it is composed of. One drawback of this method is again the
sparsity and high dimensionality of the encoding as the number of possible unique k-mers grows
exponentially with the increased k. For example, a DNA sequence encoded through the frequency
of its pentameric substrings would be converted into a vector of length 45 = 1,024 (number of
possible unique DNA pentamers). This effect is even more dramatic for protein encoding with
the alphabet size of 20.

One-hot and k-mer encodings are applied to both nucleotide and amino acid sequences. Below
we describe a few methods specific to amino acid sequence data.

Amino acid composition. A sequence is encoded as a vector of 20 in which every position corre-
sponds to the frequency of a given amino acid in a given sequence.The advantage of this method is
that all sequences are transformed into same-length dense vectors; however, the positional amino
acid information is lost, and preserving it is often important for many biological applications.

Physicochemical properties–based and evolutionary-based encoding.This type of encoding
is based on amino acid descriptors, such as their hydrophobicity or charge or evolutionary rela-
tionships. A large number of amino acid descriptors are available; for example, the current version
of the AAindex database has a collection of ∼700 indices based on biochemical properties, substi-
tution matrices, or pairwise interaction propensity (67). The five Atchley factors describing amino
acid volume, charge, polarity, structure, and codon diversity (68), as well as BLOSUM and PAM
matrices (69, 70) characterizing amino acid mutation propensity, are among the most well-known
and utilized descriptors. Sequence encoding through the amino acid descriptors is usually the
method of choice; however, it is often challenging to determine which descriptor would perform
best on a given task, and thus testing multiple descriptors is recommended.

Learned encodings. An alternative approach to encoding based on certain properties (biochem-
ical, structural) is embedding learned from raw data via ML and DL algorithms. Several learned
protein representations have been proposed built on the architectures initially made for language
processing tasks (54, 71–73). Learned embeddings, as a rule of thumb, are low dimensional, pro-
viding higher computational efficiency while performing on par with the traditional encoding
schemes (72, 74). Nevertheless, as with amino acid descriptors, it is challenging to predict which
learned embedding would work for a particular problem. Two recent studies proposed to learn
amino acid encodings during the training, e.g., to initialize an encoding vector randomly and
update its values through the training step to reduce error (74, 75). In this way, amino acid em-
beddings are assumption free and tuned for a particular given problem.

Similar to how there is no magic bullet algorithm that performs best on any task, there is no
one-size-fits-all amino acid encoding. Interestingly, recent studies have shown that although the
encoding choice might be important for linear methods, it seems to be surprisingly less critical
for more complex architectures (74, 75). Only a minor difference in performance was present
for randomized versus biochemical properties–based encoding, indicating high flexibility in the
nonlinear models (74, 75). ElAbd et al. (74) also showed that the dimensionality of encoding seems
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to be more crucial than the encoding per se, so for optimal performance, one should explore
different encoding dimensions. Although intriguing, these results must be confirmed by further
studies, such as those comparing a diverse range of models and encoding methods.

MACHINE AND DEEP LEARNING ON IMMUNE RECEPTOR
REPERTOIRES

Machine Learning for Immune Repertoires

With increasing amounts of deep sequencing data on immune repertoires available, the use of
ML and DL is emerging as a promising method to detect complex patterns underlying repertoire
dynamics, clonal selection, and antigen specificity. The exquisite ability of BCRs and TCRs to
recognize a large variety of antigens with changes in a few regions (e.g., CDRH3,CDRβ3) implies
there may be high-order dependencies within positional sequences; thus, it may be advantageous
to incorporate structural information. Recent efforts using structural modeling approaches can be
found in other reviews, such as that from Graves et al. (76). Here, we instead focus on sequence-
based ML and DL models that take advantage of immune repertoire deep sequencing and are
being used to classify immune status, predict antigen specificity, and engineer immune receptor
drug candidates (Figure 3).

