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Abstract

We review the development of generative modeling techniques in machine
learning for the purpose of reconstructing real, noisy, many-qubit quan-
tum states. Motivated by its interpretability and utility, we discuss in de-
tail the theory of the restricted Boltzmann machine. We demonstrate its
practical use for state reconstruction, starting from a classical thermal dis-
tribution of Ising spins, then moving systematically through increasingly
complex pure and mixed quantum states. We review recent techniques in
reconstruction of a cold atom wavefunction, intended for use on experimen-
tal noisy intermediate-scale quantum (NISQ) devices. Finally, we discuss the
outlook for future experimental state reconstruction using machine learning
in the NISQ era and beyond.
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algorithm used to d

raw
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that are not labeled

1. INTRODUCTION

We are entering the age when quantum computers with tens—or soon hundreds—of qubits are
becoming available. These noisy intermediate-scale quantum (NISQ) devices (1) are being con-
structed out of cold atoms (2), superconducting quantum circuits (3), trapped ions (4), and other
quantum systems for which we have achieved an exquisite degree of control. NISQ devices will
soon play an important role, because they are poised to surpass the ability of the world’s most pow-
erful computers to perform exact simulations of them, ushering in the era of so-called quantum
supremacy (5).

Some of the first tasks for these NISQ devices will be as simulators (or emulators) of other
highly-entangled quantum many-body systems. The goal is to supplant our current conventional
computer simulation technology, such as exact diagonalization, quantum Monte Carlo, or tensor
network methods. Efforts to produce quantum simulators of some of the most important physical
systems, such as the fermionic Hubbard model (6), are progressing in earnest. However, with the
advent of increasingly larger NISQ devices comes a paradox: How will we simulate the simula-
tors? That is, how will we validate an intermediate-scale quantum device, confirming that it is
producing the behavior it was designed for? Along with quantum supremacy comes the necessary
breakdown of conventional tomography, which is currently the gold standard for quantum state
reconstruction. We are left searching for imperfect alternatives.

The answer may lie in new data-driven approaches inspired by rapid advances in machine
learning. A strategy for unsupervised learning, called generative modeling, has demonstrated the
ability to integrate well with the data produced by NISQ devices. In industry applications, the
goal of generative modeling is to reconstruct an unknown probability distribution P(x) from a set
of data x drawn from it. In the most powerful versions of generative modeling, the reconstructed
probability distribution is represented approximately by a graphical model or neural network—
the weights and biases serve as a parameterization of P(x). After training, these generative models
can be used to estimate the likelihood, or to produce samples, of new x in a way that generalizes
and scales well.

This procedure can be extended to data produced by quantum devices, with the goal of recon-
structing the quantum wavefunction (a complex generalization of a classical probability distribu-
tion). NISQ devices with single-site control are particularly suited to this data-driven approach,
because they can produce projective measurements of the state of individual qubits. If a sufficient
type and number of projective measurements can be obtained, industry-standard algorithms for
unsupervised learning of the relevant probability distributions (produced according to the Born
rule) can be used to reconstruct the underlying quantum state.

Such data-driven state reconstruction may play by different rules than Hamiltonian-driven
discovery of quantum states. In fact, the latter consists of obtaining a quantum state underlying a
microscopic model (i.e., a Hamiltonian), and it is a benchmark for quantum supremacy. Instead, the
former assumes no knowledge of the Hamiltonian but requires informationally complete sets of
measurement data on the quantum state. The question of how efficiently the data-driven approach
scales for wavefunctions of various structures of interest to physicists, and how it compares to the
more conventional Hamiltonian-driven approach, is largely unanswered.

The most obvious role for a quantum state reconstructed via generative modeling is to produce
new physical observables. To be useful, this must be done in a tractable way that scales efficiently
with increasing number of qubits while generalizing well to unseen data. The observables in ques-
tion may be inaccessible to the device, such as those encoded in a basis for which no projective
measurement was taken or those (such as Renyi entanglement entropies) that require elaborate
technical setups (7). Generative models are also capable of mitigating noise in the state prepara-
tion and measurement, which is a ubiquitous and defining condition in NISQ devices. Finally, the
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ability to off-load the production of various observables to a parameterized model frees experi-
mentalists to focus solely on the production of high-quality projective measurements. It is this
type of inelegant compromise that will allow machine-learning techniques to contribute to the
verification of quantum devices as they grow into the NISQ era and beyond.

In this article, we review the development of generative modeling for quantum state recon-
struction. Beginning with the classical treatment of probability distributions, we motivate the use
of a restricted Boltzmann machine (RBM), and demonstrate its ability to parameterize the ther-
mal distribution of data drawn from a classical Ising model. The same type of RBM is shown to
faithfully reconstruct a real-positive wavefunction, and we demonstrate the production of non-
trivial observables from the parameterized model. We then discuss extensions of standard RBMs
to reconstruct complex wavefunctions and density matrices. We end this review with a discussion
of recent efforts in reconstruction of a real-world Rydberg atom quantum simulator. Despite chal-
lenges in noisy state preparation and measurement, the demonstration of real experimental state
reconstruction is a milestone for the use of machine learning in the NISQ era.

2. GENERATIVE MODELING

Let us begin by considering an unknown probability distribution P(x) defined over the 2V-
dimensional space of binary states x = (xy, ..., xx), and a set of data D = {x;} distributed accord-
ing to P(x). Can we infer the features of such a distribution, such as regularities and correlations,
directly from the observation of the data? In other words, can we discover an approximate rep-
resentation p(x) ~ P(x) from the limited-size data set D? The simplest approach consists of ap-
proximating the unknown probability with the frequency distribution obtained by inverting the
measurement counts in the data set:

P) = Pra@) = —— 3 81 L
DIl 7=,

The validity of this approximation depends on the size of the system N, the entropy of the distri-

bution, and the size || D|| of the data set. For most practical purposes, however, it fails to generalize

the features of P(x) beyond the training set. In contrast, generative modeling aims to discover

an approximation of the unknown distribution that captures the underlying structure and is also

capable of generalization.

The first ingredient is a compact representation of the probability distribution, i.e., a parame-
terization py () in terms of a set of parameters A whose number is much smaller than the size of the
configuration space. Then, generative modeling consists of finding an optimal set of parameters
A* such that the parametric distribution p,«(x) mimics the unknown distribution P(x) underlying
the finite number of data set samples. In practice, this search is carried out through an optimiza-
tion procedure, where the distance between the two distributions is minimized with respect to the
model parameters A. The distance between two probability distributions can be quantified by the
Kullbach-Leibler (KL) divergence

P(x)
KLy (Pl p) Z P(x)log )’ 2.
a nonsymmetric statistical measure such that KL, (P || px) > 0 and KL, (P || p») = 0 if and only if
P = p,. By approximating the KL divergence with the measurement data, we obtain

1
KL(PIp)~ ~ 150 > " log pa(x) — Hp, 3.
xeD
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where Hp is the data set entropy. This quantity can be minimized iteratively by one of the many
variants of the gradient descent algorithm. This procedure allows one to obtain a representation
of the unknown distribution and generate new configurations that were not encountered in the
learning stage. The most successful approach relies on the representation of p,(x) in terms of
networks of artificial neurons.

2.1. Artificial Neural Networks

Artificial neural networks, the bedrock of modern machine learning and artificial intelligence (8),
have a history spanning decades. Initially investigated to understand the process of human cogni-
tion, neural networks models are based on the idea that information (in the brain) has a distributed
representation over a large collection of elementary units (neurons), and information processing
occurs through the mutual interaction between neurons (9). The fundamental ingredients are (#) a
set of neurons, each one applying a simple type of computation to the input signal it receives; (9) a
set of interactions defined over a graph structure connecting the neurons; (¢) an external environ-
ment providing a “teaching signal”; and (d) a learning rule, i.e., a prescription for modifying the
interactions according to the external environment.

The first artificial neuron capable of computation, the perceptron, was proposed by Frank
Rosenblatt as early as 1958 (10). Based on the previous work of McCulloch & Pitts (11), the
perceptron was capable of discriminating different classes of input patterns, a process called su-
pervised learning. It was later shown that a single-layer perceptron is only capable of learning
linearly separable functions (12), and because no learning algorithms were known for mult-layer
perceptrons, the model was abandoned, leading to a decrease in both popularity and funding of
neural networks (called the first Al winter). The first resurgence of the field took place more than
a decade later, with the invention of the backpropagation algorithm (13) and the Boltzmann ma-
chine (BM) (14). The latter was directly built on the connection between cognitive science and
statistical mechanics, established by the works of condensed matter physicists William Little (15,
16) and John Hopfield (17).

2.1.1. The Hopfield model. The Hopfield network, introduced in 1982 as a model for asso-
ciative memories (17), was inspired by the concept of emergence in condensed matter physics, in
which complex behaviors effectively emerge from the mutual interactions of several degrees of
freedom. In this context, Hopfield formulated a physics-inspired model of cognition for the task
of recovering a corrupted memory. By regarding a memory as a state x containing N bits of infor-
mation, the corresponding network consists of N binary neurons fully connected with symmetric
weights (or interactions), described by an energy function,

E@) = - Wxa;. 4.
ij

Each neuron in the network carries out the computation of ) ;Wjx;, and updates itself according
to the following rule:

Loif 30 Wix; > 0

X, = .
0, otherwise.

Because the energy difference between the two possible states of the ith neuron is AE; =) ";Wu;,
the dynamics resulting from the asynchronous update of the neurons monotonically minimizes
the total energy. Therefore, given an initial state, the network evolves in time by following the
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above equation of motion until a stable configuration (i.e., a local energy minimum) is found. In
the context of associative memories, given a set of desired memory states {¥1, &3, ...}, there exists
a learning rule to modify the interactions W in such a way that these states become local minima
in the energy landscape (17). Thus, if the network is initialized to a corrupted memory x; + 8 that
is sufficiently close to the true state (i.e., small §), the network can recover the correct memory
simply by evolving with its equations of motion.

2.1.2. The Boltzmann machine. The two major limitations of the Hopfield model are the
tendency for the network to get trapped into local minima and its restricted capacity. Nevertheless,
it suggested the important connection between cognitive science and statistical physics, which was
further strengthened with the invention of the BM by Ackley, Hinton & Sejnowski in 1985 (14).
Similar to the Hopfield model, the BM consists of a set of N binary neurons interacting with
energy given in Equation 4. However, in order to allow the system to escape local minima, the
neural network is placed at thermal equilibrium at some inverse temperature 8 = 1/7. The update
rule now becomes stochastic, with the ith neuron activating (x; = 1) with probability

1
Pi = 1 _’_e*ﬁAEj’

where AE; is once again the energy difference between its two internal states. As the temperature
goes to zero (B — 00), one recovers the Hopfield model with a deterministic dynamics minimizing
energy. For stochastic dynamics at finite temperature, the network minimizes the free energy
instead, equilibrating to the canonical Boltzmann distribution:

1
Py = e,z = 3T, 7.

The BM is one of the simplest examples of generative models. In fact, the set of interactions can
be considered as tunable parameters, resulting in a parametric distribution py (x) (with A = W).
Then, the interactions can be modified following an unsupervised learning procedure in order
for the network distribution to mimic an unknown probability distribution underlying a given
set of data points D = {«x}. By minimizing the statistical divergence between the data and model
distribution (Equation 3), one obtains the following learning rule for the parameters (14):

AW = Bl{xiacj)p — (%)) py |- >

In the positive phase, the weight I is increased according to the average value of x;x; over the
data points in D, corresponding to traditional Hebbian learning (i.e., “cells that fire together wire
together”; 18, p. 64). This term effectively lowers the energy of all configurations that are com-
patible with the data set, thus increasing their probability. In contrast, in the negative phase, the
same process occurs with the reverse sign, decreasing the probability of configurations generated
by the BM when running freely at thermal equilibrium. Clearly, as the two averages coincide, the
BM distribution reproduces the data set, and there is no net change in the parameter. Otherwise,
the network is trying to unlearn configurations generated at equilibrium that lead to an imbalance
with respect to the data. It is interesting to note how this learning and unlearning process had
been already proposed in an ad hoc way by Hopfield to eliminate spurious minima in his model
of associative memories (19).

The major limitation of this network is the structure of the energy function, allowing the BM
to capture only pairwise correlation in the data (e.g., it cannot learn the XOR function; 20). The
simplest way to increase the reach of its representational capabilities is to introduce an auxiliary
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Figure 1

Probabilistic graphical models. (#) A fully connected neural network, which can represent either the
Hopfield model or Boltzmann machine, depending on the update rule. (5) A restricted Boltzmann machine,
with a set of symmetric weights W connecting the visible, v, and the hidden, 4, layers.

set of neurons that do not appear in the input space of the data. The full network is then divided as
x = (v, b), where v are called visible units, corresponding to the degrees of freedom in the data set,
and b are called hidden units (14). In order to derive a learning rule for the network parameters,
one needs to eliminate the hidden degrees of freedom so that an explicit distribution over the
visible neurons p,(v) =Y, pa(v,bh) can be obtained. Therefore, to attain a tractable marginal
distribution, one can restrict the interactions between neurons on different layers, resulting in the
famous RBM.

2.2. Restricted Boltzmann Machines

The RBM, originally introduced by Smolensky under the name of Harmonium (21), is a proba-
bilistic graphical model with energy

EA(U,h) = — Z VV,]]?,‘U/ — Zb/v] — ZL‘,‘]J,’, 9.
ij J i

where we have added bias terms (i.e., magnetic fields) & and ¢ for the visible and hidden layers,
respectively. The set of tunable parameters is now A = (W, b, ¢) (Figure 15). The marginal distri-
bution, obtained by tracing out the hidden neurons, can be calculated analytically,

1 1
- § : b)) = § : —E\(h) _ —&(v) 10.
Pk(v) — pl(v’ ) Z), - 4 Z), 4 )

where we set the inverse temperature to 8 = 1, and we introduce the new energy function
@)=~ by~ log (1 +eZ.fo'f”f“f). 1.
j i

The energy &, (v) defines an effective system consisting of the visible neurons only. We can see
that the energy contains two terms: a mean-field contribution, proportional to the visible bias b,
and a nonlinearity containing correlations between visible neurons at all orders. The particular
structure of such an effective energy allows the RBM distribution py (v) to be a universal function
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approximator of discrete distributions (22). This means that, given a large enough number of hid-
den neurons, any function of discrete binary variables can be approximated to arbitrary precision.
However, in the worst-case scenario, the number of hidden neurons may grow exponentially with
the visible layer.

2.2.1. Unsupervised learning. The goal of unsupervised learning is to discover a set of param-
eters so that the RBM distribution mimics the unknown distribution underlying a data set D =
{v1,vs,...} of visible samples. The cost function, given by the KL divergence from Equation 3,
is

1
= — N & W) -logZ, 12.
”D”Z og pa(v) = IIDHDEZD 2(v) — log Z,

where we have omitted the constant entropy term Hp. The learning rule for the RBM parameters
is obtained by taking the gradient of C;,

AX X _VAC), = <V15)‘(U))D — (ngl(v)>pl<v), 13.

where the gradients V, &, (v) are straightforward to calculate. Similar to the regular BM, the gra-
dient contains two competing terms, driven, respectively, by the data and the RBM distribution.
The first term (the positive phase) is trivial to compute, being an average over the data:

(Vx&(v) ||D|| Z Vx&(v) 14.

Conversely, the calculation of the negative phase is in general intractable. It needs to be approxi-
mated using a Monte Carlo simulation,

M

(&0, 00 = 5 Z POVED) ~ — TP 1s.

where the configurations v, are drawn from a Markov chain running on the distribution py (v).

The sampling stage to estimate the negative phase, which is the computational bottleneck of
the training, is aided by the restricted nature of the RBM graph. In fact, because of that, neurons
in a given layer are conditionally independent of one another. That is, due to the lack of intralayer
connections, the conditional probabilities for the neurons in one layer, conditioned on the current
state of the other, factorize over each individual neuron,

n@b) =[] pib),  pablv) =[] pahilv), 16.
7 i

and can be easily calculated analytically (23). When running the Markov chain to collect the statis-
tic in Equation 15, one can sample the state of each neuron in one layer simultaneously using
the above conditional probabilities, alternating between visible and hidden layers. This sampling
strategy is called block Gibbs sampling.

