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Abstract

The recent striking success of deep neural networks in machine learning
raises profound questions about the theoretical principles underlying their
success. For example, what can such deep networks compute? How can we
train them? How does information propagate through them?Why can they
generalize? And how can we teach them to imagine?We review recent work
in which methods of physical analysis rooted in statistical mechanics have
begun to provide conceptual insights into these questions. These insights
yield connections between deep learning and diverse physical and mathe-
matical topics, including random landscapes, spin glasses, jamming, dynam-
ical phase transitions, chaos, Riemannian geometry, random matrix theory,
free probability, and nonequilibrium statistical mechanics. Indeed, the fields
of statistical mechanics and machine learning have long enjoyed a rich his-
tory of strongly coupled interactions, and recent advances at the intersection
of statistical mechanics and deep learning suggest these interactions will only
deepen going forward.
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1. INTRODUCTION

Deep neural networks, with multiple hidden layers (1), have achieved remarkable success across
many fields, including machine vision (2), speech recognition (3), natural language processing (4),
reinforcement learning (5), and even modeling of animals and humans themselves in neuroscience
(6, 7), psychology (8, 9), and education (10).However, themethods used to arrive at successful deep
neural networks remain a highly practiced art, filled with many heuristics, rather than an exact
science. This raises exciting challenges and opportunities for the theoretical sciences in creating a
mature theory of deep neural networks that is powerful enough to guide a wide set of engineering
design choices in deep learning. Although we are still currently far from any such mature theory,
a recently emerged body of work at the intersection of statistical mechanics and deep learning
has begun to provide theoretical insights into how deep networks learn and compute, sometimes
suggesting new and improved methods for deep learning driven by these theoretical insights.

Here, we review this body of work, which builds upon a long and rich history of interaction
between statistical mechanics and machine learning (11–15). Interestingly, this body of work leads
to many new bridges between statistical mechanics and deep learning as we discuss below. In the
remainder of this introduction, we provide frameworks for two major branches of machine learn-
ing. The first is supervised learning, which concerns the process of learning input–output maps
from examples. The second is unsupervised learning, which concerns the process of learning and
exploiting hidden patterns of structure in data.With these two frameworks in hand, we introduce
in Section 1.3 several foundational theoretical questions of deep learning discussed in this review,
and their connections to a diversity of topics related to statistical mechanics.

1.1. Overall Framework of Supervised Learning

Image classification is a classic example of supervised learning. In the image classification problem,
one must learn a mapping from a pixel representation of an image to a class label for that image
(e.g., cat, dog). To learn this map, a neural network is trained on a training set of images along
with their correct class label. This is called a supervised learning problem because the correct class
labels are given to the network during training. Indeed, a seminal advance that popularized deep
learning was a significant improvement in image classification by deep networks (2).

More formally, the simplest version of a feed-forward neural network withD layers is specified
by D weight matricesW1, . . . ,WD and D layers of neural activity vectors x1, . . . , xD, with Nl neu-
rons in each layer l, so that xl ∈ R

Nl and Wl is an Nl × Nl − 1 matrix. The feed-forward dynamics
elicited by an input x0 presented to the network is given by

xl = φ(hl ), hl = Wl xl−1 + bl for l = 1, . . . ,D, 1.

where bl is a vector of biases, hl is the pattern of inputs to neurons at layer l, and φ is a single
neuron scalar nonlinearity that acts component-wise to transform inputs hl to activities xl . We
henceforth collectively denote allN neural network parameters {Wl ,bl }Dl=1 by theN-dimensional
parameter vector w, and the final output of the network in response to the input x0 by the vector
y = xD(x0,w), where the function xD is defined recursively in Equation 1.

A supervised learning task is specified by a joint distributionP (x0, y) over possible inputs x0 and
outputs y. A key goal of supervised learning is to find an optimal set of parameters that minimizes
the test error on a randomly chosen input–output pair (x0, y):

ETest(w) =
∫

dx0 dyP (x0, y)L(y, ŷ), 2.
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where the loss function L(y, ŷ) penalizes any discrepancy between the correct output y and the
network prediction ŷ = xD(x0,w). For example, a simple loss function is the squared loss L =
1
2 (y − ŷ)2. However, in real-world applications, it may not be possible to either directly access or
even mathematically specify the data distribution P . For example, in image classification, x0 could
denote a vector of pixel intensities of an image, whereas y could denote a probability distribution
over image category labels. However, one can often access a finite data set D = {x0,μ, yμ}Pμ=1 of P
independent identically distributed (i.i.d.) samples drawn from P (e.g., example images of cats and
dogs). One can then attempt to choose parameters w to minimize the training error,

ETrain(w,D) = 1
P

P∑
μ=1

L(yμ, ŷμ ), 3.

or the average mismatch between correct answers yμ and network predictions ŷμ = xD(x0,μ,w)
on the specific training set D. Many approaches to supervised learning attempt to minimize this
training error, potentially with an additional cost function on w to promote generalization to
accurate predictions on new inputs, as we discuss below.

1.2. Overall Framework of Unsupervised Learning

In addition to learning input–output maps, another key branch of machine learning, known as
unsupervised learning, concerns modeling and understanding the structure of complex data. For
example, how can we describe the structure of natural images, sounds, and language? If we could
accurately model probability distributions over such complex data, then we could generate natu-
ralistic data, as well as correct errors in image acquisition (16), speech recordings (17), or human
language generation (4).

Of course, the distribution over such complex data as images and sounds cannot be mathemat-
ically specified, but we often have access to an empirical distribution of P samples:

q(x) = 1
P

P∑
μ=1

δ(x − xμ ). 4.

For example, each xμ could denote a vector of pixel intensities for images, or a time series of
pressure variations for sound.

The goal of unsupervised learning is to adjust the parameters w of a family of distributions
p(x;w) to find one similar to the data distribution q(x). This is often done by maximizing the log
likelihood of the data with respect to model parameters w:

l (w) =
∫

dx q(x) log p(x; w). 5.

This learning principle modifies p to assign high probability to data points, and consequently
low probability elsewhere, thereby moving the model distribution, p(x;w), closer to the data
distribution, q(x). Indeed, we review further connections between the log-likelihood function and
an information theoretic divergence between distributions, as well as free energy and entropy, in
Section 6.2.

Once a good model p(x;w) is found, it has many uses. For example, one can sample from it
to imagine new data. One can also use it to denoise or fill in missing entries in a data vector x.
Furthermore, if the distribution p consists of a generative process that transforms latent, or hid-
den, variables h into the visible data vector x, then the inferred latent variables h, rather than the
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data vector itself, can aid in solving subsequent supervised learning tasks. This approach has been
very successful, for example, in natural language processing, where the hidden layers of a network
trained simply to generate language form useful internal representations for solving subsequent
language processing tasks (4).

Interestingly, the process of choosing p can be thought of as an inverse statistical mechan-
ics problem (18). Traditionally, many problems in the theory of equilibrium statistical mechan-
ics involve starting from a Boltzmann distribution p(x;w) over microstates x, with couplings w,
and computing bulk statistics of x from p. In contrast, machine learning involves sampling from
microstates x and deducing an appropriate distribution p(x;w).

1.3. Foundational Theoretical Questions in Deep Learning

With the above minimal frameworks for supervised and unsupervised learning in hand, we can
now introduce foundational theoretical questions in the field of deep learning and how ideas from
statistical physics have begun to shed light on these questions. On the supervised side, we discuss
four questions. First, what is the advantage of depth D? In principle, what functions can be com-
puted in Equation 1 for large, but not small,D? We address this question in Section 2 by making
a connection to dynamical phase transitions between order and chaos.

Second, many methods for minimizing the training error in Equation 3 involve descending
the error landscape over the parameter vector w given by ETrain(w,D) via (stochastic) gradient
descent. What is the shape of this landscape and when can we descend to points of low training
error? We address these questions in Section 3, making various connections to the statistical me-
chanics of energy landscapes with quenched disorder, including phenomena like randomGaussian
landscapes, spin glasses, and jamming. Indeed ETrain(w,D) could be thought of as such an energy
function over thermal degrees of freedomw, where the dataD play the role of quenched disorder.

Third, when minimizing ETrain(w,D) via gradient descent, one must start at an initial point
w, which is often chosen randomly. How can one choose the random initialization to accelerate
subsequent gradient descent? In Section 4, we show that theories of signal propagation through
random deep networks provide clues to good initializations, making connections to topics in ran-
dom matrix theory, free probability, and functional path integrals.