Immune Repertoire Classification

Given that antigen exposure causes specific patterns of clonal expansion and convergence of the
immune repertoire, ML approaches offer a practical strategy to perform repertoire comparisons
(11). For example, one can study the convergence of repertoires, which is when two different indi-
viduals converge to similar BCR orTCR sequences in response to the same antigen, by identifying
common sequence patterns (features). In two landmark studies,Dash et al. (77) and Glanville et al.
(78) identified convergence based on TCR sequence patterns associated with antigen specificity
using either a CDR-weighted distance metric (TCRdist) or clustering based on several sequence
features (GLIPH). In both cases,TCR sequence patterns were used to build a classification system
that could predict antigen specificity with high accuracy. An updated version,GLIPH2, has shown
a substantial improvement in the percent of clustered sequences (36% versus 15% of all sequences
clustered in a first version) and can process millions of sequences (79). A recent tool, iSMART, has
evaluated clustering of tumor-infiltratingT cells based onCDRβ3 and demonstrated that grouped
TCRs had signatures of activation (80). All of these approaches are based on a similarity distance,
which is a predefined measurement of the similarity of sequences (e.g., 80% similarity in CDR3
is often used to define clonal groups) between TCRs based on metrics such as modified pairwise
alignment of CDRs (77, 80) and work in a supervised manner. However, unsupervised approaches
for repertoire sequence clustering would be highly useful considering that specificity is known for
only a miniscule percentage of sequenced data.Meysman et al. (81) investigated and benchmarked
methods for TCR clustering based on explicit distance metrics (Levenshtein distance, trimer sim-
ilarity, alignment) as well as on the unsupervised DBSCAN algorithm. They concluded that the
performance of simple Levenshtein clustering is equivalent to that of more advanced methods.
However, all methods struggled to cluster TCRs binding to the same peptide–MHC. This is be-
cause TCRs of shared specificity can be as diverse as TCRs targeting different epitopes (81, 82).
That study considered only CDRβ3 sequences, and including an alpha chain as well as V(D)J infor-
mationmight improve performance in the future. Studying the architecture of the BCR repertoire
sequence space,Miho et al. (83) revealed that clustering by sequence-similarity networks revealed
a high degree of architectural and network similarity between individuals, despite the fact that
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Figure 3

Immune repertoire sequence data generation for deep learning (DL) applications. Starting from a pool of primary cells, B cells or T
cells are labeled with antigen and sorted by flow cytometry. Deep sequencing of B or T cell receptor variable regions (VL/VH or
Vα/Vβ, respectively) is then performed to generate immune repertoire training data. Sequences are then encoded and used to train DL
models for applications such as repertoire classification, antigen specificity clustering, or antibody engineering. In repertoire
classification, DL algorithms seek to use patterns such as clonal expansion and convergence to identify features that are important to a
specific disease state. Ensemble DL models are also used that incorporate features such as V gene usage, somatic hypermutation, and
isotype to improve classifier performance. Sequence-based approaches to antigen specificity employ DL methods such as variational
autoencoders and maximum-entropy modeling to identify clusters of highly convergent antigen-associated sequences. In antibody
engineering applications, DL models are trained to predict antigen specificity based on antibody sequence, which are then used to in
silico screen large libraries of antibody sequences for additional antigen-specific variants with favorable properties (e.g., drug
developability). Figure adapted from images created with BioRender.com.

they had highly divergent antibody sequences. This highlights the need for sequence-based ap-
proaches to capture high-dimensional patterns, rather than just using simple sequence alignment
and similarity thresholds.

Initial methods of repertoire classification sought to learn underlying structures using single-
algorithm approaches. For example, an unsupervised method called ALICE has been established
to identify TCRs participating in an immune response; in this approach, TCRs that have more
neighbors (defined as max 1 amino acid difference in CDRβ3) than expected by a statistical model
are defined as involved in the immune response (84). The method can be applied to repertoire
data to detect public and private TCRs associated with a certain disease or condition. Similarly,
Emerson et al. (85) have developed a statistical classifier based on the presence of known cy-
tomegalovirus (CMV)-associated TCR sequences in repertoire data to diagnose the CMV status
of patients. By employing an SVM-based approach trained on the compositional information of
CDRH3 sequences, Greiff et al. (86) could predict public and private clones within human and
murine repertoires with 80% accuracy. However, the performance of their SVM model was also
highly dependent on the size of the training data set, with a thousandfold increase in training data
from 102 to 105, improving final prediction accuracy by 25%.Despite this, once trained, the SVM
classifier was highly robust, achieving high performance on both BCR and TCR repertoires, as
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well as across species and with different antigen exposures. In another application, a classifier was
built to diagnose relapsing remittingmultiple sclerosis, an extremely difficult-to-diagnose autoim-
mune disease, from other neurological diseases (87). By training a log-likelihood-based classifier
on Atchley factor–encoded CDRH3 sequences from patient data, the authors achieved an accu-
racy of 87% on leave-one-out cross-validation and 72% on previously unseen data from a larger,
separate study—far outperforming the accuracy of magnetic resonance imaging–based multiple
sclerosis diagnosis techniques (68).