2.2.2. Training by contrastive divergence. The calculation of the negative phase, even if car-
ried out using block Gibbs sampling, is still computationally intensive. In fact, at each training
iteration, the RBM needs to reach its equilibrium distribution p, (v) before collecting the statis-
tics for the negative phase calculation. Furthermore, the gradient in Equation 13 can display a
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large variance, being the difference of two averages computed from two different distributions.
A solution to both these issues is to consider a different cost function. Namely, the contrastive
divergence (CD) between the data and the RBM after a sequence of & block Gibbs sampling steps
is (24)

CDy = KL(Phulps) — KLGL p2), 17.

where p is the probability distribution of the visible layer after & steps. The new update from
the gradient of CD; becomes (25-27)

AL x —V,CD, ~ <V15)‘(U))D — (ngl(v))P 18.

ik) )"
The resulting CD training consists of initializing the RBM to a random sample from the data set
D and using the visible state after  steps of block Gibbs sampling to evaluate the negative phase.

Once the gradient of the cost function is calculated, the parameters A are updated with a gradi-
ent descent algorithm. The simplest one, called stochastic gradient descent, uses a random set of
data to evaluate the positive phase and performs the update AL = —nV,C,, where 1 is the step size
of the update, also called the learning rate. The total number of data samples used for the update
is called the batch size. Other algorithms can be used to speed up the convergence (28) and tune
the learning rate in an adaptive way (29, 30). Furthermore, an additional term should be added
to the cost function to help generalization, i.e., avoid the overfitting of data points. A common
choice is weight decay (31) regularization, which penalizes large values of the weights. We refer
the reader to Reference 32 for more details on the practical training of RBMs and a description
of the various training hyperparameters (and how to choose them).

3. QUANTUM STATE RECONSTRUCTION

Suppose an experimental NISQ apparatus in the laboratory containing N qubits is prepared in
some quantum state of interest described by a density operator 8. Because of the practical limi-
tations imposed by the hardware, measurements of properties of interest might be costly or not
technically possible. It is then highly desirable to be able to reconstruct the quantum state § from
simple, experimentally feasible measurements.

The traditional approach for reconstructing a quantum state from measurement data is called
quantum state tomography (QST) (33-35). A typical procedure consists of maximum-likelihood
reconstruction of a density operator parameterized as p o« 71T (36), where T is a tri-diagonal
Hermitian matrix, enforcing the positive semidefinite requirement on 4. Such procedures do not
assume any a priori phase structure of the quantum state or even that itis necessarily pure. Such full
QST therefore typically scales exponentially. Given this, full QST can only be effectively carried
out for systems with a relatively small number of particles or qubits (37). In general, however,
physical quantum states—such as ground states of local Hamiltonians—possess large degrees of
structure. This often makes it possible to obtain a compact representation with resources scaling
polynomially with the size of the Hilbert space. The most notable example is matrix product
states (MPSs), which have been used to successfully reconstruct quantum states outside the reach
of full QST (38, 39). However, so-called MPS tomography inherits the intrinsic limitations of the
MPS representation, namely the restriction to one-dimensional systems and low-entangled states,
which limits the reconstruction of short-time dynamics, for example. The inherent structure of
a quantum state can also be exploited in alternative ways, such as in permutationally invariant
QST (40, 41) or compressed sensing (42).
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In this section, we overview a machine-learning-based approach to QST and show that un-
supervised learning of generative models provides a very natural framework for reconstructing
quantum many-body states. As described in the previous section, RBMs offer a generative model-
ing framework that is conceptually interpretable in the context of statistical physics. In addition,
they have been more widely explored in applications in classical and quantum state reconstruc-
tion than any other generative model. We start by considering the simplest case of reconstructing
a thermal state in the classical limit and proceed with increasing complexity to the case of pure
quantum wavefunctions and finally mixed-state density operators.

3.1. Classical Limit

We start with the reconstruction of a physical system at thermal equilibrium and consider the
classical limit in which the Hamiltonian under consideration is diagonal in the measurement basis
{lo)}. The density operator we aim to reconstruct simply reduces to

e PH

1
0= =7 Y P lo)ol =) Pyo)lo)(ol, 19.

Tr[e#1
with Ps(0) being the classical Boltzmann distribution in the canonical ensemble and Zg the par-
tition function. State reconstruction is inherently a classical problem here, corresponding to the
unsupervised learning of the distribution Ps(¢). A simple yet nontrivial example is given by the
Ising model, where N spins interact with Hamiltonian

H(o)=-) o0, 20.
(if)

with the sum running over nearest neighbors on a lattice. In two dimensions, the spin system
displays ferromagnetic order at low temperature and a disordered state at high temperature, sep-
arated by a continuous phase transition.

As first demonstrated in Reference 44, different RBMs can be trained on data sets containing
spin configurations at different temperatures across the phase diagram, generated by importance
sampling the partition functions using Monte Carlo simulations (45). The quality of the recon-
struction can be assessed by comparing expectation values of thermodynamics observables gen-
erated by the RBM with the exact values calculated on the data sets. In Figure 2, we report such
a comparison for the magnetization and specific heat, with a varying number of hidden units in
the RBM. Although the magnetization converges very quickly—because it is explicitly encoded
in the data set—a larger number of hidden units is required to accurately reproduce the specific
heat, particularly in the presence of large fluctuations at the critical point. Finally, we point out
the curious observation that the quality of the reconstruction does not obviously improve for deep
versions of the RBMs (46), such as deep belief networks (47) or deep BMs (48).

3.2. Positive Wavefunctions

We now turn to quantum states described by pure density operators ¢ = |W)(¥|, where the wave-
function has representation |¥) = )" W(o)|o) with coefficients W(0) = (o|¥) in the measure-
ment basis {|o)}. In addition, we assume the pure state | W) has a real and positive representation
in this basis, ¥(0) € R and ¥(¢) > 0 V|o). Under this assumption, valid for example for ground
states of so-called stoquastic Hamiltonians (49), the wavefunction |W) is uniquely characterized
by the probability distribution underlying a set of projective measurements, given by the Born
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Figure 2

Learning the thermodynamics of the classical Ising model at thermal equilibrium. Comparison of the average values of (#) the
magnetization and (b) the specific heat between the exact values calculated on the data set (sampled by Monte Carlo) and the values
generated after the reconstruction, for an increasing number of hidden neurons in the restricted Boltzmann machine. Figure adapted

from Reference 43.

334

rule P(6) = |¥(0)|*. The inherently probabilistic nature of quantum mechanics provides a simple
and natural way to define a representation of a pure and positive quantum state in terms of an
RBM (50),

1
(o) = V(o) = \/7767&(0)/2- 21.

Note that, because RBMs are universal approximators of any discrete probability distribution,
provided the number of hidden units in the network is sufficiently large, the RBM wavefunction
¥ (o) can represent any positive quantum state to arbitrary accuracy.

Because of the positivity of the target state, quantum state reconstruction in this case is equiv-
alent to conventional RBM unsupervised learning. Upon minimization of the KL divergence be-
tween the projective measurement distribution and the RBM distribution,

)P 1

C, = U(o)log ———— = ——— 1 — Hp, 22.
v = D W) log 5o ||D||§°gp*(“) °

the RBM wavefunction approximates the target state ¥, ~ W as desired.

3.2.1. Measurement of physical observables. By discovering a set of parameters that suc-
cessfully minimizes the cost function, the RBM builds an internal representation of the unknown
target wavefunction and can be sampled to compute expectation values of physical observables. If
the observable O is diagonal in the measurement basis, its expectation value reduces to a thermal
average with respect to the RBM distribution,

(O) = Y lOn) = Y pr(0)O0a» 23.

which can be approximated by a Monte Carlo average using block Gibbs sampling. Calculations
of diagonal observables provide a direct verification of the quality of the training, because the
expectation values can be compared with those calculated directly on the training data set.
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More interesting, the RBM allows one to estimate average values of observables that are off-
diagonal in the measurement basis. For this case, the expectation value reduces to the average
(O) = (OL(0)) p, (o), Where

OL(0) = Z ﬁ‘((”)) 24,

is the so-called local estimate of the observables (51). Provided the matrix representation of o
is sufficiently sparse in the measurement basis (i.e., the number of off-diagonal elements that are
nonzero scales polynomially with N), its expectation value can be efficiently estimated with Monte
Carlo.

Another important quantity amenable to calculation with an RBM is the entanglement of a
subsystem A, which for pure states is quantified by the Renyi entropy (52),

1
Sa(laz‘l) = l—o logTr(/aZ), 25.
with g4 = Tr4. | W) (W] the reduced density matrix of 4. For the case of @ = 2, the entanglement
entropy can be calculated by considering two identical replicas of the original system and comput-
ing the overlap between the states with and without the configurations of subregion A swapped
between the replicas,

S2(p4) = —log Tr(p5) = — log[(W| ® (W2|Swap4|¥;) ® [W,)]. 26.

Calculations of the entanglement entropy via this procedure have been successfully carried out in
numerical simulations using different flavors of quantum Monte Carlo algorithms (53-56). In the
experimental context, the measurement of the swap operator has been performed for ultracold
bosons in optical lattices by means of quantum interference (7). Interestingly, the above implies
that that same measurement can be efficiently implemented using the RBM wavefunction, where
instead of replicating the experimental NISQ hardware in the laboratory, one can first train the
RBM to learn the experimental wavefunction and then perform the calculation of the swap oper-
ator by replicating the neural network (50).

3.2.2. Reconstructing quantum spins on a lattice. As an example, we review a numerical
experiment for the quantum reconstruction of the ground state of the transverse-field Ising model,
with Hamiltonian

H=- ZWZ by 6r. 27.

This spin system undergoes a quantum phase transition between a ferromagnetic state for a small
value of the transverse field 4 and a paramagnetic state for large 5. Measurement data in the {|o*)}
basis can be generated with standard methods (57, 58). Similar to the case of the classical Ising
model above, different RBMs are trained at different values of the transverse field and then sam-
pled to generate expectation values of observables (50). Figure 3 shows the reconstruction of the
average diagonal and off-diagonal (transverse) magnetizations for the quantum Ising model on a
square lattice, and the entanglement entropy for the one-dimensional chain, calculated using the
swap operator between replicated copies of the neural network.
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Quantum state reconstruction of the transverse-field Ising model. (#) Longitudinal and transverse magnetization for the Ising model on
a square lattice with N'= 144 and open boundaries as a function of the transverse field 4. (5) Entanglement entropy for an open chain
with N = 20 spins as a function of the subsystem size, for transverse field below, above, and at the quantum critical point. The data sets
were generated with quantum Monte Carlo (#) and exact diagonalization (b). Figure adapted from Reference 43. Abbreviations: ED,
exact diagonalization; QMC, quantum Monte Carlo; RBM, restricted Boltzmann machine.
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3.3. Complex Wavefunctions

The assumption of a pure and positive quantum state enables RBM reconstruction with a fa-
vorable scaling with respect to the number of particles in the system. In general, however, ex-
perimental quantum states might violate this assumption, containing a sign or a phase structure,
where the coefficients of the wavefunction can be both positive and negative or complex-valued,
U(o) = |¥(0)[e®@. A sign structure often appears in ground states of nonstoquastic Hamiltoni-
ans, such as quantum spins with competing interactions on frustrated lattices or fermions. In this
case, data from a single measurement basis are clearly not sufficient to fully capture the quantum
state, because the corresponding probability distribution P(o') = |¥(a)|? does not contain any fin-
gerprints of the sign structure. Thus, reconstruction of the quantum state requires measurement
in additional bases.