Fourth, though many learning algorithms minimize ETrain in Equation 3, possibly with extra
regularization on the parameters w, the key goal is to minimize the inaccessible test error ETest in
Equation 2 on a randomly chosen new input not necessarily present in the training data D. It is
then critical to achieve a small generalization error EGen = ETest − ETrain. When can one achieve
such a small generalization error, especially in situations in which the number of parametersN can
far exceed the number of data points P?We address this question in Section 5,making connections
to topics like phase transitions in randommatrix spectra, free field theories, and interacting particle
systems.

On the unsupervised side, the theoretical development is much less mature. However, in Sec-
tion 6, we review work in deep unsupervised learning that connects to ideas in equilibrium sta-
tistical mechanics, like free-energy minimization, as well as nonequilibrium statistical mechanics,
like the Jarzynski equality and heat dissipation in irreversible processes.

2. EXPRESSIVITY OF DEEP NETWORKS

Seminal results (19, 20) demonstrate that shallow networks,with only one hidden layer of neurons,
can universally approximate any Borel measurable function from one finite-dimensional space to
another, given enough hidden neurons. These results then raise a fundamental question: Why are
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deeper neural networks with many hidden layers at all functionally advantageous in solving key
problems in machine learning and artificial intelligence?

2.1. Efficient Computation of Special Functions by Deep Networks

Importantly, the early results on function approximation in References 19 and 20 do not spec-
ify how many hidden neurons are required to approximate, or express, any given function by a
shallow network. A key factor thought to underlie the success of deep networks over their shal-
low cousins is their high expressivity. This notion corresponds primarily to two intuitions. The
first is that deep networks can compactly express highly complex functions over input space in a
way that shallow networks with one hidden layer and the same number of neurons cannot. The
second intuition, which has captured the imagination of machine learning (21) and neuroscience
(22) alike, is that deep neural networks can disentangle highly curved decision boundaries in input
space into flattened decision boundaries in hidden space, to aid the performance of simple linear
classifiers. To more precisely define a decision boundary, consider the deep network y = xD(x0,w)
in Equation 1, where the final output y is restricted to a scalar function y. This network can per-
form a binary classification task by partitioning the input vectors x0 into two classes, according to
whether y = xD(x0,w) is positive or negative. The codimension 1 manifold obeying the equation
xD(x0,w) = 0 is then the network’s decision boundary. Note that one could also define the deci-
sion boundary similarly in the penultimate hidden layer xD−1. Whereas the decision boundary in
this hidden layer must be a linear hyperplane, by virtue of the linear map from xD−1 to the scalar
hD, the decision boundary in input space could potentially be highly curved by virtue of the highly
nonlinear map from x0 to xD−1 in Equation 1.

Focusing on the first intuition, several works have exhibited examples of particular complex
functions that can be computed with a number of neurons that grows polynomially with the num-
ber of input dimensions when using a deep network, but require a number of neurons that instead
grows exponentially in the input dimension when using a shallow network (23–27). The theo-
retical techniques employed in these works both limited the applicability of theory to specific
nonlinearities and dictated the particular measure of deep functional complexity involved. For ex-
ample, Reference 23 focused on rectified linear unit (ReLU) nonlinearities and number of linear
regions as a complexity measure; Reference 24 focused on sum-product networks, which compute
polynomials, and the number of monomials in the polynomial as complexity measure; and Refer-
ence 28 focused on Pfaffian nonlinearities and topological measures of complexity, like the sum
of Betti numbers of a decision boundary. These works thus left open a fundamental question: Are
the particular example functions efficiently computed by particular deep networks merely rare cu-
riosities, or in some sense is any function computed by a generic deep network, with more general
nonlinearities, not efficiently computable by a shallow network?

2.2. Expressivity Through Transient Chaos

Recent work (29) addressed this question by combining Riemannian geometry and dynamical
mean-field theory (30) to analyze the propagation of signals through random deep networks in
which the weights and biases are chosen i.i.d. from zero-mean, Gaussian distributions. In a phase
plane formed by the variance of the weights and biases, this work revealed a dynamical phase
transition between ordered and chaotic regimes of signal propagation [see Figure 1a,b for an
example where the nonlinearity φ in Equation 1 is taken to be φ(x) = tanh x]. Intuitively, for small
weights, relative to the strength of biases, nearby input points coalesce as they propagate through
the layers of a deep network and the feed-forward map stays within the linear regime. However,
for large weights, signal propagation corresponds to alternating linear expansion and nonlinear

www.annualreviews.org • Statistical Mechanics of Deep Learning 505



CO11CH22_Ganguli ARjats.cls February 13, 2020 10:27

0.5 1.0 1.5 2.0 2.5

0.25

0.20

0.15

0.10

0.05

0

a b

c

σ2
b

σ2
w

Ordered

Chaotic

𝒯x*ℳ

ℳ

Layer 5Layer 5

Layer 10Layer 10

Layer 15Layer 15

PCA1

PC
A

2

PC
A3

PCA1

PC
A

2

PC
A3

PCA1

PC
A

2

PC
A3

v
x*

ˆ

Figure 1

Deep neural expressivity through transient chaos. (a) A dynamical phase transition between ordered and
chaotic signal propagation in random deep neural networks as a function of the weight variance σ 2

w and bias
variance σ 2

b (29, 31). Such a phase transition holds for any smooth, odd saturating nonlinearity with finite
slope at the origin. Results are shown for φ(x) = tanh x. (b) An example of the propagation of a simple
manifold through multiple layers in the chaotic regime. (c) An example of a decision boundary or a
codimension 1 manifold M in input space. Eigenvalues associated with the diagonalization of a normalized
quadratic approximation to the manifold at a point x∗ yields principal curvatures of M at x∗ quantifying
departures away from the tangent plane Tx∗M. A dynamic mean-field theory for the propagation of these
principal curvatures was developed in Reference 29. This theory revealed that the principal curvatures of
decision boundaries in input space associated with flat boundaries in output space grow exponentially with
depth in the chaotic regime in Reference 29. Abbreviation: PCA, principal components analysis.

folding, leading to an exponential divergence of nearby inputs without the norm of inputs blowing
up, just like chaotic propagation in recurrent dynamical systemswith positive Lyapunov exponents.
We review this phase transition in more detail in Section 4.

In this chaotic regime, global measures of the length and integrated extrinsic curvature of
simple one-dimensional input manifolds typically grow exponentially with depth for random net-
works (29; Figure 1b), whereas the corresponding measure of length can grow at most as the
square root of the width in a shallow network, no matter how one chooses the weights. This
then demonstrates the result that random deep networks cannot be approximated by shallow net-
works unless they have exponentially many more neurons. Furthermore, in this chaotic regime,
flat decision boundaries in the output space correspond to decision boundaries in input space with
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principal extrinsic curvatures that grow exponentially with depth (29; Figure 1c). Furthermore,
a closely related study focusing on the popular ReLU nonlinearity demonstrated also that the
length of input manifolds grew exponentially with depth, that neural network training was more
sensitive to the lower layers, and intriguingly that the length of trajectories could be a beneficial
regularizer (32).

In general, much more theoretical work is needed to understand how and when deep networks
can efficiently express more natural functions over natural input domains of the type we would like
to learn in artificial intelligence. Interesting early directions along these lines include an analysis
of general classes of compositional functions (33), as well as explorations of the capacity of simple
neural networks to classify smooth manifolds (34).

3. THE ERROR LANDSCAPE OF NEURAL NETWORKS

Even if a deep network can express a desired function for some choice of parameters, it is unclear
when one can successfully find this set of parameters by descending the training error ETrain(w,D)
in Equation 3 via (stochastic) gradient descent. Typical properties of the shape of this error land-
scape, its dependence on the number of training examples and network architecture, and its im-
plications for the learning dynamics then become questions of intense interest. In this section, we
review insights gained from various analogies that have been drawn between neural network error
landscapes and complex energy landscapes in statistical mechanics, as well as insights gained from
controlled numerical explorations of neural network error landscapes.

3.1. Random Gaussian Landscapes and Saddles

In machine learning, much early work was motivated by powerful theoretical guarantees afforded
by optimization over convex landscapes, in which every local minimum is a global minimum (35).
In contrast, optimization over nonconvex landscapes was treated with suspicion, as conventional
wisdom suggested such landscapes may be riddled with local minima at high error, which could
trap gradient-descent dynamics and impede performance. Although generic nonconvex functions
over a small number of variables may indeed have such high error local minima, this is typically
not the case in higher dimensions.

Classic work in the statistical physics of smooth random Gaussian landscapes over N variables
revealed a very different picture for large N (36, 37). Such a random Gaussian function E(w) for
w ∈ R

N is characterized by the fact that its function values E(wα ) at any finite set of points wα

for α = 1, . . . ,M are jointly Gaussian distributed with zero mean and a covariance matrix Kαβ =
K(||wα − wβ ||2/N ).Here, the kernel functionK(�), which determines the correlation of function
values at pairs of points separated by a normalized squared distance �, decays with increasing �.
Thus, this ensemble represents a null model of functions over high-dimensional spaces with no
assumed structure other than a notion of locality in which nearby function values are similar.

The statistics of critical points of this null ensemble exhibit an interesting typical structure,
providing a window into the shape of generic functions over high-dimensional spaces (36). In
particular, any critical point w at which the gradient vanishes [i.e., ∂iE(w) = 0 for all i = 1, . . . ,N]
can be characterized by two features: (a) the height E(w) of the critical point, and (b) the index or
fraction, f, of directions in which the function curves down. This latter fraction f is defined to be
the fraction of negative eigenvalues of theHessianmatrixHi j = ∂2E

∂wi∂w j
.The results of Reference 36

found a strong correlation between E and f: The higher a critical point, the larger the number of
negative curvature directions. This automatically implies that at high error E, local minima with
f = 0 would be exponentially rare relative to saddle points in which f is nonzero. Intuitively, the
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Figure 2

Analogies for the error landscape of neural networks. (a) A schematic picture of the typical structure of critical points of smooth
random Gaussian landscapes. Critical points with more negative directions occur at higher levels. (b) A strong correlation between E
and f across critical points on the error landscape of a neural network used in practice (38). (c) Saddle-free Newton (SFN), a particular
algorithm developed in Reference 38, can rapidly escape saddle points in cases in which stochastic gradient descent slows down.
(d) Particles in an unjammed state of zero-energy density. (e) Particles in a jammed state of positive energy density. Abbreviation:
MSGD, momentum stochastic gradient descent.

chances that a generic function E curves up in all N dimensions for large N is exponentially small
in N, unless you are already near the bottom of the function. A schematic view of this picture is
shown in Figure 2a.

Although the correlation betweenE and f was computed specifically for randomGaussian land-
scapes, early work (38) conjectured that this correlation may be more universally true of generic
functions over high-dimensional spaces, including error functions of neural networks. A numer-
ical test of this conjecture, by using Newton’s method to search for saddle points of any index,
confirmed a strong correlation between error level E and index f for all such critical points found
using this method (Figure 2b). Furthermore, these researchers (38) developed an algorithm to
rapidly escape saddle points in situations in which the dynamics of stochastic gradient descent
(SGD) suggested one might have been stuck in an illusory local minimum (Figure 2c).

These physics-based conclusions regarding the absence of high-error local minima for large
neural networks are consistent with more mathematical work proving the nonexistence of such
minima in simpler settings. Reference 39 proved that the error landscape of linear neural networks
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with one hidden layer has no local minima that are not also global minima; all higher-error critical
points are saddle points. Furthermore,Reference 40 extended this result to deeper linear networks.

3.2. An Analogy to Spin Glasses

Recent work (41) also exhibited a connection between the error landscape of neural networks and
the energy function of a well-studied model in statistical physics, the spherical spin glass. In gen-
eral, the error landscape of neural networks is a complex function over the synaptic weights w
that also depends on the training data D. A sequence of approximations and simplifying assump-
tions about both the data and the dependence of the error function over the weights leads to the
following toy model of a neural network error landscape:

E(w) = 1
N (D−1)/2

N∑
i1,...,iD

Xi1,...,iDwi1 ,wi2 , . . . ,wiD . 6.

Here,Xi1,...,iD are random numbers reflecting random simplified data D,wi are components of the
vector ofN synaptic weights of the neural network, andD is the depth of the network.Additionally,
the weights are assumed to obey a spherical constraintw · w = N .This error function corresponds
to the energy function of the well-known D-spin spherical spin glass (42, 43). The simplifications
and assumptions in Reference 41 that lead from neural network error landscapes to Equation 6
are quite strong and unlikely to hold in practice, so Equation 6 should indeed be thought of as
a toy model. Nevertheless, one may hope that typical features of the energy function of this toy
model may be similar to those of the error landscape of neural networks.

A rigorous analysis (44, 45) of the shape of the error function in Equation 6 revealed an in-
teresting structure for the critical points. Indeed, E(w) can be thought of as a random Gaussian
function on the sphere with a specific correlation kernel, and so its critical points qualitatively
behave as they do in Figure 2a. In particular, a typical critical point with a certain fraction f of
negative curvature directions is most likely to be found within a narrow band of error levels, with
the height of the band increasing with f. This picture was confirmed numerically in Reference 41
for deep neural networks trained on theModified National Institute of Standards and Technology
(MNIST) database of digit classification examples.

More recent work (46) undertook a careful comparison of the dynamics of SGD on neural
networks versus theD-spin spherical spin glass energy function, finding interesting commonalities
but also differences. In mean-field glassy systems, both physical (47) and rigorous (48) methods
indicate that gradient-descent dynamics converge without barrier crossing to the widest and the
highest minima, despite the existence of deeper local and global minima. In contrast, the work of
Reference 46 found additional interesting aging phenomena in gradient-descent dynamics that
were indicative of the prevalence of more flat directions as one descends the training error.

3.3. An Analogy to Jamming

By considering a particular loss function L known as the hinge loss, the authors of References 49
and 50 found an interesting analogy between jamming (51) and the error landscape of deep neural
networks, building on a prior such analogy for the perceptron (52). The hinge loss is often used in
classification settings in which the neural network output is a single real number whose sign indi-
cates one of two classes. The hinge loss as a function of weight space w then distinguishes each of
the P training examples as either satisfied (i.e., classified with the correct sign with a thresholdmar-
gin) or unsatisfied. Each pointw inN-dimensional network parameter space then yields a fraction
of unsatisfied examples, and ideally training should adjust parameters w to reduce this fraction.
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We now describe the problem of jamming in a parallel notation to bring out the analogy with
neural network training.A simple version of the jamming problem considers a set ofK hard spheres
in a fixed volume (Figure 2d,e). Let the vector w parameterize the N dimensional configuration
space of all K sphere positions. TheN degrees of freedom associated with all particle positions are
analogous to the N degrees of freedom associated with all neural network parameters. Now each
of the P = (K

2

)
pairwise distances between particles contributes an energy to the particle config-

uration that is positive if the particle pair overlaps, and zero otherwise. In the analogy to neural
networks, each pairwise interaction corresponds to a single training example, and the interaction
energy corresponds to the hinge loss on that example. Particle pairs that are separated with zero
energy correspond to satisfied examples, whereas overlapping particle pairs with positive energy
correspond to unsatisfied examples with positive hinge loss. The total energy over particle config-
uration space then corresponds to the loss function over neural network parameter space. Finally,
particle density corresponds to the number ratio of examples P to network parameters N.

The jamming scenario exhibits an interesting phase transition between a low-density phase
in which many particles are free to move (Figure 2d) and a high-density jammed phase in which
most pairwise interactions involve particle overlaps with positive energy (Figure 2e). In the neural
network analogy, the low-density phase corresponds to an overparameterized regime in which a
small number of P examples can all be easily satisfied by a large number of N parameters, whereas
the high-density jammed phase corresponds to an underparameterized regime in which a large
fraction of P examples cannot be satisfied by a small number of N parameters. References 49,
50, and 52 explore this analogy between jamming and neural networks much more quantitatively,
finding a host of intriguing phenomena, including the prevalence of many flat directions in the
training error at the jamming transition and avalanche-like dynamics in which the set of unsatisfied
examples exhibit rapid macroscopic rearrangements over training time. It would be interesting to
understand to what extent the intuitions derived from this analogy extend to other loss functions
beyond the hinge loss.

3.4. Explorations of Actual Neural Network Landscapes

In addition to the development and comparison of toy theoretical models for error landscapes,
much work explored actual neural network landscapes. Recent work numerically explored the
Hessian (53, 54) even for very large neural networks (55, 56). Interestingly, the Hessian near the
bottom of the landscape after training exhibits a bulk spectrum that is heavy-tailed plus a set of
outliers that are in one-to-one correspondence with the number of class labels in a classification
task. Another interesting view of the error landscape was given in References 57 and 58, which
suggested that the landscape contains rare but wide minima that are preferentially found by gra-
dient descent, suggesting the possibility of new entropic algorithms that facilitate finding these
minima (59). Much more controlled numerical work along these lines, concomitant with further
theoretical developments, is required to attain a unified, high-resolution view of the shape of neu-
ral network error landscapes.