More recent approaches have begun implementing ensemble approaches, which draw upon
the strengths of many different models to improve feature learning. To address the challenges of
sparse and heterogeneous data sets often found in clinical studies, Tomic et al. (88) developed the
Sequential IterativeModelling “Overnight” (SIMON)ML system. In short, SIMON creates opti-
mal,more complete data sets from sparse clinical data and then trains a large array of 128 different
ML models before selecting the best model for feature selection and exploratory analysis. Using
SIMON, the authors could identify immune signatures predictive of influenza vaccination from
five separate clinical studies of seasonal influenza vaccination. In another study, Konishi et al. (89)
incorporated features such as V/J-frame patterns, CDR lengths, number of somatic hypermuta-
tions, and physicochemical properties of amino acid sequences in the CDRs to build an ensemble
model that combines inputs from linear,Bayesian, andCNNclassifiers.Their ensemblemodel was
then used to classify normal versus cancerous tissue based on the localized BCR sequences with an
AUC value of 0.826. Besides encoded amino acid sequences, the ensemble model also identified
other significant discriminative features, such as the number of somatic hypermutations between
tumor and normal tissue. In fact, a recent publication comparing BCR repertoires between six
different immune-mediated diseases also revealed that other features, such as isotype and V-gene
usage patterns, are also important for discriminating between disease states (90), which could be
captured by more complex ensemble models in the future. By incorporating a greater array of
features into the final discriminator, ensemble-based approaches hold great promise for accurate
repertoire classification.

Finally, repertoire classification is a multiple-instance learning problem, where in an immune
repertoire of millions of sequences, only a few are true sequences that indicate its class. Therefore,
it is important for a discriminator to isolate patterns important to the disease state, or immune sta-
tus, rather than other confounding factors, such as genetic background, environmental factors, or
immune history. To do so, several groups have leveraged attention-based classifiers that can iden-
tify true discriminator sequences within a repertoire (91–93). The most recent, DeepRC, devel-
oped byWidrich and colleagues (93), leverages the exponential memory capacity of modern Hop-
field networks to greatly improve the storage capacity of the model’s attention mechanism, which,
combined with CNN-based sequence embedding, allows it to efficiently and accurately extract
motifs and residues within repertoires that contribute toward prediction of a disease class. Tests
on both real-world CMV data (85) and simulated data show that DeepRC outperforms a panel
of SVM, K-nearest neighbors, logarithmic regression, and previous multiple-instance learning–
based models, especially when detecting sequence motifs with very low witness rates.

Finally, there is a need for ground truth data sets to benchmark ML and DL tools for im-
mune repertoire classifier evaluation (94). In particular, it is essential to be able to separate true
sequence enrichment from the generation probabilities of repertoires and other confounding fac-
tors referenced previously. To fulfill this need, various bioinformatic tools have been created for in
silico repertoire generation (95, 96).One notable example is immuneSIM, an open-access software
package that generates standardized ground truth immune repertoires to be used for comparative
benchmarking analysis (97).
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Machine Learning to Predict the Antigen Specificity of Immune Receptors

Traditional methods of antibody specificity prediction are based on antibody–antigen structures,
obtained either experimentally or through modeling. Tools such as the PEASE and BepiPred-
2.0 (random forest based), AntibodyInterfacePrediction (SVM based), AG-Fast-Parapred (RNN
based), and the recently updated proABC-2 (CNN based) all seek to apply features learned from
antibody–antigen structures to predict new paratopes and epitopes based on given antibody or
antigen sequences (98). Although all of these tools have been used for fast and relatively effective
prediction of epitopes given the paratope sequence, and vice versa, they are all restricted by scarce
antibody–antigen crystal structure data; consequently, they often fail at predicting antibody–
antigen binding with novel sequences.

