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Abstract

Recent experimental progress introduced devices that can combine topo-
logical superconductivity with Coulomb-blockade effects. Experiments with
these devices have already provided additional evidence for Majorana zero
modes in proximity-coupled semiconductor wires. They also stimulated nu-
merous ideas for how to exploit interactions between Majorana zero modes
generated by Coulomb charging effects in networks of Majorana wires.
Coulomb effects promise to become a powerful tool in the quest for a topo-
logical quantum computer as well as for driving topological superconduc-
tors into topologically ordered insulating states. Here, we present a focused
review of these recent developments, including discussions of recent exper-
iments, designs of topological qubits, Majorana-based implementations of
universal quantum computation, and topological quantum error correction.
Motivated by the analogy between a qubit and a spin-1/2 degree of freedom,
we also review how coupling between Cooper-pair boxes leads to emergent
topologically ordered insulating phases.
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1. INTRODUCTION

Isolated Majorana zero modes in topological superconductors are associated with a degeneracy
of the ground state. Up to corrections that are exponential in the distance between the Majo-
ranas, every two Majoranas induce a twofold degeneracy. Remarkably, no local measurement can
reveal the specific state that a system assumes within the ground-state manifold. This implies that
quantum information stored within this manifold is strongly protected against local sources of
decoherence (1).

For the same reason, manipulation of this quantum information necessarily requires nonlocal
operations. An important class of such nonlocal operations are braiding processes exploiting the
nonabelian statistics of the Majorana zero modes (1-5). Adiabatic braiding of Majoranas leaves the
system within the ground-state manifold, but generally not in the same state. Instead, braiding is
associated with a unitary evolution within the ground-state manifold, and this unitary evolution
can be exploited for quantum information processing (1).

In this review, we focus on charging effects in Majorana systems. As the charging energy is
a global property of the system, it is a second important source of nonlocality. A quantum wire
in a topological superconducting phase has two Majorana bound states, one at each end, and a
twofold degenerate ground state (6). One ground state is a fully paired state. A second ground
state accommodates an unpaired fermion by virtue of the zero-energy fermionic excitation which
can be formed from the two Majorana zero mode operators. Thus, the two ground states are
distinguished by their fermion number parity, with one state having even and the other having
odd fermion number parity. Charging effects are sensitive to the global number of electrons in a
sample. They can consequently distinguish between, and lift the degeneracy of, the even and odd
fermion-parity ground states (7).

Recent theoretical and experimental progress shows that charging effects constitute a powerful
tool in Majorana devices. They can be used to probe Majorana physics, to bootstrap these systems
for realizing correlated and topologically ordered phases, and to construct a topological quantum
computer. The building blocks underlying these developments are Coulomb-blockaded islands
with an even number of Majorana zero modes, based on quantum wires with strong spin-orbit
coupling and proximity-induced superconductivity (8, 9).

A representative example is the Majorana box qubit or tetron (10, 11), which contains four
Majorana zero modes on the same superconducting island. Charging fixes the overall electron
number, and hence the overall fermion parity, thereby reducing the fourfold ground-state degen-
eracy associated with the four Majorana zero modes to a twofold degeneracy. Similarly, hexons are
based on six Majorana zero modes and have a fourfold ground-state degeneracy.

In the context of quantum computation, tetrons and hexons can be viewed as topological qubits
(10, 11). In addition to their topological protection against local sources of decoherence, the charg-
ing energy protects these qubits against quasiparticle poisoning processes that change the tetron’s
fermion parity and thereby take it out of its computational subspace. Topological qubits based on
Coulomb-blockaded Majorana systems are reviewed in Section 3, and current ideas on how they
can be used for topological quantum computation are discussed in Section 4.

Assemblies of Cooper-pair boxes can also be viewed as a practical means of introducing
Coulomb interactions into networks of hybridized Majorana zero modes. In the absence of
Coulomb interactions, such a network may form two-dimensional topological superconducting
states. Adding strong Coulomb interactions induces a superconductor-to-insulator transition. Re-
markably, the resulting insulating phases may be nontrivial topologically ordered states.

