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Abstract

We review the physics of pair-density wave (PDW) superconductors. We
begin with a macroscopic description that emphasizes order induced by
PDW states, such as charge-density wave, and discuss related vestigial states
that emerge as a consequence of partial melting of the PDW order. We
review and critically discuss the mounting experimental evidence for such
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PDW order in the cuprate superconductors, the status of the theoretical microscopic description
of such order, and the current debate onwhether the PDW is amother order or another competing
order in the cuprates. In addition,we give an overview of the weak coupling version of PDWorder,
Fulde–Ferrell–Larkin–Ovchinnikov states, in the context of cold atom systems, unconventional
superconductors, and noncentrosymmetric and Weyl materials.

1. INTRODUCTION

A pair-density wave (PDW) is a superconducting (SC) state in which the order parameter varies
periodically as a function of position in such a way that its spatial average vanishes. It is a phase
of matter defined in terms of broken symmetries (1–7). In this review, we characterize the macro-
scopic properties of such a state precisely and discuss the status of the (incomplete) theoretical
understanding of the sorts of lattice-scale interactions that give rise to it (the mechanism), how it
is distinct from other phases with which it shares certain features, and the way in which the partial
melting of the PDW can give rise to daughter phases with a variety of patterns of vestigial order.
In addition to its intrinsic interest, there is now evidence that suggests significant (although prob-
ably not long-range correlated) PDW order exists in at least some regions of the phase diagram of
the cuprate high-temperature superconductors.We critically review this evidence and then spec-
ulate on the broader significance of these sightings to the understanding of broader issues in the
physics of the cuprates. We also discuss other strongly correlated systems, including other un-
conventional superconductors, certain cold atom systems, and carefully engineered mesoscopic
devices, in which PDW and PDW-related states play an important role.

In a time-reversal- and inversion-invariant Fermi liquid (FL), the SC susceptibilities χsc(q,T )
at q = 0 diverge as the temperature lowers toward a critical value. Under some circumstances,
there can be a local maximum in χsc(q) at nonzero q, but it is always smaller than χsc(0). Weak
breaking of time-reversal symmetry can change the situation. For example, in the presence of a
Zeemanmagnetic field, theT → 0 divergence of χsc(0) is cut off,with the result that themaximum
of χsc can occur at a wavenumber with |q| ∼ εZ/vF, where the Zeeman energy is εz = gμBH and
vF is the Fermi velocity. Although there is no longer a strict instability to an SC state at arbitrary
weak interactions, under some circumstances such a system can form a finite q SC phase at low
T . This is the long-sought Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) phase (1, 2), which (as we
briefly review) has been plausibly shown to exist in certain materials and cold-atom systems.

However, it has been conjectured that, for systems in which the interactions are not weak, a
PDW could occur independent of any explicit time-reversal symmetry breaking. In that it does
not necessarily break time-reversal symmetry, the PDW is thermodynamically distinct from an
FFLO state; that the spatial average of the SC order vanishes distinguishes the PDW from a less
exotic phase with simply coexisting charge-density wave (CDW) and SC order. However, though
it is straightforward to examine the phenomenological consequences of the existence of a PDW
in terms of the standard methods of effective field theory, developing a microscopic theory has
proven challenging. It is not favored at weak coupling, and a treatment of the strong coupling
problem faces obvious challenges. In this review, we focus on the phenomenological aspects and
comment briefly on the microscopic models in Section 5.

Thus, this is less a review of a well-settled subject than a progress report on an interesting,
rapidly developing subject. The experimental evidence—especially in the cuprates—is sufficiently
dramatic that it cannot be ignored.However, there is not yet the web of consistent evidence from a
wide variety of experiments that one would ideally count on to establish the correctness of any par-
ticular perspective on the properties of such complex materials. This, combined with the absence
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of a reliable microscopic theory, means that a portion of the discussion is necessarily speculative.
It is part of what makes the subject so exciting.

2. PHENOMENOLOGICAL THEORY

2.1. Phenomenological Theory: Ginzburg–Landau–Wilson Formulation

The simplest cartoon of a PDW state is one in which the gap function varies sinusoidally as�(x) ∼
cos(P · x). As reviewed in Section 3, a state with this spatial dependence and a periodicity of a few
lattice spacings was proposed to occur in the cuprate superconductors. This state is similar to
the expected FFLO states when a Zeeman magnetic field is applied to a usual, weak-coupling,
spin-singlet superconductor (1, 2): The Larkin and Ovchinnikov (LO) state has a similar spatially
modulated magnitude,whereas the Fulde–Ferrell (FF) state has a constant magnitude but spatially
varying phase, i.e., �(x) ∼ eiP·x (8, 9). As noted in the introduction, FFLO phases differ from
other PDW states in that, reflecting their origin, they have finite magnetization and long, field-
dependent periodicities that are many times the SC coherence length.However, though it has not
been emphasized in the previous literature, the same sort of induced subsidiary orders should be
expected in an LO state as in a simple PDW, so we treat the two sorts of states simultaneously here.

In general, a PDW state has secondary orders whose existence is dictated by symmetry. These
induced orders have played an important role in understanding the relevance of PDW order in
the cuprates (4–7, 10–14). Primary among these is CDW order. In addition to exhibiting an in-
duced CDW order, this unidirectional PDW state also has nematic and spatially uniform charge-
4e SC orders. These induced order parameters can develop long-range order when the original
PDW order does not; the induced order is then often called vestigial order (15). Observation and
understanding of this induced order is central to understanding the underlying PDW state. In
this section, using a Ginzburg–Landau–Wilson (GLW) approach, we illuminate different types
of PDW ground states, the accompanying induced order, and the topological excitations of these
states. Because the PDWorder breaks translation symmetry in addition to the usual particle num-
ber conservation, the topological excitation spectrum is richer than that in usual superconductors.
Key to this section is that we assume the existence of an underlying lattice that breaks rotational
symmetry. This condition is not true in the context of cold atoms, and this gives rise to different
physical properties that are discussed in Section 5.

To be concrete, motivated by the cuprates, we consider a tetragonal system with square lat-
tice sheets stacked along the z-axis. We consider PDW order that exhibits spatial modulations
along the in-plane x̂ direction. The modulations are assumed to be incommensurate with the
lattice. Tetragonal symmetry dictates that the PDW order parameter has four complex degrees
of freedom with momenta ±Px and ±Py, and the corresponding order parameter is written as
�i = {�Px ,�Py ,�−Px ,�−Py }. These order parameters are coupled to fermions via

HP = �P

∫
dkF (k)c†k+P/2c

†
−k+P/2, 1.

where F (k) is an internal form factor. Note that the form factor is not a representation of a
symmetry group, and different form factors, e.g., s wave, d wave, can mix (12). Here, for con-
creteness, we take an s-wave form factor, so that �P = ∑

k g〈c−k↓ck+P↑〉 (where g is the interaction
constant) because different form factors do not alter the essential results discussed in this section,
as discussed in Reference 16. The form of the GLW theory then follows from how these order
parameters transform under various internal and spatial symmetries. Here, we do not write all
such symmetry operations and refer to Reference 16 for a more detailed discussion of these.How-
ever, it is worthwhile to highlight some key symmetries that help in understanding the additional
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orders that are induced by the PDW order. In particular, under a lattice translation T, the PDW
order transforms as �P → eiT·P�P. Under time-reversal (T ) and parity (P) symmetries, we have

�P
T−−→ (�−P )∗, �P

P−−→ �−P. 2.

The GLW energy density consistent with time-reversal, parity, space group, and gauge sym-
metries is (5, 15)

H=α
∑
i

|�Pi |2 + β1

( ∑
i

|�Pi |2
)2

+ β2

∑
i< j

|�Pi |2|�P j |2 + β3(|�Px |2|�−Px |2 3.

+ |�Py |2|�−Py |2) + β4[�Px�−Px (�Py�−Py )
∗ + (�Px�−Px )

∗�Py�−Py ].

The parameters βi depend upon the specific microscopic model. Depending on which values are
found for these, one of five possible ground states can be realized. These five phases include the
following: (a) the FF-type phase with only one momentum component; (b) the FF∗ phase, which
is a bidirectional version of the FF-type phase; the LO-type, which includes pairing with opposite
momentum components [these include the unidirectional phase and the bidirectional-I and -II
phases, which have phase factors of 0 and π/2 between the two unidirectional components. These
five states give rise to different patterns of induced order, providing a means to distinguish them.
We now turn to these induced orders.

2.1.1. Induced order parameters. In the context of the cuprates, Ising nematic and CDW
order have been the most important of the induced orders. Because the induced CDW order
appears often in this review, we discuss it first. CDW order (ρQ) preserves time-reversal symmetry
and breaks translation symmetry and, given two SC order parameters with different pair-density
momenta, the CDW order is generally induced as (5–7, 17)

ρPi−P j ∝ (�Pi�
∗
P j

+ �−P j�
∗
−Pi

), 4.

where the second term follows from time-reversal invariance. Two important examples of this
are (a) in the unidirectional PDW state ρ2P ∝ �P�∗

−P (see Figure 1a for a real space illustration;
note time-reversal symmetry transforms this term into itself ) and (b) when one of the SC order
parameters is translation invariant, then ρP ∝ (�0�

∗
−P + �P�∗

0), where �0 is a usual translation
invariant SC order. The PDW ground states that are most often discussed with respect to the
cuprates are the unidirectional and the bidirectional-II PDW states. This is because these states
exhibit CDW order at momentum 2Px and none at momentum Px + Py, which is consistent with
experiments.

Now we turn to the other induced orders. Ising nematic order (εx2−y2 ) that breaks rotational
4-fold symmetry is given by εx2−y2 ∝ (|�Px |2 + |�−Px |2 − |�Py |2 − |�−Py |2) (6, 17).Magnetization-
density wave (MDW) order (Mz

Q), which arises from spatially modulated orbital loop currents, is
given byMz

Pi−P j
∝ i(�Pi�

∗
P j

− �−P j�
∗
−Pi

) (5, 7). Translation invariant charge-4e SC order (�4e) is
given by �4e ∝ �P�−P (10, 17). Uniform charge-4e SC order, a state with hc/4e flux quantization,
can occur if the CDW stiffness of the PDW state is sufficiently weak (10) or in continuum systems
(where the stripe order melts at any temperature) (18, 19). It may also arise in PDW states with
quenched disorder (20). Loop current order (li), which is odd under both time-reversal and parity
symmetries, but preserves translation symmetry, is given by li ∝ (|�Pi |2 − |�−Pi |2) (11). The
induced orders appearing in the different PDW ground states are shown in Table 1.
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Figure 1

(a) Schematic real-space illustration of a unidirectional PDW state (blue and green stripes) with �±P its induced CDW state (orange
stripes) ρQ=2P. The PDW order parameter changes sign in alternate domains and vanishes at the domain walls, whereas the local
density of states is enhanced at the domain walls. The local density of states has a CDW pattern with half the wavelength of the PDW.
(b) The PDW half vortex, around which the local SC phase winds by π , bound with a CDW dislocation. Abbreviations: CDW,
charge-density wave; PDW, pair-density wave; SC, superconducting.

2.1.2. Topological excitations. Just as gauge invariance of the action implies the existence
of vortices in usual superconductors, gauge and translation invariance of the Hamiltonian in
Equation 3 imply topological excitations in PDW superconductors. Due to breaking of trans-
lation symmetry, these PDW topological excitations can exhibit properties that are quite different
from usual SC vortices. This is reflected in the appearance of multiple U(1) symmetries that ap-
pear in most PDW ground states. Gauge and translation symmetries allow PDW ground states to
have up to three U(1) symmetries (one from usual gauge invariance and one each from translation
invariance along the x̂ and ŷ directions). InTable 1, these U(1) symmetries are given by the phase
factors φi, which are not determined by minimizing the action. These undetermined phases lead
to Goldstone modes, in particular new modes associated with translational symmetry breaking.

Table 1 Pair density wave (PDW) ground statesa

Phase (�Px ,�Py ,�−Px ,�−Py ) Induced orders
FF-type (eiφ1 , 0, 0, 0) lx, εx2−y2
FF∗-type (eiφ1 , eiφ2 , 0, 0) lx = ly

ρPx−Py ,M
z
Px−Py

Unidirectional (eiφ1 , 0, eiφ2 , 0) εx2−y2 , �4e

ρ2Px

Bidirectional-I (eiφ1 , eiφ2 , eiφ3 , ei[φ1+φ3−φ2] ) �4e

ρ2Px , ρ2Py , ρPx−Py , ρPx+Py

Bidirectional-II (eiφ1 , ieiφ2 , eiφ3 , iei[φ1+φ3−φ2] ) �4e

ρ2Px , ρ2Py M
z
Px−Py ,M

z
Px+Py

aDistinct PDW ground states and accompanying induced orders. In the third column, other modes can be found by using
the relationships ρQ = (ρ−Q )∗ andMz

Q = (Mz
−Q )∗.

www.annualreviews.org • The Physics of Pair Density Waves 235



CO11CH12_Fradkin ARjats.cls February 13, 2020 12:19

These modes are discussed in more detail in Section 5.2. A winding in one or some of these φi

gives rise to the topological excitations.
Physics associated with topological excitations is discussed in detail in References 5, 7, 10,

and 17. Here, we focus on the unidirectional (LO) state, which is sufficient to capture the
key new physical properties associated with these vortices. Writing (�Px ,�Py ,�−Px ,�−Py ) =
�(eiφ1 , 0, eiφ2 , 0)/

√
2, we allow (φ1,φ2) to have a phase winding of (n,m) times 2π , respectively.

We call these (n,m) vortices. These vortices are most simply described by the following London
theory:

HL = 1
2

∑
i=x,y,z

{
ρs,i[(∇iφ1 − 2eAi )2 + (∇iφ2 − 2eAi )2] + B2

i

}
, 5.

where ρs,i give the superfluid stiffness along these three directions (it is generally anisotropic)
and the magnetic field B = ∇ × A. Equation 5 gives rise to a supercurrent with components Ji ∝
ρs,i[∇i(φ1 + φ2)/2 − 2eAi]. Far from the core of the vortex, the minimum energy configuration
has nonzero supercurrent, and a contour integration of this supercurrent then implies that the
flux enclosed in an (n,m) vortex is (n+m)
0/2, n and m being the winding number in φ1 and
φ2. Consequently, (1, 0) vortices enclose half the usual flux quantum (5). In this description, (1, 1)
vortices are the usual single flux quantumAbrikosov vortices.Equation 5 shows that these usual SC
vortices typically have the lowest energy because the phase winding can be completely screened
by the vector potential, implying that they have a finite energy per unit length. Fractional or zero-
flux vortices have an energy per unit length that diverges as the logarithm of the cross-sectional
system size.

An examination of the induced CDW order near a 
0/2 (1, 0) vortex sheds insight into their
physical origin. In particular, the relationship ρ2P ∝ �P�∗

−P reveals that a dislocation appears in
the CDWorder due to the phase winding in�Px . Because this CDWorder has half the periodicity
of the PDW order, a dislocation in the CDW order corresponds to half a dislocation in the PDW
order.Consequently, the half-flux vortex can be seen as a half-dislocation combined with a π phase
winding in the PDW order (see Figure 1b). The 
0/2 vortices of the other PDW phases have a
similar origin. A generic prediction is that a PDW SC vortex containing a half-flux quantum will
be pinned to a dislocation in the induced CDW order.

These (n,m) vortices can have some notable physical consequences (5, 7, 10, 17). One exam-
ple is in fluctuation-driven vortex physics in two dimensions (21–23). In particular, it is possible
that the lowest-energy vortex is not a 
0/2 (1, 0) vortex but either a (1, 1) Abrikosov vortex or a
(1,−1) PDW dislocation. At a vortex unbinding transition, the lowest-energy vortices will prolif-
erate, leading to a phase that no longer has PDWorder but has vestigial order in one of the induced
order parameters. In the case that the (1, 1) Abrikosov vortices proliferate (these can be the lowest-
energy vortices due to the presence of the vector potential), the resultant phase has only CDW
order with a wavevector twice the PDW wavevector (5, 24). In the case that (1,−1) PDW dislo-
cations proliferate, the resultant phase will be a charge-4e superconductor (10, 17). As discussed
in Section 5.2, this case is particularly relevant in the context of cold atoms because of rotational
symmetry.

2.2. Coupling of PDW to Uniform Superconducting Order

The interpretation of a key cuprate experimental result (14) in the context of PDW order requires
an understanding of the coexistence of PDW order with usual SC d-wave order (�d). Here, we
present the simplest coexistence term that allows this to be addressed in zero magnetic field (an
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extension to finite field will be discussed later). In zero field, the lowest-order coupling term is
given by

Hc =βc1

∑
i

|�d|2|�Pi |2 + βc2[�d
2(�Px�−Px + �Py�−Py )

∗

+ (�d
2)∗(�Px�−Px + �Py�−Py )]. 6.

A key feature of this coupling is that the βc2 term can always bemade negative by the correct choice
of the relative phases between the PDW and d-wave orders. This has two consequences. The first
is that this coupling prefers the unidirectional (LO) or bidirectional-I PDW states. The second
relates to the observation that coexisting PDW and uniform d-wave orders imply the appearance
of either CDW ρP or MDWMz

P order at the same momentum as the PDW order. Whether it is
CDW or MDW order depends upon the sign of the coefficient βc2; if this coefficient is positive,
then MDW appears, if it is negative then CDW order appears. Note that the coupling term βc2

locks the phase of the uniform�d order to the unidirectional (LO) and bidirectional PDWphases,
and consequently, half-flux quantum vortices will no longer exist. Even if in the ground state �d

and �P do not coexist owing to their competition, it is still possible that they coexist near vortices
of either order, where the ground state order parameter is locally suppressed.We refer the reader
to Section 3.2 for a review of recent experimental evidence of PDWs near SC vortex halos.

There are two further topics that are not discussed here but deserve some attention. The first
is the phenomenological response of the PDW order to static impurities, and the second is the
consequence of commensurate PDW order. Nonmagnetic impurities do not couple directly to
the PDW order but couple indirectly to the PDW through the induced CDW order (6, 20). The
primary consequence of this is that for weak disorder, one expects a destruction of the PDWorder
because the induced CDWorder will be disordered on the Imry–Ma length scale (thereby remov-
ing the PDW periodicity on long scales), resulting in vestigial nematic order (25) and charge-4e
SC order �4e (20). In addition, disorder can locally nucleate induced orders that do not generi-
cally appear in the PDW ground state of interest (26). In contrast to the above considerations for
incommensurate PDW order, in a PDW commensurate with the lattice potential, the latter gaps
out the PDW phonons (the φ1 − φ2 mode), thereby precluding half-vortex defects (5).

2.3. Bogoliubov Spectrum of a PDW

Next, we review some properties of the momentum-space Bogoliubov spectrum associated with a
PDWand point out a number of features that make it distinct from uniform pairing. As an illustra-
tion, we initially discuss what happens to the cuprate band structure if we impose a unidirectional
PDW order with �Px ,�−Px on it.

In Figure 2, we pair electrons with momenta p and 2K−p to form a PDW with momentum
Px = 2K and do similarly for −Px. In this figure, K was chosen to be at the Fermi surface, but
the features we discuss will be similar if K moves away from the Fermi surface. Figure 3 shows
a cut of the spectrum at ky = π , and the solid black line shows the electron band ε(kx ). We il-
lustrate the formation of the Bogoliubov spectrum with the usual semiconductor representation
where the dashed line represents the hole spectrum −ε(−kx + Px ). The hybridization of the two
bands form the blue, green, and red bands. We can estimate the weight of these bands in a pho-
toemission experiment by tracking how much of the original solid black band is admixed. For
example, the red band is made up mainly of hole bands and will be almost invisible in angle-
resolved photoemission spectroscopy (ARPES). The first thing to note is that unlike the uniform
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–K K

p

–p + 2K–p – 2K

(0, 0)(–π, 0) (π, 0)

Figure 2

A sketch of the top half of the Brillouin zone for the cuprates with the Fermi surface shown in blue. Pairing
of the electrons as indicated form PDW’s with momenta ±2K after Umklapp. Figure adapted from
Reference 7.

superconductors, the spectrum is not particle–hole symmetric. This is due to the shift of the hole
band by Px. An immediate consequence of this is that the top of the green band does not line up
with the Fermi momentum kF.Figure 4 shows several scans for different ky in an experiment per-
formed in Bi-2201 (27).This material is unique in that there is a quite clear onset of the pseudogap

–1.0 –0.5 0 0.5

E 
(e

V
)

0.2

0.3

0

0.1

–0.2

–0.3

–0.1

kx

Figure 3

A semiconductor picture of the formation of the Bogoliubov band as a function of kx for ky = π . The solid
black line is the original electron dispersion. Dashed lines are the hole bands. Note the shift by the PDW
momenta by ±Px. The blue, green, and red lines are the resulting hybridized Bogoliubov bands. Figure
adapted from Reference 7.
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a   δky = 0 b   δky = 0.6 c   δky = 1.2 d   δky = 1.6
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Figure 4

Plots of the ARPES spectra as a function of kx for several ky measured from π . The red data points are taken in the high-temperature
metallic state. The blue data points are in the pseudogap phase, and the green data points represent additional features that appeared
below the superconducting Tc. Abbreviation: ARPES, angle-resolved photoemission spectroscopy. Figure adapted from Reference 7.

at about 140 K while the SC Tc is rather low, so that the spectrum can be mapped out over a wide
temperature range covering the high-temperature metallic phase, the pseudogap phase, and the
SC phase. An important point noticed by the experimentalists is that in the scan for ky = π , the
top of the low-temperature band marked by KG does not line up with the Fermi momentum KF

observed at higher temperature. This was used as an argument against a fluctuating pairing phase
as the origin of the pseudogap, but now we see that this objection does not apply to the PDW.
Nevertheless, it is worth noting that upon averaging over k space to compute the spectrum that
is observed by scanning tunneling spectroscopy (STS) experiments, an approximate particle–hole
symmetry can be restored.

A second important observation is that the PDW spectrum naturally has lines of gapless ex-
citations in two dimensions. This is in contrast with the uniform superconductor that can only
have nodal points in two dimensions. Although these lines of zeros form closed contours, ARPES
is dominated by the electron-like segments that resemble lines of zero crossing. This is com-
monly referred to as Fermi arc and was first discovered by ARPES experiments in the pseudogap
regime. The existence of these arc-like features in the PDW spectrum was pointed out by Baruch
& Orgad (28) and Berg et al. (6). Here, we explain how it comes about. Returning to Figure 3,
imagine gradually moving away from ky = π , following the scans indicated by the horizontal lines
in Figure 2. The black line in Figure 3 will move down in energy, but the dashed line will move
up. Upon hybridization, the top of the green line moves up in energy and eventually crosses zero,
resulting in a gapless excitation.With further decrease of ky from π , these crossings continue and
form a closed contour of zero crossings. Most of the electron spectral weight lies on the crossing
for kx closer to the origin. This results in the Fermi arc shown in Figure 5, with the back side of
the closed loop having almost no weight and being invisible. Here, the arc has been symmetrized
assuming the coexistence of PDWs along both the Px and Py directions.

Finally, let us look at how the zero crossings appear at the ends of the Fermi arc. From our
discussion above, it is clear that in the PDW spectrum the zero crossing is formed by an occupied
band moving up in energy to meet the Fermi level. This is also what is seen experimentally in
Figure 4 Another candidate for the pseudogap is a CDW at momentum Q. Although this can
certainly open a gap at the antinode near (0,π ), the gap sits at a fixedmomentum kx and as ky moves
away from π , the occupied states only move to lower energy and remain occupied. Therefore, the
only way a Fermi arc of gapless excitations can form is for an unoccupied state to move down in
energy. This contrasting behavior between a PDW- and CDW-driven antinodal gap and Fermi
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Figure 5

A picture of the Fermi arc of gapless excitations in the PDW state. Figure adapted from Reference 7.

arc was emphasized in References 6 and 7. We also point out that if the PDW is bidirectional
and the effect of a composite bidirectional CDW of the type discussed in the last section is added,
the Fermi arcs can be connected by the CDW’s momenta to form electron-like closed Fermi
pockets (7, 13). This mechanism to produce an electron pocket that can explain what is seen
in quantum oscillations was first proposed by Harrison & Sebastian (29). The advantage of the
PDWpicture is that the hole pockets that remain near the antinodes are automatically gapped out.
Similar features in the Bogoliubov spectrum were obtained with a different version of the PDW
state (30), indicating the robustness of the PDW interpretation of the ARPES spectra. A recent
paper studied the spectrum of the PDW in a t-t ′-J model, using the self-consistent Gutzwiller
approximation, and reached similar conclusions (31).

In summary, the Bogoliubov spectrum associated with the PDW has several features that stand
in strong contrast to our intuition based on that of the uniform superconductor. These include
the lack of particle–hole symmetry in the spectrum and nodal lines (surfaces) in two (three) di-
mensions. In the context of cuprate superconductors, many of these features are consistent with
ARPES results on Bi-2201, which are very difficult to explain based on CDW, fluctuating d-wave
SC, or other conventional pictures (27).

3. CUPRATES

3.1. La2−xBaxCuO4 and Related Cuprates

The phase diagram of La2−xBaxCuO4 (LBCO), shown in Figure 6a, has an anomalous dip in
the bulk SC Tc at x = 1/8 (32), which is correlated with the appearance of charge and spin stripe
orders, as detected by neutron and X-ray diffraction on single crystals (33, 34). Pinning of the
stripes to the lattice is enabled by structural distortion within the CuO2 layers, such that there is a
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(a) Phase diagram for La2−xBaxCuO4, indicating CO below Tco (limited by the structural transition at TLT), SO below Tso, and bulk
superconductivity (34). (b) Zero-field-cooled volume susceptibility (left axis, filled symbols) measured with a field of 2 G oriented parallel
to the c axis (probing in-plane screening) and perpendicular to c (probing interlayer screening). In-plane resistivity, ρab, and c-axis
resistivity, ρc, (open symbols, right axis), in La2−xBaxCuO4 with x = 1/8. Abbreviations: CO, charge order; LTLO, low-temperature less
orthorhombic; LTO, low-temperature orthorhombic; LTT, low-temperature tetragonal; SC, superconducting; SO, spin order.
Replotted with data from References 38 and 39.

preferred axis along one of the Cu-O directions that rotates by 90◦ from one layer to the next (35,
36). The relevant distortion appears below a structural phase transition labeled TLT in the figure.

For LBCO with x = 1/8, careful measurements of the resistivity within the planes, ρab, and
perpendicular to the planes, ρc, revealed a surprising anisotropy (37, 38). As shown in Figure 6b,
cooling below the spin ordering temperature, Tso, leads to a drop in ρab by an order of magnitude.
In contrast, ρc continues to rise through Tso, eventually turning down at a lower temperature. The
drop in ρab at ∼40 K appears to correspond to the onset of 2D SC correlations within the CuO2

layers, as confirmed by measurements of anisotropic diamagnetism (38). Below the transition, ρab
continues to decrease, extrapolating to zero atTBKT = 16 K,where nonlinear transport is observed
(37), consistent with a Berezinskii–Kosterlitz–Thouless transition (21, 22); ρc remains finite down
to ∼10 K, while bulk susceptibility indicates a bulk SC transition at ∼5 K.

Related behavior is observed in rare-earth-doped La2−xSrxCuO4, such as La1.6−xNd0.4SrxCuO4

(LNSCO) (40), associated with the same low-temperature structural phase as in LBCO. In par-
ticular, a study of the SC state via the c-axis optical reflectivity, measured as a function of Nd
concentration (which controls the structural phase and the degree of stripe order), demonstrated
a sharp decrease in interlayer Josephson coupling corresponding to the rise of stripe order (41).
[At low enough frequency, the layers behave as a coherent superconductor, resulting in a reflectiv-
ity of unity. At the frequency of the Josephson plasma resonance ( JPR), the interlayer coherence
breaks down, and charge oscillates between the layers; the reflectivity drops below the normal-
state response before recovering at higher frequency (42).] The JPR results on LNSCO, and the
studies of LBCO,motivated proposals that PDW order associated with stripes would cause a can-
cellation of the interlayer Josephson coupling, which is consistent with the observation of 2D
superconductivity (3, 4).

Somewhat weaker charge-stripe (43, 44) and spin-stripe (45, 46) order is found in
La2−xSrxCuO4 with x ∼ 0.12 in zero field. For x = 0.10, it has been observed that applying a
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c-axis magnetic field induces spin stripe order (47). Measurements of c-axis reflectivity on a simi-
lar sample indicate that the field causes a rapid decrease in the coherent interlayer coupling (48).
Similar behavior is found in LBCO x = 0.095 (49), where superconductivity in the decoupled
planes survives to at least 35 T (50). Evidence for bilayer decoupling has recently been reported for
La2−xCa1+xCu2O6 (51). The field-induced decoupling is similar to the behavior found in LBCO
x = 0.125, suggesting that PDW order is present in these samples and that it is less sensitive to
magnetic field than is the uniform d-wave order.

The loss of coherent coupling between SC layers can be explained by the presence of PDW
order, but what do other experiments tell us? The SC gap for PDW order is predicted, in weak-
coupling analysis (28), to be large in the antinodal regions of reciprocal space, but zero along
finite arcs centered on the d-wave nodal points. The gap structure can be tested by ARPES. Such
measurements on LBCO x = 1/8 do show the antinodal gap, but they also suggest a d-wave-like
dispersion near the nodal region (52, 53). At the node, however, the spectral function is broad
in energy and shifted to ∼20 meV below the chemical potential, similar to a recent observation
of a nodal gap in La2−xSrxCuO4 with x = 0.08 (54). Mean-field calculations of the PDW state
that take account of the spin stripe order predict such a gap (55). Although there remains a large
degree of uncertainty concerning its interpretation, the ARPES data should not be ignored and
will receive further discussion in Section 6.

One picture of the PDW state involves SC stripes that are phase locked by Josephson coupling.
That suggests that optical reflectivity measurements with the polarization in-plane but perpen-
dicular to the stripes might yield a response similar to the JPR behavior found in c-axis reflectivity.
Indeed, such behavior has been observed for LBCO x = 0.125, with reflectivity approaching one
at low frequency and crossing below the normal-state response above 20 meV, for temperatures of
40 K and below (56). Another test is to apply a c-axis magnetic field strong enough to destroy the
interstripe Josephson coupling. Such an experiment on LBCO x = 0.125 finds that, for T < 1 K,
fields above 30 T are required to eliminate all 2D coherence, resulting in a highly resistive metallic
state with approximate particle–hole symmetry, which is consistent with pair correlations surviv-
ing in decoupled charge stripes (57).

The cancellation of the Josephson coupling for PDW orders that are orthogonal in adjacent
layers applies for linear interactions. If one can drive large ac currents, then it may be possible
to induce a nonlinear coupling. Cavalleri’s group has demonstrated this on LBCO with x slightly
away from 1/8. For x = 0.115, the JPR is at a frequency too low to detect; nevertheless, use of a
high-intensity terahertz beam generates a JPR response at the third harmonic, even at temper-
atures far above the bulk Tc (but below the charge-ordering temperature) (58). This experiment
provides intriguing evidence for the PDW state.

One of the most distinctive features of the PDW state is the spatial variation of the order pa-
rameter between stripes in the same and adjacent planes. The resulting phase structure in turn
suggests several approaches for exploring this exotic phase based on probing the nature of quasi-
particle and Josephson tunneling into a PDW material. Several such measurements have been
carried out that exhibit evidence for the predicted PDW phase.

Scanning tunneling microscopy (STM) on La2−xSrxCuO4 x = 0.12 with the tunneling cur-
rent along the c axis revealed an unexpected zero-bias anomaly (59). Subsequent calculations in a
t–J model presented an explanation for this observation from a PDW state exhibiting antiphase
domains (60). Additional experiments revealed an anisotropic spatial modulation of the zero-bias
peak consistent with this model (61).

For a stripe-ordered cuprate such as LBCO, where the interlayer Josephson coupling is frus-
trated by the orthogonal stripe orientation in neighboring layers (Figure 7a), a proposed test is
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(a) The predicted modulation of the phase of the charge stripes in the PDW state. This can be probed by
measuring (b) the current-phase relation of a Josephson junction fabricated between the crystal (LBCO,
La2−xBaxCuO4) and a conventional superconductor (Nb) using an Au tunneling barrier.

to reduce the cancellation by applying a magnetic field parallel to the planes; when oriented at
45◦ to the stripes, the field partially compensates for the momentum mismatch between the lay-
ers, causing an enhancement of the Josephson tunneling (62). A test of this type has been done
through transport measurements at low temperature and high magnetic field on single crystals of
Eu- and Nd-doped La2−xSrxCuO4 (63). In a highly dissipative regime with evidence for in-plane
SC correlations, the ratio of the c axis to the in-plane resistivity decreased as the in-plane field was
increased, which is consistent with the predicted scenario.

An even more direct test of the PDW state is to probe the Josephson current-phase relation
(CPR) of junctions between the candidate crystal and a conventional superconductor. In the pres-
ence of a PDW state, the rapid spatially modulated sign changes in the Josephson coupling will
suppress the first-order Josephson coupling and manifest itself as a significant sin(2φ) harmonic
in the CPR of a junction containing LBCO (see Figure 7b). This phenomenon has been pre-
dicted and observed in other junctions with spatially alternating critical current density (64–67).
Additionally, we expect the fraction of Josephson current exhibiting a sin(2φ) CPR to increase
with temperature as the interlayer Josephson coupling and conventional 3D superconductivity
are suppressed within LBCO, giving way to an increasing proportion of spatially varying 2D su-
perconductivity within the CuO2 planes (4).

This experiment has recently been carried out by the Van Harlingen group in Urbana on crys-
tals from Genda Gu at Brookhaven (68). Using both dc Josephson interferometry and anisotropic
SQUID measurement techniques, they compared the CPR of La2−xBaxCuO4-Au-Nb Josephson
junctions for x = 0.155 where the Tc is maximum and at x = 0.125. As shown in Figure 8, at
x = 0.155, the CPR is nearly sinusoidal, with a nearly negligible sin(2φ) component. However,
at x = 0.125, the nonsinusoidal shape of the CPR arising from the onset of a sin(2φ) component
is apparent. The expected temperature dependence shown in Figure 8 was observed. By using
junctions fabricated straddling the corner of the crystal, it was also demonstrated that the order
parameter symmetry of the crystal remains dx2−y

2 in the region where the Tc is suppressed and
the PDW state is present.

3.2. Bi2Sr2CaCu2O8+δ: Vortex Halos and Josephson Microscopy

In this subsection we describe spectroscopic imaging scanning tunneling microscopy (SISTM)
and scanned Josephson tunneling microscopy (SJTM) studies of PDW states in the high-Tc su-
perconductor Bi2Sr2CaCu2O8+δ .
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Expected experimental signatures of the PDW state in the current-phase relation of Josephson junctions
between La2−xBaxCO4 and a conventional superconductor. (a) At x = 0.125 in the PDW regime, with
increasing temperature as the first-order Josephson effect decreases, we expect a growing sin(2φ) component
of the CPR arising from the phase modulation and a corresponding increase in the ratio of the sin(2φ) to
sinφ component. In contrast, (b) at x = 0.155 near the maximum Tc, the sin(2φ) and its ratio to the sinφ

component should be very small. Abbreviations: CPR, current-phase relation; FFT, fast Fourier transform.

3.2.1. Spectroscopic imaging and Josephson scanning tunneling microscopy. SISTM (69)
has become a key technique for determining electronic structure of quantum materials. At the
surface of each sample, the tip-sample differential conductance for single-electron tunneling,
dI
dV

∣∣
r,V ≡ g(r,E ), is measured versus voltage V = E

e and location r = (x, y). The resultant array
of g(r,E ) images is related to the density of electronic states N (r,E ) as

N (r,E ) ∝ g(r,E )∫ eVS g(r)dE
, 7.

where VS is a fixed but arbitrary voltage used to establish each tunnel junction. SJTM is a quite
different technique in which the magnitude of maximum Cooper-pair tunneling current from an
SC tip, |Ic(r)|, is measured versus location r, yielding an image of the density of electron pairs in
the superconducting condensate.

3.2.2. Evidence for a PDW in Bi2Sr2CaCu2O8+δ in a magnetic field. In PDW stud-
ies, focus has recently turned to modulations of the density of single-electron states N (r,E )
within the vortex halos (70–73)—regions of suppressed but nonzero superconductivity that sur-
round vortex cores. Whether these modulations stem from a field-induced PDW may be stud-
ied using Ginzburg–Landau (GL) analysis. Consider a homogeneous d-wave superconductor
�SC(r) = Fd �SC (where Fd is a d-wave form factor) coexisting with a uniform PDW �P

PDW(r) =
FPDW�P

[
exp(iP · r) + exp(−iP · r)]with form factor FPDW.The symmetry-allowedN (r) modula-

tions generated by interactions occur as products of these two order parameters that transform as
density-like quantities. Specifically, the product �P�∗

SC ⇒ N (r) ∝ cos(P · r) results inN (r) mod-
ulations at the PDW wavevector P, whereas �P�∗

−P ⇒ N (r) ∝ cos(2P · r) produces N(r) modu-
lations occurring at P. Consequently, in the case in which PDWorder arises in a halo surrounding
a vortex in a d-wave superconductor, there should be two sets of N (r) modulations at P and at 2P
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within each halo, with those at 2P decaying with distance from the core at twice the rate as those
at P [if �P

PDW = �P
PDW(|r| = 0) exp(−|r|/ε )] (11–14).

To explore these predictions, single-electron tunneling conductance g(r,E ) was measured by
Edkins et al. (14) for Bi2Sr2CaCu2O8+δ samples (Tc ∼ 88 K, p ∼ 17%) at T = 2 K. The g(r,E )
is first measured at zero field and then at magnetic field B = 8.25 T, in the identical field of view
(FOV) using an identical STM tip. The g(r,E,B) and g(r,E, 0) are registered to each other with
picometer precision and then subtracted to yield δg(r,E,B) = g(r,E,B) − g(r,E, 0). This result is
the field-induced perturbation to the density of states δN (r,E,B) ∝ δg(r,E,B).

Figure 9a shows measured δg(r,E = 10meV,B) exhibiting the classic halo of modulations in
the density of Bogoliubov quasiparticles at q ≈ [(±1/4, 0); (0,±1/4) 2πa0 ]. However, for the energy
range 25 < |E| < 50 meV, which is |E| ≈ �SC, the measured δg(r,E = 30meV,B) shown in
Figure 9b contains distinct modulations within each halo. Fourier analysis yields

∣∣δ̃g(q, 30meV)
∣∣,

as shown in Figure 9c, reveals a set of eight maxima at q = [Px;Py] ≈ [(± 1
8 , 0); (0,± 1

8 )]2π/a0,
which we label P, and at q ≈ [(± 1

4 , 0); (0,± 1
4 )]2π/a0, which we label 2P. The inset to

Figure 9c shows the measured amplitude
∣∣δ̃g(q, 30meV)

∣∣ along (1, 0), indicating that the field-
induced N (r,E ) modulations occur, with both λ ≈ 8a0 and λ ≈ 4a0, along both the (1, 0);(0, 1)
directions within every vortex halo. The fitted widths δ(P) of all |P| ≈ (1/8)2π/a0 peaks are close
to half that of the |2P| ≈ 1/4(2π/a0) peaks: δ(2P) = 1.8 ± 0.2)δ(P). These phenomena occur in a
particle–hole symmetric manner for 25 < |E| < 45 meV and exhibit predominantly s-symmetry
form factor modulations at P and 2P. Finally, measured field-induced energy gap modulations
δ�(r) = �(r,B) − �(r, 0) yield a Fourier transform δ̃�(q) that exhibits energy-gap modulation
at P but not at 2P. In the context of Ginzburg–Landau theory (11–14), these data indicate that, in
Bi2Sr2CaCu2O8+δ , a field-induced PDW state emerges within the halo region surrounding each
quantized vortex core.

3.2.3. Evidence for a PDW in Bi2Sr2CaCu2O8+δ at zero magnetic field. Atomic-resolution
SC STM tips (74) have also been applied for the study of the PDW state in underdoped cuprates,
but at B = 0. Ideally, if both the tip and sample are SC, with identical SC energy gaps �(r) and
quantum phase difference φ, a Josephson current I(φ) = IJ sin(φ) of Cooper pairs can ensue.How-
ever, for nanometer-scale junctions with normal-state resistance in the gigaohm range, thermal
fluctuations will overwhelm stable-phase Josephson tunneling until the submillikelvin tempera-
ture range. Instead, phase-diffusion-dominated Josephson tunneling is usually achieved, in which
the measured I(V ) exhibits a maximum current Ic ∝ I2J (75). Measuring |Ic(r)| has therefore be-
come the established approach for visualizing the variation of Josephson tunneling (75–78) and
thus of superfluid (electron-pair) density ρs(r).

In a PDWof the type �P
PDW(r) = Fpdw�P(r)

[
exp(iP · r) + exp(−iP · r)], the superfluid density

ρs(r) modulates spatially. Searches for such phenomena in cuprates required visualizing |Ic(r)|with
nanometer resolution, high IJ, low RN , and low operating temperatures. For the Bi2Sr2CaCu2O8+δ

samples (Tc = 88 K, p = 0.17) studied by Hamidian et al. (79), the STM operates below 50 mK,
and high IJ achieved using an exfoliated nanometer-sized flake of Bi2Sr2CaCu2O8+δ with spatial
resolution∼1 nm adhering to the end of each tungsten STM tip.Figure 10a shows a typical |Ic(r)|
image measured under those conditions, clearly exhibiting periodic modulations in ρs(r) along
the CuO2 axes (1, 0);(0, 1). Figure 10b shows |Ĩc(q)|, the magnitude of the Fourier transform
of |Ic(r)|, indicating that the wavevectors of ρs(r) modulations in Bi2Sr2CaCu2O8+δ are at q =
(0.25 ± 0.02, 0)2π/a0; (0, 0.25 ± 0.02)2π/a0.

Single-electron tunneling SISTM studies on equivalent Bi2Sr2CaCu2O8+δ crystals reveal in-
tense electronic structure modulations (80–82) that are locally commensurate (83, 84) and uni-
directional (82, 85), exhibit 4a0 periodicity (83, 84) with a d-symmetry form factor (85, 86), and
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(a) Measured δg(r,E,B) = g(r,E = 10meV,B = 8.25T) − g(r,E = 10meV,B = 0T) in a 58 nm × 58 nm FOV, showing typical
examples of the low-energy Bogoliubov quasiparticle modulations within halo regions surrounding four vortex cores in Bi2Sr2CaCu2
O8+δ . (b) Measured field-induced modulations δg(r,E = 30meV,B) = g(r,E = 30meV,B = 8.25T) − g(r,E = 30meV,B = 0T) in
the same 58 nm × 58 nm FOV. Although the vortex halos are clearly seen to occur at exactly the same locations as in panel a, the
modulations therein are radically different. (c) Amplitude Fourier transform

∣∣δ̃g(q, 30meV)
∣∣ (square root of power spectral density) of

δg(r,E = 30meV,B) data in panel b. The q ≈ [(± 1
4 , 0); (0,± 1

4 )]2π/a0 points are indicated by black crosses. Four sharp maxima,
indicated by P, occur at q = [Px;Py] ≈ [(± 1

8 , 0); (0,± 1
8 )]2π/a0, whereas four broader maxima, indicated by 2P occur at q ≈ [(± 1

4 , 0);
(0,± 1

4 )]2π/a0. (d) Measured
∣∣δ̃g(q, 30meV)

∣∣ along (0, 0)–(1/2, 0) showing the two distinct maxima in the field-induced N (r)
modulations, occurring at P = 0.117 ± 0.01 and 2P = 0.231 ± 0.01. Abbreviations: H, high; L, low. Figure from Reference 14 with
permission.

are concentrated at particle–hole symmetric energies |E| ≈ �1, where �1 is the pseudogap energy
scale (69, 81, 82, 85).

At values of p where simultaneous data exist, the wavelengths of these modulations are in-
distinguishable from those in |Ic(r)| (e.g., Figure 10b) within joint uncertainty. Although this is
consistent with a composite PDW order formed out of a CDW with the same wavevector and
the uniform d-wave superconductivity, whether the order parameter of the fundamental state un-
derpinning these single-electron signatures is a CDW or a PDW remains to be determined. The

246 Agterberg et al.



CO11CH12_Fradkin ARjats.cls February 13, 2020 12:19

H

L

H

L

y x

a b

pA
5 nm

Ic (r) |I
~

c (q)|

(π/a0, 0)

Figure 10

(a) Typical Ic(r) image from Bi2Sr2CaCu2O8+δ at p = 0.17%. The Ic(r) modulations are parallel to the CuO2 directions [structural
supermodulation-induced Ic(r) modulations along the (1, 1) directions are removed]. (b) |(Ic(q)|, the Fourier transform of Ic(r) [crosses
at q = (π/a0, 0); (0,π/a0)]. Maxima from Ic(r) modulations (dashed red circles) occur at q = (0.25, 0)2π/a0; (0, 0.25)2π/a0.
Abbreviations: H, high; L, low. Figure adapted from Reference 79.

relationship of the |Ic(r)| modulations observed at zero magnetic field to the PDW in vortex halos
also remains unclear, as it is yet to be established whether the λ ≈ 4a0 Ic(r) modulations are con-
sistent with an underlying λ ≈ 8a0 PDW as expected. Nevertheless, the |Ic(r)| imaging data (e.g.,
Figure 10) provide strong direct evidence for the existence of a PDW coexisting with a robust
homogeneous Cooper-pair condensate in underdoped Bi2Sr2CaCu2O8+δ .

4. OTHER SYSTEMS

4.1. Organics, Fe-Based Superconductors, and Heavy Fermion Materials

A variety of materials have been argued to be candidates for the originally proposed FFLO state, in
which a Zeeman field shifts the energy of the up-spin and down-spin partners of the Cooper pairs
in opposite directions, such that it becomes energetically beneficial to create Cooper pairs with
finite momentum. The materials discussed in this section have been reviewed previously (87–89),
so here we highlight the main results and refer to these reviews for more detail.

The most compelling case for realizing the original FFLO-like PDW superconductor (1, 2) is
in organic materials. A detailed overview of the experimental evidence for this in quasi-2D organic
materials with in-plane magnetic fields is given in Reference 87.Organic materials have proven to
be ideal for realizing the FFLO-like PDW phase for three reasons: They are quasi-2D, suppress-
ing the creation of vortices and allowing the high fields needed to create FFLO-like PDW states
to be reached; they are clean with mean free paths typically a factor of 10–100 greater than the SC
coherence length; and they have weak spin-orbit coupling.The primary evidence for the existence
of the FFLO state is largely of three types: the observation of the characteristic upturn of the upper

www.annualreviews.org • The Physics of Pair Density Waves 247



CO11CH12_Fradkin ARjats.cls February 13, 2020 12:19

critical field at low temperatures; the observation of two high-field phase transitions at low tem-
peratures; and the observation of an inhomogeneous magnetic field distribution consistent with
that expected for an FFLO-like phase. κ-(BEDT-TTF)2Cu(NCS)2 presents the strongest case in
which magnetic torque measurements suggest (a) a first-order transition line at high fields inside
the SC state (90, 91), specific heat measurements observing the same first-order transition (92,
93), NMR measurements consistent with the observation of spin-polarized quasiparticles local-
ized near the spatial nodes of the FFLO order parameters (94, 95), and evidence of multiple phase
transitions in rf-penetration depth measurements (96). Among the quasi-2D organics there is also
evidence for an FFLO-like PDWstate in λ-(BETS)2GaCl4 (97, 98) and β ′′-(ET)2SF5CH2CF2SO3

(99, 100). In addition, resistivity measurements observe an upper critical field and field anisotropy
behavior consistent with an FFLO-like PDWstate in the quasi-1D organic (TMTSF)2ClO4 (101).

Fe-based superconductors represent a likely class of materials that can realize an FFLO state
because of their high upper critical fields (102). To date, experimental evidence has been found for
an FFLO-like PDW state in KFe2As2 (103) in which magnetic torque and specific heat measure-
ments observe two SC transitions at high fields and observe a characteristic upturn of the upper
critical field at low temperatures.

Finally, there were reports that FFLO phases also appear in the heavy fermions superconduc-
tors UPd2Al3 (104, 105), CeRu2 (105, 106), and CeCoIn5 (107, 108). However, the phase tran-
sition attributed to the FFLO-like PDW phase in both UPd2Al3 and CeRu2 has been argued to
be a consequence of a vortex-related transition (88). The case for CeCoIn5 is much more inter-
esting. Subsequent to the original discovery of a new low-temperature, high-field SC phase that
was argued to be an FFLO-like PDW phase (107, 108), this phase was found to have spin-density
wave (SDW) order (109). This SDW order exists only within the SC state. Due to the coexistence
of usual superconductivity and SDW order, PDW order will also generically exist (16), making it
difficult to identify a primary order parameter. This has led to many proposals that are still being
experimentally untangled (89).

4.2. PDW in Degenerate Atomic Gases: FFLO

Experimental progress in trapping, cooling, and coherently manipulating Feshbach-resonant
atomic gases opened unprecedented opportunities to study degenerate strongly interacting quan-
tum many-body systems in a broad range of previously unexplored regimes (110–114). This has
led to a realization of paired fermionic superfluids (115–117) and the associated Bardeen–Cooper–
Schrieffer (BCS) to Bose–Einstein condensation (BEC) crossover (118–120).

These neutral atomic systems are particularly well suited to imposing (pseudo-)magnetization,
corresponding to the number imbalance P ≡ (N↑ −N↓ )/N in the pairing hyperfine ↑ − ↓ species,
circumventing challenges of charged electronic superconductors realized in solid state, as dis-
cussed in much of this review (121–124). The imbalance and the associated Fermi surface mis-
match frustrate the singlet paired state (125–128) driving quantum phase transitions out of the
gapped BCS superfluid to a variety of putative ground states and thermodynamic phases (129–
134). One of the most interesting is the FFLO finite-momentum paired state (1, 2).

Experiments (121–124) on trapped atomic systems have extensively explored and established
the predicted interaction-imbalance phase diagram, illustrated in Figure 11 (131, 135, 136), dom-
inated by the superfluid to (polarized) FL first-order phase transition, that manifests in phase sep-
aration (127, 132, 135). However, outside of one dimension, so far, no signatures of the enigmatic
FFLO PDW state (1, 2) have been seen.This is consistent with the narrowness of the FFLO sliver
in the predicted phase diagram (131, 135), though much remains to be understood about FFLO’s
stability beyond mean-field analyses of simplest FFLO states (137, 138).
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Figure 11

A mean-field zero-temperature phase diagram of an imbalanced Fermi gas, as a function of the inverse
scattering length and normalized species imbalance (dimensionless magnetization), P = (N↑ −N↓ )/N ≡
�N/N , showing the magnetized (imbalanced) superfluid (SFM), the FFLO state (approximated as the
simplest FF state, confined to a narrow red sliver bounded by PFFLO and Pc2) and the imbalanced normal
Fermi liquid. Abbreviations: FF, Fulde–Ferrell; FFLO, Fulde–Ferrell–Larkin–Ovchinniko. Data from
References 131 and 135.

In contrast, in one dimension (where it is robust and generic at any nonzero imbalance),
the FFLO state has been experimentally realized in a two-dimensional array of decoupled one-
dimensional traps, generated via a two-dimensional optical periodic potential (139). Although
spin-resolved density profiles in these experiments shows consistency with the FFLO interpre-
tation, they still lack the “smoking gun” observation of, e.g., a finite momentum condensate peak
in the momentum distribution function, precluded in the thermodynamic limit in one dimension
by strong quantum and thermal fluctuations and by the inhomogeneous atomic density special to
trapped gases.

Experimental efforts are under way to move toward the quasi-1D limit of coupled tubes, and
in fact the 1D–3D crossover signatures have been experimentally demonstrated (140, 141). This
is done by reducing the strength of the periodic optical potential, thereby allowing the 1D PDWs
of neighboring tubes to lock through intertube coupling. Cooling and equilibration, particularly
for pseudospin, remains a challenging experimental problem.

5. MECHANISM

5.1. Evidence of PDWs in Models of Strongly Correlated Systems

Condensates with finitemomentum are problematic in conventional BCS theory. In the first place,
so long as either time-reversal or inversion symmetry is preserved, the Fermi surface is always per-
fectly nested for some form of P = 0 pairing; i.e., the SC susceptibility is peaked and logarithmi-
cally divergent as T → 0, whereas it remains finite at all nonvanishing P. If the P = 0 divergence
is quenched, as it is in any singlet channel by a finite Zeeman field, as recognized by Fulde &
Ferrell (2) and Larkin & Ovchinnikov (1), the pair susceptibility can be peaked at a nonzero P,
but in that case it remains finite even as T → 0. In the Hartree–Fock approximation, used in BCS
theory, lack of nesting leads to a finite critical coupling for the condensate to occur even at zero
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Figure 12

Qualitative picture of the PDW. The local superconducting order parameter is d-wave: positive (negative)
in the bold (shaded) links, and axes rotate after a half-period. In this example, presumably applicable to
La2−xBaxCuO4, the PDW is intertwined with spin stripe order. Notice that the charge density has half the
period of the PDW order. Figure adapted from Reference 4.

temperature. In the case of FFLO states, the Zeeman coupling to the external magnetic field acts
as a small tuning parameter; i.e., the critical coupling can still be parametrically small.

In contrast, for the putative PDW states of high Tc superconductors (HTSC), which occur
in the absence of an external Zeeman coupling, no such small tuning parameter exists. Even the
naive application of BCS theory to PDW states typically requires a critical coupling of strength
comparable with the bandwidth. More importantly, the SC states in these materials, uniform or
not, arise in strongly correlated systems whose normal state is a strange metal, a metallic state
without well-defined fermionic quasiparticles.

The PDW looks locally like a d-wave superconductor. It breaks translation symmetry in such
a way that the order parameter changes sign upon translation by half a period (see Figure 12).
Therefore, it is reasonable to suppose that it is a close competitor of the uniform d-wave super-
conductor under strong-coupling circumstances in which correlation lengths are short and the
important physics is correspondingly local. Indeed, in the context of a proposed SO(5) theory
of intertwined antiferromagnetic and d-wave SC order, it was proposed in 1998 by Zhang (142)
that an SO(5) spiral state consisting of alternating stripes of Néel order and d-wave SC order—
precisely the sort of intertwined PDW and spin stripe shown in Figure 12—might arise in some
circumstances. A variety of subsequent studies employing variational wave functions have also
found such states, starting with the 2002 study by Himeda, Kato & Ogata (3), who used varia-
tional Monte Carlo calculations of Gutzwiller-projected wave functions for the ground state of
the t-t ′-J model. These states are inhomogeneous versions of the doped resonating valence bond
(RVB) wave functions widely used as candidate ground states for the t-J model. These early re-
sults, as well as later variational and renormalized mean-field studies (60, 143, 144), found three
states whose variational ground-state energies are very close: the uniform d-wave superconductor,
the PDW state, and a striped d-wave superconductor. For doping near x = 1/8, these variational
studies found period 4 states with half-filled stripes. The intertwined nature of the PDW states
was also proposed on phenomenological grounds in References 4, 6, and 7.

BCS mean-field methods have also been used to describe PDW phases. Loder and coworkers
(55, 145) used BCS mean-field theory for a 2D system with a t-t ′ band structure widely used in
the cuprates and an effective attractive interaction for electrons on nearest-neighboring sites of
strength V (assumed to originate from spin fluctuations). Within a BCS-type mean-field theory,
these authors find that while in the weak coupling regime the ground state is a uniform d-wave
superconductor for systems near 1/8 doping, forV larger than a critical valueVc � t, the preferred
pairing state is locally d-wave but has a finitemomentum, i.e., a PDW,with or without an associated
spin stripe state. A subsequent publication by Wårdth & Granath found that Vc is significantly
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larger than this estimate (146). These authors proposed a model with an interaction with local
attraction and longer-range phase slip pair hopping and found, using a BCS-type theory, that the
critical coupling for the PDW state is significantly reduced and typically of the order of the kinetic
energy bandwidth (146, 147).

Other microscopic mechanisms have also been proposed and studied within mean-field ap-
proaches. Lee proposed an Amperean pairing mechanism (7), due to local spin current fluctua-
tions in an RVB-type state (148), and showed (in mean-field theory) that it favors a PDW. Soto-
Garrido & Fradkin (149) studied the SC condensates arising in the vicinity of a (Pomeranchuk)
instability in the quadrupolar spin triplet channel of an FL (150), and found that the PDW
competes with a spin triplet p and a spin singlet d-wave SC states. Soto-Garrido and cowork-
ers (151) used a quasi-1D approach based on a model of stripe phases (152) and found PDW
states.

At present, the only model that has been definitively shown to have a PDW state is in a
model of strongly correlated systems in one dimension known as the Kondo–Heisenberg chain.
This model consists of a 1D system of mobile electrons, a Luttinger liquid, coupled by a local
Kondo exchange interaction JK to a spin-1/2 quantum Heisenberg antiferromagnetic chain with
exchange coupling JH. Models of this type have been studied for a long time in the context of
the physics of heavy-fermion superconductors. Bosonization and density-matrix renormalization
group (DMRG) studies by Sikkema, Affleck & White revealed that for JH � JK this system has
a spin gap (153), which was subsequently interpreted as an exotic η-pairing SC state (154, 155).
Specifically, the dominant long-range (power-law) correlations involve an oscillatory charge-2e
order parameter, but it is a composite order in the sense that it cannot be simply expressed as
a product of two electron creation operators. Berg, Fradkin & Kivelson (156) reexamined this
system by DMRG and showed that it is indeed a PDW state, albeit an exotic one. Specifically,
on open chains with different boundary conditions, they showed that in this state all the fermion
bilinear operators decay exponentially with distance. Only order parameters that are composite
operators of the Luttinger liquid and the spin chain have (quasi) long-range order, as suggested by
the bosonization studies. For instance, the PDW order parameter is realized as the scalar product
of theNéel order parameter of the spin chain with the spin triplet superconductor of the Luttinger
liquid, and it has quasi-long-range order. [Remarkably, later work showed that this incarnation of
the PDW is actually a topological superconductor (157).] Similar behavior was found for the ex-
pected charge-4e uniform SC order parameter. Later on, similar results were found for extended
generalized Hubbard models on 2-leg ladders at special filling fractions of the bonding band
(158).

A real challenge is establishing the existence of a PDW state in two dimensions using unbiased
approaches, even numerically. Due to the notorious fermion sign problem, quantumMonte Carlo
methods are only useful at relatively high temperatures and have not been able to reach low enough
temperatures to see unambiguous signs of d-wave superconductivity in Hubbard models and its
generalizations.Nonetheless, down to the lowest temperatures accessible, such calculations always
find an SC susceptibility that is peaked at P = 0 (159). However, exact diagonalizations can only
deal with systems that are too small to be useful to detect PDW states (even if they were ground
states). One option is DMRG simulations on relatively wide ladders, and we discuss these in the
next paragraphs. DMRG methods are known to be asymptotically exact matrix-product states (at
least for gapped states), whose accuracy can be improved by increasing the bond dimension of the
tensors.These approaches are known to generate large enough quantum entanglement to produce
most states of interest in one-dimensional systems, including quantum critical states.

Other options include tensor network approaches that, conceptually, are extensions of DMRG
to higher dimensions.However, while in 1D it is known that matrix product states are sufficient to
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describe most systems of interest, in higher dimensions this is an open question. The current most
widely used tensor network approach is PEPS (projected entangled paired states) (160). PEPS and
its relative iPEPS (infinite PEPS) consist of a variational ansatz in the form of a tensor network
(a matrix product state) with many variational parameters that grow as a power of the bond di-
mension (the dimension of the tensor), of order 3D4, where D is the bond dimension. Unlike
conventional variational wavefunctions, which are essentially product states (and hence have only
short-range entanglement), iPEPS can describe more complex states with large-scale entangle-
ment. Corboz and coworkers (161) initiated a study of the t-J model as a function of doping. In
the most recent study of this type (162) it was found that, for a wide range of parameters J/t and
doping δ, the uniform d-wave superconductor, the striped superconductor, and the PDW (called
the antiphase stripe state by Corboz et al.), are essentially degenerate. Although this result agrees
with the simpler variational wave functions discussed above, in the iPEPS generated states the
charge stripes are not half-filled and, in fact, their occupancy varies continuously with J/t. (Were
such a PDW state to be relevant in the cuprates, its period would not be particularly pinned to
8a, even near 1/8 doping, in contrast with experiment in LBCO.) The iPEPS results are highly
encouraging for the existence of PDW order. However, we are careful to note that it is currently
unclear what biases are implied in this approach, and these results need to be benchmarked against
other techniques.

Quite recently, large-scale DMRG simulations of the t-J model on 4-leg ladders in the doping
range of 5–12.5% with t/J = 3 (and other values as well) (163–165) have been carried out. These
authors find strong evidence for d-wave superconductivity (i.e., a sign change of the SC amplitude
along two orthogonal directions) and charge-stripe phases with 1/2 a hole per unit cell.These sim-
ulations kept a significantly larger number of states in the DMRG than earlier studies. However,
although the parameter range examined by these authors is broad and overlaps with those used in
the iPEPS simulations discussed above, no evidence for PDW states have (yet) been detected in
the DMRG. This result is in apparent contradiction with the iPEPS results, and this discrepancy
is quite puzzling. This is a pressing problem, and a deeper understanding of the advantages and
limitations of these methods is clearly required. A recent DMRG study of a doped t-J model on
a triangular lattice with ring exchange interactions found encouraging evidence of PDW-like SC
correlations that change sign as a function of distance, but which fall sufficiently rapidly (at least
like r−4) that they do not give rise to a diverging susceptibility as T → 0 (166).

We close this section by noting that PDW states have been studied using methods of holog-
raphy, the Anti–de Sitter/conformal field theory (AdS-CFT) correspondence. Although it is not
clear what microscopic systems can be described with holography, these theories have the clear
advantage of describing metallic states without well-defined quasiparticles (167). Several holo-
graphic models have been published describing superconductors with striped phases (168) and
systems with intertwined SC and PDW orders (169–171).

5.2. Fulde–Ferrell–Larkin–Ovchinnikov State in Degenerate Atomic Gases

One context in which an FFLO state has a well-understood microscopic mechanism is a singlet
superconductor with pairing frustrated by a magnetic field (1, 2, 172–174). An ideal realization of
such a system is a pseudospin imbalanced Feshbach-resonant atomic Fermi gas (121–124), where
(in contrast to charged electronic superconductors in solid state) the Zeeman component of the
magnetic field and the effectivemagnetization can be tuned independently of the obscuring orbital
field effects, such as vortices. This has rekindled extensive theoretical research (125–128, 131, 132,
134–136, 141, 175) reviewed in References 9 and 114.
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5.2.1. Model of a resonant Fermi gas. A neutral fermionic atomic gas is well captured by a
microscopic Hamiltonian

H =
∑
k,σ

(εk − μσ )ĉ†kσ
ĉkσ

+ g
∑
kk′q

ĉ†k↑ ĉ
†
−k+q↓ ĉ−k′+q↓ ĉk′↑, 8.

with the single-particle energy εk = �
2k2/2m. The separately conserved numberNσ = (N↑,N↓ ) of

atomic species (hyperfine states) σ = (↑,↓) is imposed by two chemical potentials,μσ = (μ↑,μ↓ ),
or equivalently by the average chemical potential μ = 1

2 (μ↑ + μ↓ ) and the Zeeman field h =
1
2 (μ↑ − μ↓ ), which respectively tune the total atom number N = N↑ +N↓ and atom pseudospin
imbalance �N = N↑ −N↓.

Key features distinguishing this Fermi system from those familiar electronic ones in solid state
contexts (discussed in other parts of this review) are (a) the fermions are neutral and thus do not
couple to the electromagnetic vector potential; (b) the absence of a periodic ionic potential (though
an optical lattice can be imposed by an off-resonant interfering laser field) that explicitly breaks
rotational and translational spatial symmetries; and (c) the resonant nature of the Feshbach in-
teraction, parameterized by a short-range s-wave pseudopotential, g < 0. The resulting attractive
interaction can be computed through an exact T -matrix scattering analysis (112), with g control-
ling the magnetic-field-tunable (176) 3D scattering length,

as(g) = m
4π

g
1 + g/gc

, 9.

that diverges above a critical attraction strength, |g| = gc ≡ 2π2d/m, corresponding to a threshold
for a two-atom bound state of size d.

The Zeeman h field–driven Fermi surface mismatch (that, for these neutral fermions can
be tuned independently of the orbital field and can also be realized via atomic mass and other
dispersion imbalance), energetically penalizes the conventional BCS −k to k pairing at weak
coupling. However, as noted at the beginning of Section 5.1, a finite momentum P pairing,
�P = ∑

k g〈c−k↓ck+P↑〉 (set by the Fermi surface mismatch) allows for an FFLO ground state,
which compromises between a fully paired superconductor and a magnetized FL (1, 2).

The simplest treatment is a mean-field analysis (131, 135) for the PDW order parameter
�(r) = ∑

p �peip·r = g〈ĉ↓(r)ĉ↑(r)〉, generalized to pair-condensation at a set of reciprocal lattice
vectors, p, with the amplitudes �p and p self-consistently determined by minimizing the ground
state energy. This gives a satisfactory qualitative description (quantitatively valid deep in the
weakly coupled BCS regime, kF|as| � 1), as a starting point of more sophisticated large-Nf (177,
178) and ε-expansion (179) treatments.

5.2.2. Ginzburg–Landaumodel and transitions to Fulde–Ferrell–Larkin–Ovchinniko state.
Starting at a high Zeeman field, above the Chandrasekhar–Clogston–Pauli limit (172, 173), hc =
�BCS/

√
2 (a critical field for a direct first-ordermean-field transition from an FL to a uniformBCS

superconductor), inside the polarized FL and reducing h, one finds (in mean field) a continuous
transition at hc2 ≈ 3

4�BCS > hc to an FFLO superconductor (1, 2, 131, 135) (stable for hc1 < h <

hc2), most strongly paired at a momentum with magnitude p0 ≈ 1.2hc2/vF ≈ 1.81�BCS/vF. This
is captured by a Ginzburg–Landau expansion [derived by integrating out the fermions (138)] for
the ground-state energy density,

H≈
∑
p

εp|�p|2 +
∑
{pi}

Vp1,p2,p3,p4�
∗
p1

�p2�
∗
p3

�p4 , 10.
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which is valid for a weak finite-momentum pairing amplitude�p near the continuous FL to FFLO
phase transition at hc2. It is notable that this expansion is analytic at small �p, in contrast to a
vanishing Zeeman field, that at zero temperature exhibits |�|2 ln� nonanalyticity. The finite mo-
mentum instability is captured by the dispersion (131, 135, 138),

εp ≈ 3n
4εF

[
−1 + 1

2
ln

v2
Fp

2 − 4h2

�2
BCS

+ h
vFp

ln
vFp+ 2h
vFp− 2h

]
,

≈ J(p2 − p20)
2 + εp0 , 11.

whose minimum at a finite p0(h) ≈ 1.2h/vF (near hc2) captures the polarized Fermi system’s ener-
getic tendency to pair at a finite momentum, forming an FFLO state at a fundamental reciprocal
lattice vector with a magnitude p0. The Zeeman energy hc2 at which εp0 (h) vanishes determines
the corresponding mean-field FL–FFLO phase transition point.

As in other problems of periodic ordering (e.g., crystallization), in the absence of an underlying
lattice (as in trapped atomic gases) εp is rotationally invariant, and thus, the quadratic |�p|2 term
only selects the fundamental magnitude of the reciprocal lattice, |p| = p0, with all degenerate
orientations becoming unstable simultaneously at hc2. This contrasts qualitatively with PDW
ordering in solid state, where the underlying ionic crystal explicitly breaks rotational and trans-
lational symmetries, selecting a discrete set of p momenta, as discussed in Section 2. In the
rotationally and translationally invariant trapped atomic gases, it is the quartic and higher-order
nonlinearities in �p that select the structure of the FFLO state, characterized by the reciprocal
lattice of p’s and the corresponding amplitudes, �p. Near hc2 it is the (−p,p) LO state (1)
with �LO(r) = �LO cosp · r that is energetically preferred over the single plane-wave FF state,
�FF(r) = �FFeip·r (1, 2). However, no study has conclusively determined the structure of the
FFLO state throughout the field-interaction (h - 1/kFa) phase diagram, despite heroic efforts in
the relativistic quantum chromodynamics context (180, 181).

Near hc2, the unidirectional PDW (Cooper-pair stripe) order, characterized by a collinear set
of pn’s, is well captured by focusing on long-wavelength fluctuations of these most unstable modes.
The state is well described by a Ginzburg–Landau Hamiltonian density

H = J
[|∇2�|2 − 2p20|∇�|2] + r|�|2 + 1

2
λ1|�|4 + 1

2
λ2j2, 12.

where deep in the BCS limit near hc2 the model parameters are given by

J ≈ 0.61n
εFp40

, p0 ≈ 1.81�BCS

�vF
, r ≈ 3n

4εF
ln

[
9h
4hc2

]
, 13a.

hc2 ≈ 3
4
�BCS, λ1 ≈ 3n

4εF�2
BCS

, λ2 ≈ 1.83nm2

εF�
2
BCSp

2
0
, 13b.

and the inclusion of the current–current interaction, j = 1
mRe [−�∗(r)i∇�(r)], is necessary for a

complete description of the transverse superfluid stiffness.
Well below hc2, the PDW order parameter, �p, is no longer small, invalidating the above

Ginzburg–Landau expansion and requiring a complementary weak h Bogoliubov–de Gennes
(BdG) treatment that is fully nonlinear in �(r). However, it is challenging to handle analytically
for anything other than a single harmonic FF state, �FF(r) = �FFeip·r, as it requires a fully
self-consistent BdG band-structure analysis, with energetics strongly dependent on the details
of the FFLO state. A single-harmonic BdG calculation (131, 135) finds that a BCS singlet
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superconductor is unstable to the FF state at hc1 ≈ 0.70�BCS, thus suggesting that the PDW state
is stable only over a very narrow range of h.

However, numerical BdG analyses (182–184) and a negative domain-wall energy in an oth-
erwise fully paired singlet BCS superfluid in a Zeeman field (184, 185) argue that a more generic
PDW state (that includes a larger set of collinear wavevectors) may be significantly more stable.
Well below hc2 the FFLO state is thus more accurately described as a periodic array of solitons,
well-paired ±�BCS stripes interrupted by “normal” gapless domain walls that accommodate the
imposed fermion imbalance, driven by h. This state can be equivalently thought of as a periodically
ordered microphase separation between the normal and paired states, that naturally replaces the
macrophase separation (127, 186) ubiquitously found in the BCS-BEC detuning-imbalance phase
diagram (131, 135, 136, 187) (see Figure 11). Upon increasing h above hc1, the excess of the ma-
jority fermionic atoms (polarization) in an imbalanced system can be continuously accommodated
by the subgap states localized on the self-consistently induced domain-walls between+� and−�.
Thus the imbalance and density of domain walls continuously grows above hc1, eventually overlap-
ping at hc2 and thereby interpolating between the two limiting forms of the LO state. This picture
resembles the soliton mechanism for doping of polyacetylene (188), and it is explicitly realized in
one-dimension through exact BdG (182) and Bethe ansatz (189, 190) solutions and via bosoniza-
tion (191, 192) that exhibits the commensurate–incommensurate (CI) Pokrovsky–Talapov (PT)
transition (193) from a fully paired s-wave superfluid to an LO state. Such phenomenology
also emerges from the numerical BdG studies in two dimensions (183, 184). This response to a
Zeeman field is quite analogous to the more familiar phenomenology of the type-II supercon-
ductor in an orbital magnetic field, with fully gapped BCS, partially paired FFLO, and fully
depaired normal FL playing the role of the Meissner, Abrikosov vortex lattice and normal states,
respectively.

5.2.3. Goldstone modes and topological excitations. Trapped atomic gases (in the absence
of an optical lattice) exhibit underlying translational and rotational symmetries. Thus, as we
discuss below, in addition to the off-diagonal-long-range order, the FFLO states break con-
tinuous spatial symmetries, and hence exhibit unusual Goldstone modes and novel topological
defects. This contrasts qualitatively with the putative solid state PDW realizations (formulated in
Section 2 and discussed in the rest of this review), where spatial symmetries are broken explicitly
by the underlying crystal, and thus orientational Goldstone modes are absent.

Inspired by the 1Dpicture discussed above, a class of striped unidirectional FFLO,withCooper
pairs condensed at a colinear set of wavevectors pn = np0, has received considerable attention.
The FF plane wave and LO standing wave states are qualitatively accurate representatives, that
have been extensively explored (9, 114). In particular, beyond mean-field theory, the time-reversal
breaking FF state is characterized by an order parameter �FF(r) = �p0 e

ip0·r+iφ(r), with a single
Goldstone mode φ(r), that in addition to superfluid phase fluctuations also describes local fluc-
tuations in the orientation of FF stripes. Because in a trapped atomic gas context, free of the
underlying lattice, FF state spontaneously breaks rotational (but not translational) symmetry, the
energetics of φ(r) is qualitatively “softer”, with the Hamiltonian (derivable from the microscopics,
above GL theory, or deduced based on symmetry),

HFF = 1
2
χ−1n2 + 1

2
K (∇2φ)2 + 1

2
ρ‖
s (∂‖φ)2, 14.

where ∂‖ ≡ p̂0 · ∇, ρ ||
s = 8Jp2|�p0 |2 is the superfluid stiffness along p0, K = 2J|�p0 |, and n is the

density operator (only well defined on a lattice), canonically conjugate to the phase field φ. The
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spontaneous breaking of rotational symmetry requires a strict vanishing of FF’s transverse super-
fluid stiffness, ρ⊥

s = 0 (137, 138, 194).
The time-reversal preserving LO state spontaneously breaks both rotational and translational

symmetries, with a (−p0,p0) order parameter

�LO(r) = 2�p0e
iφ cos[p0 · r + θ ], 15.

that is a product of a superfluid parameter and a unidirectional density wave order parameter.
These are characterized by two Goldstone modes, φ(r) and θ (r), corresponding to the superfluid
phase and the smectic phonon u(r) = −θ (r)/p0 of the striped state, respectively.

Similar to the FF state, the underlying rotational symmetry of the LO state strongly restricts
the form of the Goldstone-mode Hamiltonian. Namely, its θ (r) = −p0u(r) sector must be invari-
ant under a rotation of p0, which defines the spontaneously chosen orientation of the PDW, and
therefore must be described by a smectic form (195–197). However, because a rotation of the LO
state leaves the SC phase, φ(r), unchanged, the superfluid phase φ(r) sector of the Hamiltonian is
therefore expected to be of a conventional xy-model type. Consistent with these symmetry-based
expectations, the LO Goldstone-mode Hamiltonian was indeed found (137, 138, 198, 199) to be
given by

HLO = 1
2
�2 + 1

2
K (∇2u)2 + 1

2
B(∂‖u)2

+ 1
2
χ−1n2 + 1

2
ρ‖
s (∂‖φ)2 + 1

2
ρ⊥
s (∇⊥φ)2, 16.

with� being themomentum operator field,which is canonically conjugate to the phonon u. Thus,
the LO state is a highly anisotropic superfluid (though less so than the FF state, where ρ⊥

s = 0),
with the ratio,

ρ⊥
s

ρ
‖
s

= 3
4

(
�p0

�BCS

)2

≈ 1
4
ln

(
hc2
h

)
� 1, 17.

that vanishes for h → h−
c2 (137, 138).

We note that in the presence of underlying rotational invariance, at nonzero temperature, the
collinear FFLO states exhibit a 3D quasi-long-range translational order. Thus, the translational
symmetry is restored, and somewhat oxymoronically, the FFLO order parameter �P vanishes
inside a collinear FFLO phase. Consequently, the uniform �4e is the fundamental nonzero order
parameter at any nonzero temperature.

In addition to Goldstone modes, the low-energy phenomenology is also controlled by topo-
logical defects, that in conventional superfluids are limited to 2π vortices in the superfluid phase
φ(r). In stark contrast, the additional LO phonon Goldstone mode θ (r) also admits 2π vortices,
corresponding to an integer a dislocation in the striped LO order. Even more interesting, in ad-
dition to these integer vortex (±2π , 0) and dislocation (0,±2π ) defects, the product nature of the
LO order parameter (5.2.3) allows for half-integer vortex-dislocation composite defects (±π ,±π )
(5, 7, 10, 137, 138), as is also discussed in Section 2.1. The sequential unbinding of this larger class
of defects leads to a rich variety of LO descendent phases. Many interesting consequences such as
3D quasi-long-range order, importance of Goldstone-mode nonlinearities, charge-4e supercon-
ductivity, exotic topological phases, and transitions of the enriched nature of the FF and LO states
have been extensively explored in References 114, 137, and 138.
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Finally, we note that although the bosonic sector of the FFLO state discussed above is well
understood, the problem is seriously complicated by the gapless fermions confined to the ±�

domain walls of the PDW.These will certainly lead to damping of the bosonic Goldstone modes.
Coupling between the gapless fermions confined to strongly fluctuating FFLO phonons remain
a challenging open problem, some aspects of which are discussed in Reference 138.

5.3. Nonuniform Pairing in Noncentrosymmetric and Weyl Superconductors

Nonuniform pairing states with an FFLO-like pairingmechanism have also been obtained in non-
centrosymmetric systems (200, 201). In general these systems involve pairing on Fermi surfaces
(FSs) whose centers do not sit at high symmetry points in the Brillouin zone, and thus the Cooper
pairs forming from these FSs carry nonzero momentum.

One such scenario is for a metal with Rashba spin-orbit coupling in an in-plane Zeeman field
H :

H = k2

2m
− μ + λ(k × σ ) · ẑ− μBHσx. 18.

The SC instabilities of the concentric split FSs atH = 0 have been analyzed in Reference 202 (see
also 203).WithH �= 0, in the limitμBH � λkF, the two split FSs approximately retain their shapes
and get relatively shifted by ±P/2, where P = 2μBH

vF
ŷ, shown in Figure 13. Naturally, the finite-

momentum pairing order parameters couple as �±P c†(k ± P/2)c†(−k ± P/2), which separately
gap out the two shifted split FSs. Compared with the FFLO scenario in which only a small part of
the FS is gapped, the present state has a larger condensation energy and can potentially be realized
at relatively small coupling.

Three pairing states have been theoretically investigated in References 200, 205, and 201: a
uniform pairing order, an FF-like helical pairing order with only one ordering momentum (say
�+P), and an LO-like stripe pairing order with both�±P.Note that unlike a canonical PDW state,
where �P and �−P are related by inversion and time-reversal symmetry, here both symmetries are
explicitly broken already in the normal state. In this case, symmetry arguments on the Ginzburg–
Landau free energy imply the SC ground state generally has finite-momentum pairing (206, 207).

ba H

P/2

–P/2

–k – P/2

k – P/2 P/2

–P/2

1
2

3

Figure 13

(a) The split FSs described by Equation 18. (b) (Left) Spin texture on the Weyl FSs, and various Cooper pairs.
Arrows ●1 and ●2 show Cooper pairs in a uniform SC state, but for arrow ●2 the fermions have the same spin,
and a singlet pairing gap vanishes here. Arrow ●3 shows the Cooper pairs in a PDW state with intra-FS
pairing. (Right) The point nodes in the spin-singlet pairing state. Abbreviations: FS, Fermi surface; SC,
superconducting. Panel a adapted from Reference 200, and panel b from Reference 204.
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In microscopic studies, it was indeed obtained that the finite-momentum pairing orders including
helical order and stripe order occupy sizable regions in the pairing phase diagram as a function
of temperature and the in-plane Zeeman field (200, 201, 208). Properties of these nonuniform
pairing states in noncentrosymmetric materials have been reviewed in Reference 209.

Signatures of such a stripe PDW-like state were indeed observed in proximitized HgTe quan-
tum wells (210).When gated to the electron-doped regime, the HgTe quantum well exhibits split
FSs with Rashba spin-orbit coupling. The quantum well is coupled to a conventional supercon-
ductor on one side and subject to an in-plane magnetic field B. As B varies, the oscillation of
the Josephson current across the quantum well has been observed, which is evidence for finite-
momentum pairing order induced in HgTe. The in-plane Zeeman field can be either an external
field or realized intrinsically. In Reference 211, PDW pairing has been proposed for SrTiO3–
LaAlO3 oxide interfaces, which exhibit coexistence between ferromagnetism and SC orders. It
was shown that the effective interaction between the local moments drive the interface into a
ferromagnetic phase. Together with the Rashba spin-orbit coupling, the system was proposed to
realize a PDW-like state via the aforementioned mechanism. Another context of this mechanism
for nonuniform pairing is the surface superconductivity on topological insulators (TIs). Much of
the attention toward TI-surface superconductivity has been focused on its realization of topo-
logical superconductivity, i.e., the well-known Fu–Kane superconductivity (212). However, with
a nonzero chemical potential, the surfaces also host ±P/2-shifted FSs with a spin texture (213).
However, unlike the FS in Figure 13, the two FSs are located at opposite spatial surfaces. Fur-
thermore, inversion symmetry is not necessarily broken in the 3D system, thus the two FSs can
have the same size. Remarkably, there is recent experimental evidence observing finite-P pairing
on TI surfaces with an in-plane Zeeman field (214).

An interesting extension of this mechanism for the nonuniform pairing state is to 3D systems
with FSs not centered around any high symmetry points ±P/2 (204, 215–217). The simplest way
of obtaining these FSs is from doping aWeyl semimetal, which does not require any symmetry to
stabilize. A simple two-band lattice model given by Reference 204 describing this situation is

H0 = t (σ x sin kx + σ y sin ky ) + tz[cos kz − cos(P/2)]σ z +m(2 − cos kx − cos ky )σ z − μ. 19.

For small chemical potential μ, each spherical FS encloses a Weyl point at ±P/2 and is spin tex-
tured, analogous to the 2D case with Rashba spin-orbit coupling (seeFigure 13a for a ky = 0 slice).

Both intra-FS and inter-FS pairing can potentially occur, giving rise to a PDW-like state with
ordering momenta ±P and a uniform SC state, respectively. The energetic interplay between
PDW and a uniform superconductor depends on several factors. First, unlike the previous case in
which the FSs remain symmetric about their shifted centers for small H , here in general there is
no symmetry relating ε(k + P/2) and ε(−k + P/2) unless μ is very small. Either way, the suscep-
tibility toward a PDW state is reduced, whereas typically inversion symmetry (for the present case
with twoWeyl nodes) or time-reversal symmetry (e.g., for cases with fourWeyl nodes) guarantees
a weak-coupling instability toward a uniform superconductor. By contrast, there is a robust topo-
logical reason that the uniform SC order parameter has point nodes, which tends to suppress the
uniform superconductor.This was first observed in Reference 204 and formulated in generic cases
in Reference 216.Weyl points are monopoles of the Berry curvature �B(k) = i〈∇ku(k)| × |∇ku(k)〉
in k space. Weyl points at ±P/2 carry monopole charges ±1, and this monopole charge is equal
to the Berry flux through its enclosing FS. In the Nambu space of the pairing Hamiltonian, the
Berry fluxes through the electron-like FS and hole-like shadow FS are subject to pairing, and the
monopole charges add up. It was shown that (216, 217) the total monopole charge inside the orig-
inal FS is 2 for uniform (inter-FS) SC, and it is 0 for (intra-FS) PDW.This means that the uniform
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SC state has to host at least two point nodes on each FS, independent of any microscopic details.
The PDW state can be fully gapped, likely leading to a higher condensation energy.

The detailed interplay between these two opposite effects has been examined in Reference 215
with short-range attractive interactions in PDW and SC channels, and the authors found that a
PDW state is favored for a noncentrosymmetric Weyl metal. However, in more realistic systems
a more careful examination on the band structure and the interaction is needed to pin down the
SC ground state.

6. BROADER RELEVANCE FOR THE CUPRATE SUPERCONDUCTORS

In the preceding sections, we presented evidence of the existence of PDW SC order in diverse
systems ranging from cuprate high-temperature superconductors to heavy fermionic materials, to
organics, to topological materials, as well as in cold atomic systems.Unlike its FFLO predecessors,
the PDWdiscussed in the context of the cuprate family does not require an external magnetic field
for its existence.

As reviewed in earlier sections, the PDW is a new state of matter with unique properties not
encountered in other superconductors. It is an SC state with more than one complex order pa-
rameter. Its more complicated order parameter manifold allows this state to accommodate various
charge orders, together with SC states, some even with an exotic flux quantization. This richness
leads, in a natural way, to an explanation of several intriguing experimental effects, such as dy-
namical layer decoupling and a rich structure of SC vortices. These features also imply a complex
phase diagram with a variety of broken symmetry phases.

Given the evidence that PDW order appears in some places in the cuprate phase diagram, it
remains to discuss the implication of this observation in the broader context of cuprate physics
(and beyond). Up to now the evidence comes primarily from two groups of experiments on two
groups of materials. First, as reviewed in Section 3.1, there is the layer decoupling observed in 1/8-
doped LBCO, which led to the PDW concept. This suggestion has been leant further credibility
by the observation of a variety of other related phenomena, such as the detection of an anomalously
large second harmonic in the Josephson relation in LBCO-Nb junctions and the appearance of
the familiar signatures of layer decoupling in other 214 materials when stripe order is enhanced,
including LSCO in a magnetic field. Second, a CDW with wave-vector equal to half of what is
commonly observed was seen in the vicinity of the vortex core in underdoped Bi-2212 (14). As
such a CDW subharmonic is expected as a consequence of coexisting uniform and PDW order;
its observation provides strong evidence of the existence of PDW in the vortex halo, as discussed
in Section 3.2.

It is worth mentioning that none of these pieces of evidence is entirely immune to the
possibility of alternative explanations; indeed, in all cases there are additional experimental obser-
vations that, while not actually contradictory with the PDW interpretation, are also not entirely
natural. Most important, to date no diffraction experiments have detected the expected CDW
subharmonic associated with the coexistence of PDW and uniform SC correlations, either in
LBCO or in the magnetic field and temperature regimes that have been so far explored in YBCO
and BSCCO. Conversely, in the range of T in which layer decoupling gives strong evidence of
dominantly PDW correlations in 1/8-doped LBCO, ARPES data have been interpreted (218,
219; see Figure 14) as showing a nodal-d-wave-like one-electron spectrum, rather than the
nodal-arc spectrum expected for a pure PDW (similar two-gap ARPES spectra have been seen in
BSCCO) (219, 220; see Figure 15). In all cases, there are multiple possible ways one can imagine
reconciling these observations with the PDW interpretation. However, ultimately we rely on
further experiments (some of which are discussed below) to resolve these issues.
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Momentum-dependent gap of LBCO and LSCO from ARPES experiments by Vishik et al. (219).
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Putting these concerns aside, a key question is whether these PDW sightings are relevant only
in the relatively narrow context of cuprates with certain structural peculiarities (such as LBCO)
or in the vicinity of isolated vortex cores, or whether they have broader implications to the physics
of underdoped cuprates. In particular, there is the question of whether PDW correlations are in
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Momentum-dependent gap in Bi2Sr2CaCu2O8+δ from ARPES experiments by Vishik et al. (219).
Abbreviation: ARPES, angle-resolved photoemission spectroscopy. Figure adapted from Reference 219.
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Pseudogap in Bi2Sr2CaCu2O8+δ from scanning tunneling microscopy experiments by Renner et al. Figure
adapted from Reference 221.

any way responsible for the so-called pseudogap regime observed in underdoped cuprates. For
the purpose of this review, we focus the discussion of this question on the range of hole doping
from p ∼ 0.08 to 0.15 in which there is an identifiable temperature scale,T ∗, below which various
measurable properties show a depletion of the density of states at low energies. This thus pertains
to an intermediate doping range between the very low-doping region, where physics is dominated
by significant local antiferromagnetic order, and the high-doping region,where a full FS enclosing
1 + p holes forms. Note that T ∗ is at largest 300 K–400 K, which is still low compared with
microscopic scales such as the exchange scale J.A phenomenon closely associatedwith thisT ∗ scale
is the appearance of a deep depression in the single-particle spectral weight (i.e., the eponymous
pseudogap) in the antinodal portion of the Fermi surface up to T ∗, which in turn can be much
higher than Tc. This pseudogap has been seen not only in ARPES data but also by STM, as shown
in Figure 16; importantly, because STM accesses both the unoccupied and occupied states, it
reveals an approximate particle–hole symmetry of this gap.This suggests that the gap is associated
with some form of SC pairing. However, certain features of the gap as inferred from ARPES
evolve differently as a function of doping and temperature in the near nodal region, where the
gap is small, and in the antinodal region, where it is large—this is the so-called nodal–antinodal
dichotomy. This can be seen to some extent in the data from Bi2212 shown in Figure 15, and
more dramatically in the case of LBCO (Figure 14) and Bi-2201, where detailed ARPES data are
available (27). This apparent dichotomy has led many researchers to conclude that the pseudogap
has a distinct (nonsuperconducting) origin.
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In addition to the energy gap, another striking feature of the underdoped cuprate phase dia-
gram is the existence of “intertwined” order parameters corresponding to multiple distinct broken
symmetry states that occur with similar energy and temperature scales and which in some ways
compete and in some ways cooperate strongly with each other. In addition to the insulating Néel
order and uniform d-wave SC order, this list includes a variety of othermetallic or SC SDW,CDW,
and nematic orders. To this list we now add PDW order. It is unreasonable that these materials
should be accidentally fine-tuned close to an extraordinarily complex multicritical point at which
all these orders are degenerate with each other, so it is reasonable to search for a description in
which the observed orders derive from a smaller set of primary order parameters.

The underlying idea is that, under certain circumstances, some class of soft fluctuations can
partially melt a parent broken symmetry state in such a way that some but not all the underly-
ing symmetries are restored, leaving behind a partially ordered state with some form of vestigial
order (25). Formally, as discussed in Section 2, this corresponds to forming composite order pa-
rameters that are bilinear (or higher order) in the primary order parameter fields. In the present
context, starting from an assumed primary PDW order parameter, one can readily construct com-
posite orders corresponding to both CDW order and nematic orders, making it possible to view
these as remaining vestigial orders when a fully ordered PDW is partially melted by strong phase
fluctuations.

There are several phenomenologically appealing aspects of this perspective. With regards to
nematic order, though there is suggestive evidence that it arises at temperature scales comparable
with the pseudogap T ∗, it is very difficult to see how a primary nematic order could be responsible
for the pseudogap, but viewed as a composite order, it can be understood as an avatar of a more
basic set of correlations. Similarly, the observed CDW order is mostly weak in the sense that it
causes unusually small magnitude lattice distortions, which is why it was overlooked for so many
years. (LBCO may be an exception.) The CDW does not open gaps or fold the FS observed in
ARPES in ways that are familiar from other classes of CDW materials (27). Still, CDW order
appears to be thermodynamically robust in both the sense that significant CDW correlations per-
sist over a wide range of T and p and that it competes on a more or less equal footing with the
uniform d-wave SC state, for instance in that there is a clear suppression of the SC Tc in the range
of dopings where the CDW correlations are strongest, whereas high Tc can be restored with the
application of modest pressure, presumably because this suppresses the CDW tendency. Again,
viewing the CDW as a composite order gives a rationale for viewing it as being simultaneously
weak and strong in different aspects.

At a more local level, there has long been strong intuitive appeal to viewing the pseudogap
as a form of local pairing without any significant SC phase coherence. The fact that the pseudo-
gap shares so many obvious similarities with the d-wave SC gap is, of course, the strongest piece
of evidence in favor of this interpretation. For instance, at low temperatures, the gap magnitude
along the FS seen in ARPES in Bi-2212 for doping roughly in the range of 0.12 < p < 0.19 has the
simplest d-wave form,�0{[cos(kx ) − cos(ky )]/2}. This gap is well understood as being due to the d-
wave SC state.However, there is a distinct difference in the thermal evolution of the near nodal and
antinodal gaps; this is an aspect of the previously mentioned nodal–antinodal dichotomy. In partic-
ular, in the antinodal regime of the Brillouin zone, the gapmagnitude is only very weaklyT depen-
dent and it evolves smoothly into the pseudogap that persists to well aboveTc. Furthermore, shown
in Figure 15 as a function of decreasing p, the energy gap below Tc at the antinode starts to grow
strongly but continuously; i.e., the gap structure increasingly looks like the sum of a near-nodal SC
gap (whose magnitude is in fact largely independent of p down to p ≈ 0.07) plus another gap that
is large at the antinode and small or vanishing in an arc region near the nodal point. In the con-
text of the present work, it is tempting to associate this evolution with an increasingly significant
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admixture of a PDW component in the gap structure. Also, at least in Bi-2201 for which detailed
ARPES spectra are available, the top of the gap does not line up with the location of the Fermi mo-
mentum, as one would expect for a uniform superconductor, but it is consistent with amomentum-
carrying condensate, such as the PDW (7, 27). Although it may be possible to account for the
differences in the thermal evolution of the gap in the nodal and antinodal regimes as a purely
kinematic effect of phase fluctuations in a simple d-wave superconductor (222, 223), the nodal–
antinodal dichotomy has been taken as evidence against fluctuating d-wave as the origin of the
pseudogap at the antinode (219, 224). The PDW seems like a natural candidate that is next in line.

To summarize, there remains the larger question of the broader significance of the PDW in
the phase diagram of the cuprates and, particularly, of its role in the pseudogap regime. We find
it useful to focus on two extremal perspectives that lie at the opposite ends of a spectrum of pos-
sibilities. For ease of discussion, we label the first view as competing order and the second view as
mother state.

In the competing order perspective, the PDW is a close competitor of uniform d-wave su-
perconductivity and of the observed CDW orders, which are to be regarded as independent
(although strongly coupled) order parameters. Their interplay may change from one family of
cuprates to another (or in a particular family as a function of doping) depending on other factors,
e.g., the crystal structure, whether SDW order plays a role or not, etc. This is especially clear in
the case of LBCO, where the critical temperatures are comparable, which naturally leads to the
notion that they may have a commonmicroscopic origin (and, in this sense, are intertwined).Nev-
ertheless, this does not necessarily imply that they should not be regarded as completely separate
orders. This is because there are terms in the Landau theory of the type presented in earlier sec-
tions, e.g., trilinear couplings of the form ρ2P�∗

P�−P. Physically, these terms can be interpreted as
saying that there should be a nonvanishing value of the CDW order ρ2P as soon as the PDW or-
der parameter is present, |�±P| �= 0, i.e., ρP ∝ �∗

−P�P, and the CDW order is a composite order.
However, this coupling can also be interpreted as saying that as ρ2P becomes sufficiently strong,
the quadratic term of the PDW order can aquire a negative coefficient that, when large enough,
can induce a PDW order parameter �±P.

A convenient mathematical language to describe competing order is the nonlinear σ model.
This has been employed to describe the appearance of static PDW in the vicinity of the vortex core,
where d-wave order smoothly rotates to a PDW order (12). Another situation for its application
may be the onset of layer decoupling driven by a magnetic field in LSCO (48). In that case, one
may envision a rotation to a PDW from a d-wave under the influence of magnetic-field-driven
spin order.

A second perspective is to regard the PDW as the primary order (the mother state), and to
regard other orders (e.g., CDW) as composite (or descendant) orders. If the low-temperature
phase is indeed a PDW, then the other orders may appear through a partial melting cascade of
phase transitions. In these regimes, the CDW (and nematic) orders are vestigial orders of the
PDW, and the PDW itself can be regarded as a fluctuating order.

As a fluctuating order, the PDW is locally defined on some length scale without ever being
the ground state. The correlation length should be long enough to form the antinodal gap and
to induce the composite orders, but short enough that the properties usually associated with su-
perfluidity are not apparent. Taken to its logical conclusion, this point of view states that PDW
fluctuations are pervasive over a large part of the doping, temperature, and magnetic field range
of the phase diagram and are the root cause of the pseudogap phenomenology. This view has been
strongly advocated by one of us (7), whereas a more guarded proposal has been made that fluc-
tuating PDW may be responsible for the pseudogap structure at the antinode and the Fermi arc
near the node (6). The appeal of this picture is that it reduces the explanation of the panoply of
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observed orders to the existence of local PDW orders. The rapid winding of the d-wave vortex
has been suggested to pin the PDW near the vortex core, rendering it static and generating the
short range CDW with wavevector P observed in STM experiments (225). Just as in the compet-
ing order scenario, the PDW provides a mechanism for lowering the vortex core energies and,
hence, making Hc2 parametrically smaller (12). What happens for fields greater than Hc2 is prob-
ably the most intriguing open question. One has to face the question of how to describe a pairing
state that has been destroyed by quantum phase fluctuations, which remains unsolved (226). The
quantum disordering of a PDW that already breaks translational symmetry and is gapless even
in the absence of a magnetic field is still more clearly terra incognita. Experimentally, CDW with
longer-range order appears with increasing magnetic field, and a metallic state with a small Fermi
pocket emerges. Whether this state can be the result of a fluctuating PDW remains to be seen
(6, 7, 11, 28, 227–230). It is worth noting that the competing order scenario faces the same issue:
In the nonlinear sigma-model description (12), an ordered PDW appears when the vortex halos
overlap and one needs to address the question of how this order is destroyed.

Another important question for the mother state scenario is whether a coherence length large
enough to create an energy gap will necessarily produce large observable consequences of SC
fluctuations. Experimentally diamagnetic fluctuations have been observed at up to two or three
times Tc and also above Hc2 at low temperatures (231, 232). However, there is little in the way
of transport signatures. Can these observations be reconciled? The ultimate question is whether
these ideas and the contrast between the two extreme perspectives can be either directly supported
or falsified. In this sense the recent proposal of a method to directly measure PDW fluctuations
in a tunnel junction using Bi-2201 as one electrode and then taking advantage of the known mo-
mentum that is present in this material offers some hope for the future (233).

Finally, it is important to determine the extent to which the 1P CDW observed so far by STM
in Bi-2212 can be detected with other probes and in other cuprate families. We note that several
groups have searched for, but so far failed to find, evidence of a subharmonic CDWP peak in X-ray
diffraction in the SC state of high Tc cuprates in which CDW order is known to be present. So far
unpublished X-ray searches for a P peak have been carried out in 15.5% doped La2−xBaxCuO4

(P. Abbamonte, private communication) and in YBa2Cu3O6+x at relatively low temperatures in
magnetic fields of ∼6 T (234). Data from other experiments in Bi2(Sr, La)2CuO6+δ at zero mag-
netic field (235, 236) also do not show evidence for this peak. It would be interesting to extend
the X-ray searches to regimes in which the layer decoupling effect, an indicator of PDW or-
der, has already been seen, such as in underdoped La2−xSrxCuO4 (48) in a magnetic field and
La2−xBaxCuO4 (237), or in SC Bi2Sr2CaCu2O8+δ in the regime in which STM experiments see
the peak at wavevector P peak in vortex halos (14).
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