In contrast, sequence-based approaches for specificity prediction are not constrained by the
need for readily available crystal structures and are emerging as a promising approach. The po-
tential of sequence-onlyML approaches for paratope–epitope pairing is supported by Akbar et al.’s
(99) recent discovery of a compact vocabulary of antibody–antigen interaction motifs through use
of antibody–antigen structural data. Their findings show that paratope–epitope interactions are a
priori predictable and the motifs for antibody–antigen specificity could be learned, paving the way
for DL-guided approaches for in silico antibody specificity predictions. Because the current mo-
tifs Akbar et al. discovered were derived from structural data, more large-scale, high-throughput
methods of antibody–antigen receptor pair generation, similar to library-on-library screens, may
enable the identification of more motifs that underlie the rules of antibody–antigen interaction
and specificity (100). This can be addressed by single-cell sequencing methods, in which investi-
gators link specific BCR sequences to their antigen specificities at the time of sequencing, leading
to discoveries of antibodies specific against HIV-1 and peanut allergen (101, 102). In terms of
predicting TCR specificity, De Neuter et al. (103) developed a random forest classifier to predict
specificity to two HIV-1 epitopes presented on HLA-B∗08 and demonstrated that it is possible
to predict TCR specificity based solely on sequence data. Later, Gielis et al. (104) expanded the
training set of the model to 18,679 TCR–epitope pairs to detect epitope-specific TCR sequences
within the repertoires. With this method, they were able to detect epitope-specific clones with
high specificity but low sensitivity.

More recently, statistical inference andMLhave also begun to emerge as promisingmethods of
predicting antibody–antigen specificity. In 2016, Asti et al. (105) developed a maximum-entropy
model to predict antibody–antigen specificity of sequences from the immune repertoires of in-
dividuals. By exploiting the nature of affinity maturation and clonal expansion, they attempted
to predict and map the fitness landscape based on finding clusters of comparatively highly mu-
tated sequences. Recently, by using a DL approach, our group observed that convergent selection
occurs in immunized mice on a much larger scale than previously known (106). In this study, clus-
tering of these repertoires was performed using VAEs and revealed multiple convergent, antigen-
associated sequence patterns that could be used to build an SVM classifier of antigen exposure, as
well as to generate synthetic antibody sequences that maintained antigen binding. By leveraging
somatic hypermutation and repertoire convergence, attempts to discover meaningful clusters in
the repertoire sequence space appear to be a promising direction for finding novel antigen-specific
sequences.

Engineering Antibodies with Machine Learning

Common antibody design and engineering workflows employ computational model-based
approaches, which rely on predicting affinities through modeling the antibody–antigen inter-
action interface. Sormanni et al. (107) provided an in-depth summary of some of the common
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methods, such as OptMAVEn, OptCDR, AbDesign, and RosettaAntibodyDesign (107–111).
These approaches have been used successfully for the affinity maturation of antibodies against
several different targets, such as interleukin-17, insulin, and HIV (111–113). Furthermore,
newer ML-based models trained on both sequence and structural features also appear to show
promise in predicting changes in binding affinity in response to multipoint mutations (114).
However, once again, as with most structural-based approaches, these engineering and affinity
maturation methods are heavily dependent on the presence of structural data, which are quite
rare.

In recent years, by leveraging increased deep sequencing capacity, sequence-based DL ap-
proaches have emerged for antibody design and engineering. Deep mutational scanning is a pro-
tein engineering method that uses directed evolution and deep sequencing (115). It has recently
emerged as a powerful way to obtain high-throughput sequence-function data and can be used to
develop predictive models for protein structure and evolution (116, 117). In one prominent exam-
ple,Mason et al. (118) used deepmutational scanning–guided library design on the CDRH3 of the
therapeutic antibody trastuzumab and combined this with a mammalian cell directed evolution
platform to generate deep sequencing data of antigen-binding variants. These sequencing data
were used to train neural networks that could accurately predict the binding status of antibodies
based on their protein sequence.The authors also showed that their DLmodels outperform struc-
tural modeling software in predicting binding ability and can synthesize novel binding sequences
from a much larger sequence space. Liu et al. (119) proposed an ensemble model titled Ens-Grad
for sequence optimization and novel binder sequence synthesis trained on phage display data. Us-
ing Ens-Grad, the authors were able to apply antibody features for antigen specificity learned by
the ensemble model for in silico affinity maturation of new input seed sequences, showing that
Ens-Grad can generalize into the unseen antibody space. However, in contrast to the method
Mason et al. (118) described, Ens-Grad cannot engineer antibodies focused on a specific epitope,
as that feature is not in the initial training data and therefore not learned as a discriminator. The
authors noted that enriched sequences form isolated clusters of distinct sequence families, which
may correspond to specific epitopes; therefore, it may be possible in the future to include epitope
prediction as a step in the ensemble model.

