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Abstract

Liquid crystal elastomers and glasses suffer huge length changes on heat-
ing, illumination, exposure to humidity, etc. A challenge is to program these
changes to give a complex mechanical response for micromachines and soft
robotics. Also desirable can be strong response, where bend is avoided in
favor of stretch and compression, even in the slender shells that are our
subject.

A new mechanics paradigm arises from such materials—spatially pro-
grammed anisotropy allows a spatially varying metric to develop upon stim-
ulation, with evolving Gaussian curvature, topography changes, and super-
strong actuation.We call this metric mechanics or topographical mechanics.
Thus programmed, liquid crystalline solids meet the above aims.

A frontier is the complete programming and control of topography, driv-
ing both Gaussian and mean curvature evolution. That, and smart shells,
which sense and self-regulate, and exotic new realizations of anisotropic re-
sponsive structures, are our concluding themes.
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1. CURVATURE CHANGE AND MECHANICS

We review the formation of shells with intrinsic curvature from flat sheets resulting from heat-
ing, illumination, and differential swelling. This control of topography leads to new paradigms
for exploiting the elasticity of mechanically responsive solids. We have termed this topographic
mechanics in our title, but might equally have called it metric mechanics because it is the control
over changing lengths in the plane that leads to Gaussian curvature (GC) evolving without elas-
tic stress. Conversely, blocking this curved topography development leads to very large (stretch)
stresses, with possible new applications in actuation and microcontrol. Our materials are liquid
crystalline (LC) solids—elastomers and glasses. We ask, how are they driven and what are their
material commonalities and differences? Heat, light, solvent, and pH are all effective in giving
reversible strains between 10% and 400%, with moduli in the range of 109–105 Pa, for glasses and
elastomers, respectively.

Contraction along an LC ordering direction, i.e., the director n, can generate a pull in a strip
with n along its length if the contraction is blocked (e.g., by clamping). But if the body is slen-
der, e.g., when there is elongation during recovery, then push is impossible due to Euler bend
instabilities. Bend is a much lower energy alternative to compression during push. We find that
mechanics more complex than pull without push is achievable from complex directors leading
to several possible types of topography change. The idea is encapsulated by the observation of
Bhattacharya & James: At the small scale, “The material is the machine” (1), without gears, cogs,
or pistons (see Figure 1).Thus, our recurrent theme is the control of intrinsic curvature, incurring
stretch or compression in materials if they are loaded and the load frustrates curvature change.
This paradigm contrasts with the introduction of bend—extrinsic curvature in one direction—
which is much weaker.1

This review first discusses the materials necessary for the complex mechanics that are then
sketched.We conclude by looking at future and wider perspectives to achieve the complete control
of curvature and shape, and at other developments involving quite different materials and length
scales as well as control, autonomy, and adaptability of shells for use in robotics.

Two leading figures in the field, Broer and White, have comprehensively reviewed the chem-
istry, the physical phenomena, the creation of shells, and the translation to mechanics (2) in the
aptly titled paper “Programmable andAdaptiveMechanics with LiquidCrystal PolymerNetworks
and Elastomers,” to which the reader is referred.

2. METRIC-CHANGING MATERIALS

Nematic LC solids are the most studied, but there are also cholesteric and smectic elastomers
and glasses, all with fascinating properties. The generality of LC elastomers is discussed in a book
(3), including exploring LC ordering, elasticity, networks, LC solid elasticity, and more complex
phases. The book’s first chapter is available free online and offers a bird’s-eye view (4) of these
materials. We only consider nematics here because they alone have been used for this kind of
topography change. Nematic glasses are much less well understood, with the exception of aspects
of their photoresponse.

2.1. LC Solids

Essential to nematics are molecular rods that orientationally order about a director n on cooling.
Figure 2a shows a computer realization of a disordered system of molecular rods being cooled

1Bend can be very desirable if (a) long strokes are needed and (b) the forces required are comparable with those
delivered by blocked bend. It is a question of mechanical impedance between the deformation route and the
task.
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Figure 1

(a) A slender rod or slender sheet seen in section. On elongating its natural length, it fails to push up a load,
but rather buckles to accommodate its extra length without compression. (b) An active region of flat sheet
transforming to a strong topography on illumination and blocking a channel off—an example of the
machine’s function being encoded into the material (see Reference 1).

to an ordered, nematic phase with its director indicated. Rods can be connected together by flex-
ible spacers to form linear polymers, with rods in the backbone or pendant to it. Either way,
rod ordering produces anisotropy in the shape distribution of the polymers. If these chains are
cross-linked together to form a solid, it too suffers mechanical shape changes, mirroring molecu-
lar response. These spontaneous responses to order change are distortions of ∼20–400% for LC
elastomers, and 3–15% for LC glasses. A typical molecular rod is shown below the phases with
its stiff core and flexible spacers allowing it to be concatenated N times to form a polymer liquid
crystal.Figure 2b is a cartoon of a block of nematic rubber formed by linking the chains together.
The connectivity, and hence mechanics, is via the backbones (shown), and the rods that create the
order are suppressed for clarity in the diagram, but see the inset. The extension by a factor λ along
n, and the perpendicular contractions 1/

√
λ, are shown in the cooled (right) block relative to the
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Figure 2

(a) Computer realizations of isotropic and nematic phases of rods, and a typical rod molecule of such phases,
but additionally with spacers/connectors that allow it to be concatenated to be a polymer. (b) Blocks of
rubber composed of chains cross-linked together. A less anisotropic system (left) is further cooled to higher
anisotropy and thereby elongates by a factor λ. Panel a provided by D.J. Cleaver.
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(a) Conventional (gray) host and guest photorods with a dye core (circle) that can absorb a photon and bend, thereby lowering nematic
order of the fluid. (b) The straight (ground-state trans) and bend (excited state cis) forms of the dye core of the guest photorods. Here,
the dye is azobenzene.

dimension 1 in the higher temperature block (left). Spheroids of varying anisotropy represent the
second moment of the molecular shape distributions.

Their lowmoduli (105–106 Pa) and huge distortions are because elastomers are onlymarginally
solid. Indeed, at the molecular scale they have the mobility of liquids. Thus, classically, or as liquid
crystalline elastomers (LCEs), with deformations imposed or spontaneous, rubbers respond at
constant volume; hence, the 1/

√
λ factor changes perpendicular to n. The directors of LCEs can

be induced to rotate by mechanical fields, and a deeply subtle and interesting elasticity ensues.We
ignore that here and concentrate only on shape change resulting from changes in the magnitude,
rather than direction, of nematic order. Because tension will be mostly along the director, or the
order has vanished with temperature or illumination, then director rotation will not be an issue.

Glasses are more tightly cross-linked, mobility is limited, and moduli are high (�109 Pa);
thus, distortions are smaller. Nematic elastomers are well understood using statistical mechanics
applied to molecular shape distributions as for classical elastomers. However, such a depth of
understanding and modeling of shape changes and elasticity of LC glasses is lacking. It is known
that free volume increases, but from distortions unequal along and perpendicular to n, as temper-
ature rises. Such directional thermal response has been exploited by imprinting complex director
variation through the thickness of glassy LC cantilevers. For instance, greater contraction around
one surface in which the director is along the cantilever, and expansion along the cantilever
near the other surface, where the director is perpendicular, leads to bend (5). Although we do
not pursue bend, such director patterning lays the groundwork for our topography-changing
shells. Another, important, typography that we do not pursue is that of anchored layers that
change their surfaces in response to localized volume changes, induced thermally in patterns or
by photoresponse as below (6).

2.2. Photomechanics of LC Solids

An optically driven reduction of nematic order, and hence an optomechanical response, is possible
when there are guest photorods with a photoisomerizing dye species at their core. Absorbing a
photon turns the dye from its straight trans to its bent cis state (see Figure 3a). The rod sections
pendant to the central core are no longer collinear and the large, now bent guest photorods reduce
the order of their conventional rod hosts. If the rods are part of a polymer liquid crystal network,
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Photoswitching between (a) a photoexcited state (with its mechanical response) and (b) the ground state
(which has recovered from its mechanical distortion). Photos provided by Tim White; see Reference 15 for
more examples.

there is then a contraction along the director [see References 7–10 for LC photoelastomers and
Yu et al. (11) and Harris et al. (12) for early work on LC photoglasses]. A book edited by White
(13) comprehensively reviews photomechanical materials and their exploitation. See also the re-
view by White & Boer (2). For many elastomers, one can directly map their photoresponse onto
their simple thermal response because there is a common cause—the reduction in order (7). The
magnitude of photomechanics in LC solids (10–400%) is unparalleled in other systems. Other
advantages are that light can be delivered remotely (unlike electricity) very quickly and can be
pulsed, and its color can be varied.

Directionality is intrinsic to the response and leads to rich possibilities, for instance, the control
of mechanics also by light polarization: If the light’s electric vectorE is along n, it is generally more
likely to be absorbed because the dye’s absorption dipole is typically along the rod, itself aligned
with n. Thus contraction is greater where E and n are parallel. A beautiful example of picking
out directions is that of polarized light striking a polydomain LC solid, where domains along
E evidently contract more than others, and thereby give a polarization-dependent macroscopic
contraction along E, a response that changes when E is rotated [see Yu et al. (11) for glasses and
Harvey & Terentjev (14) for elastomers].

Dyes differ greatly in their response to light and their modes of recovery after illumination.
Most dyes recover their ground state by thermal back reactions and light-induced back reactions
(stimulated decay of the cis state). The time of thermal decay can range hugely from milliseconds
to days. Optical recovery depends on the wavelength of light (always longer than the primary
beam’s wavelength) and on its intensity. An excellent investigation of both recovery routes is from
White and colleagues (15), where recovery of mechanical distortion induced by 365-nm light can
be achieved in a few minutes by light of 532 nm, rather than over hours if by thermal recovery
(see Figure 4).

Some dyes can recover only by optical stimulation. These present an advantage in that, once
a deformed state has been induced, no further optical power is required to maintain it. Later
switching to another configuration can be done at will.

If the return rate, for instance thermal, is slow compared with the forward rate (determined by
the incident intensity), the trans population becomes depleted.The absorption is reduced and light
can penetrate more deeply to then deplete trans species still further into the solid. The Beer law
attenuation of intensity with depth, I(z) = I0e−z/d , no longer holds (16). (d is the Beer penetration
depth, dependent on dye concentration and wavelength, z the depth, and I0 the incident intensity.)
Instead I(z) diminishes linearly until too weak to significantly deplete the trans population, and
Beer’s law is reasserted. The deviation from Beer is in practice extremely important. The length
d is typically much less than the thickness of photosheets and beams. For appreciable mechanical
response to take place, an appreciable fraction of the sample volume must be illuminated, and that
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can only take place if penetration is deeper than d. The trans population can be explicitly measured
by a weaker beam that does not cause significant population change itself. In this context, trans
population depletion and its recovery have been measured at the same time as the mechanical dis-
tortion (15). This careful investigation connects photostimulation and mechanical response, given
that hours can elapse and temperature has equilibrated. Diminishing intensity with depth because
of absorption means diminishing contractions and, thus, cantilevers can bend, usually toward the
incident light [see Camacho-Lopez et al. (10) for a very early example of a photodriven beam,
achieving 45◦ bend in 60 ms]. As yet another example of polarization dependence, White et al.
(17–19) showed a cantilever in which bend, relative to the incidence side of the illuminating light,
reverses according towhether the light is polarized parallel or perpendicular to the cantilever’s axis.

Other authors have instead found the mechanical response to be photothermal; that is, heat
generated by light absorption is responsible for the mechanical distortions they observe (20–22).
It is also clear there are dynamical effects associated with the process of isomerization and the
creation of free volume. Liu & Broer (6) found that irradiating simultaneously with the color
for forward reaction and with that for recovery greatly increased the free volume production.
Furthermore, the recovery of free volume after ceasing to irradiate was very rapid compared with
the decay of the cis population to trans, suggesting that the geometric shape of the bent rods was
not the only impetus in glassy systems for mechanical distortion. See also a discussion, along with
details of free volume changes, in Reference 23 and analogously differences in cone recovery and
isomerization in Reference 15. We now show how such materials’ responses can be harnessed to
great effect by taking a director geometry more subtle than linear or polydomain.

