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Abstract

For a large class of nonequilibrium systems, thermodynamic notions like
work, heat, and, in particular, entropy production can be identified on the
level of fluctuating dynamical trajectories. Within stochastic thermody-
namics various fluctuation theorems relating these quantities have been
proven. Their application to experimental systems requires that all relevant
mesostates are accessible. Recent advances address the typical situation
that only partial, or coarse-grained, information about a system is available.
Thermodynamic inference as a general strategy uses consistency constraints
derived from stochastic thermodynamics to infer otherwise hidden proper-
ties of nonequilibrium systems. An important class in this respect are active
particles, for which we resolve the conflicting strategies that have been pro-
posed to identify entropy production. As a paradigm for thermodynamic in-
ference, the thermodynamic uncertainty relation provides a lower bound on
the entropy production through measurements of the dispersion of any cur-
rent in the system. Likewise, it quantifies the cost of precision for biomolec-
ular processes. Generalizations and ramifications allow the inference of,
inter alia, model-free upper bounds on the efficiency of molecular motors
and of the minimal number of intermediate states in enzymatic networks.
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1. INTRODUCTION

Stochastic thermodynamics provides a conceptual and quantitative framework for describing the
wide class of fluctuating nonequilibrium systems that are coupled to, or even embedded in, a
heat bath of well-defined temperature (1). This condition holds for many soft-matter systems and
biosystems, and, in particular, for experiments on the single molecule, or single colloidal parti-
cle, level. It can also be realized for transport problems through single-electron boxes (2). For
such systems, the notions of classical thermodynamics, like work, heat, and entropy production,
are identified on the level of individual, fluctuating trajectories taken from well-defined nonequi-
librium ensembles. One prominent example, and, in fact, one of the pillars of this field, is the
Jarzynski relation that relates a nonlinear average of the fluctuating work exerted on an initially
thermally equilibrated system by changing a control parameter to the free energy difference be-
tween the equilibrium states associated with the initial and the final value of this control parameter
(3). Thus, an equilibrium property, the free energy difference, can be inferred from experiments
that may drive the system deeply into nonequilibrium. Such an exact relation, valid beyond any
linear response regime, came as quite a surprise in 1997. A comprehensive review of the Jarzyn-
ski relation including its important generalization by Crooks (4, 5) has been published in this
journal (6). The Jarzynski relation does not require the identification of heat, let alone entropy
production, on the level of individual trajectories. For heat, such an identification was suggested
in References 7 and 8 by Sekimoto, and for the various contributions to entropy production in
Reference 9.This approach based on stochastic dynamics for a system coupled to a heat bath, later
called stochastic thermodynamics, also offered an additional perspective on the famous fluctuation
theorem (FT) that quantifies the probability of trajectories with negative total entropy production
first derived in the long-time limit for thermostatted and chaotic dynamics (10–12) and then for
stochastic dynamics (13, 14).

From the present perspective, one could argue that in this initial phase of the development of
stochastic thermodynamics the focus was identifying the thermodynamic notions along trajecto-
ries and deriving several exact relations among these quantities and then illustrating them with
simple real and computer experiments. I wrote a fairly complete review on the status of the field
in 2012 (1) (for more recent complementary reviews, see References 15–21), so the present much
shorter review highlights what one could identify as a second phase that we have entered since
then.We are now at the stage where we can use these thermodynamic concepts to infer otherwise
hidden properties of these systems of which the physical entropy production is arguably the most
prominent one. Thermodynamic inference, conceived here rather broadly, was introduced in a
more specific sense by Alemany et al. (22) as a strategy to infer hidden physical properties by an-
alyzing experimental data from single-molecule experiments with fluctuation relations assuming
essentially Gaussian distributions (see also Reference 23).

After recalling the basic principles of stochastic thermodynamics in Section 2, I focus on the
role of coarse graining for entropy production in Section 3, on identifying entropy production
for active particles in Section 4, and on the thermodynamic uncertainty relation as a tool for
thermodynamic inference in Section 5. In Section 6, I briefly touch on ongoing work concerning
ramifications and generalizations of the uncertainty relation.

2. BASIC CONCEPTS

The basic notions of stochastic thermodynamics follow from applying concepts of classical ther-
modynamics to individual trajectories first in equilibrium and then under nonequilibrium con-
ditions. In this section, starting from scratch, which should make this presentation accessible for
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those entering from different fields, I introduce this approach with an emphasis on how these
quantities can be inferred from measurements without quantitative knowledge of the underlying
interactions. Usually, theoretical work assumes those to be given.

2.1. Mesostates and Their Thermodynamic Potentials

We start with a closed equilibrium system in contact with a heat bath at inverse temperature β.
Each microstate ξ has an energy H (ξ ), which may, however, not be known explicitly. In principle,
free energy, internal energy, and entropy of this system are given by

F = −(1/β ) ln
∑

ξ

exp[−βH (ξ )], U = ∂β (βF ), and S = β2∂βF = β (U − F ), 1.

respectively. Throughout this review, entropy is dimensionless; i.e., it is given in units of Boltz-
mann’s constant kB.

Typically, the dynamics of individual microstates, which in aqueous solution should contain all
solvent molecules, is neither observable nor really interesting. On a first level of coarse graining,
one focuses on observable mesostates {I}. Those could be the (binned) positions of a few interact-
ing colloidal particles, or distinguishable conformations of one or a few interacting biopolymers
or of molecular motors. In any case, each microstate ξ is assumed to belong to one and only one
mesostate I, which is denoted by ξ ∈ I. For a simplified specific example to which we repeatedly
return to for an illustration of the general concepts, see Figure 1, which shows an enzyme inter-
acting with another molecule.