This can be understood most directly by viewing tetrons and hexons as implementations of
local spin-1/2 degrees of freedom (12). Their assembly into coupled networks can then be used
to implement various Hamiltonians with topologically ordered ground states. Effective Zeeman
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fields and spin interactions are realized by hybridizing Majoranas within or between Coulomb
islands. Remarkably, this not only results in Zeeman or exchange couplings but also naturally
generates spin-cluster interactions involving more than two spins. In addition to spin models,
such networks can also directly implement field-theoretical Hamiltonians and parton construc-
tions (13-15). These developments are reviewed in Section 5.

Closely related constructions also play an important role in the context of quantum computing.
Although dephasing times of topological qubits may be long, they remain finite, and large-scale
quantum computations that run longer than the dephasing time require quantum error correc-
tion. Topological quantum error correction (16) relies on encoding quantum information in de-
generate ground states of topologically ordered phases similar to those reviewed in Section 5.
However, instead of implementing their Hamiltonian, active quantum error correction is based
on measurement-based feedback protocols that stabilize the quantum information within these
ground-state manifolds. In Section 6, we review how to combine topological qubits with topo-
logical quantum error correction on the basis of bosonic surface or color codes as well as closely
related Majorana fermion codes.

Even when quantum error correction turns out to be necessary, the use of topological qubits
remains advantageous over other qubit types as long as their topological protection results in
superior decoherence times. If this is the case, a smaller number of physical qubits is required to
realize a single logical qubit with a specified error resilience. The use of topological qubits may
then considerably reduce the required hardware overhead.

The study of Coulomb-blockaded Majorana systems owes much to seminal experimental work.
The sample quality of proximity-coupled semiconductor wires was much improved by realizing
that the superconductor can be grown epitaxially on the semiconductor quantum wire (17). Unlike
earlier experiments, epitaxial wires exhibit a hard induced superconducting gap, a precondition for
any application of Majorana systems as effective spin-1/2 degrees of freedom or topological qubits.
Importantly, the epitaxial Al layer typically has a small thickness so that the overall dimensions of
the system are sufficiently small for charging effects to be important (18). The current status of
experiment is briefly discussed in Section 2.

This is a focused review and there are many subjects that are outside its scope. Although our
review addresses interactions in Majorana systems, we explicitly focus on charging physics. We
are not concerned with the interaction physics of individual Majorana wires but rather with how
charging effects can be exploited for engineering topologically ordered states or a topological
quantum computer. There have been numerous studies of the effects of microscopic interactions
in individual wires, e.g., studying the phase diagram of interacting Kitaev wires (19) or the effect
of interactions on the phase diagram of proximity-coupled semiconductor quantum wires (20—
22). These works are outside the scope of the present review. This review also does not cover the
Majorana—Kondo effect (23), which is predicted to occur when a single Coulomb-blockaded box
with Majorana bound states is coupled to metallic leads. For recent reviews of other aspects of
Majorana zero modes, we refer the interested reader to References 24-30.

2. MAJORANA ZERO MODES AND COULOMB BLOCKADE
IN QUANTUM WIRES

2.1. Majorana Cooper-Pair Box

A Cooper-pair box is a floating superconducting sample with a fixed number of electrons # that is
controlled through a gate voltage V, applied to a gate capacitor Cj,. For a nontopological super-
conductor, the ground-state energy exhibits an even—odd effect as a function of 7. Ground states
with an unpaired electron have an energy that is larger by the pairing energy A, relative to a fully

www.annualreviews.org « Majorana Zero Modes in Cooper-Fairs Boxes

399



Figure 1
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Ground state energy as a function of gate voltage V; for nontopological superconductors with (#) A > Ec and (b) A < Ec, as well as for

(c) a topological superconductor with Majorana zero modes (that have a small matrix element, Ey;, between them). Here, N, = (N is
the number of Cooper pairs.
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paired state. Thus, the ground-state energy equals E = Ec(n — C,V,/e)* for fully paired states and
E = Ec(n — CyVy/e)* + A for states with an unpaired electron. Here, Ec = ¢*/2C denotes the
charging energy of the island.

