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Abstract

UnderstandingDirac-like fermions has become an imperative inmod-
ern condensed matter sciences: All across the research frontier, from
graphene to high Tc superconductors to the topological insulators
and beyond, various electronic systems exhibit properties that can be
well described by the Dirac equation. Such physics is no longer the
exclusive domain of quantum field theories and other esoteric math-
ematical musings; instead, physics of real condensedmatter systems is
governed by such equations, and important materials science and
practical implications hinge on our understanding ofDirac particles in
two and three dimensions. Although the physics that gives rise to the
massless Dirac fermions in each of the above-mentioned materials is
different, the low-energy properties are governed by the same Dirac
kinematics. The aim of this article is to review a selected cross-section
of this vast field by highlighting the generalities and contrasting the
specifics of several physical systems.
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1. DIRAC, WEYL, AND MAJORANA

I think it is a peculiarity of myself that I like to play about with equations, just looking for beautiful

mathematical relations which maybe don’t have any physical meaning at all. Sometimes they do.

- Paul A.M. Dirac (1902–1984)

Published in 1928by PaulDirac (1), the eponymous equation is among the finest achievements
of human intellect. The equation, now taught in virtually every physics department around the
world, has brought together Einstein’s special theory of relativity and quantummechanics. It led to
thepredictionof antimatter, namely thepositron as the electron’s antipartner. It casted the spin-1/2
nature of the electron in a new light and is now a key building block of the Standard Model of
particle physics. For a free particle, it can be written as

iZ
∂
∂t
c ¼�ca × pþ bmc2

�
c, 1:

where themomentumoperatorp ¼ �iZ= ¼ ðpx, py, pzÞ,m is the mass of the particle, c is the speed
of light in vacuum, and c is a four-component object, a spinor. There are many equivalent ways to
write theDirac 434matrices; utilizing the outer product (2) of the Paulimatrices,1 one suchway is
a ¼ ðt3 Äs1, t3 Äs2, t3 Äs3Þ and b ¼ �t1 Ä 1. The equation was originally intended for the
electron, which is, of course, a massive, spin-1/2, charged particle, i.e., a Dirac fermion.

There is a certain degree of simplification occurring in this equation in the special case of
massless particles. All three a matrices are block diagonal, whereas the term proportional to the
mass is block off-diagonal. Therefore, if we consider massless particles, the right-hand side of the
Dirac equation no longer couples the upper two components ofc (let’s call them xþ) and the lower
two components (x�). Thus, with m ¼ 0, it can be written in a simpler form:

iZ
∂
∂t
x6 ¼ 6cs × px6. 2:

This is the Weyl equation (3) and x’s are referred to as Weyl fermions.
Both of these equations involve real and complex numbers. Majorana noticed (4) that it is

possible to write the Dirac equation—including the mass term—entirely in terms of real numbers
(2). This can be accomplished by choosing the amatrices to be purely real and the bmatrix to be
purely imaginary because then both the right-hand side and the left-hand side of theDirac equation
are purely imaginary. For example, a ¼ ð�t1 Äs1, t3 Ä 1, � t1 Äs3Þ, and b ¼ t1 Äs2 does the
job. Once the equation is purely real, its solutions can also be chosen to be purely real. In quantum
field theory, a real field describes a particle that is its own antiparticle.

This review is about how such equations provide an accurate description of some two- (2D) and
three-dimensional (3D) nonrelativistic systems, where Dirac or Weyl fermions emerge as low-
energy excitations. This review also describes how these excitations behave when subjected to
external fields, and how to relate the perturbing potentials (e.g., scalar, vector, mass, etc.) that
appear in the effective Dirac equation either to externally applied fields produced in a laboratory
or to defects and impurity potentials. A few consequences of many-body interactions are also
reviewed. We do not discuss any of the fascinating aspects of Majorana fermions in condensed
matter; this topic has already been covered in Reference 5 and references therein. The main topics

1As usual, t1 ¼ s1 ¼
�
0 1
1 0

�
, t2 ¼ s2 ¼

�
0 �i
i 0

�
, and t3 ¼ s3 ¼

�
1 0
0 �1

�
.
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of this paper form a vast area of physics, andwe ask the reader to keep inmind that it is impossible
to do it justice within the allotted space.

2. WHEN TO EXPECT DIRAC POINTS IN CONDENSEDMATTER ANDWHY

In a nonrelativistic condensed matter setting, the time evolution of any many-body state jCæ is
governed by the Schrödinger equation:

iZ
∂
∂t
jCæ ¼ HjCæ, 3:

where H is the Hamiltonian operator. This Hamiltonian contains the kinetic energy of the
electrons and ions, as well as any interaction energy among them. Our aim is to illustrate how and
when we may expect the relativistic-like Dirac dispersion to arise fromH in a cold nonrelativistic
solid state. We do so first by pure symmetry considerations and then in a brief survey of several
physical systems that realize Dirac-like physics. We assume that the heavy ions have crystallized
and ignore their motion to the first approximation. As such, the role of heavy ions is solely to
provide a static periodic potential that scatters the electron Schrödinger waves and, if the spin-orbit
coupling is also taken into account, the electron spins.Given that,H→H0 þHint,whereH0 includes
all the one-body effects and Hint includes all the many-body electron-electron interaction effects.

According to the Bloch theorem, the energy spectrumEnðkÞ and the eigenstates jfn,kæ ofH0 can
be described by a discrete band index, n, as well as by a continuousD-dimensional vector, k, the
crystalline momentum, which is defined within the first Brillouin zone. Consider now two distinct
but adjacent energy bands,EnþðkÞ andEn�ðkÞ, and assume that for some range of k the two bands
approach each other, i.e., the energy difference jEnþðkÞ � En�ðkÞj is much smaller than the
separation from any one of the rest of the energy bands. One way to derive the effective Ham-
iltonian for the two bands is to start with a pair of (orthonormal) variational Bloch states, jukæ and
jvkæ, consistent with, and adapted to, the symmetries ofH0. Given that, the effective Hamiltonian
takes the form

Heff ¼
X
k

c†
kHðkÞck, 4:

where the first component of the creation operator c†
k adds a particle (to the N-body state) in the

single-particle state jukæ and antisymmetrizes the resultingN þ 1-body state. Similarly, the second
component creates a particle in the state jvkæ and

HðkÞ ¼
 
ÆukjH0jukæ ÆukjH0jvkæ
ÆvkjH0jukæ ÆvkjH0jvkæ

!
[ f ðkÞ12 þ

X3
j¼1

gjðkÞsj, 5:

where12 is the unit matrix and sj are the Pauli matrices. The corresponding one-particle spectrum
is

E6¼ f ðkÞ6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
j¼1

g2j ðkÞ
vuut . 6:

Forageneralk point and in the absence of any other symmetries, gjðkÞ�0 for each j. It is clear from
the expression for E6 ðkÞ that the two bands touch only if gjðk0Þ ¼ 0 for each j at some k0.
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In 3D,we can vary each of the three components ofk and try to find simultaneous zeros of each
of the three components of gjðkÞ. To see that this may be possible without fine-tuning, note that in
general each one of the three equations gjðkÞ ¼ 0 describes a 2D surface in k space. The first two
surfacesmay generallymeet along lines, and such linesmay then intersect the third surface at points
without additional fine-tuning. If such points exist, they generally come in pairs and the dispersion
near each may be linearized. The effective Hamiltonian near one such point k0 takes the form

HðkÞ ¼ Ek0
þ Zv0 ×

�
k� k0

�
12 þ

X3
j¼1

Zvj ×
�
k� k0

�
sj. 7:

If v0 ¼ 0 and the three velocity vectors vj are mutually orthogonal, H(k) has the form of an
anisotropic Weyl Hamiltonian. Of course, far away from k0 both bands may disperse upward or
downward, in which case even if the Fermi level could be set to Eðk0Þ, there would be additional
Fermi surface(s).

In 2D, only two components of k can be freely varied, and therefore it is impossible to find
simultaneous zeros of three functions gjðkÞ without additional fine-tuning. Simply stated, in
general, three curves do not intersect at the same point. Therefore, in the absence of additional
symmetries that may constrain the number of independent gjðkÞ’s, the two levels avoid each other.

2.1. Dirac Points and Kramers Pairs

We have intentionally refrained from any discussion of the electron spin degeneracy, or time-
reversal symmetry, which were not assumed to be present in the above discussion. For a num-
ber of physical systems considered below, the product of the time reversal and the space inversion
leaves the crystalline Hamiltonian invariant. This symmetry implies that, at each k, every electronic
level is doubly degenerate because if fkðrÞ is an eigenstate, then so is its orthogonal Kramers-like
partner, is2f

�
kð�rÞ, where s2 acts on the spin part of the wave function. Therefore, the appropriate

variational quadruplet of mutually orthogonal states that describes two nearby bands can be
constructed from u1kðrÞj↑æþ u2kðrÞj↓æ; its partner,�u�

1k
ð�rÞj↓æþ u�

2k
ð�rÞj↑æ; and v1kðrÞj↑æþ

v2kðrÞj↓æ, with its partner �v�
1k
ð�rÞj↓æþ v�

2k
ð�rÞj↑æ. In this four-dimensional subspace

HðkÞ ¼ f ðkÞ14 þ
X5
j¼1

gjðkÞGj, 8:

where G1 ¼ t3 Ä 1, G2 ¼ t1 Ä 1, G3 ¼ t2 Äs3, G4 ¼ t2 Äs1, and G5 ¼ t2 Äs2; the first Pauli
matrix acts within the u,v space and the second within the Kramers doublets. Although the cor-

responding one-particle spectrum, E6¼ f ðkÞ6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP5

j¼1g
2
j ðkÞ

q
, exhibits a twofold degeneracy at any

k, an intersectionof twoKramerspairs requires finding simultaneous zerosof fivegjðkÞ’s.Clearly, the
bands avoid each other because, even in 3D, this condition cannot be satisfied without additional
symmetry. For example, if the spin-orbit interaction can be neglected and time-reversal symmetry is
preserved—on thebasis of our earlier assumptions, this also implies that space inversion is preserved—
then the spin SUð2Þ symmetry forces g3 ¼ g4 ¼ g5 ¼ 0. With such additional symmetry in 3D, the
accidental degeneracy may happen along 1D k-space curves and in 2D at nodal points.