The first step for generalizing the RBM reconstruction to complex-valued wavefunctions is to
define an appropriate neural-network parameterization of the quantum state. The most straight-
forward way consists of adding a phase factor to the positive RBM wavefunction defined in the
previous section, ¥, (6) = /pi(0)e”»@. There is a lot of freedom in choosing the nature of the
phase function 6, (¢) in terms of additional network parameters g, and it need not be restricted to
generative models. In fact, any feedforward neural network, such as convolutional networks (59),
could be used to this end. Another powerful way to adapt the RBM to quantum states is by using
complex-valued weights and biases (60). In this review, we use an additional RBM to capture the
phases, leading to the following neural-network wavefunction (50):

Yan(0) = — e B2,
A

28.

Note that the generation of configurations in the reference basis corresponds to sampling the
distribution |, (6)|* = pa (o), which does not depend on the phases and can be then carried out
by using block Gibbs sampling on the RBM with parameters A.

The reconstruction of a phase structure requires performing additional measurements in
bases different than the reference one in which the RBM wavefunction is expressed. This involves
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applying a unitary transformation U to the quantum state,

W(o") = Uy, W(0), 29.

where |6?) = |Jlb LR ,Gﬁ;\") and b; identifies a particular choice of local basis for the jth degree of

freedom. The corresponding probability distribution after the measurement, P(¢?) = |¥(o?)|?,
contains partial information on the phases and can be used to reconstruct the complex state. In
general, such a unitary transformation consists of a collection of independent rotations of the local
Hilbert spaces. The number and the type of rotations required to extract sufficient information
to learn a phase depends on the structure of the specific quantum state under reconstruction.

Given a data set D = {¢”} of measurements in different bases, the RBM reconstruction can be
realized by minimizing the total KL divergence in all bases,

1 1
G = —m Z log |1ﬁw(a”)|2 = —m log Zuob,,ww(a) +c.c. |, 30.
o¥eD obeD o

where we have omitted the constant entropy term, and c.c. stands for complex conjugate. By taking
the gradients with respect to the parameters one obtains

1
VXCML = m %Re |:<Vlg)‘(o-)>()l’(a):| — (5)‘(0')>pk, 31.
1
V=~ 5 bZD]Im [(W&(ﬂ)ob(,,)], 32.

where the averages over the quasiprobability distribution Q*(¢) = U, , Y1, () are calculated di-
rectly on the measurement data. Because the negative phase does not depend on the phase param-
eters p, standard CD training can be directly applied here. A detailed derivation of the gradients
can be found in Reference 43.

3.4. Density Operators

When the purity of the quantum state of interest cannot be assumed, one needs to reconstruct
the full density operator, o(0,6") = {(¢|d]0’). Similar to the case of a pure state, before handling
the reconstruction we require a representation of the density matrix in terms of a set of network
parameters, p5,(0,0"), i.e., a neural density operator (NDO). However, in contrast with an RBM
wavefunction, the construction of an NDO has more stringent requirements, namely the Hermi-
tian condition §y, = ,5;[” and the positive semidefinite condition g, > 0. One way to enforce the
latter directly into the neural network representation consists of adding a set of auxiliary degrees
of freedom that purifies the mixed state of the physical system (61).

For any mixed quantum state, it is always possible to introduce a set of variables « in such a way
that the quantum state of the composite system is pure (62). In the context of neural networks, we
can introduce an RBM wavefunction for the enlarged system,

W) =Y Yru(o, @)lo) @ la), 33.
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and obtain an NDO by tracing out the auxiliary variables,

pru(0,6) =Y Y7, (0, ) (0, ). 34.

By embedding the auxiliary units in the latent space of the neural network, it is possible to perform
this trace analytically (61),

1

pap(o,0) = — o) eo)-Myu@o), 35.
Zx
Here, we defined
F[:E] N o 1 /
x/ﬂ((f,(f)— E[Ex/u(a):l:&/u(a)] 36
and
1 .

,(0,0") = — ;log [1 + exp(EVA(a +0')+ %V,L(a — a/)>:|, 37.

capturing, respectively, the correlations within the system and the correlations between the system
and the environment. The new parameters V7, , encode the degree of mixing of the state of the
physical system—they are identically zero for a pure state.

The cost function for the quantum reconstruction of an NDO is given by

1
Cau = D0 Z log pau(0”, %) — Hp, 38.
obeD

and its gradients can be easily calculated analytically (43, 61). Similar to the case of a pure state,
all the gradients can be evaluated directly on the training data (provided the appropriate unitary
rotations are applied to the state). The exception is the term involving the partition function (the
negative phase), which is approximated by the CD algorithm using a finite step of block Gibbs
sampling [equivalent to sampling the distribution py, (0, 0)]. Given that the purification through
the latent space of an RBM architecture generates a physical density operator (5, > 0), this type
of ansatz is also suitable for the simulation of quantum dynamics of open systems, which was
recently explored in various numerical experiments (63-66).