In addition to engineering CDRs for affinity maturation, efforts are also underway to improve
antibody developability and humanization. For developability, ensemble models for aggregation
and random forest regression models for hydrophobicity have shown promise in rapidly identify-
ing liabilities in antibody libraries before and after selection in the discovery process (120, 121).
Recently, a new tool, the Therapeutic Antibody Profiler, has been developed for prediction of five
more developability characteristics based on antibody variable domain sequences (122). With re-
spect to humanization, Clavero-Álvarez et al. (123) used a multivariate Gaussian model trained
on human and mouse variable heavy and light sequences from the Immunogenetics database to
predict sequence humanness. The final model was used not only to assign a score to sequences
based on their degree of humanness (defined as the multivariate Gaussian score) but also to per-
form in silico humanization of murine antibody sequences. Focusing on capturing long-range
and higher-order dependencies between residues in a human repertoire, Wollacott et al. (124)
employed an RNN to quantify sequence nativeness. Trained on variable region sequences from
the OAS database, the final model could not distinguish human from mouse, chicken, and llama
sequences (AUC > 0.97), but the authors also showed the model can select germline sequences
more compatible with CDRs from nonhuman sources.

Although significant progress has been made in efficient assessment of antibody developability
and humanization, what is lacking are generative models capable of synthesizing novel sequences
given developability parameters. Very recently, steps have been taken to address this missing
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piece. Amimeur et al. (125) employed a GAN model trained on sequences from the OAS to
discriminate between synthetic and natural human repertoire sequences, following which the
GAN was used as a generative model to synthesize novel libraries of sequences with humanlike
properties for expression in Chinese hamster ovary cells (CHO) and phage-display systems.
Because other generative modeling approaches, such as VAEs, have also been used for in silico
generation of antibody sequences (106), it is foreseeable that DL will make a profound impact on
therapeutic antibody discovery and development.

Machine Learning for the Major Histocompatibility Complex Antigen
Presentation Pathway

Several recent reviews have described and evaluated theML algorithms for the prediction ofMHC
antigen presentation (126, 127). Here we describe the main points and tools designed to predict
MHC presentation.

Predicting Antigen Processing and Presentation

A variety of tools have incorporated proteasome cleavage sites and the probability of TAP trans-
port into the MHC peptide prediction pipeline (128–131). The ML algorithms used to predict
MHC pathway processing steps include the stabilization matrix method (129), hidden Markov
models (131), and shallow neural networks (128, 130). Early studies demonstrated that integration
of proteasomal cleavage andTAP transportation increases predictive performance (129).However,
later results have shown that predicting proteasome cleavage and TAP transport does not con-
tribute to optimal sensitivity (130). This was explained by the high selectivity of peptide loading
to MHC in comparison to all other steps of the MHC I pathway (132, 133), as well as protea-
some and peptidase promiscuity (134). Nevertheless, with the accumulation of the large body of
peptidomics data, the field has been revived. Several studies stated that the integration of the cleav-
age signals into the MHC I peptide prediction model helped significantly improve performance,
though the contribution was not dominant (135, 136). Recently, Laserson and colleagues (137)
took one step forward and built a separate antigen processing classifier to discriminate identified
MHC I peptides from unobserved peptides, showing a substantial increase in the percentage of
true-positive predictions (also termed positive predictive value).

Although several tools exist for prediction of MHC I peptide processing, it has been more
challenging to develop equivalent tools for the MHC II pathway owing to its higher complexity,
such as antigen degradation by numerous proteases (138) and limited data availability. Only re-
cently, motifs located upstream and downstream of peptide termini were integrated into models
for MHC II ligand predictions (139–142), demonstrating a measurable boost in performance.

Predicting Peptide–Major Histocompatibility Complex Binding

The field of peptide–MHC binding predictions is expanding rapidly, with a multitude of papers
published annually. In this review, we focus on the leading tools according to recent benchmark
studies (126, 143, 144), which are the NetMHC, MixMHCpred, and MHCflurry suites. Most
of these models rely on data generated through MS performed on peptides eluted from MHC
complexes of lysed cells. However, because cells express multiple MHC alleles, one of the main
challenges of MS data on eluted peptides is determining which MHC allele they originate from.
One of the experimental solutions is the development of monoallelic cell lines that provide un-
ambiguous data (135, 145, 146); however, this is not compatible with primary cells from patient
samples (i.e., tumor cells).Therefore, several methods have been proposed to address this problem

www.annualreviews.org • Machine and Deep Learning in Adaptive Immunity 53



computationally, including GibbsCluster, NNAlign_MA, and MixMHCp (145–147), all of which
have shown comparable performance.

The Nielsen lab (148) developed the NetMHC tool, with the latest versions being
NetMHCpan-4.1 and NetMHCIIpan-4.0 for MHC I and MHC II ligand predictions, respec-
tively.NetMHCpan tools are pan-specific,meaning that peptide ligands are predicted for multiple
human and animal alleles as well as any customMHCof known sequence.The latestNetMHCpan
versions are an ensemble of the feed-forward neural networks trained on both binding affinity and
eluted peptideMS data.Different data types can be combined in a model architecture proposed by
Jurtz et al. (149). This neural network has two separate outputs for each data type but shared input
and hidden layers. Such a training approach demonstrated improvement over methods trained on
only one data type.

MHCflurry, implemented by O’Donnell et al. (150), is also based on neural networks and com-
bines both affinity data and eluted peptide data; however, this is achieved through modified loss
function. The latest version, MHCflurry2.0, adds an antigen processing prediction step on top of
the bindingmodel.This antigen processingmodel learns to discriminate between predicted strong
binders originating from the same protein that were either present in the MS data set (hits) or not
observed (decoys) (137). Predictions from both models are then combined via logistic regression
to give a composite score. The authors showed that this method leads to a dramatic increase in
the positive predictive value of MHC ligand predictions.

Another line of tools, MixMHCpred, is based on probabilistic modeling and was developed
by Bassani-Sternberg & Gfeller (145). MixMHCpred is trained solely on eluted peptide data and
uses allele-specific position weight matrices for prediction of peptide binding. To decipher MHC
I peptidomics data, Bassani-Sternberg et al. (151) took advantage of the shared motifs across data
sets with shared HLA alleles, which allowed them to assign motifs and predict ligands more pre-
cisely. Identification of theMHC IImotifs is more challenging in comparison to theMHC Imotifs
owing to the longer peptides and flexible position of the binding core on a peptide. To take these
factors into account, Racle et al. (142) proposed a specific motif deconvolution algorithm called
MoDec. MoDec is a probabilistic algorithm that allows flexible binding core position and simul-
taneously learns MHC II motifs, weights of position matrices, and allele-specific preferences of
the binding core position (142). Deciphered motifs are then used to train MixMHC2pred, which
also integrates motifs of peptide N and C termini. In contrast to neural network tools such as
NetMHCpan and MHCflurry, the MixMHCpred suite is based on a simple linear method of po-
sition weight matrices. However, its precision is equivalent to neural network–based approaches,
suggesting that the peptide binding to MHC may simply have a linear complexity.