2.2. Fermion Doubling: The Nielsen-Nynomiya Theorem and Ways Around It

The Nielsen-Nynomiya theorem states that it is impossible to construct a noninteracting lattice-
hopping model with a net imbalance in the number of (massless) Dirac fermions with positive
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and negative chirality, provided that certain weak restrictions apply. For example, the transla-
tionally invariant hopping amplitudes are assumed to decay sufficiently fast so that in momentum
space the Hamiltonian is continuous. The full proof (6) makes use of homotopy theory and is
beyond the scope of this review; pedagogical discussion of this “no-go” theorem can be found in
Reference 7. Here we illustrate the basic idea behind it through a simple example in two space
dimensions.

Consider a model with two bands that may touch, such as the one given in Equation 5, with
g3ðkÞ ¼ 0. Then, g1ðkÞ and g2ðkÞ are smooth periodic functions of kx and ky. If the first function
vanishes along some curve in the Brillouin zone, e.g., the red line inFigure 1, and the second vanishes
along another curve (the blue line in Figure 1), then the places where the two curves intersect
correspond tomasslessDirac fermions. Periodicity guarantees that any intersectionmust occur at an
evennumber of points, corresponding to an evennumber ofmassless fermions; just touching the two
curves does not produce a Dirac fermion because at least one component of the velocity vanishes.
Importantly, there is an equal number of partners with opposite chirality.

Oneway to remove half of themassless fermions is to bring back g3ðkÞ and force it to vanish at
only half of the intersections of the red and the blue curves in Figure 1. This gaps out the unwanted
Dirac points, leaving an odd number of gapless points. Haldane’s model for a quantumHall effect
without Landau levels is a condensed matter example in which such an effect occurs along the
phase boundaries separating quantum Hall phases and trivial insulating phases (8). HgTe
quantumwells are another example (9). In these quantumwells, such single-valley massless Dirac
fermions have been experimentally realized at the phase boundary that separates the quantum
spin Hall phase (10) and a trivial insulating phase. In the lattice regularization of the relativistic

P1

ky

kx

P2

g1(k) = 0
g2(k) = 0

Figure 1

Illustration of the fermion doubling in the 2D lattice Hamiltonian. The blue and red lines correspond to
the solutions of g1ðkÞ ¼ 0 and g2ðkÞ ¼ 0, respectively. Both g1ðkÞ and g2ðkÞ are smooth and must be
periodic (for illustration, only four Brillouin zones are shown). Note that there is always an even number of
intersections unless the two curves just touch. If we think of the two signs as points in the complex plane, we
see that the gapless points have opposite chirality. Imagine displacing, e.g., the blue curve, down, holding
the red curve fixed. The two points P1 and P2 then move toward each other and meet when the two curves
touch. In this case, one of the Dirac velocities vanishes, and we do not have a Dirac fermion at all. Therefore,
in any lattice formulation with finite range hopping, there is always an even number of (in general,
anisotropic) massless Dirac fermions with opposite chirality.
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high-energy theory, for which the space-time points are discrete and separated by at least a lattice
constant, a, a similar term corresponds to the so-called Wilson mass term: a four-momentum
dependent mass,

P3
j¼0D

�
1� cosðkjaÞ

�
, which vanishes at k ¼ 0 and v ¼ 0. Adding the Wilson

mass results in only one massless fermion, but it is not chiral. Moreover, in any condensed
matter setting, making the k-dependent mass term vanish at an isolated k point requires fine-
tuning, and therefore such gapless points generally correspond to phase boundaries as op-
posed to phases (8, 10).

Another way of avoiding the fermion doubling on the lattice has been well known in high-energy
theory (11, 12). Kaplan’s idea has been to start with massive fermions and to make a mass domain
wall along the nonphysical fourth spatial dimension, hereby labeled asw. Bymass domain wall, we
mean that for positive w the mass ism0 and for negative w it is�m0. For the w ¼ 0 lattice site, the
mass vanishes. To this domain-wallmass term, add a 4þ1DWilsonmass term. There is then a range
of values of m0 for which we have a single chiral 3þ1D massless Dirac, i.e., Weyl, particle on the
domain wall. Form0 < 2D, this can be understood as the two sides having a mass inversion at only
one k point, namely at the origin. This was proposed as a method to simulate—on a lattice—chiral
fermions in odd space-time dimensions: from 4þ1D to 3þ1D or from 2þ1D to 1þ1D.

Unlike the Wilson mass, its condensed matter reincarnation is frequency independent, al-
though it is of course momentum dependent. Massless domain-wall fermions have been discussed
by Volkov & Pankratov (13) at a 2D interface between (3D) SnTe and PbTe (see 14, 15). Such
massless Dirac fermions are similar to those appearing at the surface of strong 3D topological
insulators, although there is a difference: In the former case themass sign change occurs at an even
number of points in the Brillouin zone, whereas in the latter case themass sign change occurs at an
odd number of points (16, 17).

3. DIRAC PARTICLES SUBJECT TO EXTERNAL PERTURBATIONS

For relativistic Dirac fermions described by four-component spinors, external perturbations take
the form of space-time dependent 43 4 matrices, which we denote by Vðr, tÞ. In the Hamiltonian
formalism,

H ¼
Z
d3rc†ðrÞ

�
ca × pþmc2bþ Vðr, tÞ

�
cðrÞ. 9:

There are 16 linearly independent 434 matrices that can be chosen for Vðr, tÞ. In a relativistic
context, their physical meaning is determined by their properties under Lorentz transformations.

1. If the matrix structure of Vðr, tÞ is the same as b, it clearly acts as a space-time varying
mass; because it is a scalar under theLorentz transformation, it is also sometimes referred
to as a scalar potential (18).

2. AnyVðr, tÞ of the form�ea ×Aðr, tÞ acts as the spatial component of the electromagnetic
vector potential; it enters via minimal coupling.

3. If Vðr, tÞ ¼ eFðr, tÞ, then it corresponds to the time component of the electromagnetic
potential or, equivalently, the electrical potential.

4. Of the 11 remaining matrices, 6 are Lorentz tensor fields, 4 are pseudovectors, and 1 is
pseudoscalar (18).

Before proceeding, it is important to stress that the appropriate V—which describes how Dirac
fermions in a given condensed matter system react to, for example, an external physical magnetic
field—depends on the system itself. For example, it is not the same in graphene and d-wave
superconductors. This is elaborated on in later sections.
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Asmentioned earlier, formassless Dirac fermions the kinetic energy terma × p can be chosen to
be block diagonal. If the external perturbation Vðr, tÞ does not couple the two Dirac points, then
such perturbation is also block diagonal. In 2D, where p is a two-component vector, within each
232 block such perturbation can be identified as either a mass or a three-component electro-
magnetic potential, A ¼ ðF,Ax,AyÞ. A constant mass term opens a gap in the spectrum; this gap
may close at the boundaries or defects but persists in their absence. Simply put, for any energy
�m < E < m, the equationE2 ¼ c2p2 þm2 forcesp to be imaginary, and the corresponding states
can at best be evanescent. A constant electric potential, F, shifts the energy eigenvalues; the
constant space componentAx orAy shifts themomentum.The situation is similar in 3D, except the
232 matrix, which in 2D could be identified with the mass-like term, does not open a gap in 3D.
Rather, it also shifts the momentum, and therefore should be thought of as another space
component of the vector potential.

Such simple intuitive arguments (19) show why Dirac particles can be confined by a spatially
varying mass, but not by a spatially varying electric potential. This observation is behind the
famous Klein paradox (20). Instead of confining the massless Dirac particles, such an electric
potential causes a transfer of states toward the Dirac point, a situation loosely analogous to an
impurity electric potential creating in-gap states in semiconductors.

A uniform electric field, E ¼ �=F, accelerates charged massless Dirac particles and leads to
nonequilibrium phenomena; it produces charge electron-positron pairs out of the filled Dirac sea
via the Schwinger mechanism (21). For massless Dirac particles in 2D, such a rate has been
calculated to be ∼ ðeEÞ3=2 (21, 22) and argued to lead to the electrical current increasing as E3=2

above a finite field scale, below which it is E linear (23–25).
The effect of a static 1D plane-wave electrical potential,Fðx, yÞ ¼ F0cosðqxÞ, on 2D massless

Dirac fermions was considered in Reference 26. On the basis of our discussion in this review, we
intuitively expect that such potential locally shifts the Fermi energy away from theDirac point and
introduces electron-positron “stripe puddles.”The energy spectrum has a particle-hole symmetry:
For every eigenstate cEðx, yÞ with an energy E, there is an eigenstate s3cEðxþ p=q, yÞ with an
energy �E. For this result, we assumed that the kinetic energy term is cðpxs1 þ pys2Þ. The full
quantum mechanical solution of this problem, performed numerically using a large number of
plane-wave states, shows that, although the energy spectrumremains gapless, the spectralweight is
indeed shifted toward theDirac point. This is shown in Figure 2, wherewe compare the integrated
density of states, starting from E ¼ 0, in the presence and absence of the periodic potential.
Clearly there is an excess number of states at low energy. Interestingly, the lost states are recovered
at energies comparable with the cutoff, which is much larger than F0. Analogous buildup of the
low-energy density of states underpins the interpretation of the measured low-temperature
specific heat of type-II nodal d-wave superconductors in an external magnetic field, which is
discussed below.

A uniform magnetic field directed perpendicular to the 2D plane, B ¼ ∂Ay=∂x� ∂Ax=∂y,
quantizes the electron orbits. The resulting spectrum consists of discrete Landau levels at energies
En ¼ sgnðnÞ ffiffiffiffiffiffijnjp

Vc where n ¼ 0,61,62, . . . , Vc ¼
ffiffiffi
2

p
Zc=[B, and the magnetic length

[B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
Zc=eB

p
; this result is easily obtained by elementary methods (for example, see 27).

Therefore, unlike for a Schrödinger electron, the energy difference between the Landau levels of
a massless 2D Dirac electron decreases with increasing energy. Each Landau level is N-fold
degenerate, where N ¼ Area=ð2p[2BÞ; the degeneracy, being proportional to the sample area, is
macroscopically large. As shown in Figure 3, the uniform magnetic field causes redistribution of
spectral weight over the energy interval ð ffiffiffiffiffiffiffiffiffiffiffiffinþ 1

p � ffiffiffi
n

p ÞVc; the number of states that are moved to
theLandau levels equals the total number of states thatwould bepresent between theLandau levels
in the absence of the external B-field.
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The effects of a perpendicular magnetic field and an in-plane electric field have been studied in
the context of proving the absence of the relativistic correction to the quantum Hall effect in or-
dinary 2D electron gas (28). The eigenfunctions and eigenvalues can be determined analytically,
either directly (28), or, ifB > E, by first Lorentz boosting the space-time coordinates and theDirac
spinors into a frame in which the electric field effectively disappears and only the Lorentz-
contracted magnetic field enters (29) (we discussed this simpler problem above) and then inverse
Lorentz boosting the wave functions and eigenenergies.