In the course of time, the system visits these mesostates along a trajectory I(t ). From such
a long equilibrium trajectory, one could extract, in principle, the equilibrium probability PeI =
limT →∞(1/T )

∫ T
0 δI(t )Idt, where the integrand records the time the trajectory spends in state I up

to total time T . Furthermore, given the microscopic model, the probability to find the system in
mesostate I is

PeI =
∑
ξ∈I

exp[−β (H (ξ ) − F )] ≡ exp[−β (FI − F )], 2.

where the last equality defines the free energy FI of the state I. Consequently, the free energy
difference of any two mesostates can be inferred as

�IJF ≡ FJ − FI = −(1/β ) ln[PeJ /P
e
I ] 3.

from experimental data of a long equilibrium trajectory.
The identification of FI as free energy is justified by the fact that the internal energy of this

mesostate determined from UI = ∂β (βFI ) agrees with what one would get from the microscopic
model asUI = ∑

ξ∈I P(ξ |I )H (ξ ), where

P(ξ |I ) = exp{−β[H (ξ ) − F ]}/PeI = exp{−β[H (ξ ) − FI ]} 4.

is the conditional probability for the microstate ξ given the mesostate I. Finally, the “intrinsic”
entropy of mesostate I is given by

SI ≡ β2∂βFI = β (UI − FI ) = −
∑
ξ∈I

P(ξ |I ) lnP(ξ |I ), 5.

which as the Shannon entropy of the conditional probability indicates roughly how many mi-
crostates contribute to the mesostate.
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Figure 1

Illustrative example of an enzyme interacting with a cofactor molecule embedded in an aqueous solution.
(a) Four microstates that differ in the position of the solvent molecules, of the cofactor, and of the atoms
making up the enzyme. All these (and many more) microstates are first coarse grained into mesostate 1
characterized by an open conformation of the enzyme and the fact that the cofactor molecule is not bound to
it. (b) Mesostates 1, 2, 3, and 4. In mesostate 2, the cofactor is bound to the open enzyme. Mesostates 3 and 4
comprise the closed conformation of the enzyme with and without the cofactor bound to it, respectively.
(c) A trajectory I(t ), for t → ∞, leading to the histogram of equilibrium probabilities {PeI } shown in panel d.
From such data taken at (inverse) temperature β and β + �β, the thermodynamic potentials FI ,SI , andUI ,
for I = 1, 2, 3, and 4, can be inferred as described in the main text and shown in panel e. Coarse graining on
the level of mesostates discussed in Section 3 below is illustrated in panel f, assuming that the cofactor
molecule is not observable, which leads to two coarse-grained mesostates C ≡ {1, 2} and C′ ≡ {3, 4}.
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From an inference point of view, it is crucial to note that free energy differences between
such mesostates are not the only quantities that can be extracted from a sufficiently long equilib-
rium trajectory. Recording such a trajectory at a slightly different temperature gives access to the
β−derivative of �IJF . Consequently, by using Equation 5, the difference in intrinsic entropy and
internal energy between any two mesostates at fixed temperature are both accessible experimen-
tally as well, and, hence, well defined. Their absolute values are not well defined, but neither are
those of the ensemble quantities (Equation 1), at least not in classical systems. I am stressing this
point because the concept of trajectory-dependent thermodynamic quantities has recently been
questioned fundamentally in an editorially highlighted article (24). The identification of these
quantities, which can be derived from a trajectory as shown for the example in Figure 1, assumes
implicitly weak coupling between the system and heat bath. For a small system, like a biomolecule,
the interaction with the solvent, which serves as the heat bath, is not necessarily much smaller than
the conformation-dependent, i.e., mesostate-dependent, part of its internal energy. Even in such
a strongly coupled case, the thermodynamic potentials can still be identified as shown recently
(25–29).

Equilibrium does not have an arrow of time.Hence, the joint probability to observe the system
in state I at time t and then in state J at the later time t ′ is the same as the one for observing it
earlier in J and later in I. Introducing conditional probabilities, we thus have

P(J, t ′|I, t )PeI = P(I, t ′|J, t )PeJ . 6.

Expanding this relation for small t ′ − t, we get with Equation 3

KIJ/KJI = exp[−β�IJF ] = exp[−β�IJU + �IJS], 7.

where KIJ ≡ ∂t ′P(J, t ′|I, t )|t ′=t , which must be independent of t due to time translational invariance
in equilibrium.

2.2. Timescale Separation and Master Equation

So far, the identification of the set of mesostates has been arbitrary. Progress toward a thermody-
namic structure with a first and second law can be made if the mesostates are such that the dynam-
ics of microstates within each of them is much faster than the dynamics between the mesostates.
Under this crucial assumption of a timescale separation, the dynamics between the mesostates be-
come memory-less; i.e., the probability for a transition from a present state I to a future state J is
independent of how long the system has already been in state I and how it got there. Specifically,
the probability PI (t ) for finding the system in state I at time t then evolves according to the master
equation

∂tPI (t ) =
∑

J

[PJ(t )KJI − PI (t )KIJ]. 8.

The {KIJ}, which thus have become genuine transition rates, are still constrained through
Equation 7, which is often called a local detailed balance condition. As important consequences
of the master equation dynamics, one can show that (a) the equilibrium distribution (Equation 2)
remains invariant; (b) in equilibrium, there is no net flow across any link (IJ), which means that
in a long trajectory the number of transitions between I and J is the same as the number of those
between J and I; and (c) any initial distribution {P0

I } will finally approach {PeI } provided the set of
mesostates is connected, i.e., does not split into subsets among which there is no link (30). Further-
more, the timescale separation implies that this dynamics can be applied not only to equilibrium
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but also to a relaxation process from an arbitrarily prepared initial distribution {P0
I }. In the ex-

ample introduced in Figure 1, such a relaxation process would happen if the system was initially
prepared in such a way that the bound mesostates 2 and 3 do not occur, e.g., by initially trapping
enzyme and cofactor separately.

2.3. Thermodynamics Along a Trajectory

Along a trajectory I(t ), the internal energy of the system becomes a stochastic quantity, U (t ) =
UI(t ). Because the system is closed, any energy change of the system is compensated by a corre-
sponding change in the energy of the heat bath, which can be interpreted as a perpetual exchange
of heat along an individual trajectory (7, 8). For a trajectory I(t ) starting at time t = 0 in state I0

and ending up at time T in state IT , the exchanged heat becomes

Q[I(t )] = −(UIT −UI0 ) = −�U [I(t )], 9.

with the sign convention thatQ > 0 corresponds to heat dissipated in the bath.Because differences
in internal energy of mesostates can be inferred from an equilibrium trajectory, the heat exchanged
along any trajectory can be inferred as well.

Quite generally, entropy production along a trajectory can be defined as a quantitative measure
of a broken time-reversal symmetry (31). In the setting of the closed system discussed so far, such
an asymmetry can arise only from a nonequilibrium initial distribution {P0

I } �= {PeI }. Denoting the
“time-reversed” trajectory by Ĩ(t ) ≡ I(T − t ), the total entropy change along a trajectory can be
identified as

�Stot[I(t )] ≡ ln
{
P[I(t )]/P̃[Ĩ(t )]

}
, 10.

where P[I(t )] and P̃[Ĩ(t )] are the probabilities to observe the original and the (fictitious) time-
reversed trajectory starting in the given initial and resulting final distribution, respectively (1).
Since in equilibrium any trajectory is as probable as its time-reversed partner, this entropy change
vanishes identically for any trajectory provided the initial distribution is the equilibrium one.Note
that a similar statement does not hold for the dissipated heat in Equation 9. For the master equa-
tion dynamics (Equation 8), using the explicit expression for P[I(t )], this entropy change can be
further evaluated as a sum of three terms (9, 32),

�Stot[I(t )] = βQ[I(t )] + �S[I(t )] + �Ssto[I(t )]. 11.