As illustrated in Figure 1, the number of electrons in the ground state depends on the gate volt-
age. The electron number changes whenever two charge states become degenerate. For A > E,
the degeneracies are between states that differ by two electrons and electrons are added in pairs.
For A < Ec, the degeneracies are between states that differ by one electron and electrons are
added one by one. The Coulomb-blockade peaks, which are equidistant in gate voltage for
A > Eg¢, splitin two for A < Eg.

If the island is a topological superconductor, unpaired electrons can be accommodated by
midgap states associated with the Majorana zero modes. Retaining the residual overlap between
the Majoranas, these states are associated with an (exponentially small) single-particle energy En.
Thus, the charging Hamiltonian can be written as

Heharging = Ec (7 — CoVy/e)’ + Expitn. 1.

The electron number operator 72 = 2N, + 71y involves the Cooper-pair number operator N, and
the fermionic occupation 7y of the Majorana zero modes. For two Majoranas y and 2, fiy can be
related to the fermion parity operator as 2 = (1 — iy1y,)/2. As long as E¢ > Ey, variations in the
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gate voltage add electrons in steps of one. The Coulomb-blockade peaks again become equidistant
for isolated Majorana zero modes with Ey = 0 (albeit with half the distance in }/, compared to
the nontopological regime with A > E¢). Notice that for more than two Majoranas, the charging
energy only distinguishes states with different fermion parities as even occupations of the midgap
states can be compensated by the number of Cooper pairs.

Josephson coupling the island to a bulk nontopological superconductor through a Josephson
junction provides additional control on the charging energy by effectively interpolating between a
floating (E¢ > Ej) and a grounded (Ej > E¢) superconducting island (31, 32). The Josephson cou-
pling of strength Fy adds Hy = Fj cos ¢ to the charging Hamiltonian, where the superconducting
phase difference ¢ is canonically conjugate to the Cooper-pair number, [N, #] = 7. In particu-
lar, the Josephson coupling hybridizes states that differ by pairs of electrons and thereby lifts the
degeneracies in Figure 1 between charge states that differ by an even number of electrons.

2.2. Experiments

Early experiments (33-36) on Majorana zero modes in quantum wires largely focused on zero-bias
anomalies in the tunneling conductance. More recently, this type of experiment showed evidence
for the predicted (37, 38) conductance quantization (39, 40) and was extended to full-shell wires
(41, 42), planar Josephson junctions (43—45), and chains of magnetic adatoms on superconducting
substrates (46-50).

Coulomb-blockade effects provide alternative signatures of Majorana zero modes in semicon-
ductor quantum wires (18). These experiments were in part enabled by the recent experimental
development of semiconductor quantum wires with epitaxial superconductor (17) as well as re-
lated work on two-dimensional electron systems with epitaxial superconductor (51). Due to the
atomically clean interface, the superconductor (Al) induces a hard proximity gap in the quantum
wire (InAs) (52). The induced gap is comparable with the Al gap, even when the thickness of the
Al layer is much smaller than the superconducting coherence length. This is a result of strong
coupling between semiconductor and superconductor in conjunction with disorder in the super-
conductor, for instance, due to diffusive reflections from its exposed surface (53-56).