Effects of nonuniform Dirac mass are quite fascinating, particularly when the mass profile is
topologically nontrivial and can lead to fractionalization of fermion’s quantum numbers. We
illustrate the effect for 1D Dirac particles, first published in 1976 by Jackiw & Rebbi (30). The
kinetic energy and the mass term together give HJR ¼ cs1pþ s3mðxÞ, where mðxÞ is fixed to
approach 6m0 asx→61, vanishing once somewhere in between.One suchkink configuration is,
for example,mðxÞ ¼ m0 tanhðx=jÞ. The spectrum ofHJR is particle-hole symmetric because for any
statecEðxÞwith energyE, there is a states2cEðxÞwith energy�E. Asweargued earlier, anymidgap
state with �m0 < E < m0 must be localized. Let us therefore seek states at E ¼ 0; they must
satisfy iZcs1c

0
0ðxÞ ¼ mðxÞs3c0ðxÞ. If we substitute c0ðxÞ ¼ s1x0ðxÞ, then we find Zcx0

0ðxÞ ¼
mðxÞs2x0ðxÞ. The solution now follows immediately: x0ðxÞ ¼ N exp

	
1
Zc

Z x

0
dx0m

�
x0
�
s2



x0ð0Þ.

Because any x0ð0Þ can be decomposed into a linear combination of the þ1 and�1 eigenvectors of
s2, we see that because the term in the integral is positive, x0 must be purely the �1 eigenvector,�
1
�i

�
, otherwise the solution is not normalizable. There is therefore a single isolated energy level at

E ¼ 0. For a general single-kink mass profile, there may be other in-gap states, but they must come
in pairs at nonzero energies 6E.

E
ħcq

E

0

dє N(є)
x

Φ

0.5 1.0 1.5 2.0

∫

Figure 2

Integrated single-particle density of states for a massless Dirac fermion in 2D subject to a static 1D periodic
electric potential F0cosðqxÞ (blue dots), where F0 ¼ Zcq; the solid red line corresponds to a free massless
Dirac particle. The bottom right image shows the energy-momentum dispersion of a free Dirac particle, i.e.,
no external perturbation. The integrated density of states for this situation is shown in the red curve. The
pale orange area between the curves is there to emphasize the difference between the blue curve (dots) and the
red curve; this difference does not vanish as E increases. Note the buildup of the spectral weight, which is
recovered only near the cutoff energy and is much larger than the scale shown.
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The remarkable consequence of this isolation is that if theE ¼ 0midgap state is empty while all
the negative energy states are occupied with charge e fermions, then the resulting state carries an
excess localized charge of �e=2 relative to the ground state with uniform mass without a kink.
Similarly, if it is occupied, the excess charge is e=2. This follows from the fact that a symmetric
configuration of a widely separated kink and an antikink leads to a pair of essentially zero-energy
states. In effect, one level has been drawn from the conduction band and one from the valence
band, each of which are missing one state. If the zero-energy doublet is unoccupied, then the total
charge of this state differs from the constant mass state by �e. Because the two localized states at
the kink and the antikink are perfectly symmetric, we must find that the total amount of charge in
the vicinity of each kink is the same, namely, �e=2 more than in the undistorted vacuum. If the
vacuum is neutral, then each kink carries a half-integral charge. Given that in any physical setup
with periodic boundary conditions every kink must have a corresponding antikink, the quantum
number fractionalization happens only locally. Globally, the charge changes by integral units.
Interestingly, if the particle-hole symmetry is weakly broken by adding to HJR a small constant
term proportional to s2, then the localized states carry an irrational charge (31). Such ideas have
fascinating applications to the physics of conducting polymers (32, 33), and there is an extensive
literature on the subject reviewed in Reference 34.

Inhigherdimensions, the topologicallynontrivial configurations also lead to zeromodes (30, 35).
Just as in 1D, such results are insensitive to the details of themass configuration, and only the overall
topologymatters (36). As an illustration of an effect a nontopological configuration of themass can
have on a 2D massless Dirac fermion, we consider a 1D plane wave, mðx, yÞ ¼ m0cosðqxÞ. The

–2 –1 1 20–    5 –    3 –    2 2 3 5

E/Ωc

Landau levels

Figure 3

Single-particle density of states (orange) for a 2D chargedmasslessDirac fermion subject to a uniformmagnetic
field. The Landau levels have been broadened for easier visualization. The green line is the density of
states for the freeDiracparticle. Blue lines are the integrateddensity of states for theDirac particle in an external
magnetic field; the red line represents an unperturbed Dirac particle. The (step-like) integrated density of

states shows that the spectralweight is redistributedover the energywindowgivenby
� ffiffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p � ffiffiffi

n
p �

Vc,where

Vc [
ffiffiffi
2

p
Zc=[B, and [B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

Zc=eB
p

is themagnetic length. The pale blue and orange areas are there to emphasize
the difference in the integrated density of states for the free Dirac particle and for the Dirac particle in the
magnetic field.
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resulting Hamiltonian, cðpxs1 þ pys2Þ þmðx, yÞs3, has a particle-hole symmetry, in that for every
eigenfunction cEðx, yÞ with energy E, there is an eigenfunction s3cEðxþ p=q, yÞ with energy �E.
The momentum along the y-axis, ky, is conserved as a result of the translational symmetry in the
y-direction. The momentum in the x-direction, kx, is conserved only up to an integer multiple of the
reciprocal lattice vector. At kx ¼ ky ¼ 0, we can construct the E ¼ 0 state explicitly, just as we
did for the Jackiw-Rebbi problem, but now both choices for x0 lead to Bloch normalizable wave
functions. There is therefore a doublet of states at k ¼ 0 and E ¼ 0. Away from k ¼ 0, there is
a new anisotropic Dirac cone, with renormalized velocities. Interestingly, at k ¼ 0, the spectrum
consists only of doublets at any energy because for every cEðx, yÞ there is s2c

�
Eðxþ p=q, yÞ, which

is also found at k ¼ 0, has the same energy, and is orthogonal to cEðx, yÞ. The overall effect on
the integrated density of states is shown in Figure 4 form0 ¼ Zcq. The minimumof the second band
is found at E� 1:1Zcq and is responsible for the change of slope. Overall, there is a suppression of
the number of states at low energy—an opposite effect compared with the electric potential case.
Similarly, the lost states are recovered only at energies comparable with the cutoff, which is much
larger than m0.

To conclude this section, we briefly mention the chiral anomaly associated with the massless
Dirac equation (37, 38). The anomalies in quantum field theory are a rich subject (39) and play
a very important role in elementary particle physics (40). In order to illustrate the effect, note that
themassless DiracHamiltonian in 3D and in the presence of an arbitrary external electromagnetic

field,
Z ​

d3rc†ðrÞ
�
ca ×

�
p� e

c
Aðr, tÞ

�
þ eFðr, tÞ

�
cðrÞ, formally commutes with both the total

particle number operator—or equivalently, the total charge operator—
Z ​

d3rc†ðrÞcðrÞ and the

total chiral charge operator
Z ​

d3rc†ðrÞt3 Ä 1cðrÞ. Here we use the representation for a used

E

0
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0.5 1.0 1.5 2.0

m

x

∫

Figure 4

Massless Dirac fermion in 2D, which is subject to the 1D periodic massmðx, yÞ ¼ m0cosðqxÞ, withm0 ¼ Zcq.
The top left image shows the energy-momentum dispersion of a free Dirac particle, i.e., no external
perturbation. The integrated density of states for this situation is shown in the red curve. The pale blue and
orange areas are there to emphasize the difference in the integrated density of states for the free Dirac particle
and for (bottomright image) theDiracparticle perturbedbyvaryingmass potential.Note the suppressionof the
spectral weight, which is recovered only near the cutoff energy and is much larger than the scale shown.
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in Equation 1. The equation of motion for an operator OðtÞ in the Heisenberg picture is
dOðtÞ=dt ¼ �OðtÞ,HHðtÞ

�
=iZ, where HHðtÞ is the Dirac Hamiltonian in the Heisenberg repre-

sentation. Because the commutator vanishes for both the total charge and the total chiral charge,
they should both be constants of motion. However, closer inspection reveals that in explicit
calculations (37, 38, 40), an ultraviolet regularization must be adopted in order to obtain finite
results. What’s more, if the regularization is chosen in such a way as to maintain the conservation
of charge—a physically desirable consequence of a useful theory—then for some configurations of
electromagnetic fields, the chiral charge is not conserved and changes in time. As an illustration,
one such configuration consists of a uniform magnetic field along the z-direction and a parallel
weak electric field (40). This can be described by F ¼ 0 and AðtÞ ¼

�
�By, 0,AzðtÞ

�
, where the

electric field is given by� 1
c
d
dt

AzðtÞ; the time variation ofAzðtÞ is therefore slow. For a systemwith

size L3 and periodic boundary conditions, the momentum is quantized in units of 2p=L and the
separation between the adjacent energy levels is nonzero. If the rate of change of AzðtÞ is much
smaller than the separation of the energy levels, then we can use the adiabatic theorem, solve for
the eigenenergies using the instantaneous AzðtÞ, and then monitor the energy spectrum in time.
Such an energy spectrum is easily constructed once we notice that we are effectively dealing with
6s × ðcp� eAÞ. These are just two copies—withopposite signs of theHamiltonian—of the Landau
level problem of a massive Dirac particle in 2D, with the mass set by cZkz � eAzðtÞ. The spectrum

for each is given by 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
cZkz � eAzðtÞ

�2
þ nV2

c

r
, where n ¼ 1, 2, 3, . . . , together with the two

anomalous levels, one for each chirality, at 6
�
cZkz � eAzðtÞ

�
. If, at t ¼ 0, we start with themany-

body state, in which all negative energy single-particle states are occupied and all positive energy
ones are empty, and then adiabatically increase Az from 0 to hc=eL, then, while their energy is
changing, none of the anomalous single-particle states change because their phase is locked by the
periodic boundary condition. Once Az reaches hc=eL, we can perform the gauge transformation
that removes Az from the Hamiltonian and that is consistent with the periodic boundary con-
ditions, and find that we end up with the many-body state that appears to differ from the initial
many-body state by the occupation of one additional negative chirality anomalous Landau level at
energy hc=L and one fewer positive chirality Landau level at energy�hc=L. Note that the infinitely
deep negative-energy Dirac sea plays a key role in this argument. Given that the degeneracy of each
Landau level is L2=2p[2B, we change the difference in the number of the positive and negative
chirality states,dNþ � dN�, by�2

�
L2=2p[2B

�
ðeL=hcÞdAz.RelatingdAz to the electric field,we find

DNþ � DN� ¼ 1
2p2

e2

Z2c

Z
dt
Z
d3r E ×B. 10:

This expression for the nonconservation of the total chiral charge is a direct consequence of the
Adler-Bell-Jackiw anomaly.