The first term is the conventional entropy change in the heat bath induced by the dissipated heat
(Equation 9). The second one �S[I(t )] ≡ SIT − SI0 is the change in intrinsic entropy (Equation 5)
often tacitly ignored, which, however, is justified only if the mesostates have the same, or an ig-
norable, internal structure. Finally, the third term is the change in stochastic entropy Ssto(t ) ≡
− lnPI(t ) (t ). In equilibrium, this last term compensates the changes of intrinsic entropy and the
entropy of the heat bath. It can be inferred experimentally by repeatedly drawing trajectories
from a given initial distribution. Thus, all three contributions to physical entropy production can
be inferred from experimental trajectories provided an ensemble of them can be generated with a
prescribed initial condition {Pei }, which could equally well be postselected.

After averaging over any initial distribution that is strictly positive on all states, the total entropy
change obeys the integral fluctuation theorem (IFT) 〈exp[−�Stot]〉 = 1 for any T , fromwhich one
gets the second law on the ensemble level as 〈�Stot〉 ≥ 0(9). This result should not be mistaken
for a fundamental proof of the second law, since with the assumption of a timescale separation and
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equilibration within each mesostate the crucial ingredients for irreversibility have been put in “by
hand” when formulating the master equation.

2.4. Systems in Contact with Particle and Work Reservoirs: Nonequilibrium
Steady States

The closed system coupled to a heat bath described so far will ultimately come to equilibrium. For
problems involving transport of particles (like electrons), or chemically driven molecular motors
working against an external load, reservoirs that provide these particles or the chemical educts at a
certain chemical potential must be introduced into this framework. A conceptually clean approach
is to imagine a closed supersystem for which the approach just described can be used.

The supersystem contains these reservoirs apart from the system of interest. By splitting the
thermodynamic potentials, in particular, the free energy, of the mesostates of the supersystem into
those of the system of interest proper, or “core system,” and the reservoirs, one obtains

KIJ/KJI = exp

[
−β

(
�IJF −

∑
α

dα
IJμα + f dIJ

)]
12.

as an extended local detail balance condition for transitions betweenmesostates of the core system.
The total free energy change of the super system has thus been split into (a) the free energy
change of the core system, �IJF , (b) the change in the free energy of the reservoirs that provide
(for dα

IJ > 0) and accept (for dα
IJ < 0) the dα

IJ particles of species α at a chemical potential μα that
are involved in a transition I → J of the core system, and (c) putative mechanical work delivered
in a mechanical step of length dIJ against an externally imposed force f . The core system has thus
become an open system connected to a heat bath with inverse temperature β and chemostats with
chemical potentials {μα} and which is possibly subject to an external force f . For an illustration,
see Figure 2 for a simplified model of a molecular motor and specific values of the quantities
showing up in the ratio of rates (12).

For time-independent chemical potentials and external force, the dynamics (Equation 8) will
run into a nonequilibrium steady state (NESS) with the stationary probability PsI to find the system
in state I at any given time. Its specific form for the example of the molecular motor shown in
Figure 2 is given in the caption. The total entropy production associated with a trajectory I(t )
as log ratio of the probability to observe the original and the time-reversed trajectory given by
Equation 10 then becomes

�Stot[I(t )] =
∑
IJ

nIJ(T ) ln(PsI KIJ/P
s
JKJI ), 13.

where nIJ(T ) is the number of transitions from I to J in total time T . The mean rate of entropy
production is (33)

σ =
∑
I<J

(PsI KIJ − PsJKJI ) ln(PsI KIJ/P
s
JKJI ) ≥ 0. 14.

In such a NESS, the probability distribution of total entropy production obeys a detailed FT (9),

ln[p(−�Stot )/p(�Stot )] = −�Stot, 15.

for any arbitrary (but fixed) length T of trajectories.
For the NESSs described here, it is crucial that the embedding system still provides the or-

dinary (typically room) temperature. Still, certain variables may then behave as if they were at
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Figure 2

Sketch of a molecular motor with two “heads” stepping along a filamentous track with elementary (or
“repeat”) distance d against an externally applied force f . (a) A three-state model. In state 1, an ATP
molecule can bind to the motor leading to state 2. Subsequent hydrolysis of ATP to ADP and release of the
inorganic phosphate molecule Pi generates a step of the front head leading to state 3. With the release of
ADP, the rear head follows. Thus, the cycle of motor conformations has been closed while the motor has
advanced one step along the track. Thermodynamic consistency requires that each step can occur backward,
however, at typically a much smaller rate. The quantities showing up in the ratio of rates (Equation 12) can
be specified as follows: With α = T ,D, and P denoting the three relevant molecular species, we get dT12 = 1,
dP23 = −1, dD31 = −1, dα

JI = −dα
IJ, and the other dα

IJ = 0. Likewise, for the distance stepped against the force,
we have d23 = d31 = d/2, d12 = 0, and dJI = −dIJ. Specifying the �IJF would require a more detailed model
or determining the thermodynamic potentials from a trajectory of the motor under equilibrium conditions,
i.e., with μT = μD + μP and f = 0 as explained in Figure 1. For a concrete example of a stationary state, we
consider the special case of all backward rates being equal, K21 = K32 = K13 ≡ K−, leading to Ps1 = [K23K31 +
(K31 + K− )K−]/N and its cyclic permutations for Ps2 and P

s
3. The normalization N follows from

Ps1 + Ps2 + Ps3 = 1. (b) Further coarse graining leading to a minimal model with just a forward rate K+ and a
backward rate K− used when introducing the thermodynamic uncertainty relation in Section 5 below.
Abbreviations: ADP, adenosine diphosphate; ATP, adenosine triphosphate.

an effective, higher, temperature caused by the driving (34). In a recent joint experimental and
theoretical study, this effect was systematically explored for a colloidal particle and for DNA hair-
pins driven by stochastically oscillating laser traps (35). This study revealed that there are typ-
ically parameter ranges in which an effective temperature can be meaningfully identified from
a fluctuation-dissipation theorem, whereas in others correlation and response function do not
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simply become proportional. As a rule of thumb, if the driving decorrelates faster than relevant
intrinsic relaxation times of the system, the concept of an effective temperature is a sensible one.
A different issue is the response of such a steady state to a small physical temperature change, for
which an elegant response theory has been developed recently (36).