Proximity-coupled semiconductor quantum wires can be tuned into the topological super-
conducting phase by increasing the applied magnetic field (8, 9). Assuming that A > E¢ at
zero magnetic field, we then expect a doubling of the number of Coulomb-blockade peaks as
a Coulomb-blockaded wire is tuned across the topological phase transition. This doubling was
indeed observed in the experiment reported in Reference 18. The small deviations from perfectly
equidistant Coulomb-blockade peaks could be used to extract the residual Majorana hybridization
En. We note that the experiment presumably showed an additional intermediate regime in which
the magnetic field suppresses A below E¢ before the wire becomes topological. This regime
exhibits split but not yet equidistant Coulomb-blockade peaks owing to single-electron additions.
As analyzed in Reference 57, current through the Coulomb-blockaded wire segment is carried
by electron pair transfer, single-electron transfer, or electron teleportation (7), depending on the
magnetic-field regime.

Majorana teleportation refers to coherent single-electron transport in the Coulomb-blockade
regime, enabled by spatially separated Majorana zero modes (7). More generally, coherence is
an essential ingredient in protocols to use Majoranas for quantum computation applications
(see Sections 3, 4, and 6 below). A minimal test of coherence is provided by measurements of
the transmission phase through a Coulomb-blockaded Majorana wire by embedding it in one
arm of an Aharonov-Bohm interferometer. Detailed theoretical predictions were presented in
Reference 58. A recent experiment (59) exhibits coherent Aharonov—Bohm oscillations and a phase
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shift of 7 when the number of electrons of the island is increased by one. A detailed analysis of
the experiment suggests that for short wires, transport does not entirely proceed through the
Majorana zero modes. Coulomb-blockade physics has also been used for probing quasiparticle
poisoning processes in hybrid semiconductor-superconductor systems (60).

3. TETRONS AND HEXONS AS BASIC BUILDING BLOCKS
3.1. Tetrons

Even though a single quantum wire in a topological superconducting phase has two degenerate
ground states, its ground-state manifold does not provide a local spin or qubit degree of freedom.
This is because its two ground states differ in fermion parity. Due to fermion parity superselection,
it is impossible to prepare an isolated system in a coherent superposition of such states (61).

A local spin or qubit degree of freedom can only be realized using (at least) two quantum
wires with four Majoranas, y1, y2, ¥3, and y4 (see Figure 2; 10-12). The resulting ground-state
manifold is four dimensional, with two states having even and two states having odd fermion parity.
If we denote the even and the odd fermion parity ground states of the individual wires by |e) and
lo), respectively, the four ground states can be chosen as |ee), |eo), |oe), and |00), where the two
entries denote the fermion parities 7y 1y, and 7y3y4 of the wires. We can now encode the qubit—
or equivalently, the spin degree of freedom—in the subspace with overall even fermion parity and
use the computational basis

[0) = |ee) 2.
[1) = |oo). 3.

The qubit subspace is then defined by the fermion-parity constraint,

P = (iy1y2)(iysya) = 1. 4
This is known as a Majorana box qubit or tetron (10, 11).
a b c
YI ))4 bx b

y
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Figure 2

(@) Tetron with four Majorana zero modes (red) on two quantum wires (grzy) connected by a conventional
superconducting bridge (b/ue). Tetrons can be viewed as qubits or local spin-1/2 degrees of freedom.

(b) Hexon with six Majoranas (green, red, and blue circles) encoding two spin-1/2 degrees of freedom. (c) Setup
for measuring Z; ® Z; of two qubits. Conventional semiconductors (or#nge) induce tunnel couplings between
the Majoranas in Z; and Z;. The procedure generalizes to arbitrary Pauli products.
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It is useful to express the Pauli spin operators in the qubit subspace in terms of the Majorana
operators. We choose the computational basis states as eigenstates of the Pauli-Z operator,

Z =iyy: = iy3 Vs 5.

Here, the second equality follows from the parity constraint in Equation 4. The Pauli-X operator
can then be chosen as

X =ipy; =inys, 6.
and the Pauli-Y operator,

Y =iy1ys = —ivaya, 7.

follows from the identity ¥ = iXZ. The anticommutation relations {y 4, y g} = 2844 for the Majo-
rana operators imply that these Pauli operators satisfy the Pauli algebra. In particular, the operators
square to unity, and different Pauli operators anticommute.