4. MANY-BODY INTERACTIONS

In all condensedmatter applications, the velocity of themassless Dirac particles, vF, is much smaller
than the speed of light in vacuum, c. This difference is important when many-body interactions are
considered, and therefore, going forward, we intentionally distinguish between vF and c.

In a 2D semimetal such as graphene, we can imagine integrating out all high-energy electronic
modes outside of a finite energy interval around the Dirac point. The Fermi level is assumed to be
close to the energy of the Dirac point. Because none of the gapless modes have been integrated out,
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there can be no nonanalytic terms generated at long wavelengths, and, in particular, no screening
of the 1=r electron-electron interaction in which a 2D Fourier transform is, of course, nonanalytic
in momentum. Indeed, the long-distance tail of the bare electron-electron interactions falls off as
e2=ð4pɛdrÞ, where ɛd is the dielectric constant of the 3D medium in which the graphene sheet has
been embedded. At long distances, ɛd is independent of the screening within the graphene sheet
coming from the core carbon electrons. This can be shown by solving an elementary electrostatic
problem of a point charge inserted in the middle of an infinite dielectric slab of finite thickness
placed in a 3D medium with a dielectric constant ɛd (41–43). At distances much greater than the
thickness of the slab, the Coulomb field within the slab is entirely determined by ɛd. A finite on-site
Hubbard-like interaction is usually invoked to model the very short–distance repulsion.

What then are the consequences of such electron-electron interactions if the Dirac point
coincides with the Fermi level? The importance of each of the terms can be determined by di-
mensional analysis: In 2D, the Dirac field scales as an inverse length, and therefore the short-
distance (contact) coupling g, multiplying four Dirac fields, has dimensions of length. In any
perturbative series expansion, each power of g must be accompanied by a power of an inverse
length tomaintain the correct dimensions of a physical quantity that is being computed. Because it
is critical, the only length scales in the problem are associated with finite temperature, i.e., the
thermal length ZvF=kBT, or the wavelength (frequency) of the external perturbation. As such
length scales become very long, each term in the perturbative series in g becomes small, and we
expect the series to converge. In the parlance of critical phenomena, the short-range interaction is
perturbatively irrelevant at the noninteracting (Gaussian) fixed point (for example, see 44).
Therefore, although there can be finite modifications of the Fermi velocity or of the overlap of the
true (dressed) quasiparticlewith the free electronwave function, the asymptotic infrared properties
of the model must be identical to the noninteracting Dirac problem (45, 46).

Using a similar analysis for the 1=r tail of the nonretarded Coulomb interaction, one finds that
e2=ðɛdZvFÞ is dimensionless. Despite the superficial similarity with the 3þ1D quantum electro-
dynamics (QED) fine structure constant e2=Zc, the physics here is different. First of all, the charge,
being a coefficient of a nonanalytic term in the Hamiltonian, does not renormalize when high-
energy modes are progressively integrated out (47, 48). Any renormalization group flow of the
dimensionless coupling e2=ðɛdZvFÞ must therefore originate in the flow of vF, which is no longer
fixed by the Lorentz invariance because such symmetry is violated by the instantaneous Coulomb
interaction. Detailed perturbative calculations reveal (49) that vF grows to infinity logarithmically
at long distances, thereby shrinking e2=ðɛdZvFÞ. Physically, however, vF cannot exceed the speed of
light, c. Instead, once the retarded formof the electron-electron interaction is properly included via
an exchange of a 3D photon, the flow of vF saturates at c. The resulting theory is quite fascinating,
in that the 2Dmassless Dirac fermions and the 3D photons propagate with the speed of light and,
unlike in 3þ1D QED, the coupling e2=Zc remains finite in the infrared (49). Unfortunately,
because the flow of vF is only logarithmic, and because there is initially a large disparity in the
values of vF and c, such a fixed point is practically unobservable. Instead, in practice, the physics is
at best given by the crossover regime in which vF increases but never to values comparable with c.

The 1=r Coulomb interaction–induced enhancement of the Fermi velocity is expected to lead
to a suppression of the low-temperature specific heat below its noninteracting value (50), as well
as other thermodynamic quantities (51). Interestingly, the suppression of the single-particle density
of states does not lead to a suppression of the a.c. conductivity; in the noninteracting limit, the
conductivity takes the (frequency-independent) value s0 ¼ Ne2=16Z, whereN is the number of the
two-component “flavors.” Again, the reason is the enhancement of the velocity: Loosely speaking,
although there are fewer excitations at low energy, those that are left have a higher velocity and
therefore carry a larger electrical current. The expression for the low frequency a.c. conductivity (52)
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has the form sðvÞ ¼ s0

 
1þ Ce2

.�
ZvF þ e2

4
log

vFL
v

�!
, where L is a large wave-number cutoff.

In the limitv→0, the correction to the noninteracting value is seen to vanish (51–53). The value of
the (positive) constant C in this expression has been a subject of debate, as it seems to depend on
the details of the UV regularization procedure (52–57). Recently, the calculation of C within
a honeycomb tight-binding model (58), which provides a physical regularization of the short-
distance physics, foundC ¼ 11=6� p=2� 0:26; this value was also obtained within a continuum
Dirac formulation using dimensional regularization (55) by working in 2� ɛ space dimensions
and eventually setting ɛ ¼ 0.

Increasing the strength of the electron-electron interactions while holding the kinetic energy
fixed is expected to cause a quantumphase transition into an insulating state with a spontaneously
generatedmass for theDirac fermions (59, 60). Given that, aswe just argued,weak interactions are
irrelevant at long distances, such transition must happen at strong coupling, making it hard to
control within a purely fermionic theory. The full phase diagram also depends on the details of the
interaction and is difficult to determine reliably using analyticalmethods.However, if one assumes
that there is a direct continuous quantum phase transition between the semimetallic phase at
a weak coupling as well as a known broken-symmetry strong coupling phase (e.g., an antifer-
romagnetic insulator), then the critical theory can be argued to take the form of massless Dirac
fermions Yukawa-like coupled to the self-interacting order parameter bosonic field (61). The
advantage of this formulation is that the upper critical (spatial) dimension is three, and therefore
such theory can be studied in 3� ɛ space dimensions within a controlled ɛ-expansion, eventually
extrapolating to two space dimensions by setting ɛ ¼ 1. The transition thus found is indeed
continuous and governed by a fixed point at finite Yukawa and quartic bosonic couplings. For the
leading order in ɛ, the critical exponents have been determined (61); for the semimetal to the
antiferromagnetic insulator quantum phase transition, the correlation length exponent n ¼ 0:882
and the bosonic anomalous dimension is hb ¼ 0:8. Given that the dynamical critical exponent has
been found to be z ¼ 1, these values imply that the order parameter vanishes at the transition as
ju� ucjb with the exponent b ¼ 0:794; here, uc is a critical interaction. The 1=r Coulomb in-
teraction has been found to be irrelevant at this fixed point.

Given that at half-filling the theory does not suffer from the fermion sign problem, a very
promising theoretical approach in this regard is numerical. The Hubbard model on the honey-
comb lattice, with the nearest neighbor hopping energy t and the repulsive on-site interaction U,
has been studied using quantum Monte Carlo methods (62–65). Recent simulations on clusters
consisting of asmany as 2,592 sites show strong indications of a direct continuous phase transition
at U=t� 3:8696 0:013 between the (Dirac) semimetal and the antiferromagnetic insulator (65),
disfavoring earlier claims (64) on the existence of a spin liquid phase for intermediate values
of couplings 3:4.U=t. 4:3 using smaller cluster sizes of up to 648 sites. The critical exponent
b ¼ 0:86 0:04 extracted in Reference 65 is in excellent agreement with the value obtained using
the analytic Yukawa-like theory (61). In subsequent numerical simulations, the antiferromagnetic
order parameter has been pinned by introducing a local symmetry breaking field (66). The
resulting induced local-order parameterwas found far from the pinning center andmeasured. This
procedure resulted in an improved resolution, confirming a continuous quantum phase transition
between the semimetallic and the insulating antiferromagnetic states. The single-particle gap was
found to track the staggered magnetization, whereas the critical exponents obtained from finite
size scaling agree with those obtained from the leading order in ɛ-expansion (61).

The 1=r Coulomb interaction can also be simulated efficiently without the fermion sign
problembymeans of a hybridMonteCarlo algorithm (67) using either staggered fermions (67–69)
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or, preferentially, a honeycomb tight-binding lattice (70–74). The critical strength of the in-
teraction necessary to achieve a quantum phase transition into an insulating state seems to depend
on the details of the short-distance part of the repulsion. Moreover, the system sizes studied nu-
merically (74) may be too small to explore the unscreened long-distance tail of the 1=r interactions
and to therefore unambiguously establish theoretically whether suspended monolayer graphene
should be insulating. It is worth pointing out here that experiments on the suspended high-purity
monolayer graphene samples showno signof spontaneous symmetrybreaking andwould thus place
it on the semimetallic side of the phase diagram.

5. APPLICATIONS TO VARIOUS PHYSICAL SYSTEMS

5.1. Graphene

It is interesting to consider the massless Dirac fermions in graphene (75) within the perspective
outlinedabove. Pure symmetry arguments are apowerful tool in this regard; our goal is to carry out
such arguments in full detail in this section in order to illustrate their utility. Assuming a perfectly
flat, sp2-hybridized carbon sheet, the relevant atomic orbitals forming both the conduction and
the valence bands are the carbon 2pz orbitals (27, 75). A good variational ansatz for u1kðrÞ isP

Re
ik×Rfpz

�
r� R� 1

2
d

�
, where fpz ðrÞ is a Löwdin orbital2 with the same symmetry as the

atomic pz orbital (76). The exact form of the Löwdin orbital is unimportant for us in this review;
its symmetry is what matters. In an idealized situation, without externally imposed strains or
any other lattice distortions, the set of vectors R could be chosen to span the triangular sublattice

of the graphene honeycomb lattice: mR1þnR2, with R1¼
ffiffiffi
3

p
x̂, R2¼ 1

2
R1 þ 3

2
aŷ and m and n

being integers. The basis vector d ¼
ffiffiffi
3

p

2
ax̂þ 1

2
aŷ. Note that this Bloch state is manifestly periodic

in k. Similarly, we can choose v1kðrÞ as
P

Re
ik×Rfpz

�
r� Rþ 1

2
d

�
. This physically motivated

choice, along with u2kðrÞ ¼ v2kðrÞ ¼ 0, defines the four basis states used to construct Equation 8.
A flat graphene sheet is invariant under the mirror reflection around the plane of the lattice,

which further constrains HðkÞ. Such an operation reverses the in-plane components of the electron
spin—an axial vector—and leaves the perpendicular component unchanged, thus acting on the
spin state as ap-rotation around the axis perpendicular to the graphene sheet. Additionally, the pz
orbitals are odd under the mirror reflection. Therefore, the effective Hamiltonian in Equation 8 is
constrained to satisfy 1Äs3 HðkÞ1Äs3 ¼ HðkÞ for any in-plane k. This forces g4 ¼ g5 ¼ 0 in
Equation 8. Because the remaining three gj’s are, in general, nonzero, we see that with only two
components of kwe cannot find simultaneous zeros of three independent functions. Therefore, in
the absence of any other symmetry, we should expect level repulsion.

We can find the location of the Dirac points by taking into account additional symmetries. The
space inversion symmetry, e.g., around the center of the honeycomb plaquette, requires
t1 Ä 1Hð�kÞ t1 Ä 1 ¼ HðkÞ. This forces g1ðkÞ and g3ðkÞ to be odd under k→ �k and g2ðkÞ to be
even. If the lattice also has a threefold symmetry axis perpendicular to the sheet and passing
through the plaquette center, then g2 and g3 must vanish at the two inequivalent points

2The Löwdin orbitals, as used by Slater & Koster (76), are linear combinations of the atomic orbitals that are orthogonal to
each other on different sites.
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k ¼ 6K ¼ 6
4p

3
ffiffiffi
3

p
a
x̂, as well as, of course, all points equivalent to 6K by periodicity in the mo-

mentum space. This follows from our formalism when we note that the effect of the
2p
3

rotation,

induced on our wave functions by the operator e�i2p3Z L̂z e�ip3 s3, affects our four basis states as
eift3Äs3e�ip3 1Äs3 , where f ¼ k0×R1 and k0 are the result of rotating k 120� counterclockwise. The
identity eift3 Äs3Hðk0Þe�ift3 Äs3 ¼ HðkÞ evaluated at k ¼6K immediately leads to g2ð6KÞ ¼
g3ð6KÞ ¼ 0. Interestingly, g1 is finite at6K with vanishing derivatives, although if we also as-
sumed spin SUð2Þ symmetry, which allows us to flip the spins using t1Äs1, then g1 would vanish
aswell. In such a case, irrespective of themicroscopic details of the fullHamiltonian, the twobands
must touch at 6K.

The Dirac particles of graphene therefore live at 6K. Strictly speaking, they are not quite
massless because of nonzero spin-orbit coupling, which makes g1ðkÞ finite. Such a term has been
introduced by Kane &Mele (77). However, this term is very small in planar graphene structures
because the carbon atom is light and because graphene has a reflection symmetry around the
vertical plane that passes through the nearest neighbor bond (78, 79). There is therefore only
a negligibly small Dirac mass at K of order 10�3 meV.

Expanding Hð6KþdkÞ to first order in dk we find

Heff ¼ 6mQSHt3 Ä 16 ZvFdkkt1 Ä 1þ ZvFdk’t2Ä s3, 11:

where the threefold rotational symmetry guarantees that the dkk and dk’ are two mutually or-
thogonal projections of dk. In the coordinate system we have adopted, the mirror reflection

symmetry around the x� z plane forces dkk ¼ 1
2
dkx þ

ffiffiffi
3

p

2
dky and dk’ ¼ �

ffiffiffi
3

p

2
dkx þ 1

2
dky. At

energy scales much smaller than mQSH , this Hamiltonian describes the quantum spin Hall state:
a gapped phase with counter-propagating edge states (77). As a result of the smallness ofmQSH in
graphene, for all practical purposeswe can set it to zero.Theparticle-hole asymmetry,which arises from
thedk2 dependenceofg1, is alsosmall in that it guarantees that theFermi level can inprinciplebe tunedto
the Dirac point without the appearance of additional Fermi surfaces. The value for the Fermi velocity,
vF � 106m=s, can be obtained from approximate first-principle calculations or from experiments.

5.1.1. Coupling to external fields. Perhaps the greatest utility of theDirac-like Equation 11 is its abil-
ityto capture the kinematics of the low-energy excitations and their dynamics when subjected to ex-
ternal, or internal, fields. The former are of course the experimental tools of choice in studying the system.

In our theoretical description, we are tempted tominimally couple the external vector potential
AðrÞ, which is associated with the perpendicular magnetic field BðrÞ ¼ =3AðrÞ, and the scalar
potential associatedwith either anapplied electric field or the field inducedby impurities. Although
some caremust be applied because we areworkingwith a Bloch basis whose periodic part changes
with k, to the order in small dk that the Equation 11 has been written, we are allowed to perform
suchminimal substitutions (80, 81). Therefore, as long as the fields are sufficiently weakly varying
in space or, for the uniformmagnetic field, as long as the magnetic length

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Zc=eB

p
is much longer

than the lattice spacing, we have

Heff ¼6vF

�
pk �

e
c
AkðrÞ

�
t1 Ä 1þ vF

�
p’ � e

c
A’ðrÞ

�
t2 Ä s3 þUðrÞ14 þHZ, 12:

where the Zeeman term is HZ ¼ 1
2
gmBðBxt1 Ä s1 þ Byt1 Ä s2 þ Bz1Ä s3Þ. The above Hamil-

tonian governs the behavior of graphene in an external magnetic field. The resulting Landau level

97www.annualreviews.org � Dirac Fermions



structure has been directly observed in scanning tunneling spectroscopy (82–84). The Hamil-
tonian’s utility in understanding the experiments on graphene heterojunctions has been reviewed
inReference 20. The Schwingermechanism, discussed in Section 3, has been experimentally tested
in Reference 85.Heff can also accommodate a time dependence of external potentials, important
for interpreting the optical (86) or infrared (87) spectroscopy measurements of graphene. The
enhancement of the Fermi velocity, which, as discussed in Section 4, is a signature of electron-
electron interactions, have been reported inReference 88,with no signs of gap opening at theDirac
point. The effects of strain, as an effective potential inHeff , are discussed in References 89, 90, and
91. By and large, realistic impurity potentials in graphene cannot be treated in linear response
theory (81, 92). A review of transport effects can be found in Reference 93.

5.2. Surface States of a 3D Topological Insulator

Anexampleofa3Dtopological insulator (16, 17, 94, 95) isBi2Se3 (96–98). Its excitation spectrum
is gapped in the 3D bulk, but its 2D surfaces accommodate gapless excitations that carry electrical
charge and conduct electricity, and the dispersion of the surface excitations obeys massless Dirac
equations. Unfortunately, presently the actual material suffers from imperfections causing finite
bulk conductivity, a complication that we largely overlook in this review.

The electronic configuration of Bi is 6s26p3 and of Se is 4s24p4. Because the p-shells of Se lie
∼2:5 eV below Bi (99), a naive valence count would suggest that the two Bi atoms donate six of
their valence p-electrons to fill the p-shell of Se. We would therefore incorrectly conclude that the
system is a simple, or trivial, insulator with a fully filled Se-like p-band and empty Bi-like con-
duction band, perhaps with an appreciable band gap. Interestingly, the strong spin-orbit coupling
causes aband inversion (96, 97) near theG-point (the origin of theBrillouin zone),where theBi-like
states lie below the Se-like states. Because the rhombohedral crystal structure ofBi2Se3 has a center
of inversion, the exact Bloch eigenstates must be either even or odd under space inversion at the
crystal momenta that map onto themselves under time reversal, up to an integer multiple of
a reciprocal lattice vector, i.e., k ¼ �kþG. Clearly, G is such a point. As shown by Fu & Kane
(17), a sufficient condition for a band insulator with a center of inversion to be a 3D topological
insulator is if such band inversion happens at an odd number of time-reversal invariant points.
More precisely, the system is a 3D topological insulator if the product of the parity eigenvalues of
the occupied bands at the time-reversal invariant k points is odd, with the understanding that we
count the parity eigenvalue of only one of the members of the Kramers pair. This is indeed what
happens within a more realistic band structure calculation (96, 97) of Bi2Se3. At the G point—but
not at the other time-reversal invariant k points—the Bi pz-like states are spin-orbit coupled to
the more energetic px 6 ipy-like Bi states (a parity-even combination) and get pushed below the
parity-odd combination of the Se pz-like and px 6 ipy-like states.

Equation 8 describes the dispersion near the G point inside the bulk of the 3D system. This can
be seen explicitly if we choose u1kðrÞ to be predominantly made of the parity-even combination of
Bi pz -like orbitals and�u2kðrÞof theBi px þ ipy-like orbitals; i.e., the states that aremixed because
of the spin-orbit interaction. Similarly, for the proximate band, we have v1kðrÞ made pre-
dominantly of the parity-odd combination of the Se pz-like orbitals, with �v2kðrÞ made of
Se px þ ipy-like orbitals (97). Up to the quadratic order in deviation from the G point,
g1ðkÞ ¼ M0 þM1k2z þM2

�
k2x þ k2y

�
, with M0 < 0 and M1,2 > 0. No k-odd terms are allowed

here because the states are of definite parity. Note that because M0 is negative, in the immediate
vicinity of the G point the Bi-like states lie below the Se-like states. At higher k, we revert to
the expected band ordering. For the other terms in Equation 8, g2ðkÞ ¼ 0 to linear order in
k because of additional threefold rotational symmetry; g2ðkÞ is nonzero when we include terms
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up to order k3 because the k-cubic invariant exists. The remaining terms must be k odd, because
they couple opposite parity states: to linear order in small k, g3ðkÞ ¼ B0kz, g4ðkÞ ¼ �A0kx, and
g5ðkÞ ¼ �A0ky, whereA0 &B0 > 0. The particle-hole symmetry breaking term f ðkÞ is also finite,
but given that its presence leads to the qualitatively same conclusions, it is ignored (97).