3. COARSE GRAINING IN A NONEQUILIBRIUM STEADY STATE
AND ITS EFFECT ON ENTROPY PRODUCTION

A crucial assumption of stochastic thermodynamics is that all relevant mesostates are observed
and that the underlying fast hidden dynamics on the microstate level is equilibrated (1, 37). If not
all relevant mesostates are experimentally accessible, a trajectory on a coarser level will no longer
followMarkovian dynamics. Consequently, residence times of the observable states will no longer
be exponentially distributed. What can still be inferred about entropy production?

3.1. Entropy Production from Time Reversal

On a general level, coarse graining loses parts of the genuine physical entropy production. We
define coarse graining by amany-to-onemapping that associates with each (mesoscopic) trajectory
I(t ) uniquely a coarse-grained one C(τ ). If both descriptions contain continuous time, the time
arguments agree, i.e., τ = t. However, the finite temporal resolution in experiments may require
that the coarse-grained data are taken at discrete times τ ∈ {ti} only, which is an admissible variant
of coarse graining. In any case, the expression given in Equation 10 offers a first option to identify a
coarse-grained entropy production rate since the log ratio of these probabilities is still well defined
and experimentally, in principle, retrievable, even though generating sufficient statistics might be
nontrivial. This coarse-grained entropy production then provides a lower bound on the true one
according to

〈�Scgr[C]〉 ≡
∑
C

p(C) ln[p(C)/p(C̃)] =
∑
C,I

p(C|I )p(I ) ln
∑

I p(C|I )p(I )∑
Ĩ p(C̃|Ĩ )p(Ĩ ) ≤

∑
C,I

p(C|I )p(I ) ln p(C|I )p(I )
p(C̃|Ĩ )p(Ĩ ) =

∑
C,I

p(C|I )p(I )
[
ln
p(C|I )
p(C̃|Ĩ ) + ln

p(I )
p(Ĩ )

]
= 〈�Stot[I]〉. 16.

Here, C and I are short for the whole trajectories C(τ ) and I(t ), respectively. For the inequality,
one needs the log-sum inequality,

∑
i ai ln[

∑
i ai/

∑
i bi] ≤ ∑

i ai ln[ai/bi] (valid for any ai ≥ 0 and
bi ≥ 0), and for the final step p(C|I ) = p(C̃|Ĩ )= 1 or 0, depending on whether I is contained in
C or not. This reasoning, well established in information theory (38), has been introduced to
stochastic thermodynamics first in the context of time-dependent-driven systems (39–42) and then
transferred to NESSs (43).

In general, one cannot expect that this lower bound retrieves the full entropy production. It
does so only in special cases, e.g., when the hidden degrees of freedom are indeed in an equilibrium
constrained to the instantaneous values of the observable ones. The quality of this lower bound
has been assessed in model calculations for a discrete ratchet by Roldan & Parrondo (44, 45) and
for a chemical network by Muy and coworkers (46).

Remarkably, �Scgr as log ratio of corresponding probabilities obeys the detailed FT
(Equation 15). Therefore, an experimentally observed “validity” of an FT for such a variable
would not imply a physically complete identification of genuine entropy production. Kawaguchi
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& Nakayama have derived conditions under which the missing entropy, �Stot − �Scgr, obeys an
integral fluctuation relation (47).While finding such relations is theoretically interesting, they are
of limited value from an experimental perspective as this quantity, by definition, can neither be
observed nor inferred.

3.2. Mapping to a Markov Model

A second strategy to infer entropy production is by mapping the coarse-grained system to ef-
fectively Markovian dynamics on the set of the observable mesostates {C,C′,C′′, . . .}, for which
Figure 1f gives an example. Because such a procedure is not unique, conditions on the choice
of coarse-grained transition rates must be imposed. It is natural to require dynamic consistency,
which means that the Markov model should reproduce both the stationary probabilities on the
coarse-grained level {PsC} and the observed mean number of transition 〈nCC′ 〉 between any directed
pair of statesC → C′. These conditions imply that the rates must be chosen as KCC′ = 〈nCC′ 〉/PsCT .
Then the experimentally inferred, “apparent,” entropy production along a trajectory becomes

�Sapp[C(t )] =
∑
CC′

nCC′ ln[PsCKCC′/PsC′KC′C] + �Ssto[C(t )]. 17.

In general, this apparent entropy production does not fulfill a detailed FT (Equation 15) because
the observed weight of a coarse-grained trajectory does not correspond to the weight that would
be generated for the same trajectory by the Markovian dynamics with the rates {KCC′ }.

An experimental study with two paramagnetic colloidal particles, each driven along a periodic
potential found the approximative validity of a modified FT,with an additional factor on the right-
hand-side of Equation 15, for the apparent entropy production resulting from observing only one
particle (48). This surprising finding was recently rationalized as a lack of statistics of extreme
fluctuations and a “fine-structure” that appeared generically in motion along periodic potentials
(49, 50). From a general perspective, even more significant is the finding that the tails of the prob-
ability distribution of the apparent entropy production (Equation 17) always obey such a modified
FT in the limit of long observation times. Otherwise inaccessible properties can be inferred with
some additional information on the microscopic structure of the system, like in this case the true
entropy produced in one rotation of the visible degree of freedom (50). Another strategy to pre-
serve the entropy production under coarse graining has been employed by Knoch & Speck via
coarse-graining cycles (51).

3.3. Further Approaches

For certain classes of systems with relevant unobserved degrees of freedom, alternative approaches
have been developed.

3.3.1. Systems with timescale separation. If the dynamics within each mesostate is fast,
whereas transitions between the coarse-grained mesostates are slow, the effective coarse-grained
dynamics is still Markovian.However, this does not imply that if entropy production is determined
according to Equation 13, the full entropy production is recovered. Only if the fast dynamics does
not contain closed cycles that lead to entropy production, then timescale separation allows one to
infer the full entropy production from the coarse-grained one (52). Otherwise, an “anomalous”
entropy production occurs that survives even under infinite timescale separation (53). A somewhat
different scheme was developed earlier by Rahav & Jarzynski (54). Wang and coworkers have re-
cently shown that in discrete systems with timescale separation the entropy production associated
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with the slow degrees of freedom can also be inferred from a violation of the fluctuation-response
relation (55); this was done by generalizing an earlier result for continuous degrees of freedom by
Harada & Sasa (56).