Overall, the performance of the MHC I and MHC II peptide binding prediction tools has
substantially improved in accuracy in recent years, largely driven by the increase in MS data and
MLmodels. Nevertheless,MHC II prediction accuracy is substantially lower owing to the higher
complexity of the problem: MHC II open groove accommodates ligands of variable lengths, and
the position of the binding core is flexible. Also, details of MHC II pathways are poorly studied in
comparison to MHC I, and less MHC II ligand data are available; thus, obtaining more data and
improving tools for MHC II ligand prediction would be an important direction for future work.
Other challenges are the binding prediction for peptides with post-translational modifications
and prediction of peptide immunogenicity (binding to TCRs) as well as immunodominance. The
factors governing these phenomena are still not fully understood, so further research and efforts
are needed to build ML models capable of predicting defining features of MHC ligands eliciting
a strong immune response.
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CONCLUSIONS AND FUTURE DIRECTIONS

This review highlights the substantial progress that has been made in applying ML and DL to
unravel the complexity of immune receptor repertoires. The field has been catalyzed by the re-
cent exponential growth of data on BCR and TCR repertoires from deep sequencing experiments,
as well as peptide–MHC data from MS experiments. This has made it possible to encode these
molecular sequence data and use them for training of ML and DL models. To date, a wide variety
of model architectures have been implemented, spanning from the simple (SVMs, random forest,
logistic regression) to the complex (CNNs, RNNs, VAEs). Future research in this field will bene-
fit from comparing more model architectures and establishing guidelines for model selection for
immune repertoires, as such standardization has been beneficial for ML and DL in other appli-
cations (i.e., image classification and speech recognition). Progress in ML and DL for adaptive
immunity still depends on the generation of large-scale and high-quality training data; although
major progress has been made, there is still a major lack of immune repertoire data, which refers
to BCR sequences with known antigen specificity and TCR sequences with known peptide–MHC
specificity. Therefore, advanced experimental approaches, such as single-cell sequencing, recom-
binant library screening, and antigen binding and function assays, must continue to develop to
generate repertoire data with defined antigen specificity. The long-term trajectory of this field is
very promising, as immunology, like other fields of biology, is going through a transformation in
which it is merging with computational and data science; thus, ML and DL are poised to lead to
important advances in the basic understanding of adaptive immunity as well as applications such as
prediction of immune status and specificity, discovery, and development of immunotherapeutics.
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61. Tarca AL, Carey VJ, Chen X-W, Romero R, Drăghici S. 2007. Machine learning and its applications to
biology. PLOS Comput. Biol. 3(6):e116

62. Eraslan G,Avsec Ž,Gagneur J, Theis FJ. 2019.Deep learning: new computational modelling techniques
for genomics.Nat. Rev. Genet. 20(7):389–403

63. van Engelen JE, Hoos HH. 2020. A survey on semi-supervised learning.Mach. Learn. 109(2):373–440
64. Jones DT. 2019. Setting the standards for machine learning in biology. Nat. Rev. Mol. Cell Biol.

20(11):659–60
65. Bishop CM. 1995.Neural Networks for Pattern Recognition. New York: Oxford Univ. Press
66. Leslie C, Eskin E,NobleWS. 2001.The spectrum kernel: a string kernel for SVM protein classification.

Pac. Symp. Biocomput. 2002:564–75
67. Kawashima S, Pokarowski P, Pokarowska M, Kolinski A, Katayama T, Kanehisa M. 2008. AAindex:

amino acid index database, progress report 2008.Nucleic Acids Res. 36(Database issue):D202–5
68. Atchley WR, Zhao J, Fernandes AD, Drüke T. 2005. Solving the protein sequence metric problem.

PNAS 102(18):6395–400
69. Altschul SF. 1991. Amino acid substitution matrices from an information theoretic perspective. J. Mol.

Biol. 219(3):555–65
70. Henikoff S, Henikoff JG. 1992. Amino acid substitution matrices from protein blocks. PNAS

89(22):10915–19
71. Rives A, Meier J, Sercu T, Goyal S, Lin Z, et al. 2020. Biological structure and function emerge from scaling

unsupervised learning to 250 million protein sequences. Work. Pap.
72. Yang KK,Wu Z, Bedbrook CN, Arnold FH. 2018. Learned protein embeddings for machine learning.