Given thatg1ðkÞ is finite atG, which in this approximation is the only place where g3, g4, and g5
vanish, the spectrum in the bulk is, of course, gapped. However, the surface is gapless. To see this
explicitly (96, 97), consider a semi-infinite interface in the x� y plane, set kx ¼ ky ¼ 0, and
construct evanescent zero-energy states along the z-direction. There are always two such nor-
malizable states, which can be used as a basis for the low-energy subspace. The effective surface
Hamiltonian for small kx and ky can be obtained by sandwiching the bulk Hamiltonian between
these two states. Formacroscopically thickmaterial, we can ignore the exponentially small overlap
between the surface states, andwe findHsurf ¼6A0ðkxsy � kysxÞ, where the top sign is for the top
surface z ¼ L, and the bottom sign is for the bottom surface z ¼ �L. A similar procedure along the
right (y ¼ L) and left (y ¼ �L) surfaces leads to Hsurf ¼6ðB0kzsx þ A0kxszÞ. The effective
Hamiltonians are simply related to each other by space inversion. In general,

Hsurf ¼ n̂0 ×
�
s � k0

�
, 13:

where n̂0 is obtained by rotating the normal to the surface n̂ by 180� around the z-axis, and
k0 ¼ ��A0kx,� A0ky,B0kz

�
. We thus arrive at an equation for massless, anisotropic, Dirac

particles.However, unlike in graphene,which has four“flavors,” the surface of the 3D topological
insulator can support only a single flavor.

5.2.1. Coupling to external fields, interactions, and disorder effects. The existence of a single
Dirac flavor on the surface of the 3D topological insulator has important consequences for ro-
bustness of the surface states toward impurity disorder. The states at k and at �k have opposite
spin, leading to the suppression of backscattering (100) and absence of localization for weak
(electrical-potential) disorder (101–103). Theoretically, such a (noninteracting) system is always
expected to display electrical conductivity that increases toward infinity as a logarithm of the
system size. Recall that in graphene with a pair of Dirac cones atK and�K, such backscattering is
always present and thereforeweak localization is expected to eventually set in (104, 105), although
for smooth impurity potentials, the back scattering may be very small (106, 107).

Recent numerical study (108) of a topologically nontrivial 3D lattice model—with random on-
site energy intentionally placed only on the surface of the 3D system—indicates that the effective
continuumdescriptionwithDirac particles scattered by an electrical potential holds if the disorder
strength is much weaker than the bulk gap (∼ 0:3eV in Bi2Se3). The assertion is based on
identification of Dirac-like features in a momentum-resolved spectral function, even when the
translational symmetry of the lattice is broken by disorder. As the typical disorder strength
increases beyond the 3D bulk gap value, the surface states appear diffusive. For even larger
disorder strength, the outermost surface states are localized, but weakly disordered Dirac-like
states reappear directly beneath it. Apparently, for large surface disorder, an interface between
a strongly localized Anderson insulator and a topological insulator is formed (108). As such
calculations were performed on finite-size systems, which are too small to detect an Anderson
localization transition, it is presently impossible to concludewhether there is a truephase transition
at zero temperature separating the weak, the moderate, and the strong disorder regimes. The
combined effects of electrical potential disorder and electron-electron (Coulomb) repulsion have
been studied in Reference 109 using the continuum Dirac approximation. The authors argue that
3D topological insulators are different from graphene and that the single Dirac flavor makes the
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system metallic with finite conductivity at zero temperature. Transport properties of topological
insulators have been reviewed in Reference 110.

Because the electron spin in 3D topological insulators is strongly coupled to its momentum,
unlike in graphene, the Zeeman coupling to the externalmagnetic field does not lead to simple spin
splitting. Rather, it opens up a gap, turning massless Dirac particles massive. To further illustrate
the difference between the Dirac particles in a 3D topological insulator and graphene, consider the
situation in which the external uniform magnetic field is applied along the z-axis, and the field is
sufficiently strong to quantize the orbital motion of the surface electrons. The equation describing
the states on the top and bottom surfaces is then"

6vF

 �
px þ e

c
By
�
sy � pysx

!
þ gzmBBsz

#
cðx, y, 6LÞ ¼ Ecðx, y, 6LÞ, 14:

whereZvF ¼ A0 and gz is the effective Landé g-factor. Indeed, the Zeeman coupling acts as aDirac
mass and does not lead to the usual splitting of the spin degenerate energy levels. It is straight-
forward to find the eigenvalues of this operator providedwe are sufficiently far fromany edge. The
resulting Landau level spectrum is

En ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A2

0

�
eB
Zc

�
nþ�gzmBB

�2s
, n ¼ 1, 2, 3, . . . 15:

E0 ¼ gzmBB. 16:

The physics in a quantizing magnetic field differs from graphene near the edge in another im-
portant way: The top and bottom surfaces are coupled through the side surfaces. The applied
magnetic field is parallel to the side surfaces, and therefore there is no Landau quantization along
this surface; even the Zeeman term does not open up a gap on the side surfaces, it merely shifts the
momentum by a constant. Therefore, as the guiding center of the Landau levels approaches
the edge, they start mixing into the continuum of the states in the side surfaces. Figure 5 shows the
electronic spectrum of a 3D topological insulator semi-infinite slab of finite thickness versus the
guiding center coordinate. Far away fromany edges, the spectrum exhibits the usual Dirac Landau
level quantization E ¼ ffiffiffi

n
p ffiffiffi

2
p

ZvF=[B, where [B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
Zc=eB

p
and for Bi2Se3, vF ¼ A0. Every such

Landau level is doubly degenerate because the top and the bottom surfaces are assumed to be
identical. Such degeneracy would be lifted if the inversion symmetry is broken by, for example,
a constant chemical potential difference between the top and the bottom surfaces. As the guiding
center coordinate approaches the right edge—or the outer edge for the Corbino geometry—the
Landau level states merge with the plane-wave states from the vertical side surface. In the limit of
very large thickness, such plane-wave states form a Dirac continuum.

This poses interesting questions: How robust is the quantum Hall effect and how can it be
measured (111)? If the Fermi energy lies between the two Landau levels, the spectrum contains
M ¼ 2nþ 1 chiral edge modes in addition to 2N nonchiral edge modes. Clearly, in any Hall bar
geometry the leads necessarily couple to the continuum of the states in the side surfaces, which
present additional (unwanted) channels of conduction. Assuming that the side modes equilibrate
with each other and result in a finite conductivity, the chemical potential drops smoothly
between mR and mL along each edge, and no quantization of Hall conductance is expected
(111–113). Interestingly, quantization of sxy has been reported in a strained 70-nm-thick HgTe
layer (114), with a well-developed plateau at n ¼ 2 and plateau-like features at n ¼ 3 and 4. At
the same time, the longitudinal resistanceRxx measured at 50mK shows suppression by few tens of
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a percent, but it does not reach zero. Although this observation awaits a complete theoretical
treatment, if the sample is thin then there are only a few nonchiral modes along the side surfaces that
may get Anderson localized with sufficient side-surface roughness, leaving only chiral modes at
the edges.

Measurement of sxy in the Corbino geometry is expected to lead to quantization (111, 112).
The idea is to perform the analog of the Laughlin thought experiment (112), experimentally
realized in 2D electron gas heterostructures in Reference 115. Onemeasures the amount of charge
DQ transferred from the inner surface to the outer surface in response to the induced electromotive
force produced in the azimuthal direction by a slow change in the magnetic flux Dw threading

the sample. Then sxy ¼ �cDQ=Dw. For sxy ¼ n
e2

h
, half of the charge travels through the
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(a) Electronic spectrum of a 3D topological insulator semi-infinite slab of finite thickness versus the guiding-center coordinate. Far away
from any edges, the spectrum exhibits the usual Dirac Landau level quantization E ¼ ffiffiffi

n
p ffiffiffi

2
p

ZvF=[B, where the magnetic length is
[B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

Zc=eB
p

, and ZvF ¼ A0 � 3:3eVA� for Bi2Se3. Every such Landau level is doubly degenerate. If the Fermi level lies between
the two Dirac Landau levels, the edge spectrum containsM ¼ 2nþ 1 chiral modes in addition to 2N nonchiral modes. (b) Schematic of
a Hall bar geometry in a 3D topological insulator. (c) Corbino geometry setup for measurements of quantum Hall conductivity.
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top surface and the other half through the bottom surface. An additional advantage of theCorbino
setup is that any interaction-driven fractional quantum Hall states formed by the surface elec-
trons can in principle also be detected (115).

If the external electromagnetic potentials are weak, the linear response theory is applicable.
Naively, for a noninteracting system with a gap, we expect that at long wavelength and low fre-
quency the response functions simply change, or renormalize, the dielectric constant and the
magnetic permeability; after all, the system is a dielectric insulator. Interestingly, a 3D topological
insulator gives rise to additional terms in the electromagnetic response, some of which are anal-
ogous to axion electrodynamics (116–119).

5.3. dx2Ly2 -Wave Superconductivity in Copper Oxides

Low-energy quasiparticles obeying the Dirac equation may also emerge as a consequence of
a phase transition associated with the condensation of Cooper pairs. The specific example that we
consider here is the so-called dx2�y2 pairing, which occurs in cuprate high-temperature super-
conductors (120, 121). In these layered, quasi-2D materials, one may focus on the electronic
structure of a single CuO2 layer. A simple effective Hamiltonian for this system is

H ¼
X
k,s

ðɛk � mÞc†s
�
k
�
cs
�
k
�þX

k

�
Dkc

†
↑ðkÞc†↓ð�kÞ þ h. c.

�
, 17:

where k ¼ �kx, ky�. The normal state dispersion, given by ɛk, describes a closed Fermi surface,
centered around ðp,pÞ, and equivalent points in momentum space. The anomalous self-energyDk

must in principle be determined from a microscopic theory; because such a theory is currently
missing, one proceeds phenomenologically. Assuming time-reversal symmetry, ɛk ¼ ɛ�k, and Dk

can be chosen to be real. Because it transforms as x2 � y2, it must change sign under a 90� rotation
and vanish along the Brillouin zone diagonals, where it intersects with the Fermi surface at four
inequivalent points. Weak orthorhombic distortions, such as in YBCO, move the points of in-
tersection slightly away from the zone diagonals (122) but do not change the low-energy physics in
an important way.

The energy spectrum of the fermionic quasiparticles can be obtained by solving the Heisenberg
equation of motion for c↑ðkÞ and c†↓ð�kÞ:

iZ
∂
∂t

 
c↑ðkÞ
c†↓ð�kÞ

!
¼
 
ɛk � m Dk

Dk �ɛk þ m

! 
c↑ðkÞ
c†↓ð�kÞ

!
, 18:

finding EðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðɛk � mÞ2 þ D2

k

q
. Near the points of intersection between the Fermi surface and

the zeros ofDk, wemay expand ɛk � m� ZvFk’ andDk � ZvDkk, wherek’ andkk are the deviation
perpendicular and parallel to the Fermi surface, respectively. In the vicinity of such points, the
above has the form of an anisotropic massless Dirac equation.

Interestingly, the Dirac node remains at zero energy even as the chemical potential m is varied.
This is unlike in the previous examples, which involvedDirac particles in semiconductors, wherem
must be fine-tuned to coincide with the Dirac node; otherwise we have Fermi circles with finite
density of states at zero energy. Furthermore, given that the system is a superconductor, the long-
range Coulomb interaction is screened. Since the discovery of cuprates being dx2�y2 super-
conductors, there has been a tremendous effort in trying to understand the role of various per-
turbations. Here we focus on the question of how such a system behaves in an external magnetic
field (123–127). The first step toward answering this question is to recognize that the upper and
lower components of the spinor in Equation 18 acquire an opposite phase under a U(1) charge
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gauge transformation, and therefore, an external magnetic field cannot couple minimally
(127–132). Moreover, the pair potential must also be modified. In a mean-field calculation, it is
computed self-consistently, with the solution depending on the value of the external magnetic field
(124, 126). But even in the absence of a microscopic theory—which may justify a self-consistent
mean-field calculation—we can establish this fact by noting that near the transition temperature,
the existence of the Ginzburg-Landau functional follows quite generally from the order parameter
having the charge 2e and the transition being continuous. Given that in cuprates the magnetic
penetration depth is much longer than the coherence length, for most of the magnetic field range
the field penetrates in the form of flux tubes and the order parameter phase winds by 2p near the
core of each vortex. Therefore, in the presence of the external magnetic field, the equation that
generalizes Equation 18 is

iZ
∂
∂t

 
cr↑
c†r↓

!
¼
X
r0

 
trr0 � m↑drr0 Drr0

D�
rr0 �t�rr0 þ m↓drr0

! 
cr0↑
c†r0↓

!
, 19:

where we assume that the electrons hop on a square lattice given by r, with a complex amplitude
trr0 . The phase of the complex singlet pair potential Drr0 winds by 2p when its center-of-mass
coordinate encircles a vortex sufficiently far from the vortex core; its dependence on the relative
coordinate has dx2�y2 symmetry.

When the typical separation between vortices, set by
ffiffiffiffiffiffiffiffiffiffiffiffi
hc=eB

p
, is much smaller than the pen-

etration depth, the magnetic field inside is almost uniform. Clearly, in such a case, the plane
waves with the wave-number k are no longer eigenstates of the kinetic energy operator. One may
attempt to proceed by working with Landau levels, which, in the continuum limit of the above
lattice model, are eigenstates of the kinetic energy operator for a uniform magnetic field
(126). However, the number of Landau levels below the Fermi energy, as determined from the
quantum oscillations experiments on the overdoped side of the phase diagram (133, 134), is on
the order of 104 at magnetic fields of 1 tesla, and this number decreases with 1=B. The energy
scale associated with the pair potential is approximately given by ðvD=vFÞEF, decreasing the
number of Landau levels mixed by Drr0 by only one order of magnitude. Moreover, the resulting
Hamiltonian matrix is dense, prohibiting the use of efficient algorithms for determining the
eigenvalues of sparse matrices.

In the relevant magnetic field range Hc1 � H � Hc2, a different approach was proposed by
Franz & Tesanovic (127), circumventing the use of the Landau level basis. The idea is to map the
problem onto an equivalent problem but at a zero average magnetic field, in which case the plane
wave basismay be used. This can be accomplished by performing a singular gauge transformation,
familiar in the context of the fractional quantum Hall effect. They then argued that the relevant
low-energy excitations reside in the vicinity of the Dirac nodal points and that in the continuum
limit, the vortices, together with the magnetic field, act as an effective potential scattering the
Dirac particles. As the magnetic field decreases so does the strength of the effective potential,
making a natural connection with the zero-field problem. For each of the four massless Dirac

particles, which were assumed to be decoupled (125), the combination vF ×
�
Z

2
=f� e

c
A
�
entered

the Dirac equation as an effective electrical potential, F (127). Here, =3A ¼ B and =3=f ¼
2pẑ

P
jdðr� RjÞ. The additionalminus signs acquired by the quasiparticles upon encircling an odd

number of vortices were encoded using a statistical Uð1Þ field minimally coupled to the Dirac
particles (127). Such an approach provided an explicit method to (numerically) compute the
scaling functions, whose existence was proposed earlier by Simon & Lee (125), as well as to test
the validity of the semiclassical approach advanced by Volovik (123).
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In the vicinity of each vortex, the effective potential
Z

2
=f� e

c
A grows with the inverse of the

distance to the vortex. Given that the kinetic energy of a massless Dirac particle also scales with
inverse length, the vortices constitute a singular potential. It is therefore not obvious that the long
wavelength expansion, which led to the effective Dirac description in the first place, can be directly
applied. Indeed, in the continuum limit, one must carefully specify the boundary conditions at the
vortex core by requiring that the effective Hamiltonian is a self-adjoint operator (135). A choice of
so-called self-adjoint extensions should be determined bymatching boundary conditions to awell-
regularized lattice theory.Unfortunately, so far it hasnotbeenpossible todetermine their form.Because
the choice is not uniqueandbecausedifferent physically allowable choices appear to lead toaqualitative
difference in the low-energy spectra (e.g., gapped or gapless), one is led to work with the lattice theory
(129, 131, 136, 137). The usual choice is to set trr0 ¼ �te�iArr0, where the magnetic flux w through an
elementaryplaquette enters thePeierls factorviaArrþx̂ ¼ �pyew=hc andArrþŷ ¼ pxew=hc.Theansatz
for the pairing term isDrrþd ¼ D0hde

iurrþd, where the dx2�y2 -wave symmetry is encoded by hd ¼ þð�Þ
for dkx̂ðŷÞ, and the vortex phase factor eiurr0 ¼ ðeifr þ eifr0 Þ=

eifr þ eifr0



. This choice is motivated by
its behavior in the long-distance limit (129, 138).

For a periodic vortex arrangement, and after the appropriate lattice version of the singular
gauge transformation, one can take advantage of the Bloch theorem. The quasiparticle spectrum is
then a function of a vortex crystal momentum q. It can be shown that if the vortex lattice has
a center of inversion and if the Zeeman term is ignored, then for each eigenstate with an eigenvalue
E at q, there is a corresponding eigenstate with an eigenvalue �E at the same q (131). Therefore,
any zero-energy state at a fixed q must be at least twofold degenerate. However, because our
problem breaks time-reversal symmetry, such a degeneracy can only be achieved by fine-tuning an
additional parameter other than the two components ofq. Therefore, the quasiparticle spectrumof
an inversion symmetric vortex lattice is, in general, gapped. The Zeeman term corresponds to
a simple overall shift of the quasiparticle energy and does not destroy the avoided crossing but
simply moves it to a nonzero energy. Some further nonperturbative aspects of this problem have
been discussed in Reference 136.

In Figure 6, we show the quasiparticle contribution to the specific heat obtained by the
numerical diagonalization of the resulting (sparse) Hamiltonian matrix for different values
of magnetic field. The result is rescaled according to the Simon & Lee scaling (125, 138). We
see that in the mixed state of a dx2�y2 superconductor for vF=vD ¼ 7 and 14, increasing the
magnetic field indeed increases the specific heat in an intermediate temperature window, in
accord with the semiclassical prediction by Volovik (123). At the lowest temperatures,
however, there is a crossover into the quantum regime, where the interference effects set in
and the finite spectral gap rapidly decreases the specific heat. Note that the entropy at low

T, i.e.,
Z T

0
CðT0Þ=T0dT0, increases with an increasing magnetic field. Entropy must of course

be conserved and independent of the magnetic field when T→1; the effect comes from the
transfer of the spectral weight from energies above ∼D0. It is similar to the effect discussed
in the context of the Dirac particle in a periodic electrical potential whose average vanished
(see Figure 2).

We see then that despite being described by similar kinematics, there is a very important
difference in the way the dx2�y2 -wave Dirac particles couple to the physical external magnetic
field compared with the way the graphene or the 3D topological quasiparticles couple. In the
latter case, the specific heat may oscillate with the field, but when averaged over a few oscil-
lations, its value is field independent. In the former case, it is the average value that increases with
the external field.
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6. WEYL SEMIMETALS

My work always tried to unite the truth with the beautiful, but when I had to choose one or the

other, I usually chose the beautiful. - Hermann Weyl (1885-1955)

It has long been known that band touchings in three dimensions are very stable (144, 145), as
described in Section 2.When the chemical potential lines upwith the band touching points and no
other Fermi surfaces intersect it, a semimetal results. The low-energy dispersion of electrons then
closely resembles theWeyl equation of particle physics; hence, these semimetals have been termed
Weyl semimetals (146). The generic form is shown in Equation 4. Initially, theWeyl equation was
believed to describe neutrinos. However, this description had to be given up with the discovery of
neutrino mass. Thus, an experimental realization of a Weyl semimetal would be the first physical
realization of this fundamental equation. Here we briefly review topological aspects of Weyl
semimetals and their possible realizations in solids. For simplicity, consider the following sim-
plified form of Equation 4:

H6 ¼ 6vF
�
pxs1 þ pys2 þ pzs3

�
, 20:

where we have expanded around a pair of band touchings located at k6 and have, for example,
denoted p ¼ Zðk� kþÞ. The Pauli matrices sj act in the space of the pair of bands that approach
each other and touch at theWeyl nodes. The energy spectrum then isEðpÞ ¼ vFjpj for both nodes.
At each node we can associate a chirality, which measures the relative handedness of the three
momenta and the Pauli matrices associated in the Weyl equation. The chirality is 61 for the
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Electronic contribution to the low-temperature specific heat of a dx2�y2 superconductor in the vortex state (L. Wang & O. Vafek,
unpublished results), scaled according to the Simon&Lee scaling (125). The thick lines include theZeeman term, and the thin lines do not.
The electronshopwith the nearest neighbor amplitude tona tight-binding latticewith a lattice spacingof a ¼ 3:8A�. The chemical potential
was set to m ¼ 0:297t, corresponding to 15%doping. The Fermi velocity vF ¼ 2:15 �105m=swas taken to agree with the photoemission
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show the square vortex lattice used. The dashed lines correspond to the values extracted experimentally: In panel a, ∼0:47 mJ=molK2
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Hamiltonians H6. This is a general property of Weyl fermions realized in band structures: Their
net chirality must cancel. A simple physical proof of this fermion doubling theorem is pointed out
below. In a clean system,where crystalmomentum iswell defined, one can focuson either node and
hence effectively realize the Weyl equation. Note that we have assumed that the bands are in-
dividually nondegenerate. This requires that either the time-reversal symmetry or the inversion
symmetry (parity) is broken. In order to realize the minimal case of just a pair of opposite chirality
Weyl nodes, time-reversal symmetrymust bebroken (146). In practice, this is achievedbymagnetic
order in the crystal. Alternately, one may consider systems with broken inversion symmetry (147)
in which a minimum of four Weyl nodes are present.

It is useful to describe a toy lattice model in which the above dispersion is simply realized (148,
149). Consider electrons hopping on a cubic lattice, where on every site the electron can be spin up
or spin down. Now, assume a spin-orbit-type hopping in the y and z directions that proceeds by
flipping spin, while along the x direction the sign of hopping depends on the spin projection. The
corresponding Hamiltonian is

HðkÞ ¼ ZvF
a

�h
cosðkxaÞ þm

�
2� cos

�
kya
�� cosðkzaÞ

�i
s1 þ sin

�
kya
�
s2 þ sinðkzaÞs3

�
. 21:

ThisHamiltonian hasWeyl nodes located at ð6p=2a, 0, 0Þ. Linearizing around these points yields
the Weyl equation found in Equation 20. Note that one can add an arbitrary (Hermitian) term to
this Hamiltonian, which will cause the nodes to shift but cannot remove them for small pertur-
bations. For example, a Zeeman field DH ¼ �ðZvF=aÞhZs1 shifts the nodes to ðk6, 0, 0Þ, where
k6a ¼6cos�1hZ. Essentially, this stability to perturbations arises from the fact that there is no
fourth Pauli matrix available to gap out the node. Only when the field hZ is large enough�jhZj �1

�
to move the Weyl points up against each other do they annihilate, leading to a fully

gapped insulator.

6.1. Topological Properties

The stability of the Weyl nodes is tied to a topological protection inherent to this band structure.
Away from the band touching points, there is a clear demarcation between filled and empty bands.
Consider the state obtained at a particular crystal momentum by filling the negative energy states
(below the chemical potential). By studying how this state evolves via varying the crystalmomenta,
one can extract a Berry phase, from which a Berry flux, BðkÞ ¼ =k 3AðkÞ, can be defined. The
Weyl nodes are sources, or monopoles, of Berry flux; thus, = ×BðkÞ ¼6d3ðk� k6Þ, hence their
stability. They can only disappear by annihilating a monopole of the opposite charge, which is
a Weyl node of opposite chirality (150).

This band topology of Weyl semimetals has two direct physical consequences. The first is an
unusual type of surface state, unique to Weyl semimetals, called a Fermi arc (146). Consider a 3D
slab ofWeyl semimetal with a surface in the x-y plane. Translation invariance along these directions
allows us to label single electron states by crystal momenta in this plane. Let us assume we have
a singlepairofWeylnodes in thebulk, as in themodel inEquation21.At this sameenergy,wecanask
which surface states are in the system. Surface states are well defined at this energy at all momenta
away from theWeyl nodes because there are nobulk excitationswith the same energy andmomenta.
It is easily seen that surface states should formaFermi arc. The arc terminates at the crystalmomenta
corresponding to thebulkWeylnodes (seeFigure7).This result follows fromthe fact thatWeylnodes
are monopoles of Berry flux. Therefore, the 2D Brillouin zones that lie between the pair of Weyl
nodes have a different Chern number than the planes outside (see Figure 7). These planes may be
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interpreted as 2D quantumHall states associated with a chiral edge state that is guaranteed to cross
the chemical potential. The locus of these crossings produces the Fermi arc surface state.

If one considers both top and bottom surfaces of a Weyl semimetal, one should recover
a closed Fermi surface as one would expect for a 2D system. Indeed, the two Fermi arc states on
opposite surfaces, taken together, form a closed 2D Fermi surface. Thus, a thin slab of semimetal
may be viewed as a 2D system with a closed Fermi surface. As the thickness is increased, two
halves of this Fermi surface are spatially separated to opposite sides of the sample. Probing these
surface states in surface sensitive probes, such as angle resolve photoemission spectroscopy
(ARPES) and scanning tunneling microscopy, should provide smoking gun evidence for this
unusual phase of matter.

A second physical consequence of the topology of Weyl nodes is their response to applied
electric and magnetic fields. As discussed in Section 3, a single Weyl node possesses a chiral
anomaly: The net number of charged particles is not conserved if a singleWeyl node is present (37,
38), and the continuity equation is modified to

∂n
∂t

þ = × J ¼ 6
1

4p2

e2

Z2c
E ×B, 22:

where the sign is determined by the chirality of theWeyl node. Thus, charge conservation provides
a rationale for why Weyl nodes must always occur in a band structure with zero net chirality.
Although the net charge is then conserved, the chiral anomaly does lead to an interesting effect.
Consider, for example, the case of a pair of nodes with opposite chirality, as in Equation 21. The
difference in density between excitations near the two nodes (the valley polarization) is governed by

dðnþ � n�Þ
dt

¼ 1
2p2

e2

Z2c
E ×B; 23:

thus, applying parallel electric andmagnetic fields can control the valley polarization, which leads
to new transport phenomena and possibly even applications forWeyl semimetals. There are close
connections between these phenomena and the chiral hydrodynamics recently described in the
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Weyl semimetal. (a)The Fermi arc surface states of a Weyl semimetal. (b) The bulk dispersion (red and
blue cones) resolve the paradoxes associated with having Fermi arc states (shown in pink) (146). Therefore,
Fermi arcs are allowed as surface states of a topological semimetal but are not possible in free fermion band
structures in 2D.
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high-energy literature (151). A related physical effect is a giant anomalous Hall effect expected for
the case of a pair ofWeyl nodes, which is proportional to the separation between theWeyl nodes in

momentum space. Thus, syz ¼ e2

2ph
ðkþ � k�Þ. An independent measurement of the momentum

separation ðkþ � k�Þ between Weyl nodes, obtained, for example, via ARPES, should lead to
a quantized ratio of syz and ðkþ � k�Þ. In Weyl semimetals with higher symmetry, such as cubic
symmetry, the anomalous Hall conductance vanishes. However, under a uniaxial strain that
lowers symmetry, a large anomalous Hall effect is expected (148).

We note that the two topological properties mentioned above require that the Weyl nodes be
separated in crystalmomentum. In the presence of crystalline translation symmetry breaking, such
a distinction may be lost, which would obstruct the definition of a sharp physical property that
reflects the underlying topology. Thus, it appears that although semimetals such as the Weyl
semimetal may be topological states, the topology associated with them is sharply defined in the
presence of translation symmetry, in contrast to insulating topological phases, which do not re-
quire any such assumption. However, in practice, disorder is rarely strong enough to completely
destroy well-separated nodal points, as evidenced in the example of graphene. Thus, realistic
systems should display the novel features mentioned above.

6.2 Physical Realizations

Despite being a very natural band structure, currently there are no clearly established materials
with Weyl nodes near the chemical potential, although several promising candidates exist. It has
been proposed that members of the family of material A2Ir2O7 (pyrochlore iridates), where
A ¼ Y, or a rare earth such as A ¼ Eu, Nd, Sm may be in or proximate to the Weyl semimetal
phase (146). This is currently an active area of experimental work (152–155). Spinels based on
osmium (156) andHgCr2Se4 (157) have also been proposed as candidates. Another route has been
to try to engineer Weyl semimetals using heterostructures of topological insulators (158, 159).
Interestingly, a proposal to realizeWeyl points in a photonics band structure has recently appeared
(160). A general symmetry analysis of crystal structures that may host Weyl semimetals appeared
in Reference 161. Further details on this topic may be found in Reference 162.

7. SUMMARY

We reviewed general conditions under which one may expect gapless Dirac points to occur in
solids. Their appearance may be a consequence of band-structure effects or of symmetry breaking
due tomany-body effects such as superconductivity, or theymay appear as a surface state of a bulk
topological phase. If a Dirac point exists, additional fine-tuning of the chemical potential is nec-
essary in order for the Dirac point to coincide with the Fermi level, unless the Dirac point appears
as a consequence of the condensation of Cooper pairs. Then, the Dirac point rides along with the
chemical potential.

We also reviewed how theDirac fermions respond to externally applied perturbations andwhy
the response differs in the case of graphene, topological insulators, Weyl semimetals, and d-wave
superconductors. External potentials cause a redistribution of the quasiparticle spectral weight:
Space-dependent electrical potential tends to transfer the spectral weight from large energies
toward the Dirac point, whereas the Dirac mass term tends to remove the states from the vicinity
of the Dirac point, pushing them toward the large energies. A uniform magnetic field redis-
tributes the states over the energy scale set by the cyclotron frequency. In this context, the
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magnetic field–induced enhancement of the low-temperature specific heat in the vortex state
of d-wave superconductors is also reviewed.

When weak, finite-range electron-electron interactions result in only finite renormalization of
the Dirac particle dispersion, without leading to any qualitative changes. As the strength of the
interactions increases, a quantum phase transition occurs from a semimetal into an insulating
state. In the case of the half-filled repulsive Hubbard model on the honeycomb lattice, the tran-
sition appears to be into a Néel antiferromagnetic state. Among its attractive features is the
possibility to study the transition either using aquantumMonteCarlomethodwithout the fermion
sign problem or to analytically use the ɛ-expansion around 3þ 1 dimensions for the continuum
field theory description,with themasslessDirac particlesYukawa-like coupled to a self-interacting
Oð3Þ bosonic field. Understanding why an interacting system may undergo a symmetry-breaking
transition into a state withmassless Dirac fermions, such as in the cuprate superconductors, rather
than avail itself of a fully gapped state, remains a fascinating open problem. Finally, we discussed
recent developments of 3DWeyl fermions, including their robust topological properties in the form
of unusual surface states and magnetoelectric responses, and their possible physical realizations.
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