3.3.2. Bipartite and masked dynamics. A slightly different class of coarse graining assumes
that only a selected set of transitions is observable. In the important class of bipartite systems,
each state contains two labels (57). In the observable transitions the first one changes (keeping the
second one the same), whereas in the hidden (or “masked”) transitions the second one changes
while the first remains fixed. The true total entropy production can then be split into one being
caused by the observable transitions and one being caused by the hidden or masked states. Various
IFTs and inequalities between these quantities have been proven and illustrated for model systems
(57, 58). The main problem with employing this framework on experimental systems is that with-
out knowing both labels the mere observation of the coarse-grained trajectories will not suffice
to extract the quantities that are necessary to infer the entropy production due to the observable
transitions let alone those associated with the hidden ones.

The same caveat holds for a related class of systems lacking a bipartite structure where one, or
several, transitions are identified as observable and the remaining ones are identified as hidden.
Theoretically, criteria for IFTs and inequalities can be proven, but their experimental significance
for inferring thermodynamic quantities remains open at this stage (59, 60).

3.3.3. Molecular motors. For a large class of molecular motor models with attached probe
particles to which external loads can be applied, coarse graining over the probe particle can be
performed in such a way that the mean apparent entropy production of the coarse-grained model
corresponds to the full entropy production (61). In this approach, the rates {KCC′ } are chosen such
that the mean currents 〈nCC′ − nC′C〉/T are reproduced (but not the individual mean number of
transitions from C to C′ and vice versa). In addition, a local detailed balance condition on the
level of the coarse-grained states could be imposed. However, this approach rests crucially on the
fact that the effective one-dimensional motion of the probe particle cannot generate cycles with
entropy production.

4. ACTIVE PARTICLES

Active particles have become a major paradigm in statistical physics, as covered by several recent
reviews (see References 62–73). An investigation of the associated entropy production, on which
we focus here, has, however, just been started.

4.1. Models

Active particles possess a propulsion mechanism that leads to an active velocity u with speed u ≡
|u| along an intrinsic director n. In the presence of an external potential and/or interactions with
other particles, the equation of motion for the position r reads as

∂tr = −μ∇V + u 18.

in the overdamped limit, which is appropriate for most particles in aqueous solution. Here, μ

is a mobility, i.e., an inverse friction coefficient, and V the total potential acting on the active
particle. Following several previous works, there is no noise yet in this equation of motion. For
notational simplicity, we deal here with a single active particle. For an interacting collection of
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them, quantities like u, r,n,V , and so on, would get a particle index. All statements made here and
in the following hold true for this interacting case as well.

At least three different classes of active particles can be distinguished by the dynamics of u.
(a) For run-and-tumble particles (RTPs), the speed u is constant. A run-mode with constant di-
rector is followed by a tumble event, in which the director changes randomly to a new direction.
(b) Active Brownian particles (ABPs) are characterized by a constant speed u and rotational diffu-
sion of the director. (c) Finally, for active Ornstein–Uhlenbeck particles (AOUPs), both speed and
director change according to the Langevin equation,

∂tu = −u/τ + [2ū2/τ ]1/2η, 19.

with η(t ) as standard white noise. Here, τ is the relaxation time of the propulsion velocity, and ū2

its mean square.
On the ensemble level, for all three classes, the dynamics will reach a steady state provided

the motion remains bounded either due to a confining potential or a confining geometry. Fur-
thermore, without noise in Equation 18, the trajectory of the velocity u(t ) determines the spatial
trajectory r(t ) completely. Even though generating the propulsion requires driving as further dis-
cussed below, the dynamics proper of the self-propulsion u(t ), as characterized above, is not only
independent of the spatial degree of freedom but resembles formally nondriven dynamics. Con-
sequently, the distribution Ps(u) is of an equilibrium type, which, in the absence of any orienting
field for the director, is uniform for RTPs and ABPs and a Gaussian for AOUPs.

4.2. Entropy Production

If one wanted to identify entropy production for any of these classes using Equation 10 by com-
paring the weight of a forward trajectory u(t ) with that of a time-reversed one ũ(t ), one has for-
mally two options. Either one keeps the original orientation, ũ(t ) = u(T − t ), or one reverses it,
ũ(t ) = −u(T − t ). In the absence of a potential (and interactions in the many-particle case), the
latter choice corresponds to what one would naively call time reversal, since it leads in position
space to r̃(t ) = r(T − t ). Crucially, since the orientation u dynamics is effectively in equilibrium,
p[ũ(t )]/p[u(t )] = 1 for both choices, and thus entropy production according to Equation 10 van-
ishes identically along each trajectory and, hence, also in the mean.

For AOUPs, arguments based on time-reversal have led to a different result. The equations of
motion (Equations 18 and 19) can formally be mapped to effectively underdamped dynamics with
a velocity dependent force (74). This mapping allows a perturbative approach to the stationary
distribution for a small relaxation time τ leading to insights into the occurrence of phenomena like
motility-induced phase separation and the like. However, if one tries to infer entropy production
from these effective underdamped dynamics, one obtains an expression that vanishes for harmonic
interactions (74). Again, there is a second option for how to perform the time reversal, which
corresponds effectively to keeping the orientation of the director, leading to nonvanishing entropy
production for harmonic interactions (75).

These conflicting results, depending on how and on which level time-reversal is applied, point
to a deeper problem. A further hint that something fundamental is not quite captured by the argu-
ment given in the above two paragraphs follows from the naive observation that in all approaches
a single free self-propelled particle would not lead to entropy production at all. By contrast, such
a motion necessarily causes viscous stresses in the surrounding fluid with viscosity η for which one
would expect a contribution ∼η〈u2〉 to the overall entropy production rate.
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The problem is that the starting equation, Equation 18, is thermodynamically inconsistent on
two grounds. First, the presence of a friction term in an equation of motion like Equation 18
requires that the corresponding noise is included as well. If the mobility μ is supposed to be
the Stokes’ one, i.e., μ = 1/6πRη for a spherical particle of radius R, a thermal noise term with
correlations 〈ζ(t )ζ(t ′ )〉 = 2(μ/β )δ(t − t ′ ) must be added to the right-hand side of Equation 18.
Second, and even more important, any self-propulsion ultimately based on physicochemical pro-
cesses occurs in a finite temperature environment. Hence, it comes necessarily with its own noise
that acts along the instantaneous director n(t ). Modeling this noise as white with correlations
〈ζac(t )ζac(t ′ )〉 = 2(μac/β )δ(t − t ′ ), one finally gets an augmented Langevin equation,

∂tr = −[μ + μacn ⊗ n]∇V + un + ζ + ζacn. 20.

Even though the active mobility, μac, with its inverse being an active friction, arises from the
noise in the chemical reactions, it is affected by the hydrodynamics. An explicit calculation of this
mobility for a Janus particle would require solving the corresponding hydrodynamic problem (76,
77). It is conceptually crucial, however not yet universally recognized, that this active mobility is
not the Stokes’ one because the latter is related to the translational noise exerted by the surround-
ing fluid.

The Langevin Equation 20 has first been derived as the continuum limit of a thermodynam-
ically consistent minimal lattice model for ABPs (78). This derivation shows explicitly why the
active noise leads to a corresponding active mobility, caused by active friction in front of the po-
tential term: If the propulsion mechanism must act against a potential force, the corresponding
reaction occurs with a slightly diminished rate. Such a coupling between translation and chemical
reactions has also been found in a linear response treatment (79). From a stochastic thermodynam-
ics perspective, the Langevin Equation 20 without the active terms has been analyzed by Speck
(80), and its underdamped version by Chaudhuri (81, 82). A thermodynamic perspective on the
overdamped AOUP version (again without recognizing the role of active noise and mobility) was
given by Szamel (83) and for the original AOUP model (Equations 18 and 19) by Speck (84) and
by Puglisi & Marconi (85).

The mean entropy production rate in the lattice model leading to Equation 20 becomes

σtot = (β/μac )u2 − u〈n∇V 〉 21.

in the continuum limit (78). Without a potential, only the first term contributes, which indeed is
of the form that one would expect naively. Even in the presence of a potential, the translational
mobility μac does not show up explicitly in this second term. However, the corresponding terms
will affect the stationary distribution Ps(r,n) and hence the second contribution in Equation 21.
The lattice model introduced in Reference 78 has a constant propulsion speed and thus pro-
vides a thermodynamically consistent model for ABPs. Thermodynamically consistent models for
AOUPs could be developed along similar lines using several chemical reaction channels with each
leading to a different propulsion speed.

Crucially, in general, the physical entropy production Equation 21 cannot be recovered by
applying the expression Equation 10 for either version of time reversal, ñ(t ) ≡ n(T − t ) and
n(t ) = −n(T − t ), to the Langevin dynamics (Equation 20). The first variant succeeds only if
translational mobility (and noise) is set to zero; the second variant never succeeds (78). This fail-
ure occurs because the Langevin Equation 20 refers to position only, whereas information about
the reaction has been lost; i.e., it has effectively been coarse-grained away: An increment along the
director could arise from either a chemical reaction with its inevitable dissipation or an ordinary
thermal noise, which, in the absence of a potential, does not cause dissipation. Without explicitly

www.annualreviews.org • Stochastic Thermodynamics 183



CO10CH09_Seifert ARjats.cls February 4, 2019 12:51

keeping a chemical coordinate, modeled, e.g., through additional Langevin dynamics as suggested
in Reference 73, these two alternatives cannot be distinguished. The lesson to be taken from this
discussion is that without additional knowledge of the underlying microscopic events, entropy
production cannot be uniquely inferred from trajectory data for the position only.

4.3. Colloidal Particles in Active Baths

So far, we have described active particles as a nonequilibrium system embedded in an aqueous
solution that serves both as thermal bath with a well-defined temperature and as reservoir for
molecules with well-defined chemical potentials that are involved in the reactions generating the
self-propulsion. A further class of systems emerges if one or several passive colloidal particles are
added to such a suspension. Two complementary perspectives on such a system are conceivable.

First, one can describe the mixture of active and passive particles by a set of Langevin equa-
tions of the type given in Equation 20 where for the passive particles active mobilities and noise
are deleted (78). Such an approach does not pose any conceptual problems and stays well within
the realm of stochastic thermodynamics. Second, one could invoke the idea of a nonequilibrium
bath, which, taken at face value, may sound like a contradictio in se since in thermodynamics a bath
or reservoir is a genuine equilibrium system. One limiting case for which such a parlance can
hardly be criticized are systems in which the active forces, e.g., generated by active particles hit-
ting a passive one, have a correlation time that is small compared with relaxation times of the
(passive) system of interest. In a Langevin description, the corresponding dynamics of the passive
particle then basically experience stronger thermal forces which correspond to a higher effective
temperature of this nonequilibrium bath.

An experimentally realizable version of an active bath is suspensions of bacteria for which
anomalous diffusion (86), active stress fluctuations (87), and an effective temperature (88) have
been measured. In the experiment reported in Reference 89, a colloidal particle in a time-
dependent harmonic potential has been used to demonstrate the, not surprising, failure of the
Jarzynski and Crooks relations with such an active bath. Interestingly, these authors could restore
these FTs using an effective potential derived from the stationary distribution.

In another intriguing experiment, such a system has been used to implement a Brownian heat
engine coupled to an active bath (90). For two equilibrium baths with a hot and cold temperature,
Th and Tc, such a setup was introduced in 2007 theoretically in Reference 91 as a paradigm for
studying efficiency, and efficiency at maximum power, on a micron scale for a Carnot cycle. In
the Stirling version, this suggestion was implemented a few years later in the lab by Blickle &
Bechinger (92), in which the hotter heat bath was generated by additional local heating, leading
to a typical ratio of Tc/Th � 0.8. In a recent experiment (90), the activity of the bacteria leads to a
substantially higher effective temperature and a correspondingly larger effective efficiency. This
very experiment, however, also points to the limitations of this perspective since the distribution of
the passive particle in the harmonic trap turned out to be distinctly non-Gaussian, which prevents
a unique identification of a suitable effective temperature of this nonequilibrium bath (93).