4. SIGNAL PROPAGATION AND INITIALIZATION
IN DEEP NETWORKS

Before performing gradient descent on the loss landscape in Equation 3, one must choose an
initial configuration of the parameters w, corresponding to the entire set of weights and biases
{Wl ,bl }Dl=1 across all D layers in Equation 1. Often, these parameters are chosen randomly, with
the weights Wl

i j chosen i.i.d. from a zero-mean Gaussian with variance σ 2
w/Nl−1, where Nl − 1 is

the number of neurons in the presynaptic layer. The biases are chosen i.i.d. from a zero-mean
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Gaussian with variance σ 2
b . The relative scaling of weights and biases ensures that both influence

postsynaptic activity on an equal footing even for large Nl − 1.
Natural questions then are, how should we choose the variances σ 2

w and σ 2
b to accelerate learn-

ing, and can non-Gaussian distributions of weights outperform Gaussian ones? In this section,
we review how a theoretical understanding of signal propagation through such random deep net-
works has led to nontrivial initialization schemes that substantially outperform those often used
previously in practice.

4.1. A Dynamical Phase Transition in Random Neural Networks

The theory of signal propagation through random networks simplifies in a large-width, mean-
field limit in which Nl is large for all l. A connection between such wide networks and Gaussian
processes was made in Reference 60 for single, hidden layer networks. In the large-width limit, we
obtain the self-averaging property in which the empirical distribution of inputs hli across neurons
i into a layer l for fixed weights and biases equals the distribution of the input hli for fixed i across
randomly chosen weights and biases. Furthermore, for sufficiently regular nonlinearities φ, both
distributions converge to a Gaussian as the width gets large (29, 61). In this limit, both the for-
ward propagation of inputs and the back propagation of error signals exhibit a dynamical phase
transition as a function of σ 2

w and σ 2
b .

4.1.1. Forward propagation of inputs. To understand this phase transition from the perspec-
tive of forward-propagating inputs, consider a set of K input vectors {x0,a}Ka=1, which will propagate
forward to a set of input vectors {hl ,a}Ka=1 into layer l. We can describe the geometry of this point
cloud by the matrix of inner products,

�l
ab = 1

Nl

Nl∑
i=1

hl ,ai hl ,bi . 7.

In the large-width mean-field limit, one can track the geometry of this point cloud as it propagates
through the layers by a set of deterministic recursion relations for computing �l

ab in terms of �l ′
ab

for l′ < l, and these recursion relations only depend on σ 2
w, σ

2
b , and the nonlinearity φ (29, 31, 62).

Such recursion relations have a large depth fixed point, which for fully connected networks with
permutation symmetric input takes the form (29)

lim
l→∞

�l
ab

ζ (l )
= q∗[(1 − c∗ )δab + c∗]. 8.

Here, the function ζ (l) is an overall scaling function that accounts for unbounded growth of the
inputs that can arise with unbounded nonlinearities or residual connections. In essence, at large
depths any permutation-invariant point cloud converges to one in which the normalized length
of all points is q∗, and the cosine angle between all pairs is c∗.

A small deviation δ�l = �l − �∗ about this fixed-point geometry obeys the linearized recursion
relation δ�l ≈ χδ
l−1. Thus, the dynamics of the point cloud exponentially converges (diverges)
according to whether each eigenvalue λ of χ is less (greater) than 1 in magnitude. For stable
fixed points, in which all eigenvalues have magnitude less than 1, the relation λl = e−l/ξλ implicitly
defines a depth scale ξλ over which the associated eigenmode of �l converges to �∗ (31). Fully
connected networks possess two depth scales associated with the length q∗ and the cosine angle
c∗, with lengths converging more quickly than angles (29, 31). Convolutional networks possess
different depth scales for different Fourier modes (63).
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Signal propagation predicts trainability. Each panel shows training accuracy from perfect (red) to random chance (black) as the
hyperparameters of a model are varied over a two-dimensional slice. White lines show mean-field predictions for quantities that
determine trainability in each case. In general, we observe excellent agreement over a wide range of architectures. (a) Fully connected
network compared with the depth scale for signal propagation. (b) A residual network compared with a curve of constant gradient norm.
(c) Convolutional network with the depth scale for signal propagation. (d–e) Recurrent neural networks with the timescale for signal
propagation. ( f ) Fully connected networks with batch normalization with the depth scale for gradient explosion. See Reference 31 for
more details.

Fully connected networks with fixed points of the form in Equation 8 exhibit a phase transition
as one increases σ 2

w for fixed σ 2
b for smooth bounded nonlinearities φ (see also Figure 1a). For

small σ 2
w, a fixed point with c∗ = 1 is stable (implying all nearby points contract to a single point),

whereas for large σ 2
w, this fixed point is unstable and another fixed point with c

∗ < 1 becomes stable
(implying nearby points chaotically decorrelate to a nonzero angle, e.g., as in Figure 1b). At the
critical transition point, the depth scales ξ diverge, implying that forward propagation of signals
retains a deep memory trace of the initial input geometry.

Intriguingly, this diverging depth scale for information propagation of input geometry coin-
cides with the ability to train extremely deep, critical networks (31) (Figure 3). Furthermore, away
from criticality, the depth scale of reliable forward information propagation controls the depth
over which neural networks can be trained. This critical phase transition, diverging depth scale,
and deep trainability at criticality have been observed not only in fully connected networks (31)
but also in convolutional networks (63), autoencoders (64), and recurrent networks (65, 66).When
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these same networks feature unbounded nonlinearities, such as ReLUs, they exhibit a phase tran-
sition (67) between a bounded phase, in which ζ (
) = 1, and an unbounded phase, in which
ζ (
) = 
. This transition comes from competition between the nonlinearity, which truncates some
of the inputs to zero, and the weights,which can either expand or contract inputs depending on the
value of σ 2

w. Overall, the theory of identifying critical initializations in which depth scales diverge
has played a useful prescriptive role in the design of nonlinearities, initialization schemes, regu-
larization schemes, and architectural choices to accelerate the training of extremely deep neural
networks (31, 63–66, 68–71).

4.1.2. Back propagation of error signals. A key idea in training deep networks involves mov-
ing the weights Wl and, consequently, the activations xl in each layer l so as to move the output
xD in the final layer in a desired direction. A fundamental linear operator determining how we
should change xl to move xD is the susceptibility matrix or Jacobian ∂xD

∂xl . This Jacobian is an im-
portant component of the back propagation of errors at the outputs to weights at layer l. For
randomly initialized networks, this Jacobian is a random matrix, and its spectral properties are
strongly correlated with the success or failure of training. Consider, for example, the full end-to-
end input–output Jacobian,

J = ∂xD

∂x0
=

S∏
l=1

DlWl . 9.

Here,Dl is a diagonal matrix with entries Dl
i j = φ′(hli ) δi j . This Jacobian determines how an error

e, or desired direction of motion in the output xD, back-propagates to a desired change in the
input �x0T = eT J. The growth incurred by back propagation is captured by ||eT J||22/||e||22, which
averages to Tr JT J if e is a randomly chosen desired direction with i.i.d. components. In turn,
in the infinite-width mean-field limit, this growth becomes self-averaging and does not fluctuate
appreciably across networks. Therefore, we can define the growth rate χ via an average 〈·〉 across
the random network parameters {Wl ,bl }Dl=1 in Equation 1:

χD = 1
No

〈
Tr JT J

〉
, where χ = 1

No

〈
Tr (DW)T (DW)

〉
. 10.

Here, we have for simplicity chosen the same number of neurons Nl = N0 for all layers l. χ is
thus simply the mean-squared singular value of the JacobianDW from one layer to the next. This
local operator reflects an average multiplicative growth (shrinkage) of randomly chosen back-
propagated errors e if χ < 1 (χ > 1), and this growth (or shrinkage) propagates exponentially
with depth D.

The back propagation of errors is intimately related to the forward propagation of inputs, as
shown in Reference 31 for fully connected networks.Thus, when the fixed point for forward prop-
agation in Equation 8 with c∗ = 1 is stable (i.e., the ordered regime in Figure 1a), nearby input
points come closer together as they propagate forward and back-propagated errors exponentially
vanish. Conversely, when the c∗ < 1 fixed point is stable (i.e., the chaotic regime in Figure 1a,b),
nearby input points diverge, and back-propagated errors exponentially explode. This picture can
be generalized to other networks (62), including convolutional networks (63) and recurrent net-
works (65, 66). Again, initializing at a critical point, for example, at the boundary between the
ordered and chaotic regimes, often leads to accelerated training and better final performance (31,
63–66, 68–71).

In addition to giving insights into initialization, a mean-field analysis of signal propagation
and gradient back propagation has yielded insight into several other phenomena in deep learning.
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These include the nature of adversarial examples (72), the eigenvalues of the Fisher information
(73), the effect of weight quantization (74), and graph partitioning by graph neural networks (75).