When evaluating the gradients of the cost function in Equation 38, the NDO needs to be
transformed back into the reference basis by appropriate unitary transformations related to the
measurement basis, 7, = Uypr, U . This rotation must be carried out explicitly and only then
is it feasible as long as ¢ acts nontrivially on a sufficiently small number of degrees of freedom.
This limitation can be circumvented by avoiding the direct parameterization of the quantum state
and using instead a generative model to represent the probability distribution underlying the
measurement outcomes of a set of informationally complete positive-operator valued measures

(POVMs) (67).

3.5. Reconstruction of Experimental Wavefunctions

We have shown that RBMs trained with unsupervised learning offer a versatile approach to quan-
tum state reconstruction of many-body systems. In this section, we turn to the case of RBM re-
construction of experimental data from NISQ hardware.
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3.5.1. Noise mitigation. One of the major obstacles in reconstructing quantum states from
real experiments is the presence of measurement errors. In practice, when performing mea-
surements on a system prepared in the quantum state §, one obtains measurement outcomes
7 that do not correspond to projective measurements but are instead described by a POVM
1® = >, p(zlo)la) (o], where the distribution p(t|o) is the probability of recording the outcome
|t) given the actual measurement |o). The probability distribution underlying a set of measure-
ment data is then given by P(t) = Tr[TI®V§]. Assuming the rate of measurement errors p(z|o) is
known from the experiment, it is possible to incorporate the noisy measurements in the RBM ar-
chitecture in such a way that the neural network learns the denoised distribution, corresponding
to the projective measurements prior to the noisy measurement process (68).

We show this so-called noise regularization for the case of a pure and positive RBM wavefunc-
tion ¥, (0) = /ps(0), where p, (o) now identifies the probability distribution over the denoised
visible layer |o) (before imperfect measurements). Rather than feeding the data directly to this
layer, the RBM can be enlarged by adding a third (noise) layer encoding the variable 7, with un-
derlying probability distribution p3(z) = Y, p(z]e)ps (o). The weights connecting the noisy and
the denoised layers can be crafted in such a way that the resulting conditional distribution p(z|o)
matches the experimental values. The quantum reconstruction is performed by minimizing the
negative log-likelihood with respect to the noisy data,

||D|| 2 loghu(o) 39'

with the following update rule:
1
AX X V)‘C)‘ ||D|| Z <V)‘g)‘(o)>p;‘(a\r) — <V;~(€)‘(O’)>m(0). 40.

The training is realized similar to the case of ideal measurements, with the only difference being
that the learning in the positive phase, instead of being calculated directly from the data, is driven
by the Bayesian posterior distribution,

INGY

= 41.
n(T)

p(olz) =

Following this training procedure, the trained RBM wavefunction, ¥, (o) = /px(0), approximates
the quantum state prior to the application of the measurement errors. A similar strategy based on
autoencoders has also been put forward and applied for the neural-network quantum reconstruc-
tion of experimental photonic states (69).

3.5.2. Application to a Rydberg-atom quantum simulator. Finally, we summarize a recent
experiment in which RBM quantum reconstruction was applied to real data from a NISQ simula-
tor. Specifically, the experimental system consists of an array of cold Rydberg atoms (2, 70), one of
the highest-quality platforms for programmable simulation of Ising-like quantum spins (71-73).
In the experiment, ¥ Rb atoms are individually trapped by optical tweezers in a defect-free array.
The atomic ground state |g) is coupled to a highly excited Rydberg state |7) by a uniform laser
drive, and the atoms interact with a Van der Waals potential, resulting in the Hamiltonian,

H(Q, A)_—Aan——Z Z i 42.

|Z—]|
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Here, Q is the Rabi frequency, V;,, is the nearest-neighbor interaction, #; is the occupation number
operator for the Rydberg state, and A is the laser detuning. For small transverse field €2 and large
negative detuning A, the ground state of H is approximately a product state with all atoms in the
ground state |g). Conversely, when the detuning is large and positive, depending on the spacing
between the atoms, the simulator can be driven into different broken-symmetry states (2).

After initializing the simulator in the fiducial state in which all atoms are prepared in |g), the
ground state of Hamiltonian Equation 42 in the broken-symmetry phase is obtained by an adia-
batic ramp in the laser detuning A. Assuming perfect adiabatic evolution, the instantaneous state
of the system can always be gauged to be positive. Therefore, under this assumption, measure-
ments in the occupation number basis |a) (i.e., eigenstates of 7;) are sufficient to reconstruct the
quantum state. The real experimental state is generally expected to be described by a mixed den-
sity operator, due to the unavoidable decoherence. Nevertheless, if the purity of the state remains
sufficiently high, a pure-state RBM approximation is capable of correctly capturing properties
defined over local subsystems (68). As described in the previous section, measurement errors are
mitigated using a noise layer regularization.

The experiment is performed with N = 8 atoms for the transition into the Z, ordered phase.
The adiabatic sweep is halted at subsequent times (corresponding to an increasing laser detun-
ing A), when a collection of about 3,000 measurements is taken. Each measurement consists of a
bit-string T recording whether each single atom was measured in the ground or in the Rydberg
state. Each data set is then independently input to an RBM and used to discover an optimal pure
state approximation by incorporating the measurement errors with the noise layer. Once trained,
directly sampling the RBM gives access to observables diagonal in the measurement basis. As an
example, we show in Figure 44 the average Rydberg population at different detunings during the
sweep. We can compare the values generated by the RBM results with the experimental data (pro-
viding direct verification) and with full simulations of the Lindbladian master equation. The RBM
can then be used to sample expectation values of observables not accessible in the experimental
apparatus. In particular, we show the average transverse field (Figure 4b) and the Renyi mutual
information L(s) = S:(5) + S2(0E) — S»(p) (Figure 4c), showing overall good agreement with
the results from simulations of open system dynamics.
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Figure 4

Quantum reconstruction of the experimental wavefunction of a Rydberg-atom quantum simulator with N = 8 atoms. (#) Spatial
average of the Rydberg population. (5) Spatial average of the transverse field. (¢) Renyi mutual information on the bond (3, 4) as a
function of detuning (m4in) and in the Z, phase as a function of the bond (inset). Abbreviations: Exp, experimental data; RBM,
restricted Boltzmann machine. Figure adapted from Reference 68.
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4. CONCLUSIONS AND OUTLOOK

Modern machine learning has provided us with generative modeling techniques that are perfectly
suited for the emerging landscape of NISQ hardware. Stochastic neural networks, such as RBMs
and their cousins (67, 69, 74), are heuristically known to provide good-quality state reconstructions
for intermediate-scale and noisy data. In that sense, their adaptation to quantum state reconstruc-
tion on devices of tens, hundreds, or even thousands of qubits should come as no surprise.

As discussed in this review, the systematic development of RBM theory for use in quantum state
reconstruction is becoming well understood from a formal standpoint. Parallel to theoretical and
algorithmic advancements, a crucial role is also played by the development of related open source
software (75, 76), which is easily accessible to experimentalists. However, many fundamental ques-
tions still must be answered if such machine-learning techniques are to become fully integrated
with NISQ hardware.

First, as evident in this review, the most well-studied cases involve wavefunctions that are real
and positive; they are mathematically equivalent to probability distributions. There, standard gen-
erative models such as RBMs can be employed with little alteration from their original industry-
motivated design. Under the assumption of purity, recent work has demonstrated the efficiency
of modern algorithms for unsupervised learning in approximate state reconstruction. In this case,
RBMs in particular have shown their utility in producing accurate and scalable estimators for
physical observables not directly available from the original data set; i.e., they generalize well. Of
particular interest is the basis-independent Renyi entanglement entropy, which can be measured
directly from a trained RBM using a scalable algorithm involving replication of the model wave-
function. This is perhaps the most striking example of a measurement that is resource intensive
experimentally (7) but relatively simple to implement in the trained generative model.

Real and positive wavefunctions occupy a special place in the landscape of physically interesting
states; for example, they are the ground states of stoquastic Hamiltonians. However, a large pro-
portion of quantum states under study theoretically and experimentally cannot be assumed to have
this significant simplification. As we have discussed in detail, in the case of complex wavefunctions,
state reconstruction is possible with RBMs (and other generative models). What is required first is
a convention to parameterize the phase, e.g., in additional hidden layers or as complex weights (60).
Then, measurements in more than one basis are needed to train the parameters encoding the phase
of the wavefunction. Given this strategy, experimental NISQ wavefunctions, such as cold-atom im-
plementations of the fermionic Hubbard model (6) or other interesting many-body Hamiltonians,
may conceivably be reconstructed in the near future.

Herein lies one frontier for state reconstruction with machine learning. In the quest to con-
struct a NISQ-compatible generative modeling method, foremost is the question of scaling of
the number of measurement bases required for informational completeness. Very little is known
theoretically about this scaling for wavefunctions of interest to NISQ simulators; in the pure case,
the number of bases required to learn an N-qubit state could range from 1 (see Section 3.2) to a
number that grows exponentially in N (see, e.g., Reference 77). This wide range of possibilities
leaves open many questions about the learnability of quantum states. For example, for what other
typical physical wavefunctions is the number of bases tractable in the context of generative models
(RBMs or otherwise)? Also, how does the target wavefunction structure affect the number of mea-
surements required in each basis? Finally, what is the relationship between these numbers and the
scaling of the RBM parameters required for a desired representational accuracy? An entire field
related to the study of how efficient learning relates to the sign or entanglement structure of a
quantum state still lies ahead.

Moving away from pure states, the ability to represent density matrices suggests the possibility
that machine-learning reconstruction can be expressed as an approximate reformulation of more
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traditional quantum state tomography. The same scaling questions apply as above for the context
of generic complex wavefunctions (albeit with the possibility of significant further roadblocks to
scaling). A reformulation of the problem in the language of informationally complete POVMs,
briefly mentioned here (67), offers the tantalizing possibility of scaling improvements, at the cost
of (experimentally) more complicated measurements. Finally, success with the mixed-state den-
sity matrix formulation suggests that a reimagination of process tomography as an unsupervised
learning problem could also be in store. With further development along these lines, generative
modeling is poised to go beyond the realm of NISQ simulators to become a tool for gate-based
architectures in the near future.

Looking forward, today’s hardware is clearly a necessary stepping stone to the more power-
ful quantum technologies of the future. As these devices continue to grow, they will develop in
lockstep with powerful classical algorithms, to aid in all stages of state preparation, measurement,
verification, error correction, and more. With the dawn of artificial intelligence as the most pow-
erful classical computing paradigm of a generation, it stands to reason that machine learning of
quantum many-body states will play a critical role in the NISQ era and beyond.
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