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Abstract

The goal of this review is to enable clinical psychology researchers to more
rigorously test competing hypotheses when studying risk factors in obser-
vational studies. We argue that there is a critical need for researchers to
leverage recent advances in epidemiology/biostatistics related to causal in-
ference and to use innovative approaches to address a key limitation of ob-
servational research: the need to account for confounding. We first review
theoretical issues related to the study of causation, how causal diagrams can
facilitate the identification and testing of competing hypotheses, and the cur-
rent limitations of observational research in the field.We then describe two
broad approaches that help account for confounding: analytic approaches
that account for measured traits and designs that account for unmeasured
factors. We provide descriptions of several such approaches and highlight
their strengths and limitations, particularly as they relate to the etiology and
treatment of behavioral health problems.
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Confounding: the
spurious or noncausal
association between
two variables that
arises because both
variables are caused by
another factor(s)

Observational
studies: studies that
do not use random
assignment to examine
causal effects
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1. OVERVIEW

A fundamental aim of clinical psychology is to improve our understanding of the etiology, treat-
ment, and prevention of behavioral health problems. To do this, the field must integrate advances
from other disciplines. In this review, we argue that there is a critical need for the field of clinical
psychology to leverage recent advances in epidemiology/biostatistics related to causal inference
and to use innovative designs to address a key limitation of observational research: the need to
account for confounding. This certainly applies to clinical scientists who design and/or analyze
large cohort studies, but understanding and incorporating a more formal approach to causal infer-
ence is also essential for other clinical psychology research, including in the fields of experimental
psychopathology and clinical neuroscience. The major goal of this review is to enable researchers
to identify and more rigorously test competing hypotheses when studying risk factors in observa-
tional studies that do not involve random assignment by bridging the fields of clinical psychology
and epidemiology/biostatistics.

Bridging these fields can be difficult for several reasons. First, the fields frequently use differ-
ent terms for the same issue, and sometimes the same terms are used to represent very different
concepts. Second, the types of variables that the fields have typically explored are different. Epi-
demiology has historically focused more on categorical (e.g., binary) variables, whereas psychol-
ogy has primarily focused on continuous measures. This may seem like a minor detail, but the
difference greatly influences the type of methodological training students receive. Third, histor-
ical differences in the general levels of analysis can further complicate communication. Yet, we
believe that bridging the gap can greatly help the field of clinical psychology—a goal that is con-
sistent with other calls in psychology (Rohrer 2018) and epidemiology (Greenland et al. 1999) as
well as related fields (Elwert & Winship 2014).
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To achieve our goal, this review covers two main topics. First, we introduce advances in the
study of causal inference with a focus on the critical necessity of rigorously exploring alternative
explanations—in particular, the need to identify and account for confounding.Our hope is to pro-
vide psychologists with an introduction to key theoretical issues in the study of causation, the use
of graphical tools, and an appraisal of key limitations of observational research in clinical psychol-
ogy. Second, we review several (a) analytical approaches and (b) research designs that help address
confounding and illustrate their use in clinical psychology.While we cannot cover all possible de-
signs, we provide several exemplars to illustrate the importance of using advanced approaches to
test competing hypotheses, and we note the limitations inherent in each approach. We conclude
the review by providing several summary points and future directions.

2. CAUSAL INFERENCE

Testing causal hypotheses using observational data in clinical psychology requires an understand-
ing of several issues from philosophy of science (e.g., O’Donahue 2013, Shadish et al. 2002). To
start, it requires a formal definition of causality and an informed view of how scientists investigate,
explain, and acquire knowledge.

2.1. Counterfactual Reasoning

Clinical psychology is interested in identifying causal risk factors for behaviors that are complex
and multifactorial. As such, researchers will not find “big, simple explanations” (Kendler 2005,
p. 434; see also Kendler 2019). Unfortunately, causal reasoning, particularly when studying risk
factors with such putative small effects, is often poorly motivated and sometimes relies on “the
dubious value of causal criteria” (Rothman & Greenland 2005, p. S147). In recent decades, there
has been a rapid development toward a formal theory of causal inference (Pearl 2009).

There is a growing consensus for using the counterfactual model to understand causal effects
(for an introduction geared to those in the social sciences, see Shadish et al. 2002). For a given
individual, a causal effect is defined as a contrast between the outcome had the person been exposed
to a risk factor (e.g., received a treatment) at a particular point in time and the outcome had the
individual not been exposed (e.g., did not receive a treatment) at that point in time. In practice,
though, we can only observe one of these scenarios: the one that actually happened. The other
scenario remains unobserved, or counterfactual, and therefore an individual causal effect typically
cannot be identified.

At the population level, a causal effect translates to the average outcome had everyone been
exposed relative to the average outcome had everyone not been exposed. Yet, we may only ob-
serve the counterfactual outcome under exposure among those actually exposed, and vice versa.
The conceptual difference between (a) comparing separate subsets of individuals defined by their
actual exposure level and (b) comparing the same set of individuals under different counterfactual
exposure scenarios explains the well-known dictum that association is not causation. As a result,
“two central tasks in experimental design are creating a high-quality but necessarily imperfect
source of counterfactual inference and understanding how this source differs from the treatment
condition” (Shadish et al. 2002, pp. 5–6).

Wewant to emphasize two implications of the counterfactual approach to understanding causal
effects for clinical psychologists. First, for the counterfactual contrast to be well defined, re-
searchers must strive for a clear understanding of the causal question (e.g., what hypothetical
intervention does it correspond to?). Second, when comparing the outcome among those who
were actually exposed and those who were not exposed, it is key that researchers make sure the
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Bias: systematic error
in the estimation of a
causal effect

groups do not differ in their risk of the outcome for reasons other than the risk factor of inter-
est, or the (factual) association between the risk factor and the outcome will not represent the
(counterfactual) causal effect.

2.2. Bias and Internal Validity

Underlying differences in the risk of the outcome between those who were exposed and unexposed
lead to bias, which is systematic error in the estimation of a causal effect. In this review, we show
how bias arises from noncausal pathways between a risk factor and an outcome of interest to
create spurious (i.e., noncausal) associations.We particularly focus on how researchers can identify
and account for the most common source of bias in observational studies: confounding. This
review, thus, is concerned with improving internal validity: the degree to which the association
between a risk factor and an outcome reflects a causal effect.We stress that in observational studies,
causal effects and confounding are competing, though not mutually exclusive, hypotheses about
the processes that give rise to an association between a risk factor and an outcome.To what degree
does the observed association reflect a potential causal effect of the risk factor on the outcome
versus a noncausal association created by confounding factors?

2.3. Epistemology

Some basic tenets from scientific epistemology are relevant. First, researchers need to formu-
late their hypotheses so that they can be vigorously tested (e.g., Popper 1962). Second, advanc-
ing our understanding of causality from observational studies requires that researchers identify
and then explicitly rule out competing hypotheses—specifically, noncausal explanations of the
observed associations—rather than conduct studies that are solely designed or implemented to
provide confirming evidence of a particular hypothesis (e.g., Platt 1964). Third, researchers need
to search out disconfirming evidence for a particular theory and conduct severe tests of a theory
(e.g., Mayo 1996). Establishing the veracity of a claim of a causal effect with observational data,
therefore, requires researchers to specifically account for alternative, noncausal explanations for
why a risk factor is associated with an outcome.

Whereas many readers may find this brief exposition in epistemology to be quite basic and con-
sequently unremarkable, we believe that one of the major limitations of observational research in
clinical psychology is a fundamental failure to identify competing explanations for observed as-
sociations between risk factors and outcomes. Psychological research is too often muddied by
confirmation bias (e.g., a priori assumptions about causal effects) that can negatively influence all
aspects of observational research from study design and analysis to interpretation and dissemi-
nation of findings. For example, psychologists have historically made strong causal claims about
psychosocial risk factors in observational data because of a priori assumptions of environmental
effects (Rutter 2000).

In this article, we review how advanced statistical approaches and designs can help account
for confounding in observational studies, but we stress that the ultimate success rests first and
foremost on researchers identifying all plausible competing explanations for why a risk factor
would be associated with an outcome.Only then can researchers design a series of tests to account
for competing hypotheses in an iterative fashion (Platt 1964). We believe that the use of causal
diagrams can be instrumental in guiding researchers in this endeavor.

2.4. Causal Diagrams

To understand the challenges to causal inference, it is vital that researchers make their hypotheses,
knowledge, and assumptions explicit. Causal diagrams help clarify causal questions and identify
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Collider: a variable
that is caused by two
other variables

Marginal association:
the unadjusted relation
between two variables
(i.e., the raw/crude
association)

whether and how they may be tested. They also allow researchers to describe, explain, and classify
sources of bias, including confounding. For an introduction to causal diagrams for beginners,
readers are referred to Rohrer (2018) and Elwert & Winship (2014), while initiated readers may
turn to the work of Pearl (2009) for a formal exposition.

Variables in a causal diagram are linked by directed arrows, which represent a possible causal
effect from one variable to the other. Because a cause must precede its effect, the graph is acyclic;
following the direction of the arrows, one can never end up where one started. Some readers
may be accustomed to the path diagrams typically used in structural equation modeling. While
these bear many similarities to causal diagrams, what characterizes the latter is that they encode
all assumptions about the structural (i.e., causal) relationship between variables and include rules
to help identify the testable implications of those assumptions (Pearl 2009).

Here, we review the rules for causal diagrams that are particularly relevant for understanding
how to distinguish causal effects from confounding. Paths are connections between variables de-
noted by a single arrow or across multiple arrows. Two variables are associated if there is at least
one open path (indicated in the diagrams by an arrow or series of arrows) between them. When
researchers make no adjustments, all paths are open, except those paths on which two arrows meet
on a single variable, making it a common effect, which is also referred to as a collider. A path that
follows the direction of arrows represents a causal pathway, whereas a path that at some point goes
against the direction of arrows represents a noncausal pathway.

Figure 1 illustrates these key points. In Figure 1a, the question is whether the risk factor X
has a causal effect on outcome Y. The causal diagram includes Z, which represents the set of all
factors that cause both X and Y, which are common causes or confounding factors. According to
Figure 1a, X and Y are associated through two possible paths: one through the arrow from X to
Y (a hypothesized causal path) and the other from X to Z to Y (a hypothesized noncausal path).
Confounding, thus, is the spurious or noncausal association that arises because the risk factor
(X ) and outcome (Y ) share common causes (Z ). Based on Figure 1a, the crude or unadjusted
estimate of the association between X and Y (sometimes referred to in epidemiology as a marginal
association) is biased because of confounding. Confounding is the most common source of bias in
observational studies because among all the factors that determine who becomes exposed versus
not exposed, some are likely to also be risk factors for the outcome.

Causal diagrams help researchers test causal hypotheses because applying the criteria of graph
theory allows a priori expectations of whether a risk factor will appear to be associated with an
outcome after one or more of the other confounding variables in the diagram are held con-
stant. Estimating an association while holding other variables constant produces an adjusted, or

X

Z

Y

a

X

Z

Y

b

Figure 1

Causal diagram illustrating confounding. X represents a risk factor, and Y represents an outcome. Z
represents all common causes of both X and Y. (a) The unadjusted association between X and Y would not
reflect a causal effect because the variables are also associated through Z. (b) Conditioning on Z, noted by a
box, blocks the path from X and Y via Z. A conditional association between X and Y (holding constant Z )
would reflect the true causal effect.
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Conditional
association:
the adjusted relation
between two variables
obtained by holding
constant another
variable(s)

conditional, association. It follows that conditioning on (i.e., adjusting or controlling for) a vari-
able means that it is held constant (so it cannot have any influence) through various methods (see
Section 3 for more on statistical methods and designs that enable researchers to condition on a
variable). In these diagrams, conditioning on a variable is represented graphically by enclosing the
variable in a box. Adjusting for a variable will block all causal and noncausal paths that go through
the variable, except if the variable is a collider. For example, conditioning on all of the common
causes (e.g., by adjusting for precise measures of all of the factors that Z represents), as illustrated
by the box around Z in Figure 1b, will block the path from X to Y via Z. In Section 2.5.4, we stress
the challenges of identifying and accounting for all of these factors by distinguishing between
measured and unmeasured confounding. Because the only remaining open path between X and Y
is the direct arrow from X to Y, the adjusted (or conditional) association between X and Y in this
scenario would reflect the causal effect of X on Y. Making causal claims thus requires blocking all
noncausal paths between the risk factor and outcome of interest.

To further illustrate the use of a causal diagram, consider a true experiment involving random-
ization. In randomized controlled trials (RCTs), the purpose of randomization is to make sure that
there are no systematic differences in preintervention status between the two experimental groups.
In the causal diagram in Figure 1, randomization theoretically breaks the influence of common
causes by removing the arrow from Z to X. All of the measured and unmeasured confounding
factors represented by Z are still associated with Y, but their relation to X has been blocked by
design (i.e., through randomization). As such, the observed association between the treatment X
and outcome Y will reflect the causal effect. This ability to avoid confounding due to Z is un-
doubtedly a tremendous strength of RCTs, which are commonly referred to as the gold standard
for causal inference. Still, RCTs have other challenges and limitations (for reviews, see Deaton &
Cartwright 2018, Rawlins 2008,West 2009). For example, RCTs are frequently too small to study
rare-but-serious outcomes, rely on a number of assumptions, and have limited ability to general-
ize to important patients, treatments, and settings. Finally, several important risk factors do not
lend themselves to randomization for ethical or feasibility reasons.Consequently, there are critical
questions in clinical psychology that cannot be answered by RCTs and thus require observational
studies.

Ultimately, a causal diagram should graphically represent all confounding pathways between
the putative causal risk factor and the outcome under study. If a confounding path is left out,
then the diagram may give the false impression that the observed association, adjusted for all
confounding factors identified in the diagram, can be interpreted as a causal effect. This is why
the validity of a causal diagram and the inference made from it rest heavily on subject-matter
understanding (Robins 2001).

2.5. Sources of Confounding

The common causes of X and Y represented by Z in Figure 1 can be of any type. Here, we
discuss two possible sources of confounding that have often been neglected in clinical psychology
research: previous behavior and genetic factors (Rutter et al. 2001).We do so to provide additional
examples of how causal diagrams represent competing (i.e., causal and noncausal) hypotheses for
an observed association between a risk factor and an outcome.

2.5.1. Confounding from previous behavior. When studying putative environmental factors,
“there must be a strategy to differentiate environmental effects on the person from the effects of
individuals on their environments” (Rutter et al. 2001, p. 297). Although dynamic scenarios (where
the risk factor and outcome can vary over time and influence each other) are beyond the scope of
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Figure 2

Causal diagram illustrating confounding by previous behavior. X represents a risk factor, and Y1 represents a
behavioral outcome after the exposure. Y0 represents the behavior of interest measured before the exposure.
ZY represents all of the (unknown) factors that influence Y over time. (a) The unadjusted association between
X and Y1 would not estimate the causal effect because the variables are also associated through the path over
Y0 and ZY. (b) Conditioning on Y0, noted by a box, blocks the path from X and Y1 via Y0 and ZY. A
conditional association between X and Y (holding constant Y0) would reflect the true causal effect.

this review, we present here a simple example in which only the outcome varies with time. The
diagram in Figure 2 illustrates how a risk factor X is hypothesized to have a causal influence on
a behavior Y1, but the potential presence of the same or similar behavior Y0 before the exposure
would also influence the likelihood of the risk factor (X ) occurring. The likelihood that an indi-
vidual exhibits the behavior Y is also under the influence of various underlying factors captured in
ZY. In Figure 2a, the unadjusted association between X and Y1 would not represent a causal effect
because there is an open (i.e., uncontrolled) noncausal pathway linking the two variables (i.e., from
X to Y0 to ZY to Y1). For this specific scenario, a study design in which researchers could control
for pre-exposure behavior Y0 (illustrated in Figure 2b) would allow the association between X
and Y1 to represent a causal effect because the noncausal path would be blocked. Figure 2 thus
illustrates why clinical psychology research must consider such confounding. The classic text by
Bell (1968), for example, highlights that research on socialization from parents to their children
must consider the children’s effects on the parents. Cross-sectional designs in which X and Y are
measured at the same time cannot distinguish such potential reverse effects. Given the complexity
of dynamic settings, each scenario requires careful identification of the causal structure and an
appropriate approach to handle it (e.g., Howards et al. 2007).

2.5.2. Genetic confounding. Behavior genetic research has shown that the influence of ge-
netic factors on individual differences in behavior is pervasive (Polderman et al. 2015, Turkheimer
2000). Furthermore, genetic factors regularly do not solely influence individual traits but, rather,
have pleiotropic effects, so genetic factors are associated with numerous outcomes (Bulik-Sullivan
et al. 2015). Genetic effects extend to exposure to measures that are considered to be environmen-
tal; this correlation is referred to as gene–environment correlation ( Jaffee & Price 2012, Plomin
& Bergeman 1991). Genetic variants can become correlated with environmental risk factors in
three ways. Passive gene–environment correlation occurs when parents’ genetic factors influence
their childrearing and are also passed down to their offspring (i.e., characteristics of the children
do not affect their own exposure). Active gene–environment correlation, rather, occurs when an
individual’s genetically influenced characteristics influence their “choice” of (i.e., selection into)
environments. Evocative gene–environment correlation occurs when genetically influenced be-
haviors evoke changes in the individual’s environmental risk factors.

As a consequence of gene–environment correlation, genetic factors could be a common cause
of a putative causal risk factor and outcome under study. This applies also to social risk factors, so
that “it is no longer possible to interpret correlations among biologically related familymembers as
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Confounding by
indication: the
spurious association
between a treatment
and an outcome due to
the indication (i.e.,
reason) for the
treatment also being a
cause of the outcome

prima facie evidence of sociocultural causal mechanisms” (Turkheimer 2000, p. 162). Furthermore,
researchers who study the influence of biological risk factors (e.g., markers of stress response) or
psychological risk factors (e.g., childhood psychological problems) on later outcomes must also
account for the possibility that genetic factors could account for the association.We must caution,
however, that gene–environment correlations (the Z toX path in Figure 1) do not necessitate that
genetic factors confound the statistical association between the risk factors and an outcome. The
same genetic factors that influence exposure to the risk factor may not influence or be correlated
with the outcome (i.e., there may not be a path from Z to Y ) (Rutter et al. 1993). Nevertheless,
gene–environment correlations raise this possibility of genetic confounding.

For example, there is great interest in the role of prenatal risk factors for later psycholog-
ical problems (e.g., O’Donnell & Meaney 2017). Yet, quantitative behavior genetic studies have
shown that genetic factors influence many prenatal risk factors, such as smoking during pregnancy
(D’Onofrio et al. 2003) and birth weight and gestational age (Clausson et al. 2000). Furthermore,
genetic factors (as measured by polygenic risk scores, an aggregate of measured genetic influences)
associated with neurodevelopmental problems in themother are also correlated with early-life risk
factors for her offspring, including the mother’s substance use, use of prescription medications,
infections, and stressful life events during pregnancy (Leppert et al. 2019). These findings raise
the possibility that common genetic factors could account for associations between prenatal risk
factors and later offspring psychopathology (D’Onofrio et al. 2014).

2.5.3. An example of a causal diagram. An example can be found in research exploring the po-
tential consequences of maternal antidepressant use during pregnancy for offspring development
(Sujan et al. 2019).We know from existing studies that there is an association between such med-
ication use and offspring autism spectrum disorder. However, this observed association may not
reflect a causal effect, as there are several possible noncausal pathways that could explain the asso-
ciation between maternal medication use and offspring neurodevelopment, which we illustrate in
Figure 3. Figure 3 first shows that there is a plausible causal effect via putative mediating factors
or so-called mechanisms of action (the solid paths in the figure). However, the association could
exist for reasons that do not involve a causal effect of maternal medication use (highlighted in the
figure by nonsolid paths)—notably, the reason why the women took the medication (the dashed–
dotted paths). Epidemiologists refer to such confounding as confounding by indication because
the reasons that pregnant women take antidepressants (i.e., maternal anxiety or depression or its
causes) also likely affect offspring development independent of medication use. Furthermore, the
diagram shows that researchers also must consider confounding from environmental (the dotted
paths) and genetic factors (the dashed paths) that are common causes of maternal medication use
and offspring neurodevelopment.We note that a more complete causal diagram would entail fur-
ther specification of the environmental common causes (e.g., poor nutrition). Yet, the diagram
illustrates that causal claims about prenatal antidepressant exposure require ruling out a series of
alternative explanations (i.e., noncausal pathways), and, notably, this requirement also applies to
studies that examine the potential mediating mechanisms.

2.5.4. Measured, unmeasured, and unknown confounding factors. An important principle
of causal diagrams is that they must include all known common causes of the putative causal risk
factor and outcome regardless of whether a study can measure them. Thus, researchers cannot
rely solely on what they are able to measure in a particular study when creating a causal diagram.
Figure 3 highlights the complexity of studying risk factors in observational studies—it is highly
unlikely that any single observational study can account for all confounding. The construction of
causal diagrams, therefore, can help researchers formally distinguish what a study can and cannot
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(e.g., anxiety, 
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(e.g., disrupted 

serotonin function, 
preterm birth)

Offspring autism 
spectrum disorder

Figure 3

Causal diagram for understanding the processes underlying the association between maternal antidepressant
use during pregnancy and offspring autism spectrum disorder. The diagram illustrates how antidepressant
use may have a causal effect on offspring autism spectrum disorder via specified mechanisms of action (solid
arrows). The antidepressant–autism association also could be due to noncausal paths, such as confounding by
indication (dotted–dashed arrows), environmental factors (dotted arrows), and genetic factors (dashed arrows).
Figure adapted with permission from Sujan et al. (2019).

rule out. Furthermore, there is always the possibility that yet unknown factors cause both the risk
factor and the outcome and thus confound the association between the two.

Figure 4 presents a diagram to illustrate these points. Again, the purpose is to estimate the
causal effect of X on Y, but the figure replaces the Z (representing all common causes) from
Figure 1 with two sets of variables, C and U, which separate two kinds of variables subsumed
by Z. C represents all of the factors that researchers are able to account for in a study (e.g., by
adjusting for measured covariates or using design features, as discussed in Section 3). In contrast,
U represents all of the common causes that remain—these could be known factors that a study

U

X

C

Y

a

X

C

U

Y

b

Figure 4

Causal diagram illustrating unmeasured confounding. X represents a risk factor, and Y represents an
outcome. C represents all measured common causes of X and Y.U represents all unmeasured common
causes. (a) The unadjusted association between X and Y would not reflect a causal effect because the variables
are also associated through both C and U. (b) Conditioning on C, noted by a box, blocks the path from X and
Y because of C.However, a conditional association between X and Y (holding constant C) would not reflect
the true causal effect because the variables are still associated via U.

www.annualreviews.org • Accounting for Confounding 33



CP16CH02_DOnofrio ARjats.cls April 25, 2020 14:33

cannot address, or they might be unknown factors. Certainly, the unadjusted association between
X and Y in Figure 4a does not estimate the true causal effect because of the confounding rep-
resented by both C and U. Likewise, a conditional association between X and Y that accounts
for the role of C (represented in Figure 4b) does not reflect the true causal effect because of the
confounding that remains due to U. The amount of bias in estimates of causal effects in condi-
tional models is influenced by the proportion and magnitude of the common causes due to C and
U. Well-designed observational studies seek to carefully select necessary factors to adjust for in
order to reduce the influence of unmeasured confounding. However, as illustrated in Figure 4b,
observational studies are always limited by the possibility that confounding factors, both known
and unknown, could account for the association between X and Y. This has major implications for
the interpretation of observational research.

2.6. Inappropriate Use of Causal Language

Despite calls for a consistent use of terminology (e.g., Kraemer et al. 1997) and cautioning that
researchers “are obliged to avoid causal language” (Kendler 2017, p. 562) when presenting the re-
sults of observational studies, researchers frequently use language that implies causation. A simple
search of published observational studies in clinical psychology, psychiatry, and epidemiology will
find a wealth of studies using phrases that imply causation, such as “the effect of” or the “influence
of” a risk factor on an outcome. While others may find this language innocuous, we believe the
use of such language leads to confusion in the field. And, unfortunately, in some observational
studies researchers have drawn explicit causal conclusions even though the studies were unable to
account for all (or many) plausible noncausal explanations.

We, as well as other authors (e.g., Cope & Allison 2009, Schwartz et al. 2016), have found
two areas of clinical psychology research in which researchers are more likely to use inappropri-
ate casual language or draw unjustified causal conclusions, though certainly not in a majority of
the manuscripts. First, research that includes biological functioning, such as measures of physi-
ological functioning, is more likely to make unwarranted causal claims—a phenomenon that is
sometimes referred to as neuroseduction (Schwartz et al. 2016). Second, researchers who focus on
what might be viewed as righteous goals (e.g., when studying risk factors that may be deleterious
for other reasons or viewed as ethically problematic) are also more likely to use causal language
when interpreting their findings from observational studies. For example, because the physical and
sexual abuse of children is abhorred, readers may not hold claims that such abuse causes an adverse
outcome to the same standards for drawing causal inferences. This phenomenon is referred to as
white hat bias (Cope & Allison 2009). Again, we believe these are examples of how confirmation
bias can lead researchers to fail to acknowledge, account for, and accurately interpret their findings
in light of plausible alternative explanations—confounding in particular. In the next section, we
review how different analytic approaches and designs can help account for confounding.

3. ANALYTICAL APPROACHES AND DESIGNS
TO ADDRESS CONFOUNDING

There are numerous approaches to address confounding that are more or less commonly applied
in psychology (Rutter et al. 2001, Thapar & Rutter 2019, West 2009). We consider two broad
categories: approaches that directly account for measured confounders and those that seek to
indirectly address unmeasured confounding through research design. For each approach, we first
provide a description of how it can help account for confounding in observational studies. We
then describe the assumptions and limitations and provide an example of how the approach has
been used to address a question in clinical psychology.
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3.1. Approaches for Accounting for Measured Traits

Researchers can incorporate covariates into their analyses using several approaches to help account
for confounding factors. Here we outline three broad approaches within this domain.

3.1.1. Stratified analysis. Although it is not a common practice in psychology, researchers can
gain more information about the putative influence of a measured covariate by conducting a strat-
ified analysis, in which researchers restrict their estimation of an association between a risk factor
and an outcome to homogenous groups of individuals on the basis of a measured categorical trait.
As described above (see Section 2.5.3 and Figure 3), the unadjusted association between maternal
antidepressant use during pregnancy and offspring functioning (i.e., comparing offspring exposed
to the medication with all offspring who were not) may not reflect a causal effect because the asso-
ciation could be due to other factors. To help account for confounding by indication, researchers
could stratify or restrict their analyses to the subset of mothers who had diagnoses of depression
(this would be the C in Figure 4). This approach would estimate the association conditional on
maternal depression (i.e., the analysis would compare offspring exposed to antidepressants during
pregnancy with offspring of women who had depression but did not take the antidepressants dur-
ing pregnancy). Stratified analyses thus illustrate how researchers can hold constant or condition
on a measured variable.

The major limitation of a stratified analysis is that it quickly becomes unmanageable when
researchers want to hold constant many factors. The standard way to adjust for more than one
covariate and/or continuously measured factors is to use regression models. Broadly, these can be
divided into regression models for the outcome and regression models for the exposure.

3.1.2. Outcome regression models. Traditionally, outcome regression models have predom-
inated in the field of psychology (e.g., Cohen et al. 2003). Outcome regression models describe
how the outcome depends on the risk factor and the measured confounders (i.e., the arrows from
X to Y and from C to Y, respectively, in Figure 4). To account for confounding due to C, outcome
regression models block the path from C to Y. Technically, outcome regression models hold con-
stant the association between the measured covariates C and Y by partialing out the associations
between the covariates and the outcome. Outcome regression models thus provide estimates of
the association between a risk factor and an outcome that are adjusted for or conditional on the
measured covariates in the model, given certain assumptions (see Section 3.1.5).

3.1.3. Exposure regressionmodels. Exposure regressionmodels are becomingmore common
in the field. They account for confounding by breaking the path between C and X in Figure 4.
Thesemodels are almost exclusively used for binary exposures, in which case they describe how the
probability of being exposed—the propensity score (PS)—depends on the measured confounders.
Using an exposure regression model, the PS can be estimated for all values of the measured con-
founders, thus giving an estimated PS for each subject in the study.

The popularity of PS methods comes from the fact that even though there may be many mea-
sured confounders, the PS is a single variable, and adjusting for this variable completely removes
the influence of all measured confounders (Rosenbaum & Rubin 1983). Thus, once the PS has
been estimated, researchers may treat it as a single confounder and adjust for it using a standard
outcome regression model. Alternatively, researchers might match on the PS. A somewhat differ-
ent use of the PS is to perform inverse probability weighting (IPW), which artificially breaks the
influence of the measured confounders on the exposure by an elaborate weighting scheme. We
refer readers to Austin (2011) for an overview of these different PS methods. For example, Brown
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Residual
confounding: the
systematic error in the
estimation of a causal
effect due to imperfect
adjustment for (i.e.,
due to measurement
error or coarse
categorization of ) a
particular confounder

et al. (2017) used IPW when studying the association between maternal antidepressant use dur-
ing pregnancy and offspring autism. The statistical approach accounted for a host of covariates,
including medical and psychiatric diagnoses and the use of other prescribed medications during
pregnancy, in an attempt to balance the measured covariates among exposed and unexposed off-
spring. The association with antidepressant use during pregnancy in the conditional model was
greatly attenuated compared with the unadjusted model. The results suggested that confounding
factors accounted for most of the unadjusted association.

3.1.4. Outcome regression or exposure regression models? Exposure regression models
have advantages for observational research, including the ability to adjust for large numbers of
covariates (Lee & Little 2017,West et al. 2014). If both the outcome regression model and the ex-
posure regression model are appropriate, and the sample is large, then these modeling approaches
will give similar results. In practice, though, they may give different results due to either (or both)
models being misspecified or due to sampling variability in small samples. So which approach is
then preferable? In some scenarios, the researcher may know more about the mechanisms behind
the exposure than the mechanisms behind the outcome. In practice, outcome regression is more
common for three reasons. First, outcome regression easily generalizes to nonbinary (e.g., con-
tinuous) exposures, which is not the case for exposure regression. Second, when both regression
models are correct, outcome regression models give smaller standard errors. Third, confidence
intervals and P values are simple to calculate with outcome regression and are provided by all
standard statistical software, which is not the case for exposure regression.

3.1.5. Limitations of approaches for accounting for measured traits. While the use of mea-
sured covariates is the standard practice within the field of clinical psychology, the use of these
statistical approaches is hindered by several key limitations.

3.1.5.1. Inadequate control of common causes. The main limitation of all of the models that
adjust for measured covariates, including PS models, is the inability to account for unmeasured
confounding (the U in Figure 4). However, adjusting for measured covariates to account for
confounding also is greatly limited for other reasons that many psychologists frequently fail to
acknowledge.

First, measured covariates are always measured with error, and this measurement error has se-
rious consequences for testing causal inference using statistical models. Accounting for covariates
with measurement error will not account for all of the bias due to the construct. In epidemiology,
this is referred to as residual confounding. How deleterious is residual confounding? The answer
depends on the quality of measures in each study, but simulation studies suggest that it can be
a major concern (Fewell et al. 2007), particularly in the field of psychology (Westfall & Yarkoni
2016). Despite these major reviews, it is not clear that clinical psychology researchers fully ap-
preciate the importance of this limitation. Residual confounding, thus, is a plausible alternative
explanation to a causal effect when researchers find conditional associations between a risk factor
and an outcome.

Second, researchers often make inappropriate inferences about the degree to which the mea-
sured covariates in their study actually represent the higher-order construct they are trying to
measure. Whereas residual confounding reflects measurement error, threats to the construct va-
lidity of the measured covariates heavily influence the interpretation of regression models. For
example, researchers have claimed that statistically adjusting for a trait in parents will account for
genetic factors that influence their offspring (in the hopes of accounting for genetic confounding).
But there are numerous reasons why this may not be the case, such as findings that the genetic
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factors that influence a trait change across the life span (e.g., Hannigan et al. 2017). As such, sta-
tistically adjusting for a trait at one point in development does not account for all genetic (or
environmental) factors associated with the trait (Silberg et al. 2003).

Finally, fundamental misunderstandings of regression methods have led researchers to make
inaccurate claims about the degree to which the methods account for confounding. In particu-
lar, prominent researchers have expressed serious concerns about the causal inferences that re-
searchers have drawn based on PS methods (e.g., Luellen et al. 2005, Pearl 2009). Although ad-
justment for the PS will account for all measured confounders, exposure regression approaches are
not a panacea. PS methods make exactly as much (or as little!) adjustment as any of the more tradi-
tional, outcome regression methods (Pearl 2009). We note that researchers are debating whether
the creation of high-dimensional PSs that incorporate a much wider range of measured covariates
than would typically be possible to include as independent predictors (e.g., hundreds of covari-
ates) increases the likelihood that such PSs serve as proxies for relevant unobserved confounders
(Schneeweiss et al. 2009).

3.1.5.2. Inappropriate control of measured factors. Although we stress that statistical mod-
els that adjust for measured covariates are limited in their ability to account for all confounding,
merely adjusting for more measured covariates is not necessarily the solution. Unfortunately, re-
searchers in psychology frequently add numerous covariates to regression models in the hope of
adjusting for confounding without understanding the potential harm in doing so (Rohrer 2018).
We highlight two important limitations that arise from inappropriate statistical control of mea-
sured covariates.

First, researchers should not adjust for mediators (i.e., variables that mediate the effect of X
on Y ) unless the explicit research question concerns direct effects of the mediator. Mistakenly
adjusting for a mediator can bias the estimation of the total effect because part of the causal effect
through the mediator has been blocked (Rosenbaum 1984).

Second, adjusting for colliders can lead to bias by inducing a noncausal association between
the risk factor and outcome (Greenland et al. 1999). Figure 5 provides a simplified example of
this phenomenon. In Figure 5a, the risk factor X is hypothesized to have a direct causal influence
on outcome Y. X also has a causal effect on the variableW.W does not have a causal effect on Y,
but the two appear associated because they share the unknown common cause U. The variableW
is a collider because it is a common effect of both X and U. Following the causal diagram rules

U

W Y

a

W

U

YX X

b

Figure 5

Causal diagram illustrating collider-stratification bias. X represents a risk factor, and Y represents an
outcome.W represents an effect of X. U represents unmeasured common causes ofW and Y. (a) The
marginal or unadjusted association between X and Y would represent a causal effect. (b) Conditioning onW,
noted by a box, opens a noncausal path from X to Y (viaW and U ). A conditional association between X and
Y (holding constantW ) would not reflect the causal effect because of the opened path through the collider
W.
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described above, the path with the collider is closed; hence, the marginal or crude association
between X and Y would represent the causal effect (Figure 5a). However, if a researcher adjusts
for the variable W (as illustrated in Figure 5b), perhaps to see if it is a mediator, the conditional
association between X and Y would be biased. This is because according to graph theory, condi-
tioning on a collider opens the path through it (X would be associated with Y via the open path
throughW and U ). In other words, including variableW in an analysis would correlate X and Y
for reasons other than a causal effect. Misestimation of causal effects (i.e., bias) due to controlling
for colliders is not frequently mentioned in psychology, and a full exposition is beyond the scope
of the current review, but there are several helpful published reviews (Cole et al. 2009, Elwert &
Winship 2014). The main point for the purposes of this review is that inappropriately including a
measured covariate that is a collider can induce bias in the estimate between a risk factor and an
outcome.

Psychologists often assume that adjusting for a measured “third” variable only reduces the
statistical association between a risk factor and an outcome (so that the adjusted association would
always be a conservative estimate of a causal effect). We stress that this is not always the case.
Common causes of a risk factor and outcome can produce both positive and negative associations
between the two so that the confounding either inflates or reduces the estimate of a potential
causal effect. Moreover, adjusting for a mediator whose effect on the outcome is opposite to the
remaining causal effect or adjusting for a collider can also serve to inflate estimates between a risk
factor and an outcome.

3.1.6. Review. The use of measured covariates to statistically account for confounding is stan-
dard practice in observational research in clinical psychology. We caution, however, that a well-
fitting regressionmodel has no relation to whether (a) all relevant confounders have been included
in the model, (b) all relevant confounders have been measured well, or (c) all variables included
in the model are relevant confounders. Stated differently, a statistical software program cannot
differentiate whether a variable is a confounder that is an imprecise measure of an important con-
struct, a confounder that precisely measures an important construct, a mediator, or a collider—the
interpretation is based solely on the theory and design of a study. For these reasons, using research
designs to control for unmeasured confounders can be a much stronger strategy, especially if such
designs are supplemented with analytic approaches to account for measured covariates.

3.2. Designs That Account for Unmeasured Confounders

The important classes of research designs summarized here are often referred to as natural exper-
iments (Rutter et al. 2001, Thapar & Rutter 2019) or quasi-experimental designs (Shadish et al.
2002). These designs frequently use comparison groups that share common causes, regardless of
whether they are measured, or examine instances in which exposure to a risk factor is independent
of the influence of individuals in the study. As such, these approaches use design features instead
of solely relying on measured covariates to account for confounding.

3.2.1. Family-based designs. This powerful class of research design compares relatives within
families. Individuals exposed to a risk factor are compared with relatives who were not exposed,
which enables these designs to hold constant many factors. Because family members share many
genetic variants, family-based designs reduce genetic confounding. In addition, these designs
completely control for environmental factors that make the relatives similar. Figure 6 illustrates
a family-based design that includes two individuals (noted by subscript 1 and 2) from a family
(noted by subscript i) when exploring the association between a risk factor (X ) and an outcome

38 D’Onofrio et al.



CP16CH02_DOnofrio ARjats.cls April 25, 2020 14:33

Xi1

Zi1

Yi1

Xi2

Zi

Yi2

Zi2

Figure 6

Causal diagram illustrating within-family designs. X represents a risk factor, and Y represents an outcome,
with the subscripts noting that information is available from two individuals (noted by subscript 1 or 2) from
the same cluster, in this case a family (noted by subscript i). Z represents all common causes of both X and Y.
Some of the common causes are factors that are shared by family members (Zi), and some are not shared by
the first or second family members (Zi1 and Zi2, respectively).

(Y ). Family-based designs enable researchers to account for all factors that make the family
members similar (noted as Zi) by design (i.e., the factors do not have to be measured in the study).
Comparing family members thus explores the association between a risk factor and an outcome
while holding constant all factors that make them similar. The design, however, cannot account
for factors that are not shared by the first or second family members (Zi1 and Zi2, respectively).

3.2.1.1. Sibling comparisons. Because full siblings share on average 50% of their segregating
genes as well as shared environmental factors (i.e., environmental factors that make them similar),
the comparison of differentially exposed (i.e., exposure-discordant) siblings enables researchers to
account for many common causes that can confound associations between risk factors and out-
comes (Lahey & D’Onofrio 2010). For instance, in a study that compared siblings whose mothers
used antidepressants during one pregnancy but not during another (while statistically adjusting
for measured covariates that were different among the siblings), the association between antide-
pressant use during pregnancy and offspring neurodevelopmental disorders was found to be small
and not statistically significant (Sujan et al. 2017). While the study could not rule out the role
of a small causal effect, the finding is generally consistent with other sibling-comparison studies
(Brown et al. 2017, Rai et al. 2017) in suggesting that antidepressants do not have a large causal
effect on those neurodevelopmental problems; rather, the unadjusted association is due mainly to
confounding factors (for a review, see Sujan et al. 2019).

3.2.1.2. Co-twin control design. The comparison of discordant identical twins is a particularly
stringent test of causal effects because identical twins share 100% of their genetic makeup as
well as environmental factors that make twins similar (McGue et al. 2010). A study by Caspi et al.
(2004) provides an illustrative example of how psychologists have used the design, along with other
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approaches to rule out confounding (and other possible explanations), when studying the effects
of parenting practices on offspring development. Twins who received more negative parenting
and less warm parenting had more disruptive behaviors than their identical co-twins, even when
the researchers statistically adjusted for measures of previous factors that could account for the
association. The use of the co-twin control design and other approaches, therefore, increased the
internal validity of the study because the design was able to account for many of the alternative
noncausal explanations for the association between parenting and offspring behaviors.

3.2.1.3. Offspring of twins. The offspring of identical twins are genetically related as half-
siblings (i.e., they share on average 25% of their segregating genes), though they are socially
cousins (D’Onofrio et al. 2003, McAdams et al. 2014). Offspring-of-twins design has been used
primarily to study risk factors that are shared by siblings. In a classic study,Gottesman& Bertelsen
(1989) compared the offspring of identical twins who were discordant for schizophrenia. Their
offspring had the same risk for schizophrenia; this result suggests that the intergenerational trans-
mission of schizophrenia was not due to a causal effect of exposure to parental schizophrenia. In
contrast, several offspring-of-twins studies that have explored the intergenerational transmission
of depression have found a statistical association that is independent of genetic factors, which is
consistent with a causal effect (McAdams et al. 2015, Silberg et al. 2010, Singh et al. 2011).

3.2.1.4. Other family-based designs. There are many family-based designs that are used in
the field of behavior genetics to help account for genetic and environmental confounding when
studying putative causal risk factors (D’Onofrio et al. 2013, Knopik et al. 2016). For example,
adoption studies (e.g., Leve et al. 2013) have enabled researchers to explore the consequences
of parental depression on offspring development while holding constant genetic factors due to
passive gene–environment correlation (McAdams et al. 2015). Notably, researchers can combine
several family-based designs to help account for additional confounding factors and provide in-
formation about the extent to which genetic and environmental processes explain the association
between a risk factor and an outcome.

3.2.1.5. Limitations of family-based designs. While family-based designs enable researchers to
control for potential confounding factors without measuring them, these designs have a number
of limitations (D’Onofrio et al. 2013, Frisell et al. 2012,McGue et al. 2010, Sjolander et al. 2016).
First, the designs are unable to rule out the influence of factors that are not shared by family
members, though researchers can add measured covariates to help account for such individual
confounding. These designs are also sensitive to measurement error (or misclassification) and
typically require large sample sizes to find enough family members who differ on both the risk
factor and the outcome (i.e., they have enough statistical power).Further, they assume no carryover
effects from one family member to the other, and they rely on assumptions about whether the
findings from the discordant family members generalize to other populations.

3.2.2. Interrupted time series design. The interrupted time series (ITS) design can rule out
alternative explanations to allow causal inference by controlling for confounding factors whether
they are measured or not (Glass et al. 1975). In an ITS design, an outcome variable is measured
repeatedly over time. The time series of such repeated measurements is interrupted if a condi-
tion that may causally influence the repeatedly measured outcome changes during the series of
measurements. As such, the ITS accounts for confounding factors by breaking the link between
Z and X in Figure 1. ITS designs have a mixed history of use in clinical psychology. On the one
hand, they played an essential role in the development of behavior therapy (Kazdin & Wilson
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1978) and continue to be frequently used to evaluate the efficacy and effectiveness of therapies
(Smith 2012). On the other hand, we believe they are greatly underused for studying other risk
factors.

The change in condition may be one that is controlled by the experimenter, such as the in-
troduction of a treatment following a series of pretreatment baseline assessments. Much has been
written about the advantages of within-person ITS in treatment studies (Kratochwill & Piersel
1983). ITS designs are widely used for this purpose partly because they are often so informative
that small numbers of participants can be used in treatment studies, including single-subject de-
signs (Smith 2012). A powerful advantage of their use in treatment outcome research is that the
treatment can be introduced at different points in time with different participants to minimize
concerns about chance confounding (Kazdin & Kopel 1975).

The interruption also could be an event or condition over which the experimenter has no
control, such as an earthquake or a change in laws that regulate the sale of alcohol. For example,
during the early 2000s, both Slovenia and Russia implemented laws that substantially restricted
the sale of alcohol. Using official records, researchers found that monthly rates of suicide in males
during the years after the law changed were markedly lower than in the years before the law
changed in both countries (Pridemore et al. 2013, Pridemore & Snowden 2009). Although the
event and the change in the outcome can be linked at a particular time and place in such studies,
these variables are not linked at the level of the individual.As a result, it is not possible to determine
whether the persons with the outcome were the same persons who were affected by the event
because not everyone in these countries drank alcohol or experienced changes in their own access
to alcohol as a result of the changes in laws.

The fundamental assumption of ITS studies is that no other event occurred at the same time
as the event under study that was actually the cause of the change in the outcome. For exam-
ple, if a change in a law regarding the availability of alcohol happened to occur at a time when
employment opportunities were substantially increased in the same country, it would be impos-
sible to determine which was the causal event in that study. In the examples cited in the previous
paragraph, the facts that (a) the changes in alcohol were associated with the same male-specific
decline in suicides in two different countries and (b) the laws were changed 3 years apart support
the conclusion that decreasing the availability of alcohol saved lives. But the studies do not en-
tirely rule out the possibility that another societal event was the actual cause of the reduction in
suicides.

Multiple measurements of the outcome before and after the event are needed to detect possible
changes. In the absence ofmultiplemeasurements, it is not possible to knowwhether the difference
in the outcome simply reflects changes that were unrelated to the event. There must be a clear
and detectable change that occurs at the time of the event to rule out other possible causes of
change, such as testing effects, maturation, or regression artifacts. It also is possible to strengthen
a causal claim by including a control group in which the event did not occur (e.g., Wing et al.
2018).

3.2.3. Review. Instead of relying solely on measured covariates to account for confounding,
family-based designs and ITS studies use design features to help rule out alternative noncausal
explanations for an observed association between a risk factor and an outcome. The use of these
designs has a long history in the field of psychology. For example, these designs have helped re-
searchers realize that previously identified risk factors did not have causal effects on outcomes
(i.e., the associations were due to confounding factors) and have strengthened claims about other
causal effects. Unfortunately, we believe that researchers do not use these designs enough in the
field of clinical psychology.
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4. SUMMARY AND FUTURE DIRECTIONS

Many of the pertinent research questions related to etiology, treatment, and prevention of behav-
ioral health problems cannot be answered by RCTs. In this review, we have sought to introduce
advances in the study of causal inference, in particular those related to accounting for confounding
in observational studies, to the field of clinical psychology. Below, we emphasize several implica-
tions for the field.

4.1. Training in Philosophy of Science

We urge clinical programs to provide more training in aspects of philosophy of science relevant
to causal inference (D’Onofrio et al. 2017, O’Donahue 2013), in particular the need to rigorously
test competing hypotheses. We believe that one of the primary challenges to causal inference
involves the identification of and proper dealing with sources of bias, which require researchers
to use analytic and design features to test competing hypotheses in an iterative manner (e.g., Platt
1964).

4.2. Training in and Use of Causal Diagrams

We also have briefly introduced how the use of causal diagrams can help researchers clarify their
thinking by formalizing the broader causal theory under which they are working. As such, we
encourage more training in causal diagrams and their implementation throughout the field, con-
sistent with other calls in psychology (Rohrer 2018). We propose that the use of causal diagrams
would greatly increase the quality of dissertations, manuscripts, and grants focused on observa-
tional research.

We frequently hear that a realistic causal diagram would be too complex to be helpful. But
we argue that when studying such complex scenarios, it is particularly important to draw a causal
diagram for several reasons. First, constructing a causal diagram helps clarify the precise research
question.For example, a diagram can help clarify which risk factor or set of risk factors is of primary
interest. Second, causal diagrams help researchers identify the status of the field and show if there
are any major gaps in the current knowledge. Third, we believe that causal diagrams can help
guide the initial design and analysis of studies. For example, causal diagrams can help determine
which plausible confounding factors need to be measured (and measured well), which covariates
may act as mediators and/or colliders, and what design features would be appropriate to target
potential unmeasured confounding. Frequently, the use of causal diagrams highlights the necessity
of studying upstream causes of the risk factor to understand the processes through which it may be
associated with an outcome. Finally, we have found that causal diagrams foster a level of humility
regarding the limitations of studies, which is subsequently reflected in the causal language used
(and not used) in the interpretation and conclusion of studies.

We want to provide two examples of how using causal diagrams has influenced our own work.
First, identifying the common causes in Figure 3 greatly aided our research on maternal use of
antidepressant medication in pregnancy and offspring neurodevelopmental disorders (Sujan et al.
2017). The figure was also helpful in the review of research on the topic that we were later invited
to write (Sujan et al. 2019). Second, the use of causal diagrams has changed how our research team
approaches confounder adjustment. When studying the consequences of prenatal risk factors
(D’Onofrio et al. 2013), we used to include indicators of maternal and paternal lifetime history
of behavioral health problems (in addition to using design features) without realizing that these
measures may include behaviors that could have been affected by the risk factor. Such factors
require different considerations than confounders (possible mediator and/or collider), and our
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consideration of potential confounding factors is now limited to those that occur before the
putative causal risk factor.

4.3. Training in and Use of Advanced Statistical and Methodological
Approaches to Account for Confounding

We hope that the a priori identification of plausible alternative explanations for observed associ-
ations between risk factors and outcomes will help researchers design and analyze data sets using
approaches that can better account for theory-driven covariates that are precisely measured. In
addition to training in outcome regression models that have generally dominated the field of psy-
chology (Cohen et al. 2003), we encourage more training and use of exposure regression models
when appropriate (Lee & Little 2017, West et al. 2014). This will be particularly important as
more large-scale data sets with information on behavioral health become available.

Given the fundamental limitations of relying solely onmeasured covariates, we encourage clin-
ical science researchers to use innovative designs to help account for confounding.This call, which
is consistent with previous calls in psychology (e.g., Rohrer 2018, Rutter et al. 2001) and in the
social sciences more generally (e.g., Shadish et al. 2002), will require students to receive in-depth
training in designs that have a rich history in the field of psychology, such as ITS (Kazdin &
Kopel 1975). Clinical psychologists will also need to consider designs that are more common
in other fields. For example, behavior genetic researchers use and combine several family-based
designs (Knopik et al. 2016). The field of epidemiology also frequently uses negative control ex-
posures, negative control outcomes, and instrumental variables to account for confounding fac-
tors (Gage et al. 2016). In addition, research designs used in economics, such as difference-in-
difference designs, enable researchers to examine the consequences of broader policies (Wing et al.
2018).

Because each statistical and design-based approach to causal inference has its limitations, re-
searchers will ultimately need to find converging evidence from multiple approaches. If research
designs with different threats to their validity reach the same conclusion, the case for causal claims
is strengthened. We believe that the causal diagrams will ultimately help researchers from mul-
tiple disciplines integrate findings across multiple studies because the diagrams formally present
the plausible confounding (and mediating) factors. As such, we encourage researchers to use and
combine different methods to account for confounding. For example, researchers have compared
the results from a family-based study with those that relied solely on statistical adjustment for
covariates (Kendler & Gardner 2010). And the ability to draw strong inferences is greatly aided
by research that experimentally manipulates risk factors (e.g., prevention/intervention studies or
analog studies), such as studies that compare the results of observational studies with those of
RCTs (Ioannidis et al. 2001).

4.4. Training in and Use of Approaches to Account for Other Threats to Validity

Recently, there have been calls in psychology in general and clinical psychology in particular
(Tackett et al. 2017) to increase the rigor and replicability of research.We believe that researchers
must also acknowledge and address other threats to validity (Shadish et al. 2002). For example,
confounding is not the only threat to internal validity. Researchers also need to account for
measurement error in the risk factor and the outcome as well as bias due to restricting the
sampling strategy or analysis (e.g., conducting a complete case analysis) on a variable that is a
collider (Hernan et al. 2004). Researchers also need to consider threats to the statistical validity
of studies—the degree to which the association between a risk factor and an outcome has been
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appropriately estimated. This includes using appropriate statistical techniques to estimate effect
sizes (Cumming 2014) and designing studies with appropriate statistical power (Cohen 1988).
Clinical psychology researchers must also carefully consider the construct validity or the degree to
which inferences from the operations (e.g., measures, persons, settings) of a study relate to or cor-
respond to higher-order concepts (e.g., Cronbach & Meehl 1955). In addition, researchers must
consider threats to external validity or the extent to which inferences about causal effects general-
ize to other persons, settings, and treatments. This includes trying to ensure, as much as possible,
that the participants in a study are representative of the population they are trying to study.

4.5. Role of Clinical Psychology in Epidemiologic Research

Whereas this review focuses on how clinical psychology research could benefit from advances in
epidemiology, we also stress that clinical psychologists can greatly enhance the quality of research
in epidemiology. Causal inference must be grounded in basic science, and clinical psychologists,
with their breadth of training, can guide the development of causal theory with their understand-
ing of basic neuro-, psychological, developmental, and social sciences. Clinical psychologists can
also enrich epidemiology research through a better understanding of construct validity. Further-
more, training in translational science can help researchers understand how questions from ob-
servational studies can inform and be informed by community-based research to help ameliorate
the suffering caused by behavioral health problems. Again, we strongly believe that leveraging ad-
vances from multiple disciplines will help advance research in clinical psychology. We hope this
review aids in the design, analysis, and interpretation of observational studies that explore the
etiology and treatment of clinical problems.

SUMMARY POINTS

Our goal has been to help bridge the gap between research in clinical psychology and
epidemiology/biostatistics with a particular emphasis on the critical need for observational
research in clinical psychology to rigorously test competing causal hypotheses. Below, we
summarize eight key points.

1. Testing and drawing causal inferences requires in-depth content knowledge and theory
ahead of time, which can be formally represented and clarified in causal diagrams.

2. Examining causality with observational data requires ruling out alternative hypotheses/
explanations of an association between the risk factor and outcome, in particular those
that are due to unmeasured and residual confounding.

3. Despite calls for cautious language regarding causal conclusions fromobservational stud-
ies, clinical psychology researchers still frequently imply or claim causal effects that are
not justified.

4. Researchers can help account for confounding by using measured variables to model the
outcome or the exposure in a regression analysis. Regardless, the reliance on measure-
ment of the confounding factors means the analyses will not account for unmeasured or
residual confounding.

5. The inappropriate statistical control of somemeasured variables (e.g.,mediators and col-
liders) can lead to biased estimates of causal effects. Consequently, statistically adjusting
for more variables is not always a conservative approach for estimating associations free
of confounders.
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6. Because the ability to account for confounding via measured covariates is limited, clin-
ical psychologists need to consider using research designs that account for unmeasured
factors.

7. There are several designs to account for different types of unmeasured confounding, and
each has its own strengths and limitations.

8. Clinical science researchers have used such designs, along with advanced statistical ap-
proaches, to rigorously examine putative causal risk factors by excluding noncausal ex-
planations and identifying the role of confounding factors.
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