4.2. Dynamical Isometry and Free Probability Theory

The previous section showed that the mean-squared singular value of the Jacobian J in Equation 9
grows as χD with χ defined in Equation 10. Therefore, critical initializations with χ = 1 avoid
exponential explosion or growth of a randomly chosen error signal e.However, this does not mean
the worst-case largest growth or smallest shrinkage over all possible error signals e could not
also grow or decay with depth. The largest growth and smallest shrinkage factors are controlled
by the maximal and minimal singular values of J, respectively. Thus, one may conjecture that
one could achieve even faster and better training through initializations that not only ensure the
mean-squared singular value of J remains 1 but also that the entire singular value distribution of J
remains tightly concentrated about 1. Such an initialization yields a property known as dynamical
isometry, which was first introduced in Reference 76. Such an initialization ensures an isometric
dynamic back propagation of errors in which the length of every error vector is approximately
preserved, and angles between all pairs of error vectors are also preserved.

Achieving dynamic isometry in linear networks can be done simply by choosing weight ma-
trices to be orthogonal rather than Gaussian, and it was shown both theoretically and empirically
that orthogonal initialization actually achieves training times (measured in number of learning
steps) that are independent of network depth (76). In contrast for Gaussian initializations even
at criticality with χ = 1, training times were linearly proportional to depth. Indeed, even with
χ = 1, products of Gaussian random matrices have a maximum singular value that grows linearly
with depth, whereas products of orthogonal matrices have all singular values equal to 1, thereby
achieving perfect dynamic isometry.

These results were generalized to nonlinear networks in References 77 and 78 using powerful
tools from free probability theory (79, 80) to analytically compute the entire spectrum of prod-
ucts of random matrices underlying J as a function of the distribution of weights and the shape of
the nonlinearity φ. This analytic theory matches numerical measurements of the empirical spec-
tral distribution of J in nonlinear deep networks (Figure 4a). Interestingly, this work revealed
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(a) Empirical singular value density of end-to-end Jacobians for erf networks of width 1,000 (solid) versus theory (dashed) for multiple
depths. (b) Test accuracy dynamics on CIFAR-10 for networks of depth 200 and width 400. The different curves represent different
nonlinearities and weight initializations, with the degree of dynamical isometry decreasing from blue to red to black. (c) Training
accuracy (dotted) and test accuracy (solid) on CIFAR-10 for CNNs initialized with dynamical isometry for different depths. Training is
possible up to depth 10,000. Abbreviations: CIFAR, Canadian Institute for Advanced Research; CNN, convolutional neural network.
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that dynamical isometry can be achieved even in nonlinear networks with orthogonal weights and
sigmoidal nonlinearities (or more generally nonlinearities that are locally linear near the origin
with bounded derivatives elsewhere), but not with ReLUs, one of the most popular nonlinearities
in deep learning. Furthermore, this work showed that no nonlinearity φ can achieve dynamical
isometry if weights are Gaussian distributed (78). These theoretical results about the entire spec-
trum of J correlated with practical training results, which demonstrated sigmoidal networks with
orthogonal initializations could actually outperform rectified linear networks (77) (Figure 4b).

The conditions for dynamical isometry have been analyzed in a number of other architec-
tures, including residual networks (81), RNNs (recurrent neural networks; 65), LSTMs/GRUs
(long short-termmemory networks/gated recurrent units; 66), and convolutional neural networks
(CNNs; 63). In the case of CNNs, dynamical isometry enabled the trainability of extraordinarily
deep networks consisting of 10,000 layers (Figure 4c).

Thus, random matrix theory applied to deep networks has led to schemes for better training.
In fact, random matrix theory has proven to be a powerful tool in deep learning in a variety of
contexts, including in a study of the geometry of neural network loss surfaces (54, 82), in calcu-
lations of the spectrum of activation matrices (83) and of the Fisher information matrix (84), in
investigations of learning dynamics (85–87), and in several other applications (88–90).

4.3. Beyond Mean Field: Finite Width and Path Integrals

The above theoretical results relied on two key simplifying assumptions: an infinite-width limit
and i.i.d. weight and bias distributions. In such a mean-field limit, self-averaging holds, en-
abling the exact analytic computation of forward-propagating input geometry and Jacobian spec-
tra for individual networks by averaging over network ensembles. To study the functional role
of finite-width or trained networks (91, 92) we must go beyond mean field. Although research
along these lines for deep learning is in its infancy, one can build upon a base of theoretical
work studying finite-size effects in spin glasses (93), as well as path integral methods (94) for
analyzing fluctuations in spin glasses (95), and stochastic (94) and deterministic (96–99) neu-
ral networks (see References 100 and 101 for reviews). Such path integral methods enable an-
alytic computations of equations governing correlations and response functions (102) as well as
a systematic treatment of fluctuations using Feynman diagrams and loop expansions (100, 101,
103–105).

Recently, such path integral methods have been employed to analyze trained feed-forward
networks (91). However, this approach may have much further potential in shedding light on
various aspects of deep networks. Indeed, just as this approach has been successful in elucidating
the effects of finite-size corrections (99), correlations (106), and nonlinearities (107), in the case of
recurrent networks, it may also yield similar insights beyond mean field in feed-forward networks
(91, 108).

5. GENERALIZATION IN DEEP LEARNING

A critical question in deep learning involves understanding when and why deep networks gener-
alize, so that only minimizing the training error ETrain(w,D) in Equation 3 over the N parameters
in w on a finite data setD of P examples still enables the network to accurately predict the correct
answer to a new test input with low test error ETest(w) in Equation 2. As we explain in this section,
the capacity of deep networks to generalize remains a major theoretical puzzle (109), given the
regime in which deep learning operates, where N can be orders of magnitude larger than P, with
N sometimes even reaching billions of parameters (110).
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5.1. Classical Theories of Generalization: Computer Science Versus Physics

Classical theories of generalization (111) in computer science frame any learning procedure as
an algorithm A that maps any finite training set D to a particular function fD in some space
of functions F : i.e., A(D) = fD ∈ F . The data itself are often generated, perhaps stochastically,
according to a ground truth function f ∗ ∈ F , and generalization will be successful if in some
sense fD is close to f ∗. Indeed, many theoretical computer science results on generalization prove
bounds on the test error of the form

ETest ≤ ETrain + C(F )
P

, 11.

which hold with high probability over the choice of data set D for all ground truth functions
f ∗ ∈ F . Here, C(F ) is some measure of the complexity of the function class F . One prominent
such measure is the Vapnik–Chervonenkis dimension (112), which for many neural networks
grows with the number of parameters N. Alternatively C(F )

P in Equation 11 can be replaced by
the Rademacher complexity R(F ,P), which measures how well a function chosen from F can
correlate with, or memorize, P random noise patterns (113, 114). The intuition is if P is large and
the function space F is not too complex, then R(F ,P) will be small, and generalization will be
possible. An alternative framework for understanding generalization is the notion of algorithmic
stability (115), which suggests that if the map fD = A(D) induced by the learning algorithm A is
stable with respect to perturbations of the training data D, then generalization will be successful.
Finally, probably approximately correct (PAC) Bayes bounds suggest that if the distribution of
weights does not change much during the training process, then generalization will be successful
(116). The basic notions of function space complexity, algorithmic stability, and generalization are
illustrated in Figure 5a.

However, when many of these ideas are applied to large neural networks of size N trained on
data sets of size P, with N � P (a prominent regime in modern deep learning), they yield upper
bounds on the test error that are exceedingly loose (117–123), an issue brought to the fore in
Reference 109.However, it has been noted that a similar issue does indeed arise in kernel machines
(124, 125), which can be thought of as two weight layer networks in which the first weight layer
does not learn.

A parallel body of work on generalization in neural networks has played out in the physics
literature. But in contrast to deriving upper bounds on test error, the focus in physics has been
on asymptotically exact calculations of training and test errors in a thermodynamic limit in which
both N and P become large but the measurement density α = P/N remains O(1) (126–128) (see
Reference 11 for an extensive review). In this framework, the data set D of P points {x0,μ, yμ}Pμ=1
is drawn from the random inputs and outputs of a teacher neural network with ground truth pa-
rametersw∗. The training error ETrain(w,D) is then thought of as an energy function over thermal
degrees of freedom w of a student neural network, where the data D play the role of quenched
disorder. The ground state of this statistical mechanical system on the student network parame-
ters w is then compared with the ground truth teacher weights w∗ to assess generalization. This
approach has led to a rich body of work (11), but it can be difficult to carry out these calculations
for complex modern neural networks as well as analytically demonstrate good generalization at
tiny values of α for realistically structured data sets D.

In the absence of adequate theory,many numerical explorations of generalization abound.One
intriguing possibility is that good generalization is a kinetic, nonequilibrium dynamical property
of SGD,which biases the learned parameters to highly flat regions of the training error (129, 130).
Such flatness yields stability, which can yield generalization. Other approaches suggest weights do
not accumulate much information about the training data, thereby yielding generalization (131)
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Generalization in deep learning. (a) Consider a finite data set D of P points (black dots) drawn from a ground truth linear function f ∗
plus noise. Minimizing the training error over a simple space F of linear functions yields a particular function (blue line) that is stable
with respect to small perturbations of the training data and generalizes well to inputs from the training points. Conversely, minimizing
over a more complex space F of piecewise linear functions yields a function (red dashed line) that fits the training set better but neither is
stable nor generalizes well. (b) Because training corresponds to minimizing training error (red curve) and not the test error (blue curve),
training error as a function of training time will monotonically decrease but test error may actually increase at late times, resulting in
overfitting. (c) The singular value spectrum of the training data input–output covariance matrix � of a rank 3 linear teacher neural
network. The singular modes associated with the three outlier singular values contain information about the teacher, whereas the
remaining modes only contain information about noise in the finite training set (87). (d) Because learning corresponds to a singular
mode detection wave that washes over the modes from right to left in panel c, the training error will drop as this wave passes a singular
mode and will continue to drop as the wave penetrates the noise modes. (e) However, the test error will only drop when the detection
wave passes over a signal mode; in contrast, the test error will rise as the wave later penetrates the noise modes (87). Abbreviations:
SNR, signal-to-noise ratio; TA, teacher aligned.

(though see Reference 132). These works are related to the idea that learned neural networks
might actually have a much smaller minimum description length (133, 134) than naive parameter
counting might suggest. Of course, the full story is yet to be written.

5.2. Lessons from Linear Models

Given the complexity of the generalization problem, it is useful to glean lessons from simpler
but nontrivial toy learning problems. An instructive learning problem is that of deep linear net-
works (76); despite the linearity of their input–output map, due to the composition of weights, the
training and test error landscapes are highly nonconvex (Figure 5b), yielding nonlinear learning
dynamics that is, surprisingly, rich enough to even model many aspects of infant concept learning
(9). Recent work derived closed-form solutions for the entire trajectory of both training and test
errors (87) in the case of a low-rank teacher network and a full-rank student network. Thus, the
student has many more parameters than the teacher yet it can still generalize well, as long as one
stops the training early, which is a common practice in deep learning.
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The analytic results reveal key conceptual insights into why good generalization is possible in
such a scenario. First, the student learning dynamics builds up the singular value decomposition
of the input–output correlation matrix � = ∑

μ y
μxμT of the training data, learning the largest

singular modes first and smaller singular modes later (76). Second, training data generated by a
low-rank teacher yield a training data matrix � in which the modes of large singular value contain
information about the teacher while themodes of smaller singular value contain information about
irrelevant noise in the training data (Figure 5c). Learning then corresponds to a singular-mode
detection wave (87), which sweeps in from large to small singular values. As it crosses the large
ones, the student learns about the teacher and both test and training errors drop, but as it crosses
the small ones, the student only learns about irrelevant structure in the particular training set, and
so training error drops but test error rises (Figure 5d). Optimal early stopping then yields good
generalization independent of the number of student network parameters N.

Extrapolating from this example, a natural conjecture is that real-world data sets D possess
some underlying simple structure, and overparameterized deep neural networks tend to learn this
simple structure first, thereby not making full use of all their parameters. Thus, good generaliza-
tionmay arise as a nonequilibrium kinetics conspiracy between structure in data and the propensity
of deep network learning dynamics to preferentially learn this structure. It remains an intriguing
theoretical question to identify what such simple structure may be in real-world data sets and
whether this structure conspires with the intrinsic dynamics of deep learning to facilitate gener-
alization, as it does in the deep linear case.

5.3. Lessons from the Infinite-Width Limit

Interesting work has noted that when the increase in the number of parameters N originates
primarily from an increase in the network width, generalization actually tends to improve (67,
135–137). As we have seen in Section 4, signal propagation through randomly initialized neural
networks has a well-defined limit as the width goes to infinity and the initial weight variance scales
inversely with width. The observations in References 67 and 135–137 suggest that this infinite-
width limit could also shed insight into the ingredients underlying successful generalization in
large deep networks at the forefront of practice. Indeed, this infinite-width limit has well-defined
learning properties, as we explain next.

5.3.1. Infinitely wide, deep neural networks are Gaussian processes. Any deep network
of the form in Equation 1 can be viewed as a function f : RN0 → R

ND . Randomness in the initial
parametersw induces a prior distribution P ( f ) over the spaceF of such functions. In the infinite-
width limit, this prior simplifies to become a Gaussian distribution, or process (60), over the space
of all functions f ∈ F with a specific correlation kernel K (67, 138). We have already seen such
smooth randomGaussian processes as a toy model for the error landscape E(w) over weight space
w in Section 3.1. In that setting, the function values E varied randomly over network parameters
w with a correlation kernel between a pair of function values evaluated at two different parameters
given by 〈E(wα )E(wβ )〉 = K(wα ,wβ ). In this analogous setting, the activity of a single neuron
xDi in layer D now varies randomly over the input space x0, with a correlation kernel between
the activity evaluated at a pair of inputs x0,α and x0,β given by 〈xDi (x0,α )xDj (x0,β )〉 = Ki j (x0,α , x0,β ).
The correlation kernel can be computed as a function of depth D through a sequence of deter-
ministic recursion relations that depend only on the weight and bias variances σ 2

w and σ 2
b and

the nonlinearity φ (67, 138). These recursion relations for the kernel are analogous to those
for propagating input correlations, discussed in Section 4.1.1. Further work demonstrated that
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infinitely wide randomly initialized convolutional networks are also characterized by a Gaussian
prior over functions (137), with the number of convolutional channels playing the role of width.

5.3.2. Learning in the infinite-width limit. The process of learning in the infinite-width limit
can be viewed as moving from a Gaussian prior P ( f ) over the function space F to a Bayesian pos-
terior distribution P ( f |D) conditioned on the training data D. Indeed, the posterior P ( f |D) is
itself also a Gaussian process that can be computed explicitly (139, 140) through Gaussian inte-
grals. Such a Bayesian posterior calculation in function space is reminiscent of calculations in field
theory (e.g., see Reference 141).

Currently, the exact correspondence between learning using Bayesian inference on function
space with a Gaussian process prior, corresponding to an infinitely wide deep network, and learn-
ing by gradient descent on a large but finite-width deep network of the types used in practice is
not well understood. Empirical work for fully connected networks (67) found the two methods
could perform similarly, hinting at a simple relationship between them. Indeed gradient-descent
learning dynamics in infinitely wide deep neural networks was recently shown (142–144) to have
a connection to kernel methods in which one fixes a large set of random features, or nonlinear
functions over the input space x0, and only learns a linear combination of these fixed nonlinear
functions. This picture holds for infinitely wide networks because it can be shown that gradient-
descent dynamics does not appreciably move the weights (142, 143). However, it has been sug-
gested (145) that the dynamics of References 142 and 143 is too simple to explain the empirical
success of neural networks because such networks may change their weights much more during
the learning process, hence learning many nonlinear basis functions adapted to the data, rather
than linear combinations of fixed random nonlinear functions. Although early empirical results in
Reference 143 identify, in some cases, finite-width networks with commonly used architectures
whose dynamics are captured by the infinite-width theory, this issue is currently being investigated
by the community.

The standard deviation of initial weights in the Gaussian process infinite-width limit (67, 142)
scales inversely with the square root of width. Other scaling limits in infinitely wide networks
have also been considered (146–148), where, for example, the final layer weights instead scale
inversely with width. This limit gives rise to nontrivial interacting particle dynamics different
from that in References 142 and 143. Further theoretical and empirical study is needed to iden-
tify which dynamical description(s) are most pertinent to neural networks as currently trained in
practice and whether alternative scaling regimes would have advantages over current approaches.
Overall, the study of generalization in deep learning is progressing rapidly, in part due to insights
drawn from physical concepts like thermodynamic limits, interacting particle descriptions, and
function space (field theoretic) formulations, and a more complete understanding may be on the
horizon.

6. DEEP IMAGINATION THROUGH PROBABILISTIC MODELS

Although classic work in probabilistic unsupervised learning was often limited to fitting simple
families of probability distributions p(x;w) to a data distribution q(x) in Equation 4 by maxi-
mizing the log likelihood l (w) of the data in Equation 5, recent advances in deep unsupervised
learning have dramatically increased the complexity of distributions p(x;w) that can be fitted to
data. These advances yielded striking applications in speech synthesis (17), representation learn-
ing and pretraining of models for other tasks (152), anomaly detection, inference of missing data,
denoising (150), superresolution (153), compression (154), computer-aided design (155), and even
nominally supervised tasks like classification and regression (156).
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6.1. Energy-Based Probabilistic Models

Because they are most closely related to physics, we focus on energy-based probabilistic models
in which p(x;w) is specified as a Boltzmann distribution (with the Boltzmann factor kT = 1):

p (x;w) = 1
Zw

e−E(x ;w). 12.

