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Abstract

Experimental advances have allowed for the exploration of nearly isolated
quantum many-body systems whose coupling to an external bath is very
weak. A particularly interesting class of such systems is those that do not
thermalize under their own isolated quantum dynamics. In this review, we
highlight the possibility for such systems to exhibit new nonequilibrium
phases of matter. In particular, we focus on discrete time crystals, which are
many-body phases of matter characterized by a spontaneously broken dis-
crete time-translation symmetry. We give a definition of discrete time crys-
tals from several points of view, emphasizing that they are a nonequilibrium
phenomenon that is stabilized by many-body interactions, with no analog
in noninteracting systems. We explain the theory behind several proposed
models of discrete time crystals, and compare several recent realizations, in
different experimental contexts.
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1. INTRODUCTION

Much of the mystery and magic of quantum mechanics remains concealed if we focus solely on
systems in thermal equilibrium. Indeed, many applications, such as quantum metrology, comput-
ing, and communication, rely upon the production, preservation, and manipulation of systems far
from equilibrium; their efficacy depends on evading or at least impeding thermalization, which
naturally leads to the loss of locally stored quantum information. In recent years, advances in the
control of highly isolated quantum systems have enabled experiments to probe multiple facets
of thermalization and of its failure (1-4). Hence, it has become possible to play with interesting
nonequilibrium quantum states of matter that do not follow the usual tenets of thermal statisti-
cal mechanics. In this review, we focus on a particular class: time crystals in periodically driven
(Floquet), isolated quantum systems. Although our focus is on time crystals, the viewpoint of this
review is that they serve as a paradigmatic example of a much broader class of physical phenomena,
namely, nonequilibrium phases of matter.

No system is completely isolated, and no drive is perfectly periodic. However, by studying the
ideal limit, one can understand the dynamics that govern the evolution of a real system until the
timescale at which noise in the drive and the coupling to the environment take over. In this ideal
limit, a Floquet system is characterized by a Hamiltonian that is periodic in time with period
T: Ht) = Ht + T). We can make sharp distinctions between different Floquet phases of matter
when the observables of such a system, measured at stroboscopic times ¢ = k7, with k € Z, settle
into a steady state. A discrete time crystal (DTC) is a distinct Floquet phase of matter that spon-
taneously breaks the discrete time-translation symmetry t — ¢t + 7 down to ¢ — ¢ + #T for some
integer # > 1. It can be probed in experiments by measuring an order parameter that transforms
under the symmetry.

There is an entire universe of time-dependent nonequilibrium phenomena (5), but the term
spontaneous symmetry-breaking is reserved for a particular set of properties that are normally
associated with equilibrium phases of matter. Indeed, we usually think of spontaneous symmetry
breaking as a property of a ground state or a thermal ensemble, and, in fact, time crystals were
originally envisioned by Wilczek (6) and Shapere & Wilczek (7) as an equilibrium state of matter in
which continuous time-translation symmetry is broken. However, subsequent work (8—11) showed
that an equilibrium time crystal is not possible, culminating in the no-go theorem of Watanabe &
Oshikawa (12). Hence, time crystals can only exist in systems that are not in thermal equilibrium,
such as the Floquet systems that form the focus of this review. But, in such a case, it might be
tempting to classify several superficially similar-looking nonequilibrium phenomena (e.g., period-
doubling bifurcations, second harmonic generation, Faraday waves, etc.) as time crystals (5, 13-15).
However, such time-dependent phenomena generally cannot be classified as phases of matter and
share few similarities with equilibrium order. As we show in this review, a DTC is a spontaneous
symmetry-breaking phase of matter according to a definition that is a natural generalization of
the equilibrium notion (16-19). Consequently, the time crystals discussed in this review distinctly
retain the original spirit of spontaneously broken time-translation symmetry. In this review, we
primarily consider discrete time-translation symmetry in periodically driven systems, but we also
briefly touch on continuous time-translation symmetry in undriven systems. Remarkably, many
of the key properties of equilibrium ordered states emerge in DTCs, which can occur owing to
the nature of the far-from-equilibrium steady states in closed, driven quantum systems.

Even a completely isolated quantum system will generically thermalize. In particular, subsys-
tems of the full quantum system can act as heat baths for each other, and the expectation values
of local observables at long times, evolving under a static Hamiltonian, will look just like those
of a thermal state in the canonical ensemble of the same Hamiltonian. This process is known as
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thermalization. In driven systems, energy is not conserved because the system can absorb energy
from the drive via Floquet heating. Thermalization in a periodically driven system is the approach,
through this heating process, to a state that is locally indistinguishable from an infinite temper-
ature state (20-22). Although integrable systems such as noninteracting systems have long been
known to evade thermalization, they require fine-tuning and still thermalize in the presence of
even weak perturbations. One starting point for the recent exploration of nonequilibrium Floquet
phases has been the revelation that there are more generic classes of systems whose failures to
thermalize do not require fine-tuning.

In a disordered system, some of the parameters in the Hamiltonian vary randomly as a func-
tion of space. When disorder is sufficiently strong, an isolated one-dimensional quantum system
undergoes a phenomenon called many-body localization (MBL) (1, 2,23-32). In the MBL phase,
there are extensively many emergent quasilocal conserved quantities, and as a consequence, the
system undergoing isolated quantum evolution retains memory of its initial state forever instead
of thermalizing. Crucially, seminal recent work has demonstrated that MBL can also occur in pe-
riodically driven systems (18, 21, 33-41), where it prevents such a Floquet system from heating to
infinite temperature.

Although the MBL regime has a convenient theoretical definition, it is difficult to achieve in
practice because it requires strong disorder and vanishing coupling to the environment. How-
ever, there is another regime in which nontrivial Floquet states of matter can be realized. When
a system is periodically driven at high frequency, thermalization can occur very slowly. The intu-
ition is as follows: Because the system can only absorb energy from the drive in multiples of the
drive frequency, Q@ = 27 /T, it must make many local rearrangements in order to do so, a process
whose amplitude is exponentially small in the ratio of Q to the local bandwidth, €2. Thus, the
system takes an exponentially long time to reach the infinite-temperature state. During this time
interval, the system settles into an exponentially long-lived nonequilibrium steady state, a process
called Floquet prethermalization (42, 43). Nonequilibrium quantum steady states can emerge in
the prethermal regime that are strictly forbidden in thermal equilibrium.

The aforementioned strategies focus on attempting to stabilize Floquet phases for either in-
finitely or exponentially long timescales; however, one of the key lessons learned from recent
experiments (44-48) is that the signatures of time crystalline order might occur more readily
in nature than expected. Indeed, these signatures can arise during the transient early stages of
Floquet heating, before thermalization or even prethermalization occurs. To this end, experimen-
tal platforms in which the initial stages of Floquet heating can be slowed down, for example, by
using a combination of weak disorder (i.e., not strong enough to realize MBL) and an interplay be-
tween long-range, power-law interactions and dimensionality, may constitute another promising
set of venues for exploring time crystalline order (49, 50).

Let us discuss how one can directly realize and observe phenomena associated with MBL and
prethermalization. To do this, one generally must go beyond the usual setting of solid-state physics,
i.e., electrons in a conventional solid, because the electron—phonon coupling usually causes rapid
thermalization. However, careful engineering can give rise to degrees of freedom that are better
isolated from their environment. Often, a motivation for developing such techniques has been
the goal of realizing quantum computation, because the qubits in a quantum computer must be
very well isolated; in this review, we instead focus on applications to the study of many-body
quantum dynamics. Deliberately designed nano- and microstructures (51-53) or isolated defects
in the solid state (54-57) enjoy some level of isolation from the environment. As a result, these
degrees of freedom, which are sometimes also called artificial atoms, do not thermalize as fast as
electrons in the solid state normally do. Nuclear spins in solids offer even better isolation and can
be manipulated using the mature tools of nuclear magnetic resonance (NMR; 58-60).

www.annualreviews.org o Discrete Time Crystals

469



470

The cleanest platforms for the study of quantum nonequilibrium phenomena are artificial
solids, comprising trapped ions or neutral atoms, in which coupling to a thermal bath can be
exquisitely controlled. It has proved difficult to use artificial solids to emulate real solids because,
for instance, the lack of a phonon bath makes it onerous to directly cool such a system into a non-
trivial quantum ground state. However, artificial solids offer the ideal platform for observing the
dynamics of isolated quantum systems driven far from equilibrium!

2. PHASES OF MATTER OUT OF EQUILIBRIUM

How should we define phases of matter in isolated quantum systems out of equilibrium? Ideally,
we would find a way to extend the notion of phases of matter in thermal equilibrium that allows us
to consider new and interesting phenomena without being so general that it becomes meaningless.
In this section, we outline several different approaches. In Section 2.1, we introduce the idea of a
many-body steady state, which generalizes a thermal equilibrium state and whose distinct regimes
we could call phases of matter. We do not attempt a precise definition of a many-body steady state
in order not to unduly rule out potential yet-to-be-discovered phenomena. In Sections 2.2 and
2.3, we consider potentially more restrictive scenarios, in which the connection between out-of-
equilibrium phases and equilibrium phases can be made very explicit—in Section 2.2 in terms of
eigenstates of the Hamiltonian H or Floquet evolution operator Uy, and in Section 2.3 in terms
of cryptoequilibrium, which is approximate thermal equilibrium in a rotating frame.

2.1. Many-Body Steady States

The notion of a phase of matter is one that is very well established in thermal equilibrium. The
thermal state of the system, given by the Gibbs state,

1
. _ —BH 1
PGibbs = =€ 77, .
Gibbs 7

can exhibit sharply distinct regimes, and we call these phases of matter. As mentioned in Section 1,
as a result of thermalization, the Gibbs state correctly describes the late time behavior of local
observables in an isolated quantum system. In a periodically driven system, thermalization leads
to Equation 1 with g = 0, so there are no nontrivial phases of matter.

When thermalization does not occur, for example, in systems that exhibit MBL, at late times we
might still expect the expectation values of local observables to relax to those of a steady state, but
this state will not be described by a Gibbs state; instead it will be some nonthermal state (we include
in the term steady state those cases in which the local observables oscillate with some period). We
are interested in such late-time steady states to the extent that they are not fine-tuned; that is, the
properties of the steady state do not depend on some fine-tuned parameter of the Hamiltonian. In
particular, we want to consider steady states whose properties are robust to, or even stabilized by,
many-body interactions. We also want to consider properties that become sharply defined in the
thermodynamic limit as the system size goes to infinity. We refer to a steady state with such robust
properties as a many-body steady state. A many-body steady state is a natural generalization of a
thermal equilibrium state (Gibbs state), and this allows much of the phenomenology of phases
of matter to be carried over from thermal equilibrium to many-body steady states. Particularly,
the notion of spontaneous symmetry breaking in many-body steady states is discussed further in
Section 4. In a periodically driven system, with H(r + T) = H(z), we are interested in systems
in which the expectation values of local observables at stroboscopic times # = k7, with % € Z,
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relax to a many-body steady state. If discrete time-translation symmetry is broken, we weaken this
requirement to relaxation to a many-body steady state at times ¢ = nkT for some integer 7.

2.2. Localization-Protected Quantum Order in Many-Body Localization

The connection between the nonequilibrium phases of matter we consider in this review and tradi-
tional equilibrium phases can be made even stronger at the cost of introducing less experimentally
observable considerations. We do this by considering eigenstates of the time evolution operator.

First of all, we recall that any Hamiltonian H whose isolated evolution is thermalizing, as de-
fined in the previous section, is believed to satisfy the eigenstate thermalization hypothesis (ETH)
(61-64), which posits that any eigenstate of H with eigenvalue E looks identical, on any subsys-
tem that is small compared to the total system size, to a Gibbs state p = Le~# whose energy has
expectation value E.

There is also a variant of ETH that applies to periodically driven isolated systems (20-22). For
a system that heats to infinite temperature, as discussed in the introduction, the eigenstates of the
Floquet operator Uy look identical to the infinite temperature state on subsystems that are small
compared to the system size. Here, the Floquet operator Uy is the unitary operator that generates
the time evolution over one time cycle: It can be defined as

T
Ur =T exp [—i/ H(t)dt], 2.
0

where H(z) is the time-periodic Hamiltonian that generates the dynamics, and 7 is the time-
ordering symbol.

In this review, we are interested in systems that are not thermalizing, hence they are not ex-
pected to obey ETH. The question is, What is the nature of the eigenstates in that case? For
MBL systems, the answer is remarkable: The eigenstates have all of the properties typically as-
sociated with gapped ground states of quantum systems (29, 31, 32); in fact, for any eigenstate of
an MBL system, one can construct a fictitious quasilocal Hamiltonian for which the eigenstate is
the unique gapped ground state. One consequence of this is that the eigenstates of an MBL sys-
tem have an entanglement entropy on subsystems that scales with the size of the boundary of the
subsystem (area law), whereas eigenstates of a Hamiltonian that obeys ETH have entanglement
entropy that agrees with the thermodynamic entropy and, consequently, scales with the volume
of the subsystem (volume law).

Because of this property of MBL systems, MBL systems can host eigenstate phases of matter
(31, 65, 66): In other words, the same notion of phases and phase transitions that exists for gapped
quantum systems at zero temperature (which are completely characterized by their ground state)
can be applied to the eigenstates of an MBL system. Of course, eigenstates are not themselves
directly observable in practice. Nevertheless, when eigenstates display nontrivial phases of matter,
in practice these occur simultaneously with more observable properties such as features of the
long-time dynamics.

2.3. Floquet Prethermalization and Cryptoequilbrium

Nontrivial Floquet phases of matter can exist in the absence of MBL—if, for instance, disorder
is weak or even absent—provided we slightly relax our notion of a phase of matter to include
states that are exponentially but not infinitely long lived. If the frequency of the drive is very
large compared to the local energy scales of the system, then the system can only absorb energy
from the drive by spreading it out over many excitations. Consequently, heating occurs very slowly
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(43,67-74), and there is a long-lived quasi-steady state—called a prethermal state—in which non-
trivial states of matter can occur. Abanin et al. (43) proved a theorem showing that, in the high-
frequency limit (which means that the frequency is much larger than the local energy bandwidth
of the system, €), there exists a rotating frame transformation, described by a time-dependent
unitary P(¢), such that the Hamiltonian in the rotating frame, which can be written as

Hyoi(t) = P'(OH@)P(@) — P'(2)2,P(t), 3.
is approximately time independent. That is, we can approximate
Hyo(t) = Hy + O(e™ %), 4.

for some time-independent quasilocal Hamiltonian H.

Consequently, for times that are short compared to the exponentially long time #1y, ~ ¢/, the
system appears (in the rotating frame) to be evolving under the time-independent Hamiltonian
Hp. In particular, assuming that H is thermalizing, the system will evolve into a state that locally
looks like a Gibbs state L #F. We call this process prethermalizaton, and the resulting state
Le P! is the prethermal state. In other words, in the rotating frame, the system is effectively in
equilibrium. We call this property cryptoequilibrium to indicate that we can carry over all the
traditional notions of equilibrium phases of matter.

It might not be immediately obvious how one can realize new phases of matter in cryptoequi-
librium, because the evolution is governed by a static Hamiltonian. Of course, to determine the
actual evolution of the system, we have to undo the rotating frame transformation. But in the case
considered by Reference 43, the rotating frame transformation vanishes at stroboscopic times ¢ =
kT, so if we only observe the system at stroboscopic times # = 7, then the system appears to be
evolving under Hy. In other words, we can write the Floquet evolution operator as

Up = ¢ TFT 1 Qe ), 5.

where Hpy is a local time-independent effective Hamiltonian. Furthermore, the rotating frame
transformation is small, in the sense that its effect on local observables is of order €(/Q < 1.
When these properties are violated, as they will be in the case considered in the next paragraph, the
dynamics of the original Hamiltonian, after undoing the rotating frame transformation, can still
exhibit sharply distinct nonequilibrium regimes (which nevertheless can be formally characterized
through properties of the effective Hamiltonian Hy).

In the limit considered in the previous paragraph, the Hamiltonian is equal to a sum of local
terms, each of which has an operator norm ~; consequently, the Floquet operator U gen-
erating the time evolution over one time period only enacts a tiny rotation of a state, as far as
any local operator is concerned. Suppose, instead, that we require the weaker condition that, for
some integer N, (Ug)" only effects a small rotation of any local operator; or to put it another way,
Ur ~ X for some unitary X that satisfies X~ = 1. Then, we can apply the preceding result with
T — NT, and we obtain

(Up)N = HNT L (e~ ¥N), 6.

In fact, one can prove a stronger result (17). Suppose the Hamiltonian can be written in the
form H(t) = Hy(t) + V(t), where €, the local bandwidth of F{(¢), is assumed to be small com-
pared to Q. Meanwhile, Hy(?) is not assumed small, but we require that X~ = 1, where X =
T exp[—i fOT Hy(2)]. Then, there exists a (time-independent) unitary transformation ¢/ such that

UuUsUt =Xe"DT+O(87Q/NQ°), 7.
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where D is a local time-independent Hamiltonian satisfying [D, X] = 0. Equation 7 implies
Equation 6 with Hy = U'DU, but Equation 7 reveals the key property that Hg has a hidden Zy
symmetry generated by A" XU. This symmetry is of nonequilibrium origin; we can think of it as
a shadow of the discrete time-translation symmetry in the original driving Hamiltonian. Further-
more, if Hy realizes a phase spontaneously breaking X or topological phases protected by X, this
gives rise to nontrivial micromotions in the original driving Hamiltonian. We see in more detail
how this works for prethermal D'T'Cs (which correspond to the hidden emergent approximate Zy
symmetry being spontaneously broken) in Section 4.5.

Finally, we emphasize that the eigenstate properties discussed in the previous section also have
analogs in the context of prethermalization. Specifically, if we let U™ be the approximate Flo-
quet evolution operator corresponding to removing the exponentially small O(e=%/*0) terms in
Equation 7, then the eigenstates of Uy correspond to the eigenstates of Hy. Assuming that Hg
obeys the ETH, then these eigenstates look thermal in small subsystems. So, whereas the eigen-
states of Ur look like gapped ground states in MBL systems, allowing us to apply concepts of zero-
temperature phases, here the eigenstates look like finite-temperature thermal states, and thus we
can apply concepts of finite-temperature phases.

3. PRETHERMAL CONTINUOUS TIME CRYSTALS

In the rest of this review, we mainly talk about periodically driven systems, but in this section, we
briefly want to mention time crystals in undriven, energy-conserving systems. Here, we can also
exploit a form of prethermalization. When this occurs, it can give rise to a time crystal that breaks
continuous time-translation symmetry (75-77). We discuss a simple model of this in the present
subsection and focus on DT'Cs in the rest of this review.

Consider a three-dimensional spin-1/2 system in a large magnetic field governed by the
Hamiltonian,

Ho= kY Si =Y 87 =Y (1S1S7+17S)S] +U783S3), 8.
i i (i)

where the sum over (i, /) is over nearest-neighbor sites, and 4* is much larger than all the other
couplings. As is well known, one can remove the effect of the large magnetic field #* by moving to
a rotating frame, and then to zeroth order in 1/A%, we can ignore rapidly oscillating terms in the
Hamiltonian in the rotating frame, which gives an effective Hamiltonian
Je+J,

Do = Y [HS7S;+8187) +58585], J= "5

(1))

Observe that this Hamiltonian in fact has a U(1) symmetry generated by $*. What is less well
known is that this hidden symmetry is actually present at higher orders in 1/5* as well. In fact, one
can construct (43) a static local unitary rotation ¢/ such that

UHU" = —h*) " S7+ D+ 0@, 10.

where A = max{|J*|, |5, |J?|, |J*|}, and where
D = Dy + O(h* /1), 11.
and the higher-order terms also preserve the U(1) symmetry generated by S*.
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This is the static analog of the theorem (42, 43) governing prethermalization in Floquet sys-
tems. Hence, we have the same notation for D: This is the effective Hamiltonian that governs the
dynamics of the system until exponentially late times. The reason that thermalization is so slow
is that many spin waves must be created, each with energy ~A2, in order for the system to explore
states with different values of ), $%; such processes are very high order in 4*. For times less than
t. ~ ¢"/* we can ignore the U(1) breaking terms in Equation 10.

The Hamiltonian Dy (and therefore, presumably, its perturbed version D) exhibits an XY ferro-
magnetic phase, which is the magnetic analog of a superfluid phase, at low-enough temperatures.
Thus, if we start in an initial state that is low energy with respect to D, we expect it to prethermal-
ize to a superfluid state with order parameter (S7) # 0, where ST =S, +iS,. In a superfluid,
the order parameter rotates at a frequency set by the chemical potential u with respect to the full
Hamiltonian /HU' (which is determined by the energy and () of the initial state). At very late
times >t,, the U(1) breaking terms allow the chemical potential to relax to zero, and the rotations
cease.

Another way to say this is that for an initial state with low energy with respect to D, the
prethermal state has relatively low entropy (as measured by the subsystem entanglement entropy),
but such an initial state is a very high-energy state with respect to the full Hamiltonian H in
Equation 8 because the nonzero (S}) means that the spins are not fully aligned with the large
magnetic field. Hence, the system eventually thermalizes into a high-temperature state with re-
spect to H (with high entropy), but this takes an exponentially long time #, ~ ¢/*/* due to the ap-
proximate symmetry generated by " Y, S?U. This is analogous to the prethermal DTC, which
is an exponentially long-lived low-temperature state of a static Hamiltonian D that eventually
evolves into the infinite-temperature state.

This scenario is not fine-tuned: We only need to increase 5* linearly in order to increase the
lifetime of the time crystal exponentially. Note, however, that we have assumed that the system is
completely isolated. If the system is not isolated, then the periodic rotation of the order parameter
causes the system to emit radiation, and this radiation will cause the system to decay to its true
ground state (8, 10). It is no longer necessary to create many spin waves to change the value of
> S% because the energy can, instead, be carried away by photons or phonons.

The Hamiltonian in Equation 8 is rather general and can be realized in a variety of systems.
In the NMR experiment of Reference 75, the 'F nuclear spins in CaF, interact via dipolar in-
teractions, through which they order, and are subject to a large magnetic field 4%, which causes
them to rotate, as in Equation 8. The magnetic field does not appear to be large enough to be in
the prethermal regime, but the U(1) symmetry-breaking is small. The rotation of the YF nuclear
spins is observable through its effect on the 0.13% of the Ca atoms that are the **Ca isotope.

A more recent experiment (76) similarly observes the rotation of the spins of *He atoms in the
3He-B superfluid state. Again, the slow decay of the oscillations is due to weak breaking of the
spin-rotational symmetry, and the field is not large enough to be in the exponentially increasing
regime, unlike in a prethermal continuous time crystal.

4. THEORY OF TIME-TRANSLATIONAL SYMMETRY BREAKING
AND TIME CRYSTALS

4.1. Spontaneous Symmetry Breaking Out of Equilibrium

In the previous section, we defined the context in which we wish to discuss phases of matter, namely
many-body steady states in isolated quantum systems. In particular, if the many-body steady state
does not respect the symmetries of the applied Hamiltonian, then we say that the symmetry is
spontaneously broken.
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If we now consider a periodically driven Hamiltonian with H(z + T') = H(z), then the time-
dependent Hamiltonian has a discrete time-translation symmetry. A DTC is a system in which
this discrete time translation is spontaneously broken. More precisely,

a system in a many-body steady state for a periodically driven Hamiltonian with period 7 is a discrete
time crystal if the expectation values of local observables are not T-periodic.

For MBL DTCs, the steady state survives to infinite times; for prethermal DT Cs, to exponentially
long times. In the latter case, a time crystal only occurs for initial states with energy density below
a critical value.

Another way to say this is that local observables have a longer period than the drive. In this
review, we focus on the case in which observables have a period #7T that is a multiple # of the
period of the drive. Equivalently, the system has a subharmonic response to the drive because
observables have fractional frequency Q/#z. In the simplest case, » = 2, this amounts to period
doubling. It is important, however, to distinguish the subharmonic response in time crystals from
some phenomena that superficially might seem similar. We discuss this in the next subsection.

4.2. Nontrivial Features of Time Crystals

As stated previously, we have not attempted to give a restrictive definition of “many-body state”;
accordingly, we do not have a restrictive definition of time crystal. Nevertheless, we emphasize
certain features of time crystal phenomenology that should be considered essential if the “time
crystal” label is to be applied.

First, as we have already stated, a time crystal is a phase of matter, not some finely tuned point
in parameter space. Hence, the qualitative features of the steady state should be stable to pertur-
bations of the Hamiltonian that respect time-translation symmetry, in particular to adding many-
body interactions. A collection of uncoupled spins precessing in a magnetic field does not respect
the time-translation symmetry, but as soon as the spins are coupled together, they will generically
decohere and thermalize, and eventually the expectation values of local observables approach val-
ues that are constant in time. Thus, uncoupled spins do not constitute a time crystal. They are a
highly unstable point, which can be perturbed into any one of many different time-translation-
invariant phases with a suitable choice of interaction. By the same token, no extra symmetries
(in addition to time-translation symmetry) are needed to stabilize a time crystal, unlike in pure
dephasing models of spins.

Second, spontaneous symmetry breaking is intimately connected with a concept of rigidity.
This means that the system should have many locally coupled degrees of freedom so that a
notion of spatial dimension and thermodynamic limit can be defined (15), but in the sponta-
neous symmetry-breaking phase all these degrees of freedom should get locked together into a
symmetry-breaking order parameter configuration that has long-range order in both space and
time.

Even within the constraints of the criteria mentioned above, it turns out that general classi-
cal dynamical systems can still exhibit rigid subharmonic responses. The reason for this is that
the dynamics about fixed points can be strongly damped so that perturbations to either the state
or the dynamics decay rapidly; owing to the presence of such contractive dynamics, many-body
subharmonic responses have been observed in a multitude of systems including Faraday wave in-
stabilities (14), driven charge-density wave materials (78-82) and Josephson junction arrays (83,
84). In this review, as we have already mentioned, we focus instead on obtaining time crystals
in isolated quantum systems, which evolve unitarily without dissipation. In addition, dissipation
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caused by coupling to a reservoir should also come with noise caused by fluctuations in the reser-
voir. The stability of the subharmonic response of a damped system to such fluctuations is an open
question (85).

4.3. A Prototypical Model: The Many-Body Localized Discrete Time Crystal

Here, we discuss a DTC that is stabilized by the presence of strong disorder, leading to MBL.
"To be specific, consider the following disordered spin model (16-19). We define the Hamiltonian
H(z) by specifying it on the interval [0, 7) and imposing periodicity H(t + T') = H(?). The simplest
stroboscopic Floquet Hamiltonian (with total evolution time 7" = #; + #,) takes the form:

H;, for0<t<t
Ht — b —_
() Hz, f0r11§l<t1+lz’

with time-independent Hamiltonians H; and H, given by

=Y Jdyoio; = Y (ko7 + o] + ko),
(isf)

i

H, = thgz “ 13.

and (67,07, 07) being Pauli spin operators. In order for this model to exhibit MBL in an appro-
priate regime, we choose the J;;, b3, b, l/ from some random distributions. This model exhibits a
time-crystalline phase.

As we have emphasized, time crystals are a phenomenon that is stabilized by many-body in-
teractions. To illustrate this, first consider the case in which the spins are completely decoupled,
J;; = 0. Then, we can focus on the dynamics of a single spin 7. If we also set b7 = b} = 0, then the

dynamics over a single time cycle are given by
i X 1Ze T
UF — pingo eib[-tla . 14.

ih3- ¥4
b3ty o

In the ideal case g = 1, we find that e conserves the z component of the magnetization (o),
whereas e 78" exactly flips it. Thus, if we start from a state initially polarized in the = direction,
successive applications of Uy just flip the polarization direction each time, which looks like a sub-
harmonic response at frequency Q/2. (In fact, one can show that Uy is a rotation by angle 7 about
some tilted axis, so the same subharmonic response is exhibited for nearly any initial state). How-
ever, for g =1 + ¢, Equation 14 now becomes a rotation by angle 6 about some tilted axis for 6 not
quite equal to 7. In other words, the frequency of this subharmonic response varies continuously
as a function of g, thus lacking the rigidity we normally associate with a spontaneously broken dis-
crete symmetry. This lack of rigidity can be seen in Figure 1, which depicts the Fourier transform
of the response of the system. With J; = 0, the system exhibits a beat frequency as we tune away
from g = 1. This nonrigid subharmonic response is an artifact of the noninteracting limit.

By contrast, we expect thatin an interacting system, the only way a subharmonic response could
occur is through the mechanism of many-body spontaneous symmetry breaking, and consequently
it will be rigid. To illustrate this, consider the limit J¥ = /! = 0, but we choose some fixed J5; #0.
Then the evolution over one time cycle becomes

UF:e*i”gZz“xexp iZZb ‘to® +ZZJ,]l'IUO‘ . 15.

i (i.7)
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Figure 1

The eigenstate doublets associated with spontaneously breaking (#) an Ising symmetry, and (b)) time-translation symmetry (with
period-doubling). In the latter case, we have assumed that the system is periodically driven, so the quasienergy w is Q-periodic, where
Q = 27 /T is the angular frequency of the drive and, therefore, is drawn on a circle. The two eigenstates in the multiplet are separated
by €2/2 in quasienergy. (c) Schematic phase diagram associated with an MBL DTC. The underlying model is similar to Equation 13,
where J; is the mean value of the disordered interaction strength and € = g — 1 is the 7 -pulse imperfection. For large ¢ the MBL DTC
melts into a symmetry unbroken phase (19, 86), whereas for large J, the disorder is not strong enough to localize the system, leading to
a thermal phase. (d) This qualitative phase diagram is consistent with observations in small-system trapped-ion experiments described
in Section 6.1. (¢) The subharmonic response of the discrete time crystal is most easily observed in Fourier space. For the » = 2 time
crystal, in the absence of interactions, the subharmonic response lacks rigidity and is unstable to arbitrarily small perturbations €.

(f) With interactions on, the many-body system synchronizes and exhibits a rigid subharmonic peak at /2 despite the presence of
imperfections in the -pulse. Abbreviations: DTC, discrete time crystal; FFT, fast Fourier transform; MBL, many-body localization.
Panel ¢ is adapted from Reference 19.

If we tune g exactly to 1, we again find that 742 =[], 0% := X flips (0?) at each spin, whereas
the rest of the evolution conserves it, so we see a subharmonic response at /2. But with interac-
tions, this subharmonic response is stable; it persists, even at infinite times, through a finite window
of g surrounding 1, and in fact s stable to any perturbation whatsoever in the driving Hamiltonian
H(z), provided that it remains 7-periodic. Figure 1 shows how, unlike the noninteracting case, the
sharp peak in the Fourier spectrum at w = /2 persists even as g is tuned away from 1.

What causes the difference between the J;; = 0 and Jj; # 0 cases? Here it is instructive to look at
the spectrum (eigenstates and eigenvalues) of the Floquet evolution operator Uy. When the spins
are uncoupled (J; = 0), Ur is just a tensor product over the individual sites, so the eigenstates
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are all product states (or, at least, can be chosen to be product states; in fact, U has a massive
degeneracy when J;; = 0 and g = 1, which is lifted for g # 1.) However, consider the interacting
case in which Uy has the form given in Equation 15 at ¢ = 1. For simplicity, we also set 4#? = 0.
Then, the eigenstates of Higng = —i ), Jijofof can be labeled by numbers o; = %1, such that
07|60y = 0;|¢). We find that Up = X ¢ Hisingt {g block-diagonal in the eigenstates of Hy,g, because
it preserves the subspace spanned by a state |&) and its oppositely magnetized state | — &), and
within this subspace it acts as

Up=¢ " (16) (=G| + |—G) (G]), 16.

=T (|4 (+ly — =g (=1s), 17

where Ej is the energy of |&) (and, by symmetry, of |— &) under Hing, and we have defined
|[+)s = %(k?) + |- &)). Thus, |£) are eigenstates of Up. The important thing about these eigen-
states is that they are cat states; that is, they are the superposition of two macroscopically distinct
states. This property of the eigenstates coming in cat state pairs, which are separated in quasienergy
by exactly /2, because their eigenvalues under Uy are +¢~"F# 1 (see Figure 1b), is the signature of
a period-doubling time-crystal phase, as we explain in more detail in the next subsection. Further-
more, this property is robust in the sense that perturbations cannot alter this property provided
that the localization length remains finite. Stability to perturbations usually requires an energy
gap. However, MBL can similarly provide stability because perturbations can only cause local re-
arrangements of the eigenstates on the scale of the localization length, which cannot alter the fact
that eigenstates are cat states (for details, see Reference 16). Thus, this property characterizes a
stable phase of matter, i.e., the DTC phase.

Intuitively, the property of the eigenstates being cat states is related to the subharmonic re-
sponse, because cat states are not observable in the laboratory, whereas the more physical |5)
states discussed above exhibit subharmonic evolution (see Equation 16). It was argued in Refer-
ence 87 from the general phenomenology of MBL systems that, when time-evolving a system in
the time-crystal phase, for a generic physical initial state the expectation values of local observ-
ables will eventually oscillate with frequency €2/2 at late times. This corresponds to a many-body
steady state as defined in Section 2, so this model really is a D'T'C as defined in Section 4.1.

Finally, let us briefly mention how the time-translation symmetry breaking interplays with the
standard MBL phenomenology. Generally, an MBL system is characterized by the existence of a
complete set of quasilocal integrals of motion; for a spin-half system, as we are considering here,
this is a set of spin-half operators t;, each of which is supported near the site 7 (with exponential
tails) and commutes with the Floquet evolution operator Uy (in the case of Floquet systems) and
the other operators t7. “Completeness” means that simultaneous eigenstates of all the operators
77 are nondegenerate. It is these local conserved quantities that allow an MBL system to retain
memory of its initial state forever instead of thermalizing.

When a symmetry is spontaneously broken in an MBL system, this corresponds to the op-
erators t7 not commuting with the symmetry; this allows the constant in time expectation val-
ues of these operators to serve as an order parameter for the spontaneous symmetry breaking.
We can see this for the MBL DTC by observing that if Uy is the Floquet evolution operator
(Equation 15), with g = 1, then (Ur)* commutes with o7 for each site 7. Hence, for this exactly
solvable point, we can take 7; = o7, and in the presence of perturbations the operators 7 will be
some dressed version of this. Crucially, though t; commutes with (Ug)?, it does not commute with
Ur; in fact, we have Upr,-UFJr = —1,. Because U is the generator of time-translation symmetry, this
reflects the spontaneously broken time-translation symmetry.
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4.4. Eigenstate Definitions of Spontaneous Symmetry Breaking
and Time Crystals

As we saw in the previous section, the eigenstate properties of the MBL DT'C are very striking.
In fact, it is reasonable to define time crystals in isolated quantum systems in terms of these prop-
erties. The advantage of such an approach is that it gives a sharper definition than the somewhat
vague notion of a “many-body steady state,” which we introduced in Section 2, and allows closer
connections to be drawn with the notion of spontaneous symmetry breaking in equilibrium (thus
building on the observation in Section 2.2 that eigenstates lead to an explicit connection between
MBL systems and zero-temperature equilibrium phases of matter). The disadvantage, of course,
is that eigenstates are usually not experimentally accessible states, so such a definition is necessar-
ily more theoretical. In this section, we outline such an eigenstate approach to the definition. We
leave it as an open question whether such a definition is always equivalent to the one in terms of
many-body steady states from Section 4.1.

4.4.1. Spontaneous symmetry breaking generally. As motivation, let us first recall how spon-
taneous symmetry breaking works at zero temperature; that is, in the ground state of a static
Hamiltonian H. The classic example is the ground state subspace of an Ising ferromagnet (which
has a Z, Ising spin-flip symmetry) is degenerate and spanned by a pair of spin-polarized states in
which the spins have a net magnetization in the up direction or the down direction (in the limit
of vanishing transverse field, they are fully polarized in the up or down direction); we call these
states |1) and ||}, and they are related by the Ising symmetry. On any finite system, however,
there is some tunneling amplitude between these two states, a consequence of which is that the
true eigenstates are the symmetric and antisymmetric combinations |+) = %(M*) =+ [})), which
are nearly degenerate with an energy separation that is exponentially small in the system size. (Be-
cause the Hamiltonian commutes with the symmetry, if the eigenstates are nondegenerate they
must be invariant under the symmetry, as the |+) states are). The signature of the spontaneous
symmetry breaking is that, though the symmetry-breaking states |1) and || ) are short-range cor-
related states, the invariant combinations |+) are long-range correlated cat states; for example, the
connected correlator {(772(x)(y)) — (72(x)) (772(y)) remains nonzero even when |x — y| — oo, where
7(x) is the local magnetization operator.

Although this eigenstate multiplet structure is most familiar in ground states, the same structure
is found in highly excited states for systems that exhibit spontaneous symmetry breaking at finite
energy density; this is true in both systems that obey the ETH (88-90) and systems with MBL
(65). This gives us a definition of spontaneous symmetry breaking out of equilibrium in isolated
quantum systems:

Let H be the time-independent Hamiltonian of an isolated quantum system, or else let Ur be the Flo-
quet evolution operator corresponding to a time-periodic Hamiltonian. Suppose H or Uy has a symme-
try operation represented by a unitary or antiunitary operator #. Then the symmetry is spontaneously
broken in an eigenstate |{) of H (or Ur) if there is no linear combination of finitely many eigenstates
of H (or Ur), each of which has approximately the same energy (or quasi-energy) as |), such that the
linear combination is both a short-range correlated state and invariant under # (up to a global phase).
Here by “approximately the same energy,” we mean that the energy difference is exponentially small
in the system size.

There is another way to formulate the definition of spontaneous symmetry breaking in terms
of “off-diagonal long-range order.” Let d(x) be a family of local operators (usually called the order
parameter) supported at different positions in space, such that #i(x)u~! = ¢®4(x) for some phase
factor ¢ # 1. Then we say that « is spontaneously broken in a u-invariant (up to global phase)
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eigenstate |y/) if

(¥la@)o(y) [¥) - 0 as v —y| — oo. 18.

This can be shown to be equivalent to the definition above if we supplement the latter by a few
extra technical assumptions; we give the details in Appendix A. This formulation of the definition
is particularly convenient in numerics, where the formulation in terms of linear combinations of
eigenstates can be difficult to check because the (quasi-)energy spacing of eigenstates (even those
not forming part of the same multiplet) is generally exponentially small in the system size, so it is
hard to pick out the eigenstates corresponding to a multiplet.

4.4.2. Discrete time crystals. As we already saw in the model of an MBL DTC discussed in
Equation 13, the MBL DTC also exhibits a similar multiplet structure to the one described just
above. The main difference is that whereas in an Ising symmetry-breaking phase, for example,
the paired eigenstates |+) are nearly degenerate, in the D'TC they are separated by a quasienergy
very close to (exactly equal to in the thermodynamic limit) €2/2, where € is the driving frequency.
More generally, the quasienergy separation of eigenstate multiplets is related to the fractional
frequency response; for example, for a time crystal that responds with period N7, there would be
N eigenstates separated by quasienergy Q/N.

In any case, the definition above of spontaneous symmetry breaking applies equally well to
discrete time-translation symmetry; we just have to remember that the generator of the symmetry
is Uy itself. Hence, we obtain the definition,

Let Ur be the Floquet evolution operator corresponding to a time-periodic Hamiltonian. Then the
discrete time-translation symmetry is spontaneously broken in an eigenstate |) of Uy if there is no
linear combination of finitely many eigenstates of Uf, each of which has approximately the same quasi-
energy as |¢), such that the linear combination is a short-range correlated state.

We can also try to formulate a definition in terms of off-diagonal long-range order. Recall that
for this we wanted to consider operators that transform under the symmetry as #6(x)u~! = ¢®4(x).
However, here # = Uy, and because Heisenberg time evolution generally causes local operators to
spread, it is not clear that there will generally be local operators satisfying this condition.! Instead,
in Appendix A we show (given some extra technical conditions) that a sufficient condition for
discrete time-translation symmetry to be spontaneously broken in an eigenstate |) is that there
exists a family of local operators d(x) such that the unequal time correlator at large separations
fails to be T-periodic in the time difference, or more precisely

C(T;x,y) —C(@0;x,y) - 0 as|x—y| — oo, 19.
where
CnT; x,y) = (Y| Ugo)U"o(y) |¥). 20.

This is a discrete version of the diagnostic proposed in Reference 12, which was also referred to
as “spatiotemporal long-range order” in Reference 87.

Reference 91 constructed quasilocal operators satisfying this condition for the MBL D'TC discussed above,
but they are unlikely to exist for the prethermal time crystals discussed below because operators spread much
more rapidly in the absence of MBL.
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4.5. Prethermal Discrete Time Crystal

As we have already mentioned, disorder is not the only way to stabilize phases of matter in driven
systems; we can also consider systems exhibiting a Floquet prethermal regime as described in
Section 2.3. Here we describe specifically how to get a DTC in this regime. Recall that in
the Floquet prethermal regime described in Section 2.3, there exists a quasilocal unitary time-
independent change of frame ¢/ such that the Floquet evolution can be approximated according
to

U := UUU' ~ UPP™ = X0 21.

where X is a unitary satisfying X» = 1 for some positive integer N, and D is a quasilocal
Hamiltonian with [D, X] = 0. If we only observe the system at times t = nNT, it appears to be
evolving under the time-independent Hamiltonian D, and we expect the expectation values of lo-
cal observables to converge to those of a thermal state p of D. The temperature of this thermal
state is set by the expectation value of D in the initial state, because D is approximately conserved
in the prethermal regime.

What one can imagine happening is that the Zy symmetry generated by X could be sponta-
neously broken in the state p. This turns out to give a time crystal if we allow ourselves to observe
the system at times other than # = zNT. Indeed, letting N = 2 for simplicity, spontaneously bro-
ken Z, symmetry means there is an order parameter, represented by a local observable d with
XoX" = —4, such that Tr(9p) # 0. If we now observe the system at odd times, t = 21 + 1)T, we
find that

<6([2n n 1]T)) ~ Tr TP p(UP 5] = Te(X X p) = —Ti(3p) = —<a(2nT)>, 22.

which describes time-crystalline behavior. (Here, we used the fact that [D, p] = 0 because p de-
scribes a thermal state of D.)

For a concrete model, we can use the same model in Equations 12 and 13 that gave rise to an
MBL DTC, where we suppress MBL by weakening the disorder; for example, we can remove the
disorder completely so that all the couplings become translationally invariant. If we demand that
Qo == max{|g — 1/t [J;;1, 1J3], |B¥1, |11, 1531} <« = 27 /T, then the conditions of the theorem
discussed in Section 2.3 are satisfied with N = 2 and X = [, o/, and we find that Uy = ﬁ;"prox +
O(e=%/*). We can also compute D to leading order in €0/, which turns out to be

-1
D= Uyoio; + o)+ X | 6T it |ar oo,
(i,7) i

Notice that this commutes with X as expected (the Ising symmetry-breaking terms in the original
Hamiltonian have been rotated away by the change of frame U/). If J;; is large compared with the
rest of the couplings in Equation 23, then we expect D to have an Ising spontaneous symmetry-
breaking phase at low temperatures in spatial dimension d > 2, which gives rise to time-crystalline
behavior as previously described. However, at very late times #, = O(¢®/%0), the system starts to
absorb energy from the drive, and the prethermal description ceases to be valid.

It should be obvious from the above discussion that prethermal time crystals satisfy the
definition of time crystal from Section 4.1, because the state p is a many-body steady state (at least
until time #,). Let us show that it also satisfies the eigenstate definition from Section 4.4. First,
to describe the spontaneous symmetry breaking in the prethermal regime, we should consider
the eigenstates of the approximate Floquet evolution operator U™ = Xe~*T (or rather, its
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Figure 2

Flowchart clarifying the key differences between the MBL and prethermal DTC. Especially striking is the
following dichotomy: The MBL DTC is well established in d = 1 for systems with short-range interactions,
whereas long-range interactions tend to destabilize localization. However, the prethermal D'TC is forbidden
in d = 1 with short-range interactions, but can be stabilized in the presence of long-range interactions. At its
core, this fact owes to the absence of finite temperature Ising symmetry breaking in 4 = 1 with short-range
interactions. Furthermore, this difference again highlights the fact that MBL eigenstates behave as thermal
states with zero temperature, whereas the prethermal eigenstates of Hr behave as finite temperature thermal
states. Abbreviations: DTC, discrete time crystal; MBL, many-body localization.

unrotated version U™ = UTUL™" U, but one can check that conjugation by local unitaries

does not affect the time crystal definition). Furthermore, if D spontaneously breaks the symmetry
generated by X at finite temperature, then the corresponding finite-energy eigenstates of D
come in pairs |1) and ||) with opposite magnetization (88-90). Hence, we conclude that the
corresponding eigenstates of U™ are %(M) +||)), separated in quasienergy by /2, which
indeed satisfy the definition of a DTC from Section 4.4.

We conclude by summarizing the main differences between the prethermal DTC and the MBL
DTC (see also the flowchart, Figure 2). The prethermal DTC persists only until the exponentially
long heating time, whereas MBL persists forever (in a completely isolated system). The prether-
mal DTC has a dependence on the initial state; its energy density with respect to Hy = U'DU
must be sufficiently low that the thermal state with respect to D at that energy density sponta-
neously breaks the symmetry. By contrast, the MBL DTC will exist for any initial state (provided
that it is short-range correlated). Finally, the MBL DTC can exist in one dimension (and possibly
in higher dimensions as long as MBL itself can exist in higher dimensions), but with short-range
interactions, the prethermal D'T'C requires spatial dimension d > 2, because the Mermin—Wagner
theorem forbids a finite-temperature symmetry-breaking phase transition for a discrete symmetry.
With long-range interactions, that scale with distance as ~1/7* with 1 < a < 2, one can potentially
have a finite-temperature phase transition in one spatial dimension. However, the prethermaliza-
tion theorems described in Section 2.3 do not apply to such long-ranged interactions. Never-
theless, there is numerical evidence that a prethermal regime still exists in this case and hosts a
prethermal DTC (73, 74).
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Zoology of time crystals. The MBL DTC represents an example of localization protected order and can occur in isolated AMO
platforms with strong disorder. The prethermal time crystals (both discrete and continuous) have exponentially long lifetimes
controlled by an external field. In the case of Magnon Bose-Einstein condensates and helical order in NMR systems, although we have
placed them in the prethermal category, if the field strength is small (as discussed in Section 3), they are more appropriately labeled as
ancillary time crystals. Both MBL and prethermal time crystals have the property that their eigenstates look like ground states or
finite-temperature states of stationary systems. For the case of critical time crystals, simple resonance counting arguments suggest that
the DTC order O could decay slowly as a power-law, although experiments have not yet clearly observed this behavior. Ancillary time
crystals are so-named because their TT'SB depends on the existence of another ancillary symmetry being broken [i.e., U(1) symmetry
breaking in a superfluid]. For dissipative open systems, we distinguish two cases. The first is that of contractive dynamics where
subharmonic responses can be stabilized by simply damping away all perturbations. The second and more subtle case is that of
Langevin dynamics where dissipation comes together with noise (85). Included in this case is the situation described in Section 5.3,
where a system is coupled to a cold bath. Finally, we refer to mean-field time crystals as those models where either an all-to-all coupling
or a large-N limit enables a simplified few-body description of the dynamics. It is unclear whether such an approach can survive heating
effects even for an arbitrarily small integrability breaking perturbation (106). Abbreviations: AC, alternating current; BEC, Bose—
Einstein condensate; CDW, charge-density wave; DTC, discrete time crystal; MBL, many-body localization; NMR, nuclear magnetic
resonance; RKKY, Ruderman-Kittel-Kasuya—Yosida; RS], resistively shunted junction; TTSB, time-translation symmetry breaking; ?,
indicates unknown lifetime.

5. OTHER LONG-LIVED NONEQUILIBRIUM REGIMES
WITH TIME-CRYSTALLINE SIGNATURES

In addition to the MBL and prethermal time crystals described in Section 4, there are several other
strategies to impede thermalization. In the context of these alternate strategies, there has recently
been an explosion of both theoretical proposals and experiments in the broad landscape surround-
ing time crystals (48, 92-105). In this section, we focus on summarizing this zoology (Figure 3)
with an eye toward clarifying the distinction between these systems and MBL/prethermal time
crystals. We note that the phenomena described here will not necessarily satisfy the strict definition
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of time crystals discussed above. Therefore, one might want to describe them as time-crystalline
signatures, rather than true time crystals as such.

5.1. Ancillary Time Crystals

One way to realize time crystals is to piggy-back on another spontaneously broken symmetry
(Figure 3, row 5) (12, 107-113); we call this an ancillary time crystal. For example, a superfluid at
nonzero chemical potential is a time crystal as a result of the well-known time-dependence of the
order parameter (114). This is closely related to the prethermal continuous time crystal discussed
in Section 3, although there is one crucial difference: In that case, the U(1) symmetry is not a
symmetry of the Hamiltonian of the problem and, therefore, does not require fine-tuning but,
instead, emerges in the #* — oo limit, thereby evading the criticism that the phase winds in the
ground state only if the U(1) symmetry is exact. In the absence of such an emergent symmetry,
piggy-backing off another symmetry in some sense requires fine-tuning, because it is necessary to
ensure that the system possesses the primary symmetry, but such tuning may be physically natural
[e.g., helium atoms have a very long lifetime, leading to a U(1) symmetry]. Another classic example
of such an ancillary time crystal phenomenon is the AC Josephson effect.

One way to think about the piggy-backing mechanism is that a spontaneously broken sym-
metry allows a many-body system to effectively become a few-body system. Thus, time crystal
behavior can occur in such systems for the same reason that oscillations can persist in few-body
systems. They are not stable to arbitrary time-translation symmetry-respecting perturbations;
a perturbation that breaks the primary symmetry causes the oscillations to decay. Indeed, most
few-body systems are actually many-body systems in which a spontaneously broken symmetry
approximately decouples a few degrees of freedom. A pendulum is a system of ~10%* atoms that
can be treated as a single rigid body due to spontaneously broken spatial translational symmetry:
Its oscillations owe their persistence to this broken symmetry, which decouples the center-of-mass
position from the other degrees of freedom. The nontrivial feature of the MBL and prethermal
time crystals discussed above is that there is no microscopic symmetry other than time-translation
symmetry that is spontaneously broken; the rigidity thus comes solely from the time-translation
symmetry breaking.

5.2. Mean-Field Time Crystals

Mean-field theory gives a few-body description for a many-particle interacting system. Thus, it
is natural to look for time crystals in systems in which mean-field theory can be justified in some
limit. Although the microscopic models for such systems can be characterized by many degrees of
freedom, the behavior of the system can be captured via only a few degrees of freedom (Figure 3,
row 7; 47,105, 115-119).

A classic example of this physics is captured by the Dicke model of N two-level atoms inter-
acting with a cavity photon mode (120). By integrating out the photon degrees of freedom, the
atomic system reduces to an all-to-all coupled spin model amenable to a mean-field treatment. At
the same time, because of the permutation symmetry of the atoms, the N spins can be recast as
a single large spin S = N/2 interacting with the photon field. In this case, the observation of the
time-crystalline behavior owes to the existence of a few-body description for the system rather
than the stabilization of DTC order via interactions (as in the MBL and prethermal cases; 119).
Furthermore, the all-to-all interactions prevent the application of the definition of spontaneous
symmetry breaking in terms of two-point correlators at large spatial separation (see Section 4.4),
so it is an open question in what sense one should think of this model as a true time crystal.
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More specifically, from the few-body description one immediately observes the existence of
two distinct phases controlled by the strength of the coupling between the atoms and the photon
mode. When the coupling is small, the ground state is given by the vacuum mode of the cavity and
all the atoms in their ground state. However, when the coupling is large, there are two degenerate
ground states characterized by a coherent superposition of states of the atoms and a nonzero
number of photons in the cavity—this corresponds to the celebrated superradiant state. To this
end, time crystalline behavior can be observed by engineering a protocol that rotates the system
between the two degenerate ground states within each period (119). For generic initial states, it
is essential to consider a leaky (i.e., dissipative) cavity, where the photons can escape, in order to
stabilize time crystalline behavior. This dissipation plays two complementary roles. First, it helps
damp the system from an arbitrary initial state into a Dicke ground state and second, it can extract
excess energy from the system and prevent Floquet heating.

However, this simple picture survives only when the mean-field description is valid. In the
presence of generic interactions that break the mean-field description, one expects the time crys-
talline behavior to become less robust. In this case, such generic interactions are not the crucial
ingredient for stabilizing the time crystalline phase (as they are in the MBL and prethermal case)
but rather serve as disrupting force moving the system away from the solvable Dicke limit (106).
To this end, demonstrating the generic stability of such systems is an open question that may lead
to new avenues for the realization of many-body time crystalline order (105).

Finally, let us mention the models of References 111 and 113. In these models, the time-
crystalline behavior is stabilized in a limit in which the number N of bosons in an external trap goes
to infinity. This can be thought of as roughly analogous to the large N limit in the Dicke model,
and leads to a mean-field description of the system. Because these models involve a Bose-Einstein
condensate (BEC), one might also view them as ancillary time crystals related to a spontaneously
broken U(1) symmetry. However, due to the difficulty in applying the standard definition of spon-
taneous symmetry breaking for a BEC thatis confined to a finite region by an external trap (similar
to the difficulty we mentioned before for the Dicke model), such statements cannot necessarily be
made precise.

5.3. Dissipative Stabilization, Open Systems, and Classical Time Crystals

Thus far, we have defined a time crystal to be a phase of matter of a closed system. But suppose
we relax this condition and consider open systems. Might we consider some open systems to be
time crystals? As we already saw in the Dicke model, a dissipative bath (Figure 3, 70w 6) can play
a significant role in preventing the drive-induced heating of a Floquet system and thus stabilize a
wider range of strongly interacting time crystalline phases (17, 48, 104, 105, 121-124). In systems
near thermal equilibrium, a bath that is itself in equilibrium will help the system to reach equilib-
rium. But in a driven system, the bath can, instead, enable the system to reach a nonequilibrium
steady state (104, 105). Imagine coupling a bath very weakly to a system that would, in isolation, be
prethermal. The bath could, conceivably, have no effect other than to counteract the slow heating
of the system, thereby enabling the time crystal to survive to infinite times. In such a case, we
would probably consider such an open system to be a time crystal. By contrast, if the bath were
to play the dominant role in stabilizing time crystal order, such as in the extreme limit of purely
contractive dynamics in which there is damping but no noise, we would probably not consider this
to be a time crystal (85). Indeed, open systems can have quite different physics than closed ones:
For instance, even a zero-dimensional open system can undergo a quantum phase transition (e.g.,
in the Caldeira—Leggett model; 125), and the entropy of an open system can decrease because
entropy can be dumped into the bath. It is an important open problem to determine if there is a
sharp definition of a time crystal in open systems that retains the key features of the closed system
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time crystal. One possible hint along these lines relates to the physics of probabilistic (noisy) 1D
cellular automata (126). Because such automata are able to simulate a deterministic Turing ma-
chine, they can directly realize a period-doubled time crystal by implementing the program that
flips all bits every cycle. If such a probabilistic cellular automata could then be faithfully simulated
by a classical Hamiltonian of coupled oscillators interacting with a Langevin bath, this would nat-
urally qualify as a classical dissipative time crystal. Recent efforts have explored this possibility in a
simple, generic model, but rather than finding a true classical time crystal, one observes thermally
activated behavior, with an intriguing nonequilibrium phase transition (85).

5.4. Critical Time Crystals

Finally, we focus on disordered long-range interacting systems in which the power-law exponent
matches the dimensionality of the system, leading to the phenomenon of critical thermalization
(49, 50); importantly, this behavior is present in some of the platforms in which time crystalline
order was first observed (45, 127).

The nature of this critical thermalization behavior can be illustrated via a simple resonance
counting argument (which holds in the weak interaction limit with strong disorder in the local
effective magnetic field). Two spins can interact if the interaction between them is greater than
the difference between their local effective magnetic fields; when this occurs, we say that they are
in resonance. When the power law with which the interaction decays matches the dimension of
the system, a degree of freedom at the origin has probability «1/7 to find a resonance in a thin
spherical shell at radius -

CdJ,O g

24.
woor’

—d
dP.es = (%) p x Cyr''dr =

where J and I are the interaction and disorder strengths, 4 is the dimension, Cy is a constant, and
p is the density of spins in the system. The probability that a spin at the origin interacts with a
spin in a thin spherical shell at radius 7 is then

CyJp dr

dPint = (1 - Pint)W ,

. 25.

The factor of (1 — P;,.) on the right-hand side is the probability that the spin at the origin did not
already interact with another spin closer than 7. Integrating over 7, we find the probability that
the spin at the origin has not interacted with any spin within radius 7 is

ag\ -
1 — Polr) = (7) . 26.

At the same time, a resonance only becomes meaningful for the dynamics of the system at times
later than the inverse of the interaction strength. At time ¢, the dynamics can only affect resonances
that have separation less than R* = (tJ)/?. The deviation from equilibrium, at some time ¢, is
captured by the probability thata spin at the origin has not interacted with a spin within radius R*:

27.

a Cqlp
0\ @7
1- Rnt(R*) = (ﬁ)
In other words, the deviation from equilibrium decays as a power law in time.

This behavior is quite distinct from the different thermalizing behaviors we have considered

so far. On one hand, the system indeed approaches thermal equilibrium and thus does not have an
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infinitely long-lived nonergodic phase such as MBL. In fact, the long-range nature of the interac-
tions present in such systems preclude them from exhibiting an MBL phase (128). On the other
hand, instead of a natural timescale related to the strength of the interactions, the system exhibits
a scale-free power-law approach to the equilibrium state. The result is a long-lived regime during
the approach to the featureless infinite temperature state, during which transient discrete time
crystalline order can be observed (Figure 3, row 4).

At first sight, this behavior is reminiscent of prethermal time crystalline order, but we empha-
size a few crucial distinctions. First, in prethermal time crystals, the DTC order depends crucially
on the energy density of the initial state, which sets the temperature of the cryptoequilibrium ther-
mal state of the prethermal regime. In contrast, in critical time crystals, one can observe transient
DTC order across the entire spectrum of the system. Second, prethermal time crystals exhibit an
exponentially long thermalization timescale controlled by the frequency of the drive, but critical
time crystals do not have such a simple dependence on the frequency and no parameter by which
the heating time can be straightforwardly extended.

Finally, let us add a caveat. It is not clear whether the simple resonance counting arguments
presented here survive the addition of many-body interactions; more precisely, the theoretical
analysis that leads to a power-law decay considers a pair depolarization process in which a pair of
spins depolarize together via a resonance, but does not consider the effect of multispin (i.e., beyond
two-body) resonances.

6. EXPERIMENTAL OBSERVATIONS OF TIME CRYSTALS

In this section, our goal is to summarize several recent experiments (44-46), which have demon-
strated a sufficient level of quantum control in order to observe certain features of DTC order.
These experiments help to highlight the viewpoint that the subharmonic oscillations intrinsic to
a time crystal can be observed in several different experimental platforms, each of which begs
a different theoretical explanation. At the same time, limited by a combination of experimental
noise and decoherence, the combined results of experiments to date point to the need for addi-
tional studies to truly demonstrate the presence of long-range order in both space and time. Pro-
grammable in each of the experimental platforms, there are several unique tools to control time
crystalline behavior and to delay the onset of thermalization, including disorder and long-range
interactions. However, there are limitations as well, and these point to the following juxtaposition:
Systems with many degrees of freedom are plagued with inhomogeneities and limited individual
control, whereas systems with more control are necessarily smaller and have pronounced finite
size effects. Some of the experimental platforms and the observed signatures are summarized in
Figure 4.

6.1. Trapped Atomic Ions

Trapped atomic ions are a versatile experimental platform for investigating time crystals (44).
Atomic ions are confined with external electric fields, and certain ion trap geometries admit laser-
cooled crystals; for example, as shown in Figure 54, a 1D ion Coulomb crystal can be generated
by using a linear Paul trap.

The interaction between trapped ions is inherently long ranged due to the Coulomb interac-
tion, but the relevant degree of freedom here is an internal atomic spin degree of freedom, which
is represented by a pair of atomic levels behaving as an effective spin-1/2 particle or qubit. These
are typically hyperfine levels that are also used as atomic frequency standards, so they enjoy funda-
mental 7} and 73 coherence times that can approach hours. The spins can be initialized through
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Figure 4

Similarities in the observed signatures of discrete time crystal behavior in three different experiments. 7op row: A 1D chain of trapped
ions, the oscillations in time of the magnetization of individual !”'Yb* ions, and their Fourier transform. Middle row: An NV center in
diamond, oscillations in the magnetization of a dense ensemble of NV centers, and their Fourier transform. Bottor row: Ammonium
dihydrogen phosphate, oscillations in the bulk *! P nuclear spin magnetization, and their Fourier transform. In the absence of long-
range interactions, perturbations to the 7-pulse cause each experiment to observe a split Fourier peak corresponding to beating of the
magnetization oscillations. When long-range interactions are added, the system exhibits a rigid v = 1/2 subharmonic peak.
Abbreviation: NV, nitrogen vacancy. Panels # and 4 adapted from References 44 and 45, respectively, with permission from Nature.
Panel ¢ adapted from Reference 46 with permission from Physical Review Letters.

an optical pumping process: By applying resonant laser radiation that couples the spin states to
appropriate short-lived excited states, each spin is initialized with >99.9% state purity in a few
microseconds. The magnetization of each spin can also be measured at any time through stan-
dard spin-dependent fluorescence detection, resulting in greater than 99% detection efficiency
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(@) Radiofrequency linear trap used to prepare a 1D crystal of atomic ions. For sufficiently strong transverse confinement, the ions form
a linear crystal, with an image of 64 ions shown above with characteristic spacing 5 wm for 7'Yb* ions. () Penning trap used to
prepare a 2D crystal of atomic ions. For sufficiently strong axial confinement, the lowest energy configuration of the ions is a single-
plane triangular lattice that undergoes rigid body rotation, with an image of ~200 *Be* ions shown above with a characteristic spacing
of 20 pm. (¢) Schematic three-step Floquet cycle used in the trapped ion DTC experiments. The first step corresponds to global
rotation (with -pulse error €). The second step corresponds to strong long-range interactions. The third step corresponds to the
application of controlled on-site disorder using a single-site addressing laser beam. In the case of NV centers, the Floquet protocol is
similar although the disorder is not applied individually to each spin. In the case of AdP, there is negligible disorder. Abbreviations: AdP,
ammonium dihydrogen phosphate; DTC, discrete time crystal; NV, nitrogen vacancy; ODE, spin-dependent optical dipole force; rf,
radiofrequency. Panel # adapted from Reference 129 with permission from Nature, and panel # from Reference 130.

per spin. Laser cooling can prepare the motional states of the ions to near the ground state of
harmonic motion (131), which is important for the control of spin—spin interactions as detailed
below.

The Coulomb interaction can be modulated with spin-dependent external classical electro-
magnetic forces (optical or microwave), resulting in an effective many-body Ising interaction be-
tween the spins (132). Accompanied by resonant spin excitations or spin level shifts that provide an
effective magnetic field along any axis, it becomes possible to realize a long-range transverse-field
Ising Hamiltonian of the form

Ji . o
Hps = 2}: |l,_fj|aa;a; +By2i:ay’+2i:B’zaz’. 28.
An important feature of the ion platform is that the effective field along any axis can be made
site-dependent, which allows for programmable disorder and thus enables MBL physics to be
probed (128, 133). Disorder in the couplings J;; can also be generated by controlling the detuning
associated with the laser beams that modulate the spin-dependent forces (134). The Ising interac-
tion falls off with distance as 1/7%, where the exponent a can be experimentally tuned from o = 0
(infinite range) to a = 3 (dipole—dipole) by appropriately adjusting the modulating force on the
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atomic ions (132, 135-137). This tuning of the interaction range is crucial in determining the
nature and effective dimensionality of the interactions.

To observe time crystalline behavior in the trapped ion system (44), the authors drive up
N = 14 atomic spins by applying periodic m-pulses (or 7 + e-pulses) to the Hamiltonian of
Equation 28, as depicted in Figure 5S¢ (19, 44). For up to ~10* Floquet cycles, a measurement
of the spin—spin autocorrelation function (Y| o) () (0) |o) is performed for each of the indi-
vidual spins 7. In the absence of interactions, the oscillations of each spin are sensitive to the precise
value of the global rotation (approximate 7 -pulse) induced by H, (Equation 13) and are therefore
expected to track the perturbation € = |g — 1|. This results in a splitting of the Fourier response
spectrum by 2e¢ in the frequency domain, precisely as expected (Figure 15). Adding in the field
disorder term in H, to the ion Floquet period causes the individual spins to further precess at
different Larmor rates and dephase with respect to one another. Finally, by adding in the long-
range Ising interactions into H; to complete the Floquet period, many-body synchronization is
restored (Figure 44; 44). The key observation here is the rigidity of the ion’s temporal response;
it is locked to twice the Floquet period, even in the face of perturbations to the drive in H,. This
rigidity persists for different initial states and reasonable strengths of perturbations (depending
on the effective Ising interaction strength), whereas for even larger perturbations the central peak
amplitude decreases and the variance of the subharmonic feature increases. Furthermore, measur-
ing this variance of the period-doubled Fourier component of the spin magnetization and plotting
the maximal variance versus both the Ising interaction strength and the drive perturbation leads
to a qualitative phase diagram (Figure 15; 19).

Although there is on-site field disorder in the experimentally implemented ion Hamiltonian,
this is insufficient to localize the system (138). However, as one might have expected for MBL
behavior, the experiment observes the time crystalline lifetime to be independent of the initial state
for either a cold or hot initial state. Therefore, the experimental observations are also inconsistent
with a prethermal time crystal. One possible explanation is that the system has not yet fully locally
thermalized before being cut off by experimental imperfections such as noise and decoherence.
Although trapped atomic ions represent a particularly clean and well-controlled system to explore
time crystalline order, the system sizes thus far explored remain relatively small. Understanding
how to meaningfully scale the ion Hamiltonian to the thermodynamic limit brings up a subtle
point. In particular, for fixed laser detuning, the interaction decays as 1/7° at large distances (134).
Thus, in order to realize physics that requires slower decay profiles (i.e., prethermal time crystals
in 1D; 74), as one increases the number of ions in the system, one must also modify the detuning
appropriately.

6.2. Nitrogen-Vacancy Centers in Diamond

We now turn our attention to the opposite limit and consider a truly many-body system com-
posed of optically active spin defects in the solid state, namely nitrogen-vacancy (INV) centers
in diamond (139). Each individual NV center constitutes an S = 1 electronic spin, which can be
optically initialized and read out in direct analogy to the ion discussions above. Although most
experiments on NV centers focus on their properties as long-lived room-temperature qubits,
recent experiments (45, 127) on dense NV ensembles have led to the observation of discrete
time crystalline order. As in the ion case, three central ingredients enter the NV experiments
(Figure 6). First, there exist spin-level shifts of the NV resonances owing to two sources of
intrinsic disorder: random positioning of the NV centers within the diamond lattice and the
presence of additional paramagnetic impurities. Second, the NV centers interact with one another
via long-range, magnetic dipole-dipole interactions. Third, controlled driving (to realize the
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Experimental setup and observation of discrete time-crystalline order. (#) NV centers interact with one
another via long-range dipolar interactions. (4,c) By driving all three spin sublevels of the NV center, it is
possible to implement a Floquet sequence that looks like a clock Hamiltonian that permutes the populations
cyclically between the spin states. (d) Dipolar interactions stabilize an » = 3 DT'C within the observed
number of Floquet cycles. Abbreviations: DTC, discrete time crystal; FFT, fast Fourier transform;

NV, nitrogen vacancy. Figure adapted from Reference 45 with permission from Nature.

requisite approximate 7 -pulses) can be performed via microwave excitation. In combination, this
leads to the following schematic Hamiltonian:

H(t) = Z Q.(0)ST + QST+ AST+ Y Uy/r)(STST+ S1ST - §38%), 29.

ij

where §¥ are Pauli spin-1/2 operators acting on an effective qubit spanned by two of the spin sub-
levels of the NV center. One important feature to note is that the disordered on-site fields, A;, ex-
hibit an approximate standard deviation that is significantly larger than the average dipolar interac-
tion strength. Although this nominally puts the system in the strong disorder regime, as discussed
in Section 5.4, one does not expect localization to occur, owing to the long-ranged interactions.
At ts core, the central observation in the NV experiments is similar to that of the ions: Interac-
tions stabilize the subharmonic response of the system to perturbations of the drive (Figure 4b).
In the NV experiments, the authors measure the ensemble magnetization of ~10® NV spins
as opposed to the ions, where for a small 1D chain, it is possible to read out the correlation
function for each ion. In addition to exploring » = 2 time-crystalline order, the authors leverage
the spin-1 nature of the NV center to explore the stability of an » = 3 DTC as well. There, they
utilize a cyclic driving scheme (Figure 6) between the NV’ three sublevels and again observe
an interaction stabilized subharmonic Fourier peak. This example provides a natural intuition
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for how to realize a Z, D'TC by considering an n-level system and performing a clock-drive that
cyclically permutes the populations.

Perhaps the most intriguing question to ask is the following: Given the marked similarities
between the observations in the ion and NV experiments (Figure 4), is the origin of time crystal
behavior in these two platforms the same? Prevailing wisdom is that this is not the case. Unlike the
1D ion spin chain, the NV experiments are performed in a bulk three-dimensional diamond sam-
ple. Coupled with the fact that the dipolar interactions exhibit a 1/7° power-law tail, such a system
is not expected to exhibit MBL despite the presence of strong disorder.? Following the flowchart
in Figure 2, one might naturally suspect a possible prethermal origin. However, although the
NV centers are optically pumped to an extremely low—entropy state (i.e., almost all spins in the
|z2s = 0) state), this state represents an extremely high—temperature state with respect to the orig-
inal dipolar Hamiltonian. Because one only expects the existence of prethermal time crystalline
order when the initial state is at low enough energy density to be ordered with respect to the
prethermal Hamiltonian, it is hard to envision that such an optically pumped NV state could lead
to a prethermal time crystal. Rather, as explained in detail in Section 5.4, the NV system may cor-
respond to a so-called critical time crystal in which the DTC order exhibits a power-law decay as
the system ultimately approaches thermal equilibrium. The experiment has not observed a clear
power-law decay with time, and there is evidence that the effective disorder is in fact time depen-
dent, but in some other respects (for example, the phase diagram) there appears to be agreement
with the predictions from a theory of critical time crystals (45, 49); this theory, which is based
upon resonance counting arguments, is expected to hold only for initial transient dynamics (see
Section 5.4), and a deeper understanding of the late time behavior observed in the experiments
requires further investigations (127).

6.3. Nuclear Magnetic Resonance Experiments

Finally, we now move onto a third experimental platform that further highlights our discussion
from the previous section. Namely, that despite nominally similar observations of an interaction-
stabilized, subharmonic response (Figure 4c), it is possible for this response to have a distinctly
different conceptual origin. Here, we focus on NMR experiments in ammonium dihydrogen phos-
phate (AdP) (46, 141). More broadly, the isolation associated with nuclear spins in solids makes
them an interesting candidate for quantum nonequilibrium studies. Coupled with the ability to
perform coherent driving using radiofrequency fields, such systems also exhibit the necessary in-
gredients for realizing the types of Floquet evolution that can host time crystals (46, 141).