An interesting approach that could ultimately lead to a systematic theory of such nonequi-
librium baths has been suggested by Steffenoni et al. (94). A weak coupling assumption between
active and passive particles allows them to first consider perturbatively the effect the passive ones
impose on the genuine active NESS. In a second step, they can then derive generalized Langevin
equations with memory for the passive particles. Because the noise in these Langevin equations is
not correlated with the memory in the friction, the active particles are thus manifestly embedded
in a nonequilibrium bath.Whether and how this approach can be extended to strongly interacting
systems remains to be seen.
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5. THERMODYNAMIC UNCERTAINTY RELATION

5.1. Formulation

The basic idea behind the thermodynamic uncertainty relation can be introduced with the ar-
guably simplest nonequilibrium process. This is an asymmetric random walk, in which a parti-
cle symbolizing, e.g., the position of a molecular motor on a track, moves with a rate K+ to the
right and with a smaller rate K− to the left, which represents also a coarse-grained version of
the motor model discussed in Figure 2b. After a time T , the average position is 〈n〉 = jsT , with
the stationary, or mean, current js = K+ − K−. The typical fluctuations are encoded in the dis-
persion, or diffusion, coefficient D ≡ 〈(n− 〈n〉)2〉/2T = (K+ + K− )/2. This ubiquitous model be-
comes thermodynamically consistent when we appreciate that the breaking of time-reversal sym-
metry,K+ �= K−, necessarily requires nonequilibrium conditions that lead to free energy consump-
tion. In fact, the entropy production rate associated with this process follows from Equation 14 as
σ = (K+ − K− ) ln[K+/K−] since there is effectively only one mesostate. A trivial calculation then
shows that the three fundamental quantities, js,D, and σ , just given obey the relation

σ ≥ js2/D. 22.

Thus, at a given current, small dispersion requires a minimal dissipation rate. This bound is satu-
rated close to equilibrium, K+/K− → 1.

The surprising fact is that this relation holds with the mean and the dispersions of any current
that can be deduced from Markovian dynamics on a discrete set of states as first conjectured in
Reference 95 based on extensive numerical and analytical work. An elegant rigorous proof us-
ing large deviation techniques was then found in Reference 96. This universally valid relation
thus allows one to infer a lower bound on the entropy production rate σ in any such network
by measuring any of its currents and the corresponding dispersion. More precisely, monitoring
X (T ) = ∑

IJ dIJnIJ(T ), where dIJ = −dJI is any antisymmetric increment associated with a transi-
tion I → J, yields

js ≡ 〈X (T )〉/T and D ≡ lim
T →∞

[〈X 2(T )〉 − 〈X (T )〉2]/2T 23.

that can be used in Equation 22.

5.2. Cost of Precision

The inequality,Equation 22, has been dubbed the thermodynamic uncertainty relation, because, in
a related interpretation, it shows that the uncertainty of a process and its cost are complementary
quantities. We can interpret the system described above as a process that generates a product,
here steps, on average linearly in time. The outcome after a fixed time is not sharp but comes
with a certain variance. The uncertainty of the process defined as ε2 ≡ 〈(n− 〈n〉)2〉/〈n〉2 becomes
smaller the longer the process runs. Since the thermodynamic costC ≡ (σ/β )T increases linearly
with time, the uncertainty relation (Equation 22) implies that

C ≥ 2/βε2. 24.

Thus, precision, i.e., a small uncertainty, has aminimal cost independent of the duration of the pro-
cess. If one arranges the steps in a circular fashion as the marks on the face of a clock, Equation 24
gives the minimal cost of such a “Brownian clock” (97). However ingeniously such a clock may be
constructed, it will not be able to beat this fundamental bound as long as it operates in a steady
state at (inverse) temperature β.
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5.3. Inferring Bounds on the Thermodynamic Efficiency of Motors

This thermodynamic uncertainty relation can serve as a powerful technique for deriving upper
bounds on the efficiency of molecular machines or motors. Molecular motors, whether biolog-
ical or artificially built, typically operate in an environment of constant (inverse) temperature β

as given by the surrounding aqueous solution. In a steady state, such motors are driven by some
chemical input power, Pin. They deliver output power Pout = f v against an applied force f at a
velocity v. Fluctuations around this average velocity can be characterized by the diffusion coef-
ficient D. The input power is the rate of free energy change of the particle reservoirs providing
the educts and accepting the products of the powering chemical reaction. In the simplest case of
ATP-hydrolysis, it is the free energy difference associated with this reaction multiplied with the
rate of reaction.While the former quantity can be inferred in principle if one knows the concen-
tration of all involved chemicals, inferring the rate of reaction requires assumptions about how
the chemical steps are related to the visible mechanical ones.

In contrast, the thermodynamic uncertainty relation yields a bound on the efficiency without
invoking any model as follows. First, the mean total entropy production is given by the difference
between mean input and output power, σ = β (Pin − Pout ). With Equation 22, and choosing the
output power Pout = f v as current, the efficiency can be written as (98)

η = Pout

Pin
= Pout

Pout + σ/β
= v f

v f + σ/β
≤ 1

1 + v/(D f β )
. 25.

This bound involves with v,D, and f only experimentally accessible quantities.Neither knowledge
of the underlying network, i.e., of the specific reaction scheme, is necessary nor does the free
energy difference �μ associated with the ATP hydrolysis enter. In Reference 99, this bound is
evaluated using experimental data for a kinesin motor reported in Reference 100. For a related
application of the uncertainty relation to molecular motor data, see Reference 101.

For stochastic heat engines, the thermodynamic uncertainty relation can be used along similar
lines to prove that with approaching Carnot efficiency the output power must vanish at least lin-
early except if power fluctuations diverge. This general result clarifies and unifies several recent
studies with partially conflicting results (102).

6. GENERALIZATIONS AND RAMIFICATIONS OF THE UNCERTAINTY
RELATION

6.1. Finite-Time Uncertainty Relation

The diffusion coefficient D entering the uncertainty relation involves a long-time limit T → ∞
in Equation 23. In particular, from an experimental perspective, it would be valuable if it could be
replaced by a finite-time expressionD(T ). Indeed, as conjectured and illustrated with experimental
data for a colloidal particle in a stochastically displaced harmonic potential in Reference 103, the
uncertainty relation holds even for finite T , which was proven in full generality in Reference 104.

6.2. Bound on the Large Deviation Function

The uncertainty relation yields a bound on the second cumulant of a current. Surprisingly, the
full spectrum of fluctuations as described by a large deviation function can likewise be bounded
universally. Specifically, in the long-time limit, the probability to observe the fluctuating current

186 Seifert



CO10CH09_Seifert ARjats.cls February 4, 2019 12:51

j ≡ X (T )/T can be written as

p( j, T ) ∼ exp[−T I( j)], 26.

where the rate, or large deviation, function I( j), with I( js ) = 0, determines how the probability
of fluctuations away from the mean js becomes exponentially small for long observation times.
As conjectured in Reference 105 and proven in References 96 and 106, this rate function can be
bounded by a quadratic function, the curvature of which is determined by the entropy production
rate as

I( j) ≤ σ ( j/ js − 1)2/4. 27.

The uncertainty relation (Equation 22) is a direct consequence of this more general result since
D = 1/[2I ′′( js )].