Bioinformatics 34(23):4138
73. Asgari E, Mofrad MRK. 2015. Continuous distributed representation of biological sequences for deep

proteomics and genomics. PLOS ONE 10(11):e0141287
74. ElAbd H, Bromberg Y, Hoarfrost A, Lenz T, Franke A, Wendorff M. 2020. Amino acid encoding for

deep learning applications. BMC Bioinform. 21:235
75. Raimondi D, Orlando G, Vranken WF, Moreau Y. 2019. Exploring the limitations of biophysical

propensity scales coupled with machine learning for protein sequence analysis. Sci. Rep. 9:16932
76. Graves J, Byerly J, Priego E, Makkapati N, Parish SV, et al. 2020. A review of deep learning methods

for antibodies. Antibodies 9(2):12
77. Dash P, Fiore-Gartland AJ, Hertz T,Wang GC, Sharma S, et al. 2017. Quantifiable predictive features

define epitope-specific T cell receptor repertoires.Nature 547(7661):89–93
78. Glanville J, Huang H, Nau A, Hatton O,Wagar LE, et al. 2017. Identifying specificity groups in the T

cell receptor repertoire.Nature 547(7661):94–98
79. Huang H, Wang C, Rubelt F, Scriba TJ, Davis MM. 2020. Analyzing the Mycobacterium tuberculosis

immune response by T-cell receptor clustering with GLIPH2 and genome-wide antigen screening.Nat.
Biotechnol. 38:1194–202

80. Zhang H, Liu L, Zhang J, Chen J, Ye J, et al. 2020. Investigation of antigen-specific T-cell receptor
clusters in human cancers. Clin. Cancer Res. 26(6):1359–71

81. Meysman P, De Neuter N, Gielis S, Bui Thi D, Ogunjimi B, Laukens K. 2019. On the viability of
unsupervised T-cell receptor sequence clustering for epitope preference. Bioinformatics 35(9):1461–68

82. Bentzen AK, Marquard AM, Lyngaa R, Saini SK, Ramskov S, et al. 2016. Large-scale detection of
antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes. Nat. Biotechnol.
34(10):1037–45

83. Miho E, Roškar R, Greiff V, Reddy ST. 2019. Large-scale network analysis reveals the sequence space
architecture of antibody repertoires.Nat. Commun. 10:1321

84. Pogorelyy MV, Minervina AA, Shugay M, Chudakov DM, Lebedev YB, et al. 2019. Detecting T cell
receptors involved in immune responses from single repertoire snapshots. PLOS Biol. 17(6):e3000314

58 Pertseva et al.



85. Emerson RO, DeWitt WS, Vignali M, Gravley J, Hu JK, et al. 2017. Immunosequencing identifies
signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire.Nat.
Genet. 49(5):659–65

86. Greiff V, Weber CR, Palme J, Bodenhofer U, Miho E, et al. 2017. Learning the high-dimensional im-
munogenomic features that predict public and private antibody repertoires. J. Immunol. 199(8):2985–
97

87. Ostmeyer J, Christley S, RoundsWH,Toby I, Greenberg BM, et al. 2017. Statistical classifiers for diag-
nosing disease from immune repertoires: a case study using multiple sclerosis. BMC Bioinform. 18:401

88. Tomic A, Tomic I, Rosenberg-Hasson Y,Dekker CL,Maecker HT,Davis MM. 2019. SIMON, an auto-
mated machine learning system, reveals immune signatures of influenza vaccine responses. J. Immunol.
203(3):749–59

89. Konishi H, Komura D, Katoh H, Atsumi S, Koda H, et al. 2019. Capturing the differences between
humoral immunity in the normal and tumor environments from repertoire-seq of B-cell receptors using
supervised machine learning. BMC Bioinform. 20:267

90. Bashford-Rogers RJM, Bergamaschi L, McKinney EF, Pombal DC, Mescia F, et al. 2019. Analysis of
the B cell receptor repertoire in six immune-mediated diseases.Nature 574(7776):122–26

91. Ostmeyer J, Christley S, Toby IT, Cowell LG. 2019. Biophysicochemical motifs in T-cell receptor se-
quences distinguish repertoires from tumor-infiltrating lymphocyte and adjacent healthy tissue. Cancer
Res. 79(7):1671–80

92. Sidhom J-W,LarmanHB,Ross-MacDonald P,Wind-RotoloM,Pardoll DM,Baras AS. 2019.DeepTCR:
a deep learning framework for understanding T-cell receptor sequence signatures within complex T-cell repertoires.
Work. Pap.
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