The relevant degrees of freedom in AdP are the spin-1/2 *'P nuclei. Much like NV centers,
these nuclear spins interact via magnetic dipolar interactions. However, the key distinction here is
the complete lack of disorder. Unlike N'Vs, which are randomly positioned within the diamond lat-
tice, AdP exhibits a 100% occupied crystal lattice. Coupled with Hahn echo measurements, which
suggest a small inhomogeneous spread in the spin levels of the 3'P nuclei, one does not expect
these experiments to be dominated by disorder. Although similar analyses rule out the possibility
of MBL (dipolar interactions in 3D, as with NV centers; little or no disorder, unlike with NV cen-
ters) and prethermal (high-temperature initial state, as with NV centers) origins for the observed
time crystalline behavior, the lack of disorder also rules out the possibility of a critical time crystal.

ZHowever, the conventional wisdom that MBL can never happen with interactions that decay slower than
some power has recently been questioned (140).
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In fact, the origin of the time-crystalline signature in this system is likely to be much more
straightforward than any such mechanisms. In a rotating frame, the time-dependent Hamiltonian
of the system nearly commutes with each single-spin magnetization o7. The time-crystalline
regime observed in the experiment could then simply correspond to slow relaxation of (¢7?) in
this rotating frame. If this is the case, the decay rate of the oscillations would be determined by
the strength of the integrability-breaking terms and, in particular, the rate at which they induce
decay of (o7). Within this context, one would generally not call this phenomenon a time crystal
according to the definitions of Section 4, because it relies on being close to integrability and is not
stable to generic many-body perturbations. For a related perspective, see Reference 142.

Finally, we now turn to two other NMR studies of systems that are approximately described
by central spins interacting with a larger number of satellite spins that do not interact with each
other. P-doped Si has been isotopically purified so that only 0.005% of the Si is 2?Si, in which
case the physics is approximately described by a model in which a P impurity spin interacts with
the 2%Si nuclear spins (48). There is disorder in the locations of the °Si nuclei, but the system is
3D and has a hot initial state, as in the case of NV centers in diamond. In the organic molecules
acetonitrile, trimethylphosphite, and tetrakis(trimethylsilyl)silane, the nuclear spins of 1*C, 3!P,
and ?°Si interact with, respectively, 4, 10, and 37 satellite H nuclear spins (47). In this case, the
absence of a central spin leads to oscillations that are not locked to half the frequency of the drive,
but the presence of a central spin leads to oscillations at half the frequency of the drive even for
quite large deviations from a perfect 7-pulse. These systems are not in the thermodynamic limit,
of course. Furthermore, there is weak or no disorder, and the initial state is too hot to be in a
prethermal DTC.

7. BEYOND TIME CRYSTALS

A time crystal is the simplest (and most readily accessible experimentally) example of a new phase
of matter that occurs in isolated quantum systems. Going forward, we expect isolated quantum
systems to be the setting for many more new phases of matter.

One avenue of exploration is to go beyond Floquet systems and instead consider quasiperiodi-
cally driven systems in which the drive contains at least two different incommensurate frequencies
(that is, their ratio is an irrational number). Such systems exhibit slow heating at high frequency
provided that the driving is sufficiently smooth (143). In such a regime, one can consider so-called
time quasicrystal responses that are sharply distinct from the trivially synchronized response (143,
144). Roughly, this means that whereas a quasiperiodic drive can be thought of as tracing out a
path at an irrational angle through a higher-dimensional periodic space, the response of the time
quasicrystal phase can be thought of as a trace through a different higher-dimensional space with
a larger period.

Let us now return to Floquet systems, where in addition to spontaneous symmetry breaking
phases there can also be new topological phases of matter. In equilibrium, although phases were
once thought to be characterized purely by their pattern of spontaneous symmetry breaking, it
is now known that at zero temperature there are also topological phases, which are distinguished
by more subtle features of quantum entanglement, possibly in interplay with the microscopic
unbroken symmetries. As we discussed in Section 2.2, in MBL systems all eigenstates have the same
properties as ground states, so there can be sharply distinct regimes in such systems distinguished
by the topological order of their eigenstates. However, in Floquet-MBL systems there can also be
new topological phases of matter that have no static analog (18, 37, 38, 145-150).

Continuing the theme of eigenstate properties, one quite general way to characterize phases
of matter in Floquet systems is in terms of eigenstate loops (38, 151). Consider an eigenstate |)
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of the Floquet evolution operator U, and define [ (2)) to be its time evolution under the time-
periodic Hamiltonian H(z), i.e.,

d
VO =HOW), v ) =¥). 30.

Because | ) is an eigenstate of Uy, by definition | (7"))|y) (up to a global phase factor). So, if we
mod out by the global phases, each eigenstate defines a loop in the space of ground-state-like states.
(Recall that when the system is MBL, each eigenstate |¢) can be written as the ground state of
some fictitious quasilocal gapped Hamiltonian. It follows that so can |y (z)) for any 7). One can also
generalize this notion to cases with spontaneous symmetry breaking by considering an eigenstate
multiplet instead of just a single eigenstate. From very general (though not completely rigorous)
points of view, one can argue that the classification of such loops, where a symmetry G is im-
posed on the instantaneous time-dependent Hamiltonian, is in one-to-one correspondence with
the classification of static phases with symmetry G x Z. Here, the Z reflects the fact that Floquet
systems have an inherent discrete time-translation symmetry. In a time crystal, this symmetry is
spontaneously broken, but it can give rise to nontrivial symmetry-protected phases as well.

However, eigenstates are not the whole story. There exist distinct regimes of Floquet-MBL
systems that cannot be distinguished just by looking at a single eigenstate at a time (145-148,
150). Rather, these phases are distinguished by some nontrivial properties of the Floquet evolution
operator acting on the entire Hilbert space. Finding general formalisms to describe such phases
remains an open problem.

APPENDIX A: MULTTPLETS AND THE DEFINITION
OF SPONTANEOUS SYMMETRY BREAKING

In Section 4.4, we made some claims about the equivalence between different definitions of sponta-
neous symmetry breaking. Here, we give a proof of these claims. We need to make some additional
technical assumptions that, however, are satisfied in all of the models that we consider.

The key assumption is that eigenstates always come in multiplets with a particular structure.
To formalize this idea, we can make the following definitions:

Definition. An eigenstate multiplet of a Hamiltonian H or Floquet evolution operator U is a subspace
spanned by a collection of a finite number of eigenstates of H or U, such that the subspace has a basis
in which each basis state (which is not necessarily an eigenstate) is short-range correlated, with the
following properties:

1. The different short-range correlated basis states are locally distinguishable: That is, in the
vicinity of any point x in space, there exists a local observable d(x) whose expectation value
distinguishes between all the different short-range correlated basis states for the multiplet.

2. The different short-range correlated basis states are not connectible by local operators; that s,
if |1) and |A’) are two different short-range correlated basis states, then the matrix element

(AW =0, 31.

for any local operator 4 (possibly up to corrections exponentially small in the system size).

3. The symmetries of H or Ur permute the short-range correlated basis states (possibly up to
global phase factors), and the symmetry action is transitive, i.e., any two short-range correlated
basis states are related by some symmetry.

Else et al.



Then we can define the following:

Definition. A symmetry # is spontaneously broken in a given eigenstate multiplet if the permutation
action of # on the short-range correlated basis states is nontrivial, or in other words, the short-range
correlated basis states are not invariant under the symmetry up to a global phase.

[For simplicity, we only consider symmetries #, which are central elements in the whole symmetry
group of H or Up; i.e., they commute with all the other symmetries. This is certainly true for time-
translation symmetry. Combined with the transitivity condition on the permutation action, this
ensures that any given short-range correlated basis state is invariant under # (up to global phase)
if and only if they all are.] The physical interpretation of the short-range correlated basis states is
that they are the symmetry-broken states that emerge as nondegenerate eigenstates when all the
symmetries are lifted explicitly by infinitesimal perturbations in the Hamiltonian (for example |1)
and ||} in the case of a spontaneously broken Ising symmetry).

What one can show is that, in general, for a symmetry #, |{/) is a #-invariant eigenstate in a
multiplet, and 4(x) is a family of local observables (the expectation values of which distinguish
different symmetry-breaking states in the multiplet); then generically we have

(Wl udxyu 5(y) 1¥) — (¥ 16@)ay) 1Y) + 0 as o —y| — o0, 32.

even as |x — y| — oco. Conversely, if Equation 32 is satisfied, then # must be spontaneously broken.
Setting # = Uy gives the unequal time correlator discussed in Section 4.4.2, whereas choosing an
d(x) such that #6(x)u~! = ¢4(x) for some phase factor ¢ gives the off-diagonal long-range order
discussed in Section 4.4.1.

To see Equation 32, first note that, from the definition of an eigenstate multiplet, there exists
a finite set A, and a permutation o: A — A, such that A labels the short-range correlated basis
states of the multiplet, which we write as {|A): A € A}, and « acts on the basis states as #|A) =
Bilo (L)) for some global phase factor ;. Let us consider a #-invariant (up to global phase) state
|) in the multiplet, and expand it in terms of the short-range correlated basis,

) =Y e lh), 33.
LeA
where the #-invariance of |¢) implies we must have |c,)| = |¢; for all A.
Now we define the following:

Ca(x,y)ZZ |E)\|200()»)(x)0)»(y)) 34

A
Cy)=Y_ lal o @0 ), 35.

3

where 0, (x) = (A| 6(x) |A). Clearly, if « is not spontaneously broken, then o(A) = 4 for all A, and
hence C,(x,y) = C(x, y). Furthermore, if we have translational invariance such that 0, (x) = 0, (y) :=
03, then we can verify that

1
Cn(xay) - C(x,)’) = _E Z |KA|2(00(A) - ok)zy 36.
s

and so we have conversely that C,(x, y) = C(x, y) implies that the # is not spontaneously bro-
ken. Without translational invariance, it is possible to have an accidental cancellation such that
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Cy(x,y) = C(x, y) even if u is spontaneously broken, but certainly this would not happen generi-
cally.

Let us now show that C,(x, y) # C(x, y) is equivalent to Equation 32. Indeed, from
assumption 2 in the definition of the eigenstate multiplet, we find that

(Wl ub@yu" o) 1Y) =Y lexl” (M iy o(y) 11), 37.
s

and so we see that

(Yl udeyu 5y) 1) — Cowe,y) = Y lesPCalub()u™, ()], 38.

A

where we have defined the connected correlator,
CulA, Bl = (M ABLY — (ALY (A B2, 39,
Similarly, we find
(Y16@)i0) 1) — Clay) = Y lenPCi[6(x), 6(»)]. 40.
s

As |x — y| — o0, the connected correlators on the right-hand side of Equations 38 and 40 go to
zero, and so we obtain Equation 32 if and only if C, (v, y) # C(x, y).
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