6.3. Bounds for Inference Requiring Additional Input

One appeal of the uncertainty relation is that it bounds the fluctuations of any current by the
overall entropy production σ independently of both the specific physical mechanism that drives
the process and the topology of the underlying network. If, however, information about these
aspects is available, or sought for, stronger bounds can be proven (107, 108). As a paradigmatic
one, we consider the topology-dependent and affinity-dependent bound (107),

Cε2 = 2σD/ js2 ≥ (A/N )∗ coth[A/N )∗/2] ≥ max[2, (A/N )∗]. 28.

For each closed cycle in the underlying network, one must form the ratio between its affinity
A, which is the entropy production associated with this cycle (33), and its number of states N .
The smallest strictly positive value of this ratio among all cycles, (A/N )∗, enters this bound. For
a unicyclic network of N states, the first inequality is saturated if all forward rates are identical as
are all backward rates. In multicyclic networks, the cycle with the smallest A/N potentially leads
to the smallest fluctuations and, thus, provides a lower bound on the overall fluctuations.

As one application for thermodynamic inference, consider biochemical or enzymatic networks
in which the source of free energy arises from the hydrolysis of ATP. The affinity of any cycle
is then given by A = n�μ, where n is the number of ATP molecules consumed in this cycle and
�μ the free energy of the hydrolysis. If the latter is known, measuring the Fano factor of the
reaction leads, with Equation 28, to bounds on the minimum number of mesostates involved in
the reaction, as discussed in Reference 109.

6.4. Continuous Degrees of Freedom

The uncertainty relation in the original set-up of Markovian dynamics on a discrete set of states
can easily be extended to continuous systems that follow an overdamped Langevin equation in
steady state (106, 108, 110) and for finite-time and under relaxation (111). In contrast, the exten-
sion to a system described by an underdamped Langevin equation is nontrivial because for the
latter there is no obvious discretization that maps it to the master equation dynamics (Equation 8)
while preserving the entropy production. A recent numerical case study, however, indicates that
the uncertainty relation may hold for underdamped systems as well (112). For a general claim in
this direction, see Reference 113. For ballistic transport of noninteracting particles between reser-
voirs of different chemical potential and temperature the uncertainty relation has been shown to
hold as well (114). In this case, dissipation takes place only in the reservoirs that thermalize the
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transported particles. Intriguingly, the same study also showed that for transport of charged parti-
cles in a magnetic field, which breaks time-reversal symmetry, the uncertainty relation holds with
a constant �0.896, replacing the factor 2 in Equation 24.

6.5. Time-Dependent Driving

The uncertainty relation applies to a NESS. In general, it does not hold if the driving is time
dependent for which arbitrary precision can be reached at a finite cost as first observed in an ex-
ample of a periodically driven Brownian clock (97). The physical reason for this loophole is the
option to effectively confine a particle between moving boundaries in a way that suppresses fluc-
tuations at a moderate cost of driving. It must, however, be appreciated that such time-dependent
control of a system involves an additional cost that is usually neglected. If this time-dependent
control is included in a thermodynamically consistent manner (115; see also Reference 116), the
thermodynamic uncertainty relation is recovered.

For the special case of time-symmetric periodic driving with period �t, a generalization of the
thermodynamic uncertainty relation holds true in the form,

js2/D ≤ (exp�S− 1)/�t, 29.

where �S is the mean entropy production in one period (117). This version of the uncertainty
relation was derived for a Markov chain for discrete time with a timestep �t for which it was
noticed earlier that the original version, Equation 22, does not hold (118). The reason is that in
the original time-continuous case the variability of the time intervals between jumps leads to larger
fluctuations.Because constant driving corresponds to a degenerate case of time-symmetric driving,
the result (Equation 29) implies the uncertainty relation for a NESS (Equation 22) through the
limit �t → 0 and �S = σ�t. A mapping between time-continuous and discrete-time dynamics
can be exploited to derive a strengthened version of the uncertainty relation (119). Whether and
how mappings between periodically driven systems and NESSs can be used to derive bounds for
the periodic case remains to be explored (97, 120–124).Within linear response, a generalized form
of the uncertainty relation for time-asymmetric driving has been derived in Reference 125.

6.6. Other Variables and Statistics of Extrema

We have focused on variables associated with currents since the presence of currents is the main
feature that distinguishes a NESS from equilibrium. The techniques developed for deriving
bounds on current fluctuations can easily be transferred to other variables like the time spent
in a state or the activity, also called traffic or frenesy, that counts the total number of transitions
between any pair of states irrespective of the direction (113, 126, 127).

In most of the studies mentioned so far, the fluctuations are evaluated up to a fixed final time T .
In a complementary approach, related results can be derived for the fluctuations of a first-passage
time, i.e., for the time at which a certain value of a current or another variable is reached for the
first time (128, 129). Likewise, the statistics of extreme values of entropy production and other
currents show a remarkable universality (130–132).

7. CONCLUDING REMARKS

Entropy production is arguably the most characteristic feature of nonequilibrium systems.Within
the framework of stochastic thermodynamics, entropy production can be identified uniquely for
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a large class of them. Whether it also can be measured depends on both the resolution of an
experiment and knowledge of further crucial parameters of the system under investigation. In
this brief review, I have focused on a selection of recent advances that allows inference of this
quantity, typically in the form of bounds, under less favorable conditions with incomplete data or
knowledge. The discussion of coarse graining has highlighted the subtle role hidden degrees of
freedom can have. For active particles, the apparently straightforward strategy of investigating the
system under time reversal can be misleading if applied on too coarse a level. The most versatile
approach to thermodynamic inference at present seems to be the thermodynamic uncertainty
relation and its ongoing generalizations and ramifications that bound entropy production through
measurable fluctuations of arbitrary currents.

In closing, I want to mention a few related exciting developments in which, with the tools of
stochastic thermodynamics, the thermodynamic cost of driven systems can be assessed and, thus,
their efficiency be evaluated. Recently, such an approach has been applied to learning with neu-
ral networks (133, 134); to sensory systems (135–142); to biochemical and biophysical networks
(143–147), in particular to the cost of precision in oscillating ones (148, 149); and to self-assembly
(150). Finally, though quantum systems without coherence are straightforwardly included in the
establishedmaster equation approach recalled here, a new situation arises whenever coherence and
entanglement play a decisive role. It will be interesting to see whether and when stochastic quan-
tum thermodynamics will reach the conceptual maturity and the potential for thermodynamic
inference that we have achieved in the classical case covered here.
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