3. CURVATURE AND THE INDUCTION OF TOPOGRAPHY CHANGE

To modify the topography, and above all the GC, of sheets, we need to control distances between
material points in the surface. At our disposal in LC solids are contraction/elongation factors,
λ < 1 and λ > 1, respectively, along the director, with corresponding factors λ−ν > 1 and λ−ν < 1
perpendicular to the director accompanying the respective contractions/elongations. The expo-
nent ν corresponds to a Poisson ratio in small extension elasticity in which an imposed contraction
along one direction leads to perpendicular elongations, and vice versa for imposed elongations.
However, here the effect is due to spontaneous length changes along n, and we call ν an optother-
mal Poisson ratio. Elastomers have ν = 1

2 , and glasses have ν ∈ (1/2, 2) roughly. Volume changes
on distortion,V → V ′, considering changes in lineal dimensions by the λ factors along the edges
of a small cube aligned locally with n, are

V ′/V = λ × λ−ν × λ−ν = λ1−2ν . 1.

Rubber is volume conserving, ν = 1
2 , whereas glass has ν > 1

2 , with volume increase upon con-
traction along n.

The stretches and contractions associated with the thermal and photo-distortions discussed
above are elements of the deformation gradient tensor, λ = ∂R/∂R0, where R0 is a material point
in the reference state (our initial, flat sheet) that maps to R in the target state. It corresponds to
the local stretches we have defined and can be compactly written:

λ = (
λ − λ−ν

)
nn + λ−νδ ≡

⎛
⎜⎝

λ−ν 0 0
0 λ−ν 0
0 0 λ

⎞
⎟⎠ . 2.

The latter is in Cartesian coordinates based on n along z. Check that the former gives in the latter
the right entries along and perpendicular to n. Check also that V ′/V = Det(λ)—the product of
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the diagonal values.The fractional volume change is an invariant of the λ tensor; it does notmatter
which frame we find volume changes in.

These ideas are the machinery for describing length changes and curvature: The change in the
(squared) change in length ds of an element dR0 in becoming dR, that is dR ≡ λ · dR0, emerges
from

(dR)2 = (λ · dR0)T · (λ · dR0) = dRT
0 · (λT · λ)dR0,

(ds)2 = (dR)2 − (dR0)2 = dRT
0 · (g − δ) · dR0, 3.

with g= (
λ2 − λ−2ν)nn + λ−2νδ. 4.

Themetric tensor g = λT · λ encodes fractional (squared) changes of lengths, the directions along

which are selected out by the dR0.
If the λ were imposed, then λT · λ would be the Cauchy–Green tensor of the distortions in

elasticity (24). But here, we are concerned with spontaneous length changes in the plane of an
initially flat sheet that will remain our reference state to describe the new surface.The new lengths
|dR| are those natural to the changed state and are effectively stretch free, that is, without stress.
We confine ourselves to a planar reference state with n in-plane, so that the relevant 2 × 2 part of
Equation 2 is simply, in the director frame, ( λ−ν

0
0
λ
).With stress-free surfaces, the normal direction

will simply relax always by λ−ν .
In summary, we have a simple, flat reference plane on which a g is defined that specifies the

target. The challenges are to find the curvature and then ultimately the actual surface. Even more
ambitious is the inverse problem: Give the patterns determining a g that will generate a desired

surface. We sketch this program, along with its many, as yet unresolved, challenges.
If g is independent of position, for instance, if there is a change to λ 	= 1 but it remains spa-

tially constant, while n is along a fixed direction, then such a strip, say, would simply get longer
or shorter but remain flat. However, if λ(r) and hence g(r) vary with position r in the reference

plane, then the sheet must develop curvature as λ evolves. This is Gauss’s celebrated Theorema
Egregium that GC is an intrinsic geometric property and is determined by variations of the first
fundamental form g. An excellent, elementary discussion of these notions in this context of evolv-

ing surfaces is in Reference 25. Also in this context is the review in Reference 26. At this point,
we should carefully define intrinsic curvature: A plane that rolls up to a cylinder has suffered bend
in one direction—an extrinsic curvature—but distances between points in the original space have
not changed. Triangles drawn on the original surface remain triangles in that their sides remain
geodesics, that is, the shortest distance between two points (in this case corners of the triangle).
Furthermore, the interior angles of the triangle continue to add up to 180◦. The curvature is the
inverse of the cylinder’s radius. In general, it is the inverse of the radius of curvature of a cylinder
that can be fitted locally to the surface that we are bending in one direction. In the other direction
the cylinder’s curvature is zero, so the radius of curvature is infinity.

However, as the map maker well knows, if a plane wraps a sphere, then distances in the plane
have to change. Otherwise there are wrinkles or tears. The sphere curves in two directions. The
product of the two curvatures at a point is (a) nonzero (unlike for the cylinder or for surfaces locally
like a cylinder), and (b) independent of the two directions we choose to define each of the bends
in. It is an intrinsic property of the surface (Theorema Egregium). (A sphere is a special case; the
intrinsic curvature κ is the same everywhere on its surface and is κ = 1/R2, where R is the sphere’s
radius.) Triangles can be formed on the sphere’s surface by connecting three points by geodesics
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(a) Three great circles on a sphere—the shortest distances between pairs of points—form a triangle. Here,
the two right-angle interior angles sitting on the Equator account alone for the usual 180◦, with additional
angle at the North Pole. (b, i) A disc with a radial cut to its center with a triangle and circle drawn on it.
(b, ii) The edges of the radial cut are swept over each other to give an angular deficit at the center. A cone
results. The triangle of the flank remains conventional, with angles adding up to 180◦. (c, i) The disc turned
over to show a triangle spanning its center. (c, ii) The angular deficit is again introduced until the red dots in
panel c are superposed. In the new triangle, the angles now add up to more than 180◦ because the cone apex
punctures the triangle. Geodesics (for instance the triangle’s sides) remain so because the “distortion” is
isometric. Clearly Gaussian curvature in cones is localized to the tip (the size of the new triangle does not
matter).

(great circles), but as is well known, the sum of the interior angles is greater than 180◦ by an amount
that depends on the enclosed area, i.e., on how big the triangle is (see Figure 5a). If we took a flat
sheet with a triangle on it and, by some miracle (to be revealed below!) were to transform it into
part of a spherical shell, then the sides of the triangle would no longer all be geodesics; that is, we
would no longer have a true triangle. A cone by contrast would appear to lack GC as a cylinder
does. It is only bent in one of two directions. There are subtleties, however, and a cone indeed has
GC (see Figure 5b–c). We now address cones as our first example of topography development.

3.1. Cones from Circular, Radial, and Logarithmic Spiral Director Fields

We illustrate here how reversible topography change arises in simple systems before addressing
general problems of curvature creation and its control. Assume in Equation 4 for the metric tensor
that λ has no spatial variation, and that variation in g is purely due to that of the director n(r).

Figure 6 shows a director field of concentric circles in a plane disc. It is a 2D version of a
+1 liquid crystal disclination. From the figure, one can see that if the disc suffers circumferential
contractions and radial elongations, then the ratio of circumference to radius cannot remain 2π.
The disc cannot remain planar but becomes a cone, with cone (internal) angle φ = sin−1(λ1+ν ).
There is an angular deficit, but unlike in Figure 5b–c it is achieved by a nonisometric transfor-
mation. The illustration with paper discs and cones makes the point about localized GC, but it is
a poor analogy for shape-transforming LC mechanics, as we see below for generic geodesics. The
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Figure 6

(a) A circular director pattern in a flat disc, and the transformation of the disc to a cone as the circumferences contract by λ < 1 and the
radii elongate by λ−ν . (b) A circle of radius r and circumference 2πr that will become the base of the cone. (c) A cone with side (intrinsic
radius) λ−νr and base of circumference λ2πr that is generated by an in-space radius λr. The right triangle gives the cone’s internal
angle φ as sinφ = λ1+ν .

GC is κ = 2π(1 − sinφ) = 2π(1 − λ1+2ν ). See Modes et al. (27, 28) for LC solid structures, and an
important paper by Dervaux & Ben Amar (29) with similar structures in the context of soft tissue
morphogenesis. We now describe their realization and application.

3.2. Patterning, Arrays of Cones, and Lifters

The first responsive GC shell was apparently that of Camacho-Lopez et al. (10), the celebrated
LCE swimmer “that swims into the dark,” a photodriven flapping shell on a fluid surface.The vital
step to creating more general metric-mechanical materials is the encoding of the director, from
which the pattern of length changes will follow. There exist well-established techniques from
LC technology for setting up director fields. Broer et al. and White et al. have perfected their
application to the creation of programmed LC solids. Complex patterning in photo-glasses was
created by de Haan et al. (30) using photomasks and polarized light to create guide surfaces from
photosensitive materials. These form the mold for the liquid that will become the LC solid when
polymerized and crosslinked, after the director field has been established by the guide surfaces.
Careful registry of the top and bottom surfaces, held apart by a distance that will become the
thickness of the LC solid, is required. See Reference 30 for the process and extensive references
to earlier literature. The guide surfaces are removed to release the photothermal sheet. De Haan
et al. achieved considerable deformations from discs to cones of φ = 40◦ internal angle on heating
a flat disc with a +1 defect at its center. These defects, and also those with a large range of other
topological charges, were also encoded by McConney et al. (31), where techniques are further
described. See also Ahn et al. (15), in which the angles of cones are measured and compared during
relaxation with back isomerization in this photomechanical example. (Note that their cone angle
is the complement of our φ.)

We now turn to spectacular mechanics applications: White and coworkers have created arrays
of +1 circular disclination patterns in flat, slender sheets of LC solids that then on (here thermal)
activation produce an array of cones that rise out of the plane (32, 33) to achieve their natural,
stress-free state. These are very powerful lifters indeed, and we meet for the first time the full
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a b d
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Figure 7

(a) 3 × 3 patterns of circular directors lead to (b) 3 × 3 arrays of cones rising from the flat square on heating. (c) A 2 × 2 array of cones
lifts two glass sheets several times its own weight. (d) A plastic spoon being pressed on its Gaussian curved region. Radial and
circumferential lines of compression and extension, respectively, arise when this curved shell is deformed. Panels a–c adapted from
Reference 32 with kind permission of Tim White.

force of this metric-shifting mechanics. Figure 7a,b shows a director patterned sheet before and
after heating, giving a 3 × 3 array of cones. In Figure 7c, a 2 × 2 array lifts a load of glass plates.
Figure 7d is a familiar example; one can bend the handle of a plastic spoon, but deforming the
Gaussian-curved cup of the spoon is difficult. Force from an applied finger is met by compressive
forces radially and extensional forces circumferentially.

Evolving cones, though slender, can be very strong and can lift of order 3,000× their own
weight through a distance several times their thickness. Figure 8 shows a director pattern leading
to lifter arrays that can lift the indicated multiple of their own weight. The lifter sheets are 0.2 mm
thick and about 1 cm square and are thus slender (a 50:1 lineal dimension/thickness ratio). They
lift their loads through a height of between ×8 and ×2 their thickness. See Reference 33 for the
loading for optimal work delivery. One also sees no apparent fatigue over many cycles.

Before leaving cones, which arose from +1 defects, we note that other systems (not immedi-
ately of apparent mechanical significance) are also possible. De Haan et al. (30) also made sheets
with a +1 radial, rather than circumferential, director field. Now on heating or illumination, radii
shrink and circumferences develop surplus length. The result is what has been termed (27, 28) an

2 × 2

3 × 3

Film weight × 150

Film weight
× 1,110 × 2,150

14 g 14 g

14 g 14 g

180˚C

35˚C

1 cm

1 cm1 cm3 mm3 mm

Figure 8

A 2 × 2 pattern of circular directors leads to a 2 × 2 array of cones rising from a flat square when the temperature is raised from 35◦C
to 180◦C. The multiple of the cone array’s weight that is being lifted is shown for each example. The ×1,100 array is shown close up.
Figure adapted from Reference 33 with kind permission of Tim White (CC-BY 4.0).
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anticone, something like a ruff with a wavy perimeter and straight radii. There is negative GC (an
angular surplus) at the tip; such structures have been investigated in closely related contexts of
morphogenesis and growth (29, 34). McConney et al. (31) also encoded anticones, but went on to
explore a large range (extending to ±10) of other topological charges, where even more complex
distributions of GC (35) and topography arose. See also Reference 36 for a +6 defect and for a
very sharp +1 cone and Ahn et al. (15) for anticones (radial +1 defects) and also −1 charge defects
and their mechanical distortions. One can also take analytic expressions (35, 37) for the GC as-
sociated with defects and, for ± 1

2 defects, numerically compute (38) the emerging shapes. Defect
systems have been simulated by Selinger and colleagues (39) who, in addition to exploring cones
and saddles, examined exotic systems such as the distortions arising from −2 and −4 defects. In
effect, topology leads to photoinduced topography, to paraphrase McConney et al.

4. GAUSSIAN CURVATURE FROM VARYING METRICS

Nature shows us spatially differential growth that leads to complex form. Simplest are perhaps
leaves that wrinkle and buckle either in normal growth or as the result of disease. It has motivated
many mechanics studies in this context of evolving shells, though as a consequence of a simple
λ(r) variation of isotropic growth, that is, without an n(r) predicating directions of anisotropic
transformations (λ and λ−ν in our case). Consequentially, the metric is just g = λ2(r)δ—a local

inflation or deflation. The basic ideas required for a study of (reversible) LC solid transformations
are established in such studies of locally isotropic swelling, and many interesting 3D structures are
obtained experimentally too. See the comprehensive theory (40) and the reviews (25, 41) of the
geometry and of important experimental results. See earlier papers (29, 42–44), and subsequently
Kim et al. (45) also on programmable differential swelling in gels creating intrinsically curved
topographies.

We now concentrate on circularly symmetric, homogeneous λ systems, that is, where the only
variation in λ, and hence in g, is through n(r), that is, where the director varies as in Figure 9. For

circular symmetry, the directormakes an angle α(r) with the radial direction depending only on the
magnitude r. The cases α = π/2 and α = 0 are the circular and radial director fields, respectively,
of the previous examples. The first experimental realizations of the shells we discuss below have
been from the White group (46). We sketch a mathematical machinery (37, 46–48), not pursuing
Cartesian patterns of n also used to generate these circularly symmetric shells (37, 46, 47).

In Cartesian coordinates, the reference state increment dR0 = (dx0, dy0) becomes in circular
polar coordinates (dr, dθ ). For the former, the metric is ( 10

0
1 ), whereas to get the correct length

|dR0|2 = (dr)2 + r2(dθ )2 ≡ (dr, dθ ) · g · (dr, dθ ) (see Figure 9a), the metric transforms to ( 10
0
r2 ).

On deformation by λ, Equation 2 with n as above, the squared lengths in the target space in terms
of a reference space (dr, dθ ) are given by the metric (46),

grr = λ2 + (
λ−2ν − λ2) sin2(α),

grθ = gθr = 1
2 r

(
λ−2ν − λ2) sin(2α),

gθθ = r2
[
λ−2ν − (

λ−2ν − λ2) sin2(α)
]
. 5.

Curves with a (unit speed) parameterization via arc length s have r = (r(s), θ (s)). Their tangent
vector is t = dr/ds = (ṙ(s), θ̇ (s)) that is a unit vector (with the above g) in the reference state

because |dr| = ds (see Figure 9a). The tangent vector transforms to a t′ = λ · t with new length
|t′|2 = t′ · t′ = t · g · t. As one sees in Figure 9, curves are in general changed in length, rotated,
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(a) A disc of liquid crystalline solid before deformation, showing a unit circle and an outer circle 	1. A
director line n(r) (heavy line) spirals outward with angle α(r) to radii. A material curve r(θ ) marked 	2, which
turns out to be a protoradius, has differential length components rdθ and dr in the θ and r directions that
make up a length ds. (b) The intrinsic curves after transformation by λ(r) showing an inflated circle 	′

1, the
radial image 	′

2 of the protoradius, and the convected and rotated final director field n′(r).

and convected [see Mostajeran et al. (49) for a discussion of these effects of λ]. An example
is t1 = (0, 1), the tangent to a circumference, 	1. Employing Equation 5, on transformation of
	1 → 	′

1, the circumference changes in length by a factor of
√
gθθ /r2 (see Equation 8).

Target space radii, that is, curves	′
2 that are perpendicular to circumferences, aremore subtle to

determine: Because of rotations of their tangents, t2 say, they start as reference state protoradii,	2

in Figure 9a that evolve under λ to actual radii, 	′
2. One shows (48) from 	′

2 being perpendicular
to 	′

1, that a protoradius r(θ ) satisfies a simple ordinary differential equation (ODE):

dr/dθ = −gθθ /gθr → θ = −
∫

drgθr/gθθ , 6.

giving a single quadrature for r because the ODE’s right-hand side is independent of θ .
An example is where α is independent of r; that is, lines of n are log spirals: rn(θ ) = rn0ebθ with

b = cot α. Also, the integrand in Equation 6 is gθr/gθθ ∝ 1/r, whence the protoradius is simply
r(θ ) = r0ecθ , where c = cot β, with β being the (constant) angle between the tangent of r(θ ) and a
radius. It is thus also a log spiral, with c dependent on the elements of g, that is, on λ and α (see

References 27, 28, 49). The factors by which circumferences and radii change are independent
of r, and we again have cones or anticones. The differences from our earlier cones are the rich
rotations, convections, and distortions. For instance, 	′

2 is a geodesic, but its source 	2 is not.
The paper cone model of Figure 5b–c, and used by this author in lecture demonstrations, is a
deeply misleading illustration of the nonisometric transformations of LC solids. Triangles do not
remain triangles because generally geodesics do not remain so after deformations λ. However, the
paper demonstration of localized GC remains relevant. See Reference 49 for a full discussion of
geodesics for these solids.
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(a) A point w (heavy dot) in the cylindrically symmetric surface is specified by the radius γ1(u) and the height
function γ2(u), both of which are functions of the in-surface radius’ (	′

1) length u(r) from the apex. The

transformed circumference of 	′
1 ≡ 2πγ1 is a known multiple,

√
gθθ /r2, of the original (	1) circle’s

circumference, 2πr. (b) A disc deforms to a spherical cap, seen in section, with the initial radius r becoming
the intrinsic radius u.

4.1. The Forward Problem: From Directors to Shells

Three elements (48) take one from a director field to a shell:

1. The GC arising from λ and the α(r) obtain from the spatial variation of g:

K (r) = λ−2 − λ2ν

2

[(
α′′ + 3

r
α′

)
sin(2α) + 2α′2 cos(2α)

]
, 7.

a function of the reference coordinate r, here through α(r), and α′ is dα(r)/dr.
2. A symmetric shell can be specified in the target space by radius and height functions, γ1 and

γ2, functions of the in-material (intrinsic) radius, u. See Figure 10a. Smooth shells also have
γ ′2
1 + γ ′2

2 = 1, where ′ = d/du, so γ1 and γ2 constrain each other. The GC is K = −γ ′′
1 /γ1,

with the constraint making this expression less simple than it seems. It is in terms of u, not
r as in Equation 7.

3. One needs to connect the reference and target radii r and u, which can be achieved via the
arc length expression: du = ds

√
t2 · g · t2. The ds can be replaced by dr by taking dr/ds out

of the surd and replacing remaining dr/dθ terms in the surd by its form in Equation 6 for
protoradii.

Another reference/target connection is circumferential inflation, 	1 → 	′
1, that is,

2πr → 2π
√
gθθ (r) = 2πγ1, 8.

because the in-space radius γ1 sweeps out 	′
1.

An example director field is that specified by α(r) = α0 + r2, which leads to the GC and shell
shown in Figure 11. Radial positions r are here scaled by the disc radius.

For many applications of shells, it is useful to anchor them to passive substrates at some cir-
cumference with radial position r in the reference state. It is only possible to develop a shell and
to remain fixed to the substrate if the circumferences match, that is, 2πγ1 = 2πr. It will only be
possible at values of λ such that gθθ = r2. For other values of λ there are stretches required to make
the two regions compatible at r, and it is likely that shells are inhibited until they snap into place
as λ approaches the required value at r. The other requirement is that ν > 1, so that the area of
the formed shell can be greater than that of the original disc; this is clearly required if the shell is

www.annualreviews.org • Topographic Mechanics of LC Solids 137



CO11CH07_Warner ARjats.cls February 13, 2020 11:30

a b–1

5

–0.5

–1

0

–10

0

0.5

0.5

0

0

K(r)

g2(r)

r

0

1

g1(r)

Figure 11

(a) Calculated GC and (b) shell shape arising from a deformation, λ = 0.51 and ν = 1.5, in a spatially varying
director field α(r) = α0 + r2, with α0 = 1.25. The GC is plotted against the radial coordinate r of the
initially flat, undistorted reference state. The shell is plotted parametrically with r specifying the radial
coordinate g1(r) ≡ γ1[u(r)] and the height function g2(r) ≡ γ2[u(r)]. Both plots correspond to the same
region r ∈ [0, 1] of the reference state. Abbreviation: GC, Gaussian curvature.

to rise up but with a fixed perimeter. We speculate that for required sudden action, for instance,
the pumping of analyte in microdiagnostics, the timing of which is critical, these systems could be
important.

4.2. The Inverse Problem: From Shells to Directors

We now depart from the forward problem [where, given n(r)we calculate the shell shape resulting
from the action of heat or light]. The inverse problem is, given a shell, what director field n(r)
must we program to achieve this shape under the action of heat and light? These inverse problems
are of various types.

4.2.1. Cylindrical symmetry. The inverse problem for anisotropic solids has been attacked by
Aharoni et al. (37) and Mostajeran et al. (46, 48). The simplest problem is that of constant GC,
that is, for spherical caps and spindles2 (K > 0) and hyperbolic spheres (K < 0). Then Equation 7
for K is a simple ODE for α(r) with solution (46)

α(r) = ± 1
2 arccos

[
− 1

2C(K ) r2 + c1 + c2
r2

]
, 9.

whereC(K ) = K/(λ−2 − λ2ν ), and c1 and c2 are real constants of integration. Depending on c1 and
c2, one has simple discs or annular domains. For instance, if K > 0, c2 = 0, and c1 ≤ 1, the so-

lution (Equation 9) defines a spiral pattern on the simple disc r ≤
√

2(1+c1 )
C(K ) . Kowalski et al. (50)

have measured the thermal response of discs with director spirals from the family of Equation 9
(see Figure 12a–f showing spherical caps and spindles, and hyperbolic spindles). This work also

2Spherical spindles have curvatures differing in the two principle directions such that their product, the GC,
is constant. They have peaks at their pole, unlike spherical caps.
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Figure 12

Constant GC upon heating. Positive GC: (a) Spiral director profile with c1 = −0.35. (b) Predicted and measured height profiles for
c1 = (i) −0.75 and (ii) −0.35, showing fine control over curvature. (c) Predicted and measured 3D shapes for i (right) and ii (left).
Negative GC: (d) spiral with c1 = −1, (e) measured height profile for the expected hyperbolic spindle, and ( f ) representative radial slice
through the shell, showing good agreement between the predicted (dashed) and measured (solid) profiles. Abbreviation: GC, Gaussian
curvature. Figure adapted from Reference 50.

presents circumferentially anchored spherical caps as an example of integration of responsive shells
with passive supports. Thicker, complex, responsive shells can be 4D printed (51–53). LC poly-
mers align during extrusion from the printing head. Printing is 4D because 3D-printed structures
subsequently morph, as above.

In general, the inverse problem is rather difficult (37, 48), even for these systems of circular
symmetry. The problem is that defining the desired surface gives the GC in terms of the equiv-
alents of the γis and the target space radius u, whereas the director field in terms of α(r) is in
the reference state. Making the connection in general involves integral equations (48), but two
important cases allow for analytical solutions—paraboloids and catenoids of revolution. In these
cases, for a given target shell achieved at a deformation λ = �, the required director pattern is
characterized by an α�(r) field that is unique to that particular �. This must be written into the
initially flat disc. A consequence is that, as heating or illumination proceeds, λ does not immedi-
ately attain the � value. Intermediate shells are created on the way to � that are not of the desired
form. For instance, before a required paraboloid is attained, there will be shell conformations that
are peaked at their pole (see Reference 48 for explicit details).

4.2.2. Beyond circular symmetry. More general and powerful machinery is required to deliver
intrinsic curvature leading to noncircularly symmetric shells. It is a difficult problem, meriting a
review in itself. However, see Plucinsky et al. (54), who allowed director rotation out of plane and
gave a precise specification of the director field in terms of gradients of the lift required out of
the plane to specify a (general) shell. Further, Aharoni et al. (55) developed numerical schemes
to specify patterns leading to nonsymmetric shells. Griniasty et al. (56) recently showed that the
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inverse problem is locally solvable for any 2D geometry about any point. They also show there is
a continuum of director fields that give the same intrinsic geometry; see below, however, for going
beyond intrinsic questions.

5. THE GRAND CHALLENGE: RELATED SYSTEMS

5.1. Control of Intrinsic Curvature and Extrinsic Bends: The Challenge
of Complete Topography Control

We have been concerned with creating a metric and thus the intrinsic (Gaussian) curvature, leav-
ing open the question of extrinsic curvatures (simple bends) of the plane. The product of the
curvatures, 1

R1
× 1

R2
, is the GC and is intrinsic to the surface. We have discussed above evolved

shapes that are without stretch, paying no regard to the bend cost, which is much smaller than
stretch cost when systems are thin. However, for arbitrary surfaces, one needs to generate both
the required GC and the mean curvature, that is, the two invariants of the surface. This very am-
bitious program of inverse, general surface problems has been addressed by various authors (37,
55, 57). There are varying strategies for controlling extrinsic curvature, for instance, out of plane
variation of director through the thickness or anisotropic swelling by an amount differing through
the thickness.Metric changes are determined by the contraction/elongation averaged through the
thickness, with deviations from the average determining choices of bends with associated elastic
costs. Alternatively, director variation can remain in-plane but in directions that vary through the
thickness. Director deviation from the mean by twist through the thickness then gives negative
GC (saddle-like) deviation from the GC implied by the in-plane spatial variation of the mean di-
rector. Progress has been striking and has yielded, for instance, faces that evolve from flat sheets
(55, 58). Similarly, the evolution of a calla lily flower (57) has been achieved from a flat sheet
of hydrogel where swelling is rendered anisotropic by the embedding of aligned stiff fibers. Full
implementation of this program will achieve a complete solution of topography evolution and
control.

5.2. Related Systems and Phenomena

A wide range of systems exhibit topography change on various forms of actuation. They have a
formal similarity with the systems we have described, and the same geometrical and mechanical
methods we have developed can be used to model them.

5.2.1. Baromorphs. Siéfert et al. (58) turned to a different route to mechanical actuation—
applying pneumatic pressure to channels in elastomer sheets: when under pressure, the channels
expand perpendicular to their long axis, while remaining unchanged in length. In our notation,
there is an elongation λ along a director which is in-plane and perpendicular to the channels.
Since lengths in the channel direction are unchanged, then the “pneumatic Poisson ratio” for
this direction is ν = 0. Pressure controls the magnitude of λ, and dynamics can be pursued by
varying the pressure. Furthermore, the authors have control over the channel patterns and can
create shapes at will that they term “baromorphs.” See, for instance, Figure 13. The authors
have made not only more complex shapes than cones, such as anticones, caps, etc. (58), but also
faces as in Section 5.1. Furthermore, they have new methods (E. Siéfert, E. Reyssat, J. Bico, and
B. Roman, private communication) to make very large, rigid, and light shape-morphing shells that
will undoubtedly find new applications in the macroscopic realm.

Another very recent paper also engineers spatially dependent deformations in conventional
elastomers, but instead uses electric fields that give spatially dependentMaxwell squeezing stresses

140 Warner



CO11CH07_Warner ARjats.cls February 13, 2020 11:30

a b c

Figure 13

Baromorphs with concentric circular channels: (a) uninflated and hence flat. (b) Partially inflated. (c) Strongly inflated to form a
pronounced cone. Photos provided by E. Siéfert et al.; see Reference 58 for more examples.

(59). Internal distributions of electrodes, analogous to the channels of baromorphs, give isotropic
in-plane elongations depending on the local field. However, because these elastomers are me-
chanically homogeneous and isotropic, several independent shapes could be made on the same
elastomer volume using separate sets of internal electrodes as required. The results are caps, sad-
dles, and sections of tori, with the solution of the inverse problem (Sections 4.2, 5.1, and 5.2.2)
required for more complex shapes.

5.2.2. Topography change of inked plastic sheets. We have seen there is an extensive liter-
ature on achieving Gaussian curved shells by the spatial control of the extent of locally isotropic
swelling [see the review by Sharon & Efrati (41) and the subsequent work of Kim et al. (45), where
programming and encoding response in 3D has been achieved]. As an example of these ideas ap-
plied to very different systems, recently Mailen et al. (60) have used biaxially prestretched plastic
sheets to produce GC shells. Contraction, locally isotropic in the plane, can be photoinduced to
partially recover the state before stretching. The local extent of recovery, that is of contraction, is
determined by the optical density of ink at that point and, hence, the extent to which heat is pro-
duced. Thus, one can print plastic sheets with an ink intensity that encodes the spatially varying
metric change.

For the thin sheets of Mailen et al., the considerations are purely geometric because bend is
much cheaper than stretch, the lack of which will select out the desired symmetric shell shape.The
authors aimed for spherical caps, a problem addressed by Kim et al. (45) using metric methods. A
very simple argument (61) specifies the required pattern of contractions to yield a spherical cap. It
relies on mappings from r to u sketched in Figure 10b. Both methods yield contractions varying
on the initial disc (r) like

λ(r) = λ(0)

1 +
(

λ(0)
2

)2
(r/Rc )2

, 10.

where Rc is the radius of curvature of the cap, and λ(0) is the contraction at the center of the disc.
Furthermore, their inverse problem has also been solved more generally (61), getting beyond
spheres and saddles, and concrete examples, e.g., paraboloids and catenoids, have been given too.
Thermoplastics have also recently been printed with a preferred (extrusion) direction, leading to
directional shrinkage and shell formation on heating (62).

5.2.3. Reprogrammable and autonomous shells. Another ambitious direction in which there
has been recent progress is that by Priimägi and colleagues (63–66) in making self-regulating, au-
tonomous and reprogrammable shells. Although these various shells are not Gaussian curved, they
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bend in ways that point to future responsiveness and functionality, for instance, in reprogrammable
soft robots that learn from their environment and past actions.

A self-regulating iris (63) is open in the dark state, having curled back the segments attached
at a perimeter that then unroll in the light and close off a circular iris. The light being admit-
ted is automatically regulated. Greater sensitivity to light intensity of the mechanical response is
achieved by polymerizing close to the nematic–isotropic transition, a strategy that will be useful
elsewhere too:Weaker nematic order is imprinted on the solid, and hence the disturbance created
by the light need not be so great to lower the order.

An optical bender that is open when unilluminated can bend when light is reflected from a tar-
get object onto its surface that is to become concave (64). It was found that a strong, self-regulating
gripper (an artificial fly trap) reacted in 200ms to the presence of a target it had distinguished from
other objects.

Another aim is flexibility and adaptability of function of a shell (65). Having had imprinted
at fabrication an underlying functionality, a shell can subsequently be reprogrammed to behave
differently, despite receiving the same stimulus, e.g., the same light field. One route to this end
has been a synergy between photochemical response (for shape programming) and photother-
mal response (for shape morphing). It is found that in photochemically modified regions (where
UV exposure has produced significant cis concentrations of dye) subsequent irradiation with red
light, producing heat, causes much greater deformation than if the region is not prepared by UV.
The photochemical modifications are long-lived compared with the thermal response to red light
(30 min compared with 2 s after respective stimuli cease). Thus, an underlying director field can
be temporarily reprogrammed, at least in the magnitude of its response, and a different robotic
function achieved. As an example, a gripper (holding 100× its own weight) will grip on red illu-
mination and subsequently either release or hold its load after illumination ceases, depending on
how it was prepared. Erasure with blue light returns the cis dye isomers to their trans state and,
hence, the actuator to its original state. Two colors of light and two forms of reaction are perhaps
a form of multistimuli action. Rather more literal has been the combination of water vapor and
light in a humidity-gated photoactuator (66). Under humid conditions, photoresponse can be en-
gineered to be more efficient, leading to differing actuation under wet and dry conditions—an
artificial nocturnal flower!

5.2.4. Shells with discrete distributions of Gaussian curvature: Nonisometric origami.
Classical origami creates facetted versions of cones by valley and mountain folds that meet at ver-
tices where there are angular deficits, and thus localized sources of GC, as we have seen in cones.
Paper is magicked away behind folds, and the distortions are locally isometric—the sides of trian-
gles on facets remain geodesics, and the sum of interior angles remains 180◦. See the discussion of,
and around,Figure 5b–c. But the structures are weak in that they rely on bend (at the folds), which
is weak, and which unbend to reveal the lost paper should the structure be loaded. (An exceptional
rising hybrid Kirigami–Origami structure from light card (67) supports a colossal load-to-weight
ratio of order 10,000.)

Curvature localized at points created by length changes λ, varying discretely from region to
region of an initially flat sheet, gives an entirely different form of origami. Provided the distortions
in neighboring regions are compatible with each other, these regions will become the facets about
a vertex in which there is a resulting angular deficit or excess (26, 35, 54, 68). There are strict rules
for how neighboring domains can deform (35, 54), and the latter authors coined the apt name
“nonisometric origami” for such systems. Very large-scale, nonisometric systems that evolve to
facetted shapes have recently been realized (E. Siéfert, E. Reyssat, J. Bico, and B. Roman, private
communication).
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SUMMARY POINTS

1. We have reviewed mechanics that arise from the manipulation of the metric of a shell,
that is, the modification of distances between points, to achieve changes in Gaussian
curvature despite the shell remaining stretch free. The motivation is to achieve push
and pull in slender systems that would otherwise suffer mechanical instabilities if heavily
loaded.

2. This program rests on materials that will respond with large, anisotropic length changes
to a range of stimuli. We have reviewed heat, light, solvent, and humidity-driven sys-
tems. Our principal concern was liquid crystalline solids, glasses, and elastomers, where
the spatial variation of the mechanical response to stimuli was fashioned by the spatial
variation of the director, the anisotropy direction, which is imprinted at fabrication.

3. Spectacular lifters have been made, and these offer hope for complex machines at the
microlevel, where the functionality arises from the material itself. Ultimately, an aim is
to make these responsive machines autonomous and reprogrammable, and important
steps have been taken along this route.

4. The grand challenge is of complete control over topography, beyond the symmetric ex-
amples we have largely focused on. Considerable progress has been made in this difficult
problem.

FUTURE ISSUES

1. Applications should now follow from the mechanics principles established in metric ma-
nipulation. These involve integrating active, ideally light-driven, elements into complex
systems, for instance, large-scale microfluidics. Demonstrated responsive lifters, snap-
pers, and shells with preform should be ideal for a range of applications including hap-
tics, adaptive and reprogrammable surfaces, and microactuation. Multistimuli and self-
regulating systems need continuing development, for instance, in curved systems and
where load could feed back to control.

2. The grand challenge of controlling both Gaussian and mean curvature needs further
concrete implementation both theoretically and experimentally where questions of fi-
delity and resolution still arise.

3. Nonisometric origami is under investigation, e.g., nonisometric equivalents of more
complex origami; curved-fold systems are an example.
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