The earliest energy-based probabilistic models in machine learning were in fact called Boltzmann
machines (157), and map directly onto Ising spin models with a learned coupling structure w. Ex-
tensive research has led to successively more sophisticated energy-based models (158–162), and
they continue to be an active and competitive approach to generative and probabilistic modeling
(150). Alternatives to energy-based models include autoregressive models and directed probabilis-
tic graphical models.

6.2. Connections Between Learning, Information Theory, and Free Energy

Inserting the Boltzmann form in Equation 12 into the log-likelihood learning objective in
Equation 5 yields

−l (w) = 〈E (x ; w)〉q − Fw, 13.

where 〈·〉q denotes an average with respect to the data distribution q(x) and Fw = − lnZw is the
Helmholtz free energy of the model distribution p(x;w). Thus, learning via maximizing the log
likelihood corresponds to minimizing the energy of observed data while increasing the overall
free energy of the model distribution.

Maximizing l (w) is also equivalent to minimizing the Kullback–Leibler (KL) divergence,

DKL (q‖p) =
∫

dx q (x) ln
q (x)
p (x;w)

= Gw(q) − Fw. 14.

Here, DKL (q‖p) is a nonnegative information theoretic measure of the divergence between two
distributions q and p that is zero if and only if q = p (154). In the special case when p takes the
Boltzmann form in Equation 12, the KL divergence becomes the difference between the Gibbs
free energy of q, defined as Gw(q) = 〈E (x ; w)〉q − S(q) [where S(q) = − ∫

dx q (x) ln q (x) is the
entropy of q] and the Helmholtz free energy Fw of p.

Learning corresponds to fixing the data distribution q and optimizing model parameters w in
Equation 14. However, the decomposition in Equation 14 has another widespread application in
both machine learning and statistical mechanics. Often, we are given a fixed complex Boltzmann
distribution as in Equation 12 with coupling parameters w, and we would like to approximate it
with a simpler variational distribution q(x). According to Equation 14, such an approximation can
be derived by fixing w and equivalently minimizing with respect to q either the KL divergence
DKL (q‖p) or the Gibbs free energy Gw(q). Such an approach leads to both variational inference
in machine learning and variational mean-field methods in physics.

6.3. Free Energy Computation as a Barrier to Learning

The previous subsection summarized tight relations between statistical concepts like log likeli-
hoods and KL divergences, and physical concepts like energy, entropy, and free energies, thereby
forming a bridge between machine learning and equilibrium statistical mechanics. In particular,
for energy-based models, this bridge identifies the computation, approximation, and optimization
of free-energy functions Fw as central to both fields. However, these are challenging problems for
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both fields. Furthermore, in machine learning, even well-motivated approximations to Fw cease
to be accurate over the course of training.

In the context of energy-based models, many approaches have been proposed to overcome the
barrier of computing with free energies. These include exhaustive Monte Carlo, the contrastive
divergence heuristic (163) and variants (164), score matching (165), pseudolikelihood (166), and
minimum probability flow learning (MPF) (167, 168) (where MPF is itself grounded in nonequi-
librium statistical mechanics). Sometimes, the requirement that a model be normalizable is relaxed
and a probabilistic interpretation simply abandoned (169). Despite this progress, training expres-
sive energy-based models on high-dimensional data sets remains an open challenge.

The difficulty of normalizing probability distributions over high-dimensional spaces (170) has
led to interesting approaches for generative modeling of data that sidestep the computation of
probabilities themselves. Such approaches include replacing explicit evaluation of probabilities
with the judgement of a learned discriminator in generative adversarial networks (GANs)1 (171),
developing expressive classes of functions (related to Hamiltonian dynamics; 172) that can still
be analytically normalized in the case of normalizing flows (173–175), factorizing the distribution
into a product of one-dimensional conditional distributions in autoregressive models (176), and
replacing posterior distributions with tractable variational approximations in variational autoen-
coders (177–180).

6.4. Nonequilibrium Statistical Mechanics

The bridge between machine learning and equilibrium statistical mechanics reviewed in
Section 6.2 is just beginning to be extended to form links between machine learning and nonequi-
librium statistical mechanics. In this section, we review two such links. However, this area is un-
derexplored, and future research bridging nonequilibrium physics and machine learning seems
likely to benefit both fields. Related promising directions include those that treat physical systems
as information processing engines (181–184).

6.4.1. Jarzynski equality and annealed importance sampling. One of the most surprising
analogs between machine learning and physics is that the Jarzynski equality ( JE) is a special case
of annealed importance sampling (AIS) from machine learning. Remarkably, the JE replaces the
inequality in the second law of thermodynamics with an equality,

exp (−�F ) = 〈exp (−W )〉, 15.

where�F is the change in free energy between twomacroscopic system states described by energy
functions E[x; λ(0)] and E[x; λ(T)], λ(t) describes time-dependent boundary conditions or control
parameters interpolating between those states,W is the work done by moving along the trajectory
λ(t), and 〈·〉 indicates an expectation over trajectories; we continue to assume the Boltzmann factor
kT = 1.

AIS (185) and extensions (186, 187) are a generalization of importance sampling (IS), and allow
an unbiased expectation to be computed over an intractable distribution by reweighting samples
from a tractable distribution. In AIS, forward and reverse Markov chains are constructed bridg-
ing between the two distributions, allowing for a lower variance estimator than that provided by
IS. If used to estimate the ratio of normalizers ZT

Z0 for two energy-based models p [x; λ(T )] and

1It has recently become popular to apply GANs to model physical systems. Extreme caution should be ex-
ercised when doing so. Their typical behavior is to generate high-quality but low-diversity samples, which
neglect many aspects of the training distribution. This can easily lead to silently inaccurate conclusions.
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p [x; λ(0)], AIS results in

ZT

Z0
= ZT

Z0

∫
dx0...T p f

(
x0...T

) pr (x0...T )
p f (x0...T )

=
〈
e−E(xT ;λ(T ))

e−E(x0;λ(0))

T∏
t=1

pr
[
xt−1 | xt; λ(t − 1)

]
p f

[
xt | xt−1; λ(t − 1)

]
〉
p f , 16.

where p f
(
x0...T

) = p
[
x0; λ(0)

]∏T
t=1 p f

[
xt | xt−1; λ(t − 1)

]
and pr

(
x0...T

) = p
[
xT ; λ(T )

]∏T
t=1 pr[

xt−1 | xt; λ(t − 1)
]
are the distributions over forward and reverse trajectories, respectively. In AIS,

it is most common to choose the Markov transitions in the forward and reverse chains to satisfy

a detailed balance condition such that pr[xt−1|xt ;λ(t−1)]
p f [xt |xt−1;λ(t−1)] = exp

{
E [xt; λ(t − 1)] − E

[
xt−1; λ(t − 1)

]}
.

If we further identify �Wt = E [xt; λ(t )] − E [xt; λ(t − 1)] as the work done in time step t and
W = ∑T

t=1 �Wt as the total work, and note that ZT

Z0 = exp (−�F ), then we can see that the inde-
pendently discovered equalities in Equations 15 and 16 become equivalent.

6.4.2. Nonequilibrium diffusion as a generative model. Ideas from nonequilibrium physics
can be used not only to evaluate properties of a probabilisticmodel but also to define a probabilistic
model. For example, in Reference 16 a parametric nonequilibrium process is trained to generate
complex data distributions. The essential idea is to first slowly destroy structure in a complex data
distribution q

(
x0

)
by allowing individual data points to diffuse in data space.This diffusive process

converts the complex, unknown data distribution q
(
x0

)
into a simple, tractable distribution p

(
xT

)
through a sequence of T iterative forward diffusion kernels p f

(
xt+1 | xt) for t = 0, . . . , T − 1.

For example, in the case of natural images, diffusion would correspond to each pixel intensity
undergoing an independent unbiased random walk, which gradually turns any structured image
into a white noise image.

One can then train a neural network to reverse the flow of time in this irreversible, en-
tropy producing diffusive process. More precisely, each step of the time-reversing neural network
is designed to move data points one step back in time by learning a reverse transition kernel
pr

(
xt | xt+1

)
. The composition of these kernels then yields a nonequilibrium generative model

of the data. In this generative model, one just samples from the simple distribution p
(
xT

)
, and

then repeatedly applies successive reverse transitions pr
(
xt | xt+1

)
to arrive at an approximation

of the original data distribution q
(
x0

)
. For example, in the case of natural images, this process

would correspond to sampling a white noise image and feeding it through a sequence of reverse
transitions to arrive at a naturalistic image sample (16; Figure 6b). Other examples of the ability

a   2010 (149) b   2015 (16) c   2019 (150) d   2019 (151)

Figure 6

Physics-motivated probabilistic models have improved rapidly with the field of deep learning as a whole, but currently lag somewhat
behind other probabilistic approaches, especially autoregressive models. All panels show samples from probabilistic models trained on a
natural image data set. (a–c) Samples from physics-motivated probabilistic models; (d) samples from the current overall state-of-the-art
(in terms of log likelihood) probabilistic model of images. Samples are from (a) an mcRBM energy-based model from 2010 (149),
(b) the nonequilibrium diffusion model from 2015 described in Section 6.4.2 (16), (c) an energy-based model from 2019 (150), (d) the
subscale pixel networks autoregressive model (151).
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of neural networks to, nonintuitively, reverse the flow of time in irreversible stochastic processes
can be found in Reference 16. Related work trains the parameters of both the forward and reverse
processes (188) and breaks the strict correspondence to a diffusion process to allow sampling with
fewer time steps (189).

7. SUMMARY

We hope this review conveys a sense of the progress surrounding the quest to obtain a theoretical
understanding of the profound empirical success of deep learning. It is inevitable that our current
theoretical understanding represents only the tip of the iceberg of a much more unified picture
that will emerge over the ensuing years. However, it is exciting that even this small visible part has
revealed a rich set of connections between the new field of deep learning and the comparatively
ancient fields of statistical mechanics and condensed matter physics. Indeed, bread-and-butter
topics in these fields, like random landscapes, phase transitions, chaos, spin glasses, jamming,
random matrices, interacting particle systems, and nonequilibrium statistical mechanics, as well
as more mathematical topics like free probability and Riemannian geometry, are beginning to
shed light on intriguing phenomena in deep learning.

There are many opportunities for a judicious combination of controlled scientific experimen-
tation on deep networks and the development of more realistic toy models of both training data
and neural networks to deepen our existing understanding. Such a combination of experiment and
theory has been a driving force for conceptual advances in physics, and we believe deep learning
will provide more such research opportunities for physicists. Even more interestingly, this area
of research may provide an opportunity for physicists to connect with computer scientists and
neuroscientists as well as to develop a unified theory of how nonlinear distributed neural circuits,
both artificial and biological alike, can compute, communicate, learn, and imagine (190).

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that
might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

S.G. thanks the Burroughs Wellcome Fund and the Sloan, McKnight, James S. McDonnell, and
Simons Foundations for support. J.K. thanks the Swartz Foundation.

LITERATURE CITED

1. LeCun Y, Bengio Y, Hinton G. 2015.Nature 521:436–44
2. Krizhevsky A, Sutskever I, Hinton GE. 2012. In Advances in Neural Information Processing Systems 25

(NIPS 2012), ed. F Bereira, CJC Burges, L Bottou, KQ Weinberger, pp. 1097–105. Red Hook, NY:
Curran Assoc.

3. Hannun A, Case C, Casper J, Catanzaro B, Diamos G, et al. 2014. arXiv:1412.5567
4. Devlin J, ChangMW,Lee K,Toutanova K. 2019. InNorth American Chapter of the Association for Compu-

tational Linguistics: Human Language Technologies (NAACL-HLT), pp. 4171–86.Minneapolis, MN: Assoc.
Comput. Linguist.

5. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, et al. 2016.Nature 529:484–89
6. Yamins DLK, Hong H, Cadieu CF, Solomon EA, Seibert D, DiCarlo JJ. 2014. PNAS 111(23):8619–24
7. McIntosh L,Nayebi A,MaheswaranathanN,Ganguli S, Baccus S. 2016. See Reference 191, pp. 1369–77

www.annualreviews.org • Statistical Mechanics of Deep Learning 523



CO11CH22_Ganguli ARjats.cls February 13, 2020 10:27

8. Rogers TT, McClelland JL. 2004. Semantic Cognition: A Parallel Distributed Processing Approach.
Cambridge, MA: MIT Press

9. Saxe AM, McClelland JL, Ganguli S. 2019. PNAS 116(23):11537–46
10. Piech C, Bassen J,Huang J,Ganguli S, SahamiM, et al. 2015. In Advances in Neural Information Processing

Systems 28 (NIPS 2015), ed. C Cortes, ND Lawrence, DD Lee, pp. 505–13. Red Hook, NY: Curran
Assoc.

11. Engel A, den Broeck CV. 2001.Statistical Mechanics of Learning. Cambridge,UK: Cambridge Univ. Press
12. Mézard M, Montanari A. 2009. Information, Physics, and Computation. New York: Oxford Univ. Press
13. Advani M, Lahiri S, Ganguli S. 2013. J. Stat. Mech. Theory Exp. 2013:P03014
14. Mehta P, Bukov M,Wang CH, Day AGR, Richardson C, et al. 2019. Phys. Rep. 810:1–124
15. Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, et al. 2019. Rev. Mod. Phys. 91:045002
16. Sohl-Dickstein J, Weiss EA, Maheswaranathan N, Ganguli S. 2015. Proc. Mach. Learn. Res. 37:2256–65
17. van den Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, et al. 2016. arXiv:1609.03499
18. Nguyen HC, Zecchina R, Berg J. 2017. Adv. Phys. 66:197–261
19. Hornik K, Stinchcombe M,White H. 1989.Neural Netw. 2:359–66
20. Cybenko G. 1989.Math. Control Signals Syst. 2:303–14
21. Bengio Y, Courville A, Vincent P. 2013. IEEE Trans. Pattern Anal. Mach. Intel. 35:1798–828
22. DiCarlo JJ, Cox DD. 2007. Trends Cogn. Sci. 11:333–41
23. Montufar GF, Pascanu R, Cho K, Bengio Y. 2014. See Reference 192, pp. 2924–32
24. Delalleau O, Bengio Y. 2011. In Advances in Neural Information Processing Systems 24 (NIPS 2011), ed.

J Shawe-Taylor, RS Zemel, PL Bartlett, F Pereira, KQWeinberger, pp. 666–74. Red Hook,NY: Curran
Assoc.

25. Eldan R, Shamir O. 2015. Proc. Mach. Learn. Res. 49:907-940
26. Telgarsky M. 2015. Proc. Mach. Learn. Res. 49:1517–39
27. Martens J,Chattopadhya A, Pitassi T,Zemel R. 2013. InAdvances in Neural Information Processing Systems

26 (NIPS 2013), ed. CJC Burges, L Bottou, M Welling, Z Ghahramani, KQ Weinberger, pp. 2877–85.
Red Hook, NY: Curran Assoc.

28. Bianchini M, Scarselli F. 2014. IEEE Trans. Neural Netw. Learn. Syst. 25:1553–65
29. Poole B, Lahiri S, Raghu M, Sohl-Dickstein J, Ganguli S. 2016. See Reference 191, pp. 3360–68
30. Sompolinsky H, Crisanti A, Sommers H. 1988. Phys. Rev. Lett. 61:259–62
31. Schoenholz SS, Gilmer J, Ganguli S, Sohl-Dickstein J. 2017. Paper presented at 5th International Con-

ference on Learning Representations (ICLR 2017), Toulon, France. https://openreview.net/forum?
id=H1W1UN9gg

32. Raghu M, Poole B, Kleinberg J, Ganguli S, Dickstein JS. 2017. Proc. Mach. Learn. Res. 70:2847–54
33. Mhaskar H, Liao Q, Poggio T. 2016. arXiv:1603.00988
34. Chung S, Lee DD, Sompolinsky H. 2018. Phys. Rev. X 8:031003
35. Boyd SP, Vandenberghe L. 2004. Convex Optimization. Cambridge, UK: Cambridge Univ. Press
36. Bray AJ, Dean DS. 2007. Phys. Rev. Lett. 98:150201
37. Fyodorov YV,Williams I. 2007. J. Stat. Phys. 129:1081–116
38. Dauphin YN, Pascanu R,Gulcehre C, Cho K,Ganguli S, Bengio Y. 2014. See Reference 192, pp. 2933–

41
39. Baldi P, Hornik K. 1989.Neural Netw. 2:53–58
40. Kawaguchi K. 2016. See Reference 191, pp. 586–94
41. Choromanska A, Henaff M, Mathieu M, Arous GB, LeCun Y. 2015. J. Mach. Learn. Res. 38:192–204
42. Crisanti A, Sommers HJ. 1992. Z. Phys. B Condens. Matter 87:341–54
43. Crisanti A, Horner H, Sommers HJ. 1993. Z. Phys. B Condens. Matter 92:257–71
44. Auffinger A, Arous GB. 2013. Ann. Probab. 41:4214–47
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