Processes that add or remove an electron (or more generally an odd number of electrons) from
a tetron change its fermion parity and cause leakage errors of the qubit. Charging physics can
be used to suppress these quasiparticle poisoning processes (10, 11). If the two quantum wires
are proximity-coupled to the same floating superconducting island with nonzero charging energy,
the ground state has a fixed overall number of electrons and, hence, overall fermion parity due
to the island’s charging energy. At temperatures well below the charging energy, processes that
change the electron number require thermal activation and are exponentially suppressed. In de-
vices with epitaxial superconductors, this can be achieved by a sufficiently strong link between the
two Majorana wires made from a nontopological superconductor (see Figure 2).

The topological nature of a tetron qubit becomes most pronounced for long wires for which the
distance L between the Majoranas is large compared to the coherence length £ of the topological
superconductor, and the residual Majorana splitting ~e~/¢ becomes exponentially small. At the
same time, poisoning processes are suppressed as e"?¢/T" due to the charging energy Ec (T denotes
the temperature). Because the charging energy scales (approximately inversely proportional) with
the length of the wires, this suppression is more pronounced in short wires. This competition
implies that there is an optimal length of the Majorana wires making up the tetron, which is
determined by Ec/T ~ L/& (11).

3.2. Hexons

Tetrons encode a single qubit or spin degree of freedom within a subspace defined by four Majo-
ranas. Itis clear from the ground-state degeneracy of a system with N Majoranas that, in principle,
fewer Majoranas suffice to encode a qubit.

A hexon (10, 11) is a device that encodes two qubits using six Majoranas on three Majorana
wires, thus effectively using three Majoranas per qubit. The basic design of a hexon is shown in
Figure 2. Based on the twofold degenerate ground states of each of the three wires, the ground-
state manifold of the hexon is eightfold degenerate in the absence of charging effects. The mani-
fold separates into two sets of four states that differ in their fermion parity. If the wires are again
linked by nontopological superconductors, the charging energy of the overall structure splits the
energy of the even and odd fermion parity subspaces, and we encode the two qubits or spins, say,
in the even fermion parity subspace.

Instead of writing down the explicit computational basis states, it is more concise to express the
Pauli operators for the two qubits (labeled # and #) in terms of the Majorana operators. We can
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encode the first qubit using the lower three Majoranas 4., 4,, and 4, and define the Pauli operators
through Z, = ia,a, and X, = ia,a., which also implies that ¥, = ia.a.. The second qubit can then be
encoded in the same manner using the upper three Majoranas b,, b,, and b.. The corresponding
Pauli operators are illustrated in Figure 2. As for the tetron, these operators satisfy the Pauli
algebra for each qubit. Furthermore, Pauli operators associated with different qubits commute.

Within hexons, the two-qubit parity operators are simple Majorana hybridizations. Consider
the operator ia,b, involving the Majoranas of the leftmost wire. As different Majorana operators
anticommute, this operator anticommutes with the Pauli-Z and Pauli-Y operators of both encoded
qubits, but commutes with the Pauli-X operators. We can thus identify

X, ® X, = iach,. 8.
Similar considerations imply that
2, ® 7y = iazbh, 9.
involving the hybridization of the two Majoranas of the rightmost wire, and
Y,®Y, =iab, 10.

involving the hybridization of the two Majoranas of the central wire. Formally, these relations
reflect the fermion parity constraint

P =iacayabbb, =1 11.

of the hexon.

3.3. Qubit Initialization and Readout

Charging physics can be exploited to read out tetron and hexon qubits (10, 11). Readout is partic-
ularly flexible for hexon-based qubits, and we focus on this case below.

To read out the Pauli-Z operator of the lower qubit of the hexon in Figure 2, one may tun-
nel couple a quantum dot to the ends of the wires hosting Majoranas 4, and 4,. Both the tunnel
junctions and the quantum dot can, for instance, