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Abstract

Fluid–solid systems play a major role in a wide variety of industries, from
pharmaceutical and consumer goods to chemical plants and energy gener-
ation. Along with this variety of fields comes a diversity in apparatuses and
applications, most prominently fluidized and spouted beds, granulators and
mixers, pneumatic conveying, drying, agglomeration, coating, and combus-
tion. The most promising approach for modeling the flow in these systems
is the CFD-DEM method, coupling computational fluid dynamics (CFD)
for the fluid phase and the discrete element method (DEM) for the parti-
cles. This article reviews the progress in modeling particle–fluid flows with
the CFD-DEM method. A brief overview of the basic method as well as
methodical extensions of it are given. Recent applications of this simulation
approach to separation and classification units, fluidized beds for both par-
ticle formation and energy conversion, comminution units, filtration, and
bioreactors are reviewed. Future trends are identified and discussed regard-
ing their viability.
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1. INTRODUCTION

The design and integration of solids processing equipment is a notable issue in the process indus-
tries. Merrow (1) identified solids processing steps as the primary determinant of delayed start-up
times in newly constructed plants and below-specification performance over a chemical plant’s
lifetime. As such, the devotion of resources to the development and application of simulation
methods such as computational fluid dynamics (CFD)-discrete element method (DEM) for the
design of apparatuses is well justified.

Development of the CFD-DEM method started with Tsuji et al.’s (2, 3) pioneering work with
2D simulations, involving little physical modeling beyond pure dynamics due to limited compu-
tational resources. With the increasing availability in computational power, simulations of larger
apparatuses and more comprehensive physical models have become commonplace. The CFD-
DEM approach is now present in most major CFD packages, such as ANSYS Fluent, Siemens
STAR-CCM+, and OpenFOAM, as well as in specialized ones like MFiX and CFDEMcoupling,
and simulations can be set up in the time span of a few hours. As such, the barrier to entry has
been lowered, and a wide range of studies and methodical extensions have blossomed in the field
of particle–fluid interaction.

The central intention of this review is to provide a point of entry for applied researchers with
little background in the field looking for an overview of the method’s major applications. This
contribution is divided into three sections: a brief overview of the method and general mathemat-
ical formulation, a broad review of recent applications as categorized by apparatus/functions, and
our perspective on future trends.

2. METHOD OVERVIEW

2.1. Basics and Relation to Other Methods

The classical, unresolved CFD-DEMmethod, also referred to as the discrete-particle model, cal-
culates the flow of a fluid using CFD methods in a continuum and the motion of particles as a
discrete set of point masses. This section introduces the concept behind the method and its rela-
tion to other methods that follow similar principles, as well as its mathematical formulation.

2.1.1. Concept. The interaction between both phases is realized by mapping and interpola-
tion procedures, excellently outlined by Radl et al. (4). In detail, the flow will merely experience
the presence of the particles in the displacement of fluid in the pressure/continuity equation and
the presence of momentum exchange terms. In turn, the particles will experience hydrodynami-
cal forces and torques owing to fluid motions, the most prominent of which is drag force. Drag
force is greatly dependent on the structure of the surrounding flow, which is usually collapsed to
the solids volume fraction—often the same that is used in the momentum equations. The litera-
ture frequently differentiates between one-way, two-way, and four-way coupling that takes place
between particles and fluids. One-way coupling refers to tracking particles through a flow field
without considering the influence of the presence of the particles on the fluid phase. This is a
reasonable assumption for situations with low solids volume fractions. With larger solids volume
fractions, the influence of the particle phase becomes non-negligible, and two-way coupling with
representation of the particles’ influence on the flow field is required for accurate depiction of the
system dynamics. There is a degree of uncertainty around the terminology: Some authors label
such coupling schemes as four-way to denote particle–particle interactions, i.e., collisions. There
is no consensus on the differentiation between two- and four-way coupling.

2.1.2. Relation to other methods. Along with the unresolved CFD-DEMmethod,microscale
methods like the resolved CFD-DEM method and lattice Boltzmann–DEM method can be used
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Figure 1

Snapshot of a computational fluid dynamics–discrete element method (CFD-DEM) simulation of a pseudo
2D-spouted bed. Reproduced with permission from Reference 11; copyright 2015 Elsevier.

to model particulate flows with resolved particle–fluid interaction. These methods do not re-
quire drag closures because particles are represented not by point masses but by considering their
shape in the grid and imposing no-slip conditions at the boundary.This greatly increases accuracy,
though at a computational cost that limits their applicability to very small apparatuses and short
simulation time spans.

The multiphase particle-in-cell (MP-PIC) method and two-fluid model (TFM) target larger
apparatuses and time spans. These methods model collisions instead of resolving them directly.
The MP-PIC method (5, 6) solves equations of motion for particles that resemble those of CFD-
DEM but do not include contact forces. Instead, a solids volume fraction–dependent interparticle
stress is introduced that aims to prevent the overpacking of cells beyond the close-pack volume
fraction. In the TFM (7), the solid phase is treated as a continuum that follows the laws of the
kinetic theory of granular flow. This approach introduces a bulk solid viscosity and shear viscos-
ity that depend on a set of closures that track the transport and dissipation of granular kinetic
energy within a continuum. Modeling the consequence of collisions, rather than resolving them,
gives both methods a clear advantage in terms of time scales that can be covered but requires
diligence in the choice of appropriate closures for the flow regime at hand. For example, TFM is
well equipped to model both nonfluidized, dense granular flow (8) and fluidized systems on their
own with appropriate closures (9), but it finds its limit in the application to spouted beds (10),
because this apparatus contains both flow regimes simultaneously. Regarding spouted beds, both
Gryczka et al. (10) and Salikov et al. (11) treated the same system using TFM and CFD-DEM,
respectively, with Salikov finding excellent agreement between simulations and experiment for the
resulting visual system behavior (Figure 1), as well as the Fourier transform of the bed pressure
drop that is a system characteristic.

2.1.3. Mathematical formulations. The soft-sphere DEM that is commonly used in CFD-
DEM coupling can be summarized using the Newtonian equations of motion for any particle i
with massMi,

ẍi = 1
Mi

⎛
⎝ ∑

particles/walls j interacting with i

F j→i + F external
i + F fluid

i

⎞
⎠ , 1.
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Table 1 List of symbols

Symbol Definition Unit
Roman letters
Cf Heat capacity of the fluid phase Kg/m3

dp Particle diameter m
e Internal energy J/m3

Fdrag Drag force N

F external External force N

F fluid Fluid interaction forces N
F j→i Particle–particle/particle–wall interaction forces N
g Gravitational acceleration m²/s
J Inertia tensor kg·m²/rad
M Mass kg
p Pressure Pa
Q̇p→f Heat flow from particle to fluid W
Re Reynolds number -
Ṡ Momentum exchange term kg·s/m³
Ṡparticles,ym Source term: fluid-phase material of species m that is exchanged

with the particle
kg/s

Ṡreactions,ym Source term: fluid-phase chemical conversion of species m kg/s
t Time s

T fluid Torque induced by fluid Nm
T j→i Torque induced by particle–particle/particle–wall interaction Nm
u Velocity m/s
Vcell Cell volume m³
ẍ Acceleration m/s²
ym Mass fraction of species m -
Greek letters
αf Fluid volume fraction -
αp Particle volume fraction -
β Momentum exchange coefficient kg/m2

δ Coarse-graining scaling factor -
κ Thermal conductivity W/(m·K)
μf Dynamic viscosity of the fluid kg/(m·s)
ρ Density kg/m³
τ Stress tensor kg/s²
φi, j Numerical weight -
ω̇ Angular acceleration rad/s2

that include the three major components of the particle–particle and particle–wall interaction
forces F j→i, external forces F external

i , and fluid interaction forces F fluid
i (Table 1). Similar equations

are solved for rotational motion,

ω̇i = 1
Ji

(∑
j

T j→i + T fluid
i

)
, 2.
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where ωi is the rotational motion, T j→i is torques induced by particle–particle and particle–wall
interactions, and T fluid

i is torque caused by fluid. Both equations are time integrated using sym-
plectic integrators like leapfrog or the Verlet method. The interactions are modeled using contact
laws that relate the overlap and relative velocities to the contact force F i→ j in both normal and
tangential direction of the contact. The most common contact models are the viscoelastic linear
spring-dashpot and the nonlinear Hertz–Mindlin models.

Fluid flow in CFD-DEM coupling is usually resolved by applying the finite volume method to
the Navier–Stokes equations to yield a velocity field uf :

∂αfρuf

∂t
+ ∇ · αfρufuf =−αf∇ p+ αf∇ · τ + αfρg+ Ṡu 3.

αf
∂ (αfρ )

∂t
+ ∇ · αfρuf = 0. 4.

The pressure is not directly solved for using the continuity equation (Equation 4) but is instead
iterated using a pressure equation to enforce continuity, and the shear stress tensor τ is given
using a Newtonian viscosity ansatz or more sophisticated closure. This formulation of the Navier-
Stokes equations, referred to in the literature asModel A, includes the fluid volume fraction αf and
the momentum exchange term Ṡu that represent the presence of a Lagrangian phase. The other
formulation, Model B, considers pressure to be attributed to the fluid phase, in contrast to Model
A, which assumes a shared pressure among both phases. Consequently, the pressure gradient term
in Model B reads −∇ · p, and the shear stress term, ∇ · τ. This also causes the interaction forces
to be summed up over the total control cell volume Vcell in Model A and the fluid volume αfVcell

in Model B, respectively. The forces involved include drag force, pressure gradient force, viscous
force, and virtual mass and Basset forces in liquid–solid systems and the Saffmann shear lift force
and Magnus force in the case of rotating particles. Although all of these forces may be present
in any given physical system, their contribution might be negligible in modeling and thus can be
avoided to reduce computational demand.

2.1.4. Mapping procedures and numerical treatment of coupling. The issue of solids-phase
volume fraction calculation and mapping of properties from the discrete to the continuous phase
is approached in several ways. The most popular is the iteration over all particles present in
the cell and averaging/summing up their respective values, for example, the explicit heat flux source
term from particles to fluid:

Q̇p→f =
∑

particle i in cell Q̇p→f ,i

Vcell
. 5.

This very simplistic approach has the advantage of being very numerically efficient but introduces
issues with fine grid cells and inaccuracies at cell boundaries.Thus, a decomposition of the particles
into a cloud of N subpoints with a numerical weight φi, j may be performed:

Q̇p→f =
∑

particle i in cell
∑

subpoint j of particle iφi, j Q̇p→f ,i

Vcell
, 6.

with the weights for each particle i summing to unity:

1 =
∑

subpoint j of particle i

φi, j. 7.
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The added computational demand lies in associating the subpoints with grid cells—a process that
is somewhat expensive in nonhexahedral grids. The choice in the position of subpoints, as well as
the choice in weighting, leads to a variety of options for the end user or developer. The problem
of numerical instability owing to particles covering entire cells or very large source terms may be
addressed via a diffusion approach introduced by Pirker et al. (12), in which the corresponding
source terms are smeared out using an implicit diffusion equation.

Coupled quantities like momentum, heat, and mass transfer are solved by alternating the solu-
tion of the flow field and the particle motion. Coupling itself takes place by adding source terms
to differential equations that are integrated for each particle and to the continuous-phase trans-
port equations. The source terms owing to momentum, heat, and mass rate laws can be treated in
either an explicit or implicit manner for the discrete elements and the continuum (4).

2.1.5. Drag coupling closures. The most prominent problem with unresolved CFD-DEM is
the closure for momentum exchange, i.e., the previously mentioned set of forces that are com-
monly modeled between particle and fluid. Of special importance is the drag force,

Fdrag = π

6
dp

β

αp(1 − αp)
(U f −U p), 8.

that is provided by experiment- or simulation-derived correlations. The momentum exchange co-
efficient βi aims to capture the highly complex hydrodynamics of momentum exchange depending
on, at least, the particle Reynolds number Rep and, in general, the solids volume fraction in the
vicinity of the particle. The most common correlation is that of Gidaspow (13), which uses the
empirical Ergun correlation (14), as formulated by Beetstra (15),

β = 150
μf

d2p

α2
p

(1 − αp)
+ 1.75

μf

d2p

αp

1 − αp
Rep, 9.

for flow below the minimum fluidization velocity and switches to the correlation of Wen & Yu
(16, 17):

β =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

18 μfαp(1 − αp)(1 − αp)−3.65(1 + 0.15 Re0.687)
d2p

Rep < 1, 000

0.33 μfαp(1 − αp)ε−3.65

d2p
Rep > 1, 000

. 10.

Both underlying relationships were derived from experimental investigations that have their un-
certainties. Hill et al. (18), Beetstra et al. (19), Tenneti et al. (20), and Tang et al. (21), among many
others, have applied the lattice Boltzmann and immersed boundary CFD-DEM methods to suc-
cessively more complex particle flow scenarios to derive correlations between drag force and flow
conditions—at first only for static arrays of spheres for low Reynolds numbers, then increasing the
range of Reynolds numbers, and finally allowing the particles to move. Nonetheless, calibration
of the drag force for real systems is required to match the minimum fluidization point, owing to
the influence of surface roughness (22). In the case of nonspherical particles, more sophisticated
drag laws must be used, for example, the one by Ganser (23), which considers the surface area of
the particle, projected into the direction of the flow, or the one by Hölzer & Sommerfeld (24, 25),
which also considers the chord length in the flow direction.

2.1.6. Turbulence modeling. The accurate representation of turbulent flows requires turbu-
lence modeling for all practical intents and purposes. For the fluid phase, turbulent viscosity/
Reynolds-averaged Navier–Stokes models like the k-ε or k-ω models are used, which solve
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additional differential equations for the generation, transport, and dissipation of the turbulent
kinetic energy and increase the viscosity depending on these quantities. As such, the effect of tur-
bulence on averaged flow is captured without resolving the small length scales. Less often, large-
eddy simulations are performed, in which eddies larger than a filtering criterion are resolved, and
the effect of those eddies occurring on smaller length scales is modeled using an isotropic model
like k-ε. In both cases, the effect on particles can be modeled stochastically by using the time spent
in an eddy and the turbulent velocity fluctuation, both of which depend on the turbulent kinetic
energy.

2.2. Coarse-Graining Techniques

Coarse-graining techniques aim to lower computational cost by reducing the overall spatial/
temporal resolution of the fluid part and/or the particle part of the simulation while preserving
macroscopic quantities and the overall temporal evolution of the system.

2.2.1. Particle coarsening. Owing to the computational cost of modeling the collision dynam-
ics of every single grain in a granular system,particle coarsening (a) reduces the number of particles
that must be tracked, so larger apparatuses and/or finer particles can be simulated, and (b) extends
the process time that can be simulated by permitting a larger time step.

This makes particle coarsening nearly unavoidable when dealing with industrial-scale appa-
ratuses. In the literature, such collectives of particles with identical properties are referred to as
parcels. Most commonly, particles are enlarged by a factor of δ, which decreases the number of
particles by a factor of δ3 and increases the permittable time step by approximately a factor of δ, as
a rule of thumb. The DEM contact model coefficients are modified to preserve the bulk behavior
by either using an a priori approach, e.g., by using the approach of Bierwisch et al. (26) or Benyahia
& Galvin (27), or calibrating in a way that allows the macroscopic behavior of fine, real particles
to be represented with larger numerical parcels (28).

Particle coarsening requires physical models to base their calculations on single-particle values
(e.g., surface area) and then scale source terms with a factor δ3 to consider the number of primary
particles per parcel, according to Radl et al. (29), or in other manners that are appropriate to the
exact coarsening criteria that were chosen, e.g., for use with liquid–solid systems (30). The use of
particle coarsening techniques introduces the need to coarsen the CFD or coupling grid, and to
allow for accurate mapping and applicable phase fraction calculations.

2.2.2. Fluid coarsening. Coarser grids induce loss of local structure representation.The loss of
sharp boundaries of, e.g., the edges of particle clusters induces the overestimation of drag force on
particles. To correct for this, drag law corrections have been developed by performing simulations
in which particles can swarm in a periodic box with gravity and a preset pressure differential for
various Froude numbers and solids volume fractions on both refined and coarse grids (31). A
different class of drag models, named energy-minimization multiscale models (32), aims to tackle
this problem by correlating the fraction of particles that will cluster up to a certain size in each
cell with the flow situation and, possibly, geometric parameters (i.e., distance to a wall) to predict
the net drag force that will act on the particles. This is of interest in the context of industrial-
scale fluidized beds, where applications of both fluid and particle coarsening are inevitable. An
alternative to these kinds of models are the filtered drag models (31, 33). These offer a correction
to regular drag laws and are obtained by performing simulations of particles falling in a fluid on
successively coarser grids for different flow conditions and solids-phase fractions.
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2.3. Thermochemical Modeling

Beyond pure particle and fluid dynamics, heat and mass transfer processes, as well as chemical
reactions in the particle interior, the surface, and the gas phase, are of practical interest.

2.3.1. Heat andmass transfer modeling. Heat andmass transfer equations take a similar form.
The transport of the mass fraction of a species ym can be described using

∂αfρym
∂t

+ ∇ · αfρufym = Dym�ρym + Ṡparticles,ym + Ṡreactions,ym 11.

under the condition of
∑

species m ym = 1, where the latter condition can be resolved by either solv-
ing the transport equations for all species but one and explicitly calculating the remaining one or
solving all transport equations and rescaling ym := ym/

∑
species k yk.

The source/sink term Ṡparticles,ym represents the link to the particle phase and considers the
fluid-phase material that is exchanged with the particle, be it reaction products from internal or
surface reactions, deposition onto the particle, or evaporation/devolatilization. The other source
term, Ṡreactions,ym , represents the contribution of the gas-phase chemical conversion.

The total energy equation takes the form of

∂αfρ( ef + |||uf |2/2)
∂t

+ ∇ · αfρuf ( ef + ||uf ||2/2) = ∇ · αfρκ

Cf
∇ef + Ṡparticles,e + Ṡreactions,e, 12.

with terms due to compression/work omitted here. Here, Ṡparticles,e and Ṡreactions,e are the source
terms owing to heat transfer to/from the particles and gas-phase reactions, respectively, that are
commonly treated via explicit–implicit splitting.

2.3.2. Surface reactions, devolatilization, and gas-phase reactions. Exchange of species be-
tween the particle phase and the fluid phase can occur owing to surface reactions and devolatiliza-
tion or evaporation/vaporization of material. Both surface reactions and devolatilization are com-
monly treated with a kinetic/diffusion-limited rate model, e.g., for olefin polymerization (34),
combustion (35), or gasification (36). Further complexity, as in the case of particle matter com-
bustion, may be modeled using a shrinking core model that can consider the diffusion limiting in-
troduced by the ash layers. These reaction rates are used to calculate source/sink terms for species
transport equations in both the fluid phase and the particles. Gas-phase reactions are modeled in-
dependent of the presence of particles. Zhong et al. (37) provide a muchmore expansive treatment
of this subject matter.

2.4. Liquid-Phase/Multiphase Treatment

Many apparatuses involve discrete particles and two or more fluid phases, especially those used
for separation. The fluid phases are typically immiscible and require further modeling, such as the
popular volume-of-fluid (VOF) method to preserve sharp interfaces. Sun & Sakai (38) formulated
the corresponding flow equations using a color function φ that represents the fraction of either
continuous phase and solved an advection equation,

∂φ

∂t
+ uf · ∇φ = 0, 13.

that tracks the motion of the interface. The flow equations include a momentum source term
representing the surface tension. The lumped fluid-phase density is calculated as a linear combi-
nation of the density of the constituent phases. Consequently, particles experience an additional
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surface tension force. A particle encountering the interface of a bubble will experience a pressure
jump, which will cause the surface tension to be balanced by the resulting pressure gradient force,
effectively trapping the particle at the interface, as any displacement will result in a force toward
the interface.

3. APPLICATIONS OF CFD-DEM TO DIFFERENT APPARATUS TYPES

3.1. Classification and Separation

The classification or separation of particles according to properties like size, shape, and density
is often performed using a liquid or gas phase. This can include, e.g., screens (39, 40), gas or
hydrocyclones (41–43), sorting machines (44, 45), flotation columns, and vessels (46–48). Coupled
CFD-DEM simulations have been widely used for the microscale modeling of such processes in
recent years.

In some of these investigations, the basic formulation of CFD-DEM, as described above, was
applied (39, 49), involving only a particle and a single fluid phase. More advanced strategies are
applied whenmore complex separation systems are concerned: Fernández&Nirschl (50) and Chu
et al. (42) used the VOF model to consider a mixture of solid, liquid, and gas phases. In the first
stage, the VOF was applied to model the interaction between slurry and air, without consideration
of particles. The DEM was applied only in the second stage to consider particulate material. Re-
garding particle shape, most studies analyzed the separation or segregation of spherical particles
(49, 51, 52). A significantly smaller fraction of contributions focused on classifying nonspherical
or irregularly shaped objects (39, 45, 53). One of the main challenges here is properly describing
the interaction between fluid and nonspherical particles, as described previously. For example, El-
Emam et al. (53) used drag force correlation, proposed by Ganser (23), for the separation of seeds
and leaves, and Pieper et al. (45) used the correlation derived by Hölzer & Sommerfeld (25) for
slightly irregular peppercorns.

Chen et al. (46) contrasted the application of CFD-DEM to flotation with TFMs of flotation:
They simulated a dissolved air flotation tank and described the air as a set of Lagrangian bub-
bles with an adapted contact potential and random-walk turbulence modeling. The CFD-DEM
simulation failed to correctly reproduce the air distribution within this system, indicating that
modeling of the dispersed-air (bubbly) phase using Lagrangian elements in that way is not yet
a viable choice. Liu & Schwarz (48) first investigated modeling the interaction between bubbly
flows and fine particles suspended in the liquid phase using CFD-DEM-VOF; they validated their
model based on correct reproduction of particle collision efficiencies in a quiescent fluid. On this
basis, they went on to study the dependence of drag and bubble–particle collision efficiency on
turbulence and wall influences on the microscale using (CFD-)DEM-VOF and used the resulting
model coefficients in macroscale homogeneous-phase CFD simulation to derive overall flotation
rates of the simulated system (47). Wang et al. (54) presented a more comprehensive overview of
other methods to assess flotation processes.

Both one- and two-way coupling can be employed: Particle influence on the fluid phase is
neglected owing to the low solid concentration or to decrease computational effort (42, 45). Fer-
nández & Nirschl (50) applied a slightly modified coupling scheme, considering the influence of
particles on the fluid but only as a momentum sink term. The volume occupied by particles was
neglected in the continuity and momentum conservation equations.

As mentioned above, the selection of the appropriate turbulence model has a decisive influence
in CFD-DEM simulation results. The standard k-ε model is widely used for modeling compar-
atively simple flows, as in the case of an optical belt sorter (45). Use of this model for systems
with high swirling turbulence, such as cyclone separators and those that use centrifugal forces to
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induce sedimentation, can lead to incorrect results. Instead,more sophisticatedmodels, like the k-ε
renormalization group model (50, 53) or Reynolds stress model (RSM), are used (41, 43, 51, 55).

3.1.1. General remarks. Simplifications range from ignoring the presence of solid particles
(50) to modeling particles with an artificially lowered Young’s modulus (52). Despite that, CFD-
DEM is an effective approach that can be used as a stand-alone tool or in combination with other
methods and allows us to clarify different aspects related to the classification and separation of solid
particles in a fluid field. However, this approach cannot be accurately used for particle collectives
with very wide size distributions. The main drawback is the nature of unresolved CFD-DEM
coupling, whereby a CFD mesh cell must be larger than the largest particle. In this case, the
slipstream effect, in which small particles enter in the wake of larger ones, will be totally neglected,
and the drag force on small particles will be overpredicted.

3.2. Fluidized Beds for Particle Formation

Nowadays, fluidized beds are widely applied in several industrial fields, e.g., chemical production,
energy generation, and pharmaceutical and food industries. In a fluidized bed vessel, an upward
gas flow is introduced at the bottom through a distributor plate. The solid is entrained by the gas
flow and thus fluidized. The outward appearance is that of a bubbling fluid owing to bypass gas
that rises in the form of bubbles. The intense particle movement owing to bubbling in fluidized
beds enables high heat, mass, and momentum transfer rates, which make this apparatus highly
suitable for particle formation, e.g., agglomeration, granulation, and coating.

Coating commonly refers to the application of layers of material to the entirety of the particle
surface to protect or contain its material without adding much substance to the particle. Granula-
tion, more precisely called layering granulation, refers to the substantial addition of material to a
particle’s surface to increase its diameter while creating structures that aid its purpose, i.e., porous
structures for rapid dissolution or dense layers for high strength. Agglomeration, also called ag-
glomerating granulation, refers to increasing particle size by having smaller, primary particles stick
together and sinter together. All three will take place simultaneously in a granulator, with only one
of these mechanisms being desired to yield a given product. Thus, controlling these is one of the
main challenges in using fluidized beds for particle formation.

Along with the classical fluidized bed with the distributor plate ranging over the whole cross-
sectional area, similar apparatuses have been developed with advantages for certain applications.
In spouted beds, the gas enters the process chamber via a tube or a slit, which results in higher gas
and particle velocities and allows the fluidization of particles, which are often difficult to handle in
fluidized beds owing to their surface properties or size. In a fluidized bed with a centered, vertically
installed draft tube (Wurster coater), the wetting and drying zones are separated, reducing the risk
of agglomeration (56).

In the early 1990s,Tsuji et al. (3) performed one of the first attempts to apply CFD andDEM to
a pseudo-2Dfluidized bed.The authors observed a qualitative agreement between fluidization and
mixing behavior with experimental data and quantitative agreement of the frequency of pressure
fluctuations. Nevertheless, deviations between experiments and simulations occurred in the scale
of circulations and in the amplitude of pressure fluctuations. In the following years, many other
authors applied CFD-DEM simulations to 2D or 3D apparatuses and compared the resulting
flow, mixing, and bubbling patterns with experimental data (57–67).

In addition, some researchers have undertaken special applications of fluidized beds, e.g.,Wang
et al.’s (68) investigation of the effects of sound fields on fluidization behavior, in which they in-
tegrated a sound force into their numerical model. They found that the sound field enhances the
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fluidizability of cohesive particles, whereby the effect depends on the sound pressure level and
the sound field frequency. Limtrakul et al. (69) investigated the flow behavior in a vibrated flu-
idized bed used for fluidization of cohesive particles, modeled using Hamaker’s formulation of the
van der Waals force. They applied a vibrational force into their CFD-DEM model by enforc-
ing a sinusoidal vertical vibration on the gas distributor and the walls of the fluidized bed. They
found higher-amplitude and -frequency vibration to result in a more intense fluidization and bet-
ter mixing.The results were validated only by indirect comparison to experiments. Zhenghua et al.
(70) simulated the flow behavior of magnetizable particles in a 2D-gradient magnetically assisted
bubbling fluidized bed. The authors included a magnetic force resulting from the interaction of
the external uniform field and nonuniform fields of the magnetized particles in their model. Pei
et al. (71) applied CFD-DEMwith a capacitor model for modeling contact electrification. For the
investigated fluidized bed case, they showed that the charge is initially generated in the regions
near the walls and then propagates into the entire granular bed, induced by particle mixing and
particle–particle collisions. Namdarkedenji et al. (72) studied the effect of flow pulsation on flu-
idization degree and found the pulsation to decrease the gas–solid interaction force but to increase
the contact force between particles.

Along with the classical fluidized beds, flow behavior in related apparatuses has been part of
numerical investigations using the CFD-DEMapproach since the 2000s. For example,Kawaguchi
et al. (73) found high qualitative consistency between their simulation data and experimental data
from the literature for their cylindrical spouted bed, even though deviations in the particle ve-
locity distribution occurred. Other authors (e.g., 11, 74–80) also performed simulations of hydro-
dynamics in a spouted or spout-fluid bed and compared results with experimental data. In 2006,
Nakamura & Watano (81) investigated a rotating fluidized bed using the CFD-DEM approach.
The authors found high agreement between bubble formation, eruption, and particle circulation
with experimental data from high-speed camera recordings. In addition, Nakamura et al. (82)
compared the degree of particle mixing with images recorded by a high-speed camera and found
strong agreement between numerical and experimental data. Neuwirth et al. (83) simulated the
granular flow in a rotor granulator and determined the influence of different process parameters
on particle and collision dynamics. Experimental data obtained via a magnetic particle tracking
system validated the model. Deb & Tafti (84, 85) simulated a fluidized bed with multiple jets and
a spouted bed with multiple jets, respectively.

Early numerical investigations on fluidized beds and related apparatuses focused mostly on
monodisperse particle systems. However, Feng et al. (86) and Tagami et al. (87), for example, ob-
served segregation effects when investigating binary mixtures and polydisperse particle systems,
respectively. Olaofe et al. (88) predicted segregation effects observed in experiments by applying
the drag model derived from DNS simulations by Beetstra et al. (19) for polydisperse systems.
However, deviations occurred when the bed height exceeded the bed width. Hilton et al. (89)
investigated nonspherical particles in their CFD-DEM simulations by introducing a new pressure
gradient force Navier–Stokes formulation and by calculating the drag force according to Hölzer
& Sommerfeld (24), accounting for nonsphericity. They found a strong effect of nonsphericity
on the flow behavior and deviations from the Ergun equation. Zhou et al. (90) applied Hölzer
& Sommerfeld’s (24) correlation and investigated the effect of ellipsoidal particles with different
aspect ratios on fluidization behavior. They found that the particle orientation of ellipsoidal parti-
cles is not random, as it is for spheres. Ma et al. (91) studied the fluidization of rodlike particles in
a fluidized bed. The rodlike particles were modeled by superellipsoids with different aspect ratios.

Along with hydrodynamic investigations, simulations considering agglomeration phenomena
or applications such as granulation or coating owing to liquid binder injection have been re-
searched. Collision frequencies and acting forces have been extracted from simulations to account
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for agglomeration probability or particle stress, and effects of liquid–particle interactions have
been studied. Kuwagi & Horio (92) investigated a fluidized bed with cohesive particles and de-
tected agglomerate formation if the cohesive force exceeded the maximum repulsive force during
particle contact. They found agglomerates to be formed in the bubble wake region and agglomer-
ate breakage to occur mostly in the bubble upper region.Kuwagi et al. (93) extended a CFD-DEM
model via tangential lubrication effects caused by liquid bridges between particles.They found the
particles to move more actively in the whole bed and adhesion of particles to the walls to be re-
duced. Fries et al. (94) compared two different granulator configurations (top-spray fluidized bed
andWurster coater) by calculating the residence time distribution of the particles in the spray zone
and estimating the homogeneity of the liquid distribution, even though no liquid phase had been
injected. Fries et al. (95) extended their investigations by calculating agglomeration probability,
breakage and growth rate, and agglomerate strength based on particle motion, collision dynamics,
and collision frequencies. They compared three different apparatuses, namely, top-spray fluidized
bed, Wurster coater, and spouted bed, and found the most stable and redispersable agglomer-
ates of amorphous dextrose syrup to be produced with the Wurster coater device. Li et al. (96)
performed similar investigations, determining the residence time distributions of different-sized
particles in the spray zone of a Wurster fluid bed. They observed that large particles receive more
coating per unit area per pass through the spray zone, as they have a longer residence time, but
also travel through the spray zone less frequently than small particles. Azmir et al. (97) simulated
the drying of food grain in a fluidized bed. They modeled water evaporation from the particles
similar to a surface chemical reaction, which required fewer model parameters. Owing to the low
particle moisture content in the studied cases, the authors assumed all water to be adsorbed and
thus did not consider liquid bridges and capillary forces. They found the average drying rate and
moisture content to be consistent with experimental data. Goldschmidt et al. (98) first attempted
to simulate particle–droplet interactions in 2003. Besides the particles themselves, injection of
melted binder droplets was considered as an additional discrete element. They considered a wide
range of interaction scenarios in their model.These included the impact of particles onto droplets,
the subsequent transfer of liquid onto the surface, and particle growth. Interaction among parti-
cles was modified to distinguish among rebound and agglomeration scenarios that are dependent
on the wetting state of particles and their velocities. Layering granulation dominated in compar-
ison to agglomeration, and particle segregation was observed. Nevertheless, owing to the high
computational effort, the study was limited to a 2D fluidized bed with only 50,000 primary parti-
cles and unrealistically large droplet diameters of 100 μm. Furthermore, no heat or mass transfer
was calculated. Link et al. (99) integrated droplet injection into a pseudo-2D spout-fluid bed for
granulation applications. Along with some other simplifications, particle growth was assumed to
consist solely of the one-by-one mergers of droplets with particles.When a droplet hits a particle,
its mass and momentum are directly transferred to the particle. They found particle growth rate
and particle size distribution depended on the projected surface area of the particles and on the
position of the particle relative to the spout. Nevertheless, no validation with experimental data
was performed, and the model contained several simplifications neglecting heat and mass trans-
fer effects. Van Buijtenen et al. (100) extended Link et al.’s (99) model by incorporating the full
equation of motion of the droplets, two-way coupling of the drag between the droplets and the
gas phase, and moisture evaporation from the particle surface. They considered liquid cohesion
by reducing the restitution coefficient in regions that were assumed to be wet. The model never-
theless included simplifications, as the mass and energy balances of the gas phase were not solved,
and crystallization of the deposited granulate solution was not considered. Sutkar et al. (101) then
further extended van Buijtenen et al.’s (100) model to account for heat and mass transfer in the
spout-fluid bedwith liquid injection.The net effect arising due to various forces at particle–droplet

408 Kieckhefen et al.



CH11CH17_Kieckehefen ARjats.cls May 19, 2020 10:4

impact was reproduced by modeling the wet restitution coefficient. The implementation of the
heat and mass transfer was verified by conducting various tests and subsequent comparison of
the computational results with analytical solutions. Simulation results of the spout-fluid bed were
found to be in good agreement with data from infrared temperature measurements, even though,
e.g., viscous forces between wetted contacting particles were not simulated. Liu et al. (102) applied
a CFD-DEMmodel to account for agglomeration and breakage phenomena in a fluidized bed of
nanoparticles. They included an adhesive contact model with the ability to model the contact and
bounce/stick between elastic–plastic and cohesive particles.

To account for agglomeration, granulation, and breakage phenomena in fluidized beds, a hy-
brid CFD-DEM-PBM model that incorporates a population balance algorithm into CFD-DEM
simulations has emerged as a popular tool to tackle the timescale separation between particle dy-
namics and growth/agglomeration/breakage. The general idea is to transfer the hydrodynamics
of the regarded process calculated with CFD-DEM to PBM to simulate the global process on the
macroscale. For example, Dosta et al. (103) applied this approach to calculate breakage phenom-
ena in a fluidized bed, and several authors, e.g., Dosta et al. (104), Sen et al. (105), and Tamrakar
& Ramachandran (106), applied it to fluidized bed granulation processes. Heinrich et al. (107)
investigated the coating process in a Wurster fluidized bed via a multi-scale simulation approach
combining CFD, DEM, and PBM. The authors found the gap distance of the Wurster tube and
the distributor plate to have a significant influence on particle circulation and on residence time
in the spray zone. In general, the multi-scale approach aids in determining the influence of critical
process parameters, e.g., air flow rate and binder spray rate, on macroscopic process performance.

The use of CFD-DEM for the design of particle formation apparatuses like fluidized bed gran-
ulators can be considered very mature in the aspect of pure hydrodynamics and heat transfer when
dry, coarse particles and small apparatuses are to be considered. Larger apparatuses or very fine
particles still touch the limit of computational capacity available and warrant the use of either
apparatus or particle scaling. When using scaling, the modeling of liquid bridge forces poses a
challenge to researchers, as the applicability of the models is still strictly limited to the contact of
single particles. Treating fine powders demands the application of both scaling laws and drag cor-
rections.More complicated processes, such as fine powder agglomeration or drying, are therefore
still within the realm of research rather than reliable application. Similarly, the use of CFD-DEM
for engineering the actual product of the process itself rather than the process stability is rare and
still an area of active research.

3.3. Fluidized Beds for Chemical Reactors and Energy Technology

Along with its application in fluidized bed apparatuses for particle formation, the CFD-DEM
method is used for chemical reaction engineering and energy technology, e.g., combustion, crack-
ing, and gasification, owing to its excellent gas–solid contacting, good heat transfer, ease of solids
handling, and increased resilience toward hot spots even with exothermal reactions (108). These
processes often involve high temperatures and thus require the integration of heat transfer in
modeling and simulation. In addition, chemical reaction rates must be considered.

Kaneko et al. (109) performed one of the first attempts to simulate chemo-thermal processes
in fluidized beds using the CFD-DEM method when simulating a fluidized bed reactor for poly-
olefin production. The authors integrated the energy balance and reaction rate into the model
and estimated the heat transfer from the particles to the gas phase using the Ranz–Marshall
correlation. They found that hot-spot formation in the bed is often caused by a large stable
particle revolution flow. Kuwagi et al. (110) performed CFD-DEM simulations of metallic solid
bridging particles in a fluidized bed at high temperature. Surface-diffusion mechanisms, including
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the effect of surface roughness of small grains on the particles’ surface area, were integrated to
model the solid bridging force. Zhou et al. (111) simulated heavy-metal vaporization dynamics.
They extended the bubbling fluidized bed model with a cadmium chloride vaporization model
and integrated the CdCl2 transport equation into the gas flow. Comparison with experimental
data showed strong agreement with the vaporization rate within the first 20 min. Later ex-
periments showed a reduction in the vaporization rate owing to a possible chemical reaction
between CdCl2 and alumina, which was not integrated into the simulations and thus resulted
in deviations. In another paper, Limtrakul et al. (112) simulated a spouted bed reactor for the
decomposition of ozone on oxide catalyst. The reaction was assumed to be isothermal first-order
irreversible heterogenous-catalytic. The simulated conversion results showed good agreement
with experimental data from the literature at an absolute error of less than 5%. Czok et al. (113)
investigated the thermal decomposition of triisobutylaluminum to produce aluminum on glass
beads. The deposition reaction on the particles’ surface was simulated not within the CFD-DEM
simulations but in a postprocessing step, whereby it was assumed that the change in local
precursor concentration due to reaction and the resulting change in number of gas molecules did
not significantly influence the fluid mechanics. With this approach, the authors identified zones
of insufficient mixing, as well as zones of possible agglomeration owing to excessive deposition.

Regarding the integration of heat transfer rates into CFD-DEM simulations of fluidized
beds, Di Maio et al. (114) integrated three different approaches into a simulation framework for
a fluidized bed and compared the heat transfer coefficient between a hot bed and an immersed
probe with experimental data. The heat transfer based on a particle–particle transfer mechanism
avoiding the use of particle contacts by using increased heat transfer to the gas phase best
represented the real fluidized bed system. Zhou et al. (115) proposed introducing a correction
factor to account for the use of a nonphysical Young’s modulus and its influence on contact-based
particle–particle heat conduction. Patil et al. (116) developed a CFD-DEM model including
heat transfer, whereby for particle–particle heat transfer, the total heat or energy transfer during
one collision is calculated and directly transferred as a packet of energy at the beginning of the
collision. The unknown fitted gas-wall heat transfer coefficient was used to match experiment and
simulation results with respect to bed cooling curves. Results were validated with experimental
data from infrared/visual measurements. Wu et al. (117) investigated a fluid catalytic cracking
process in a fluidized bed by means of CFD-DEM simulations. The hydrodynamic model was
extended by a model to describe the heat transfer between particles and between a particle
and a gas phase, by a model for catalyst deactivation, and by a model for gas-phase reactions.
They used a 4-lump kinetic model to describe the chemical reactions, whereby the temperature
dependence was described by Arrhenius expressions. They calculated catalytic activity using the
recorded residence time of the catalytic particles. In their simulations of a methanol-to-olefins
process, Zhuang et al. (118) accounted for both heat transfer and lumped kinetics in the gas phase.
Simulations were performed in two stages: In the first stage, the flow field was simulated without
the methanol-to-olefins reaction. When a fully fluidized bed was obtained under cold-flow
conditions, DEM and the submodels for heat transfer and reaction rates were incorporated into
the simulations. Ku et al. (119) simulated biomass gasification with steam in a fluidized bed.
They expressed the pyrolysis compositions released from biomass using an equilibrium equation
and elemental conservation analysis of the involved substances and modeled the devolatilization
rate using a single-step first-order Arrhenius reaction. Using this approach, they analyzed the
effects of different operating conditions on the gasification performance; higher temperatures
were found to be favorable for the products in endothermic reactions. Li et al. (120) performed
CFD-DEM simulations of a fluidized bed methanation reactor. The authors integrated a new
local-structure-dependent drag model and modified reaction kinetics for the CO methanation
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and the water–gas shift. They verified their assumption of isothermal flow conditions in the
investigated lab-scale fluidized bed by solving the energy equations for the gas phase and seeing
little difference. Bellan et al. (121) investigated a fluidized bed reactor for solar gasification. The
authors integrated a discrete ordinate radiation model to solve the radiative transfer equation.
El-Sayed & Noseir (35) applied the CFD-DEM approach to the combustion process of sesame
and broad bean stalks in a pilot-scale bubbling fluidized bed combustor. They considered the mass
and heat exchange and homogeneous and heterogeneous chemistry between the two phases and
of the gas species, whereby a finite-rate/eddy-dissipation model was selected for the gas-phase
reaction. The authors found good agreement between their simulation results and experimental
data at a relative error of gas phase composition of less than 11% and axial temperature of less than
15%.

Overall, the application of the CFD-DEM method for energy technology and chemical con-
version is very mature, but less prominent due to other competing methods like MP-PIC and
TFM. The special demands and challenges of these fields lie in the very small particles and large
plants, along with a focus on reaction modeling on both particle surfaces and the gas phase. The
depiction of actual contact mechanics usually matters very little in comparison—a factor that re-
duces the need for CFD-DEM except for in apparatuses with both fluidized and densely packed
regions, like spouted beds.

3.4. Comminution Units

To perform milling of granular materials and to reach a desired size distribution, an additional
fluid phase is often essential. In most cases, the fluid plays a decisive role in the process behavior.
It is used for dispersion or for material transport, such as in ball mills, where source material
and grinding balls are dispersed in a liquid medium. In other cases, the fluid phase is used to
give particles the necessary kinetic energy prior to their impact, as in jet mills. Consequently,
proper simulation of such processes requires consideration of not only the solid but also the fluid
phase.Thus, in recent years, the CFD-DEM approach has been used for various apparatuses, from
ball mills to jet mills. All CFD-DEM applications for milling process modeling can be generally
classified into three main levels, depending on how the breakage process is considered:

� No particle breakage: In this case, CFD-DEM simulations provide trajectories of particles,
residence time distribution, or their concentration in different regions (122, 123).

� Breakage during postprocessing: Statistics about particle–particle and particle–wall colli-
sions are collected and used to simulate breakage in additional submodels (103, 124, 125).

� Direct simulation of breakage: When a predefined breakage condition is reached, a large
particle is destroyed, and new, smaller fragments appear (126, 127).

A wide variety of applications can be found for both solid–liquid and gas–solid milling. In most
cases, two-way coupling is employed; however, for dilute gas–solid systems, one-way coupling is
also often applied.

Using liquid as the fluid phase, Jayasundara et al. (122) applied CFD-DEM to model parti-
cle flow in a high-speed stirred mill. Their simulation results were in reasonable agreement with
experimental data with respect to particle dynamics. However, no breakage was considered, nor
impact statistics analyzed. To analyze breakage behavior of grinded material in a wet ball mill,
Kushimoto et al. (127) investigated aggregate breakage.The aggregates were represented as sets of
primary particles connected with bonds. Such an approach allowed them to reproduce the break-
age process directly during the CFD-DEM simulation and not only during the postprocessing
step, thereby accounting for secondary breakage and the influence on flow.
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With respect to gas–solid systems, many have analyzed the influence of the main process pa-
rameters on particle–particle or particle–wall collisional statistics (123, 128). To consider both
breakage and fatigue behavior of particles, Brosh et al. (124) introduced a function to change par-
ticle properties and applied their proposed model to investigate jet-mill behavior. For modeling
of a pulverization process, Takeuchi et al. (126) used a strategy employing direct simulation of
particle breakage. If the impact stress exceeded the specific threshold strength, the old particle
was replaced by smaller particles, representing breakage fragments.

A wide spectrum of apparatuses in the field of milling are seeing application of CFD-DEM,
for both gas–solid and solid–liquid systems. In most cases, good agreement between experimental
and numerical results can be obtained. However, detailed simulation of milling processes is still
very challenging, because various effects take place on different time and length scales.

One of the main challenges is the consideration of particle breakage with DEM. Some authors,
e.g., Takeuchi et al. (126) and Kushimoto et al. (127), consider breakage directly. However, such
an approach involves very high computational effort. The incorporation of fragments leads to a
drastic increase in the number of modeled objects, as well as a decrease in the simulation time step.
Thus, in most cases, CFD-DEM calculations are used only as a source of information regarding
stressing conditions, such as impact velocities or frequencies (124, 125). The actual modeling of
the breakage takes place in submodels on higher hierarchical scales, where one- or multidimen-
sional population balance models are often used. Such multiscale process treatment, in which the
submodels from different time and length scales are coupled together, allows detailed process
descriptions with limited computational effort (103, 129).

Generally, the state of DEM and CFD-DEM regarding comminution can be judged to be ma-
ture for the purpose of qualitatively evaluating the influence of geometry and operation parame-
ter changes. Quantitative predictions about resulting fragment size distributions suffer from the
general scale problem, as tracking fragments directly will require smaller time steps and increase
computational cost. Indirect approaches fail if second-order effects appear.Micromechanical frac-
turing models furthermore demand calibration. Thus, we deem the quantitative description of
comminution processes using CFD-DEM as an active area of research.

3.5. Filtration

Filtration is often applied in the chemical industry, agriculture, and environmental engineering.
Different filter processes can be distinguished depending on the filter medium, process conditions,
or acting forces, but all are based on the same principle: A heterogeneous mixture is poured over
a filter membrane with pores of a given size. Particles larger than this size are retained, whereas
smaller particles can cross the membrane. The fluid can permeate through the membrane, en-
countering flow resistance owing to the accumulation of particles and the constriction of flow
through the pores.

In one of the first approaches to simulating filtration processes with CFD-DEM, Li &
Marshall (130) simulated microparticle deposition on a cylindrical fiber in an array, considering
the adhesive elastic contacts of the particles and the fiber. They found the particles tended to de-
posit in a narrow region along the fiber front near to the centerline owing to particle shadowing
and high shear stresses. Nevertheless, the model did not consider porosity changes in the fibrous
media and flow field after the particles were deposited. No fluid forces except the drag force, cal-
culated using the Di Felice drag law, and torque were considered. Qian et al. (131) developed a
model for simulating gas-flow characteristics within a fibrous medium and studied the influences
of fiber structure and particle properties on the deposition and agglomeration characteristics in
the filtration process. The 3D models of the fibrous media were reconstructed from scanning
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electron microscopy data. They found the simulated filtration efficiencies to be consistent with
calculated values of empirical correlations.Qian et al. (132) simulated gas–solid flow characteristics
in fibrous media exposed to particle loading by using CFD-DEM, adopting the Hertz–Mindlin
contact model, in the JKR-cohesionmodel variant, to accurately describe the interactions between
particles and filter material. They used a two-way coupling approach considering the interactions
of the particle–fluid, particle–particle, and particle-filter material. Dong et al. (133) performed a
numerical study on the deposition process of submicron particles in collision with a single cylin-
drical fiber. They found that the deposition can be divided into two stages: particle deposition on
the surface of the fiber and subsequent growth of formed agglomerates to branched dendrites.
Recently, Naukkarinen et al. (134) investigated the hydrodynamics of a combined ion-exchange
membrane filtration unit used for wastewater treatment using the CFD-DEM approach. Li et al.
(135) investigated a pressure filtration process and simulated the effect of solvent flow through a
solids particle bed of glass beads. During pressure filtration, the cake thickness continuously in-
creased with an increasing number of deposited particles. Their CFD-DEMmodel accounted for
different solids properties, such as polydispersity and compressibility, as well as liquid properties,
such as density and viscosity. The model was successfully validated by comparing the obtained
cake resistance and filtrate flow data with experimental data.

Due to the often very fine particles that are to be modeled, usually only the microscale—
comprising few fibers and pores—is modeled, and macroscopic filter coefficients are derived.
These in turn, can be used in larger-scale simulations of actual filtration apparatuses. However,
the state of the art in filtration unit design has not yet come to fully realize the advantages of
the increasingly sophisticated methods that can cover a wide range of features, like the work of
Li et al. (135). Whereas the CFD-DEM method can, as far as physical models are concerned, be
considered mature for this purpose, due to insufficient development of multi-scale approaches, its
industrial application cannot.

3.6. Bioreactors

A bioreactor is a vessel in which physiological conditions are carefully controlled to induce cer-
tain behavior in living cells, tissues, or organs (136). In most bioreactors, the biological phase is
suspended in the liquid phase in the form of isolated cells, biological aggregates, or biofilm de-
veloped on carrier solids. In comparison to chemical reactions, the reaction rate depends not only
on thermodynamic variables (temperature, pressure, composition) but also on the state of the mi-
croorganisms (137). Bioreactors can have different geometries and different inserts for aeration
or stirring. Nevertheless, in all of them a certain shear stress is applied to the biological material.
Detailed investigations of the applied stresses can be included in numerical investigations.

Morchain (137) compared the Euler approach with the Euler–Lagrangian approach for mod-
eling bioreactors. He concluded that a three-phase Eulerian approach, consisting of a gaseous, a
liquid, and a biological phase, is the best choice for simulating bioreactors, as transfer and reaction
rates must be described correctly for the Lagrangian approach. Another challenge he identified
is the huge number of particles in the system, as a volume fraction of 0.1%, approximately 1 g/L,
corresponds to 1012 cells/cm³. In addition, the liquid phase’s concentration field must be modified
owing to assimilation or excretion by the microorganisms, which poses another challenge.

Yamamoto et al. (138) investigated the suspension of cell colonies in bioreactors of stirring and
orbiting shaking tanks. The authors modeled the cell colonies in a culture liquid as rigid spherical
solid particles. The maximum shear stress acting on the particles in the stirring tank was higher
than that on the particles in the orbital shaking tank, whereas the average shear stresses were
comparable. Tan et al. (139) simulated a membrane-assisted fluidized bed reactor for ultrapure
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hydrogen production. They extended the DEM model using gas species transport equations and
studied the effect of hydrogen extraction in the micro reactor at various conditions. De Jong et al.
(140) investigated a pseudo-2D fluidized bed membrane reactor 4 cm in width with flat mem-
branes in the left and right walls via CFD-DEM and with a TFM approach. A prescribed influx
boundary condition was applied to the membranes and the bottom distributor plate. Both models
showed qualitative agreement with experimental data, but quantitative deviations occurred.Using
the CFD-DEM approach, Hirche et al. (141) investigated an anaerobic fluidized bed membrane
reactor with granular activated carbon particles as a scouring material. The authors investigated
different reactor geometries, particle sizes, and inlet velocities and determined their influence on
membrane fouling.

Due to the wide range of possible phenomena to which CFD-DEM could be applied, one
must distinguish between a few cases to assess their maturity. Treating the cells or cell colonies as
particles is most common, and using CFD-DEM to track both their internal state and the chem-
ical conversion in the Eulerian phase takes advantage of the Lagrangian frame of reference but
does not strictly require particle collision modeling and suffers from issues regarding timescale
and particle number. This field can still be considered a field of active research. Rheological stud-
ies of entire apparatuses mostly choose a fluid-only approach, but a few studies have been set
on deriving the influence of shear conditions on cells. Suspension of particles in bioreactors is
usually well described and mature, benefitting from previous work for chemical reaction vessel
engineering.

4. PERSPECTIVE AND FUTURE TRENDS

Use of the CFD-DEMmethod has been expanding continuously since its inception, and we expect
it to continue to do so. Its robustness and adaptability to a wide variety of physical phenomena
make it a worthwhile addition to the skill set of any researcher or engineer tasked with the design
of solids processing apparatuses. We have identified the following areas as the most promising
in which to conduct methodical research, apart from the pure application of the method and
extension to more flow situations.

4.1. High-Performance Computing

One of the main limiting factors related to the use of CFD-DEM is the high computational effort
involved, which, in most cases, is caused by the DEM. Owing to the small size and high stiff-
ness of particles, the simulation time step of DEM is often two orders of magnitude smaller than
the CFD step. To decrease computational time, different parallelization strategies have been de-
veloped recently (142, 143). Some are based on the use of distributed memory approaches using
message-passing interfaces that allow execution on large clusters, shared memory approaches like
threading to fully utilize multiprocessor architectures, or hybrid combinations of both (143).Oth-
ers focus on the use of graphic processor units (GPUs) to parallelize DEM calculations (142). In
the near future, we are expecting intensive research in this field, especially with respect to the use
of modern computer architectures such as GPUs.

4.2. CFD-DEM as Part of Multiscale Calculations

CFD-DEM coupling is an effective approach that can be applied to investigate specific questions
with respect to multiphase flows. This method can be applied only for relatively small time and
length scales. To link the simulation results with the macroscopic production process or with final
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Figure 2

Usage of computational fluid dynamics–discrete element method (CFD-DEM) as part of multiscale calculations. Reprinted with
permission from Reference 103; copyright 2013 American Chemical Society.

product properties, additional submodels are needed. Thus, in recent years, CFD-DEM has been
used as part of multiscale simulation frameworks, where it has been coupled to models on other
scales, such as bonded-particle models, population balance models, and flowsheet calculations
(103, 107), as is schematically shown in Figure 2. We expect that future research in this field will
focus on integrating CFD-DEM calculations into one simulation framework.

4.2.1. Time extrapolation methods and data-driven modeling. Owing to its high compu-
tational demand, the CFD-DEM approach cannot be used to directly model process behavior
over long time spans. To ameliorate this problem, different extrapolation strategies have been de-
veloped: Their main idea is to use CFD-DEM simulation on short time intervals, on the order
of seconds, to capture system characteristics and afterward extrapolate data for longer time in-
tervals. This can include methods based on assumed repeated particle trajectories (104) or more
advanced approaches like recurrence CFD (144), in which recurrent global flow fields are sam-
pled, the pairwise similarity of different states is assessed, and tracer particles are moved based on
remixed sequences of velocity and phase fraction fields. Lichtenegger (145) showed the sufficiency
of this approach to capture dynamics over very long time spans, even using only local information.
It has been used successfully for fluidized beds with heat transfer (146), spray coating in spouted
beds (147), and heat transfer in a fluidized bed with a transient change in air velocity (148). It has
the advantage of preserving physical intuition and state data over population-balance modeling,
allowing us to stretch the applicability of a given sampled state of operation at speedups of ap-
proximately two orders of magnitude, all the while employing physical models that match those
used in regular CFD-DEM.Recently, Pirker & Lichtenegger (149) developed a real-time-capable
variant of this method based on transition patterns rather than Lagrangian tracers that shows great
promise for model-based control, as displayed in their first proof of concept on a turbulent mixing
chamber (150). We see a great future in this technology and would welcome further research in
this area, as well as integration into general-purpose CFD codes.

4.3. Data-Driven Closures

An Achilles’ heel of the CFD-DEMmethod is its need for closures for drag, heat, and mass trans-
fer. A lot of information is lost regarding the arrangement of particles in both the derivation of
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the drag correlation that traditionally depends primarily on the Reynolds number and the solids-
phase fraction, as well as the application within the drag force calculation.Applying artificial neural
networks to preserve some of the complexity of these flow situations provides one opportunity to
alleviate this situation: He & Tafti (151) trained neural networks to correct the drag force de-
pending on the relative position of surrounding particles to yield a more accurate drag prediction.
Yan et al. (152) used a radial basis function neural network to capture the drag coefficient of non-
spherical particles based on their sphericity but applied it only in TFM simulations. Jiang et al.
(153) introduced a new way to filter corrections in coarse-grid TFM simulations to predict drift
velocity below the grid scale, which ultimately affects the drag coefficient. Beck et al. (154) showed
the applicability of neural networks as sophisticated closures in turbulence modeling (large-eddy
simulations).

We are confident that more developments of this kind will have a big impact on simulation ac-
curacy. One general concern, the sheer number of arithmetic operations that must be performed
for a single evaluation of neural networks, is conquered via use of GPUs or specialized coproces-
sors designed for the execution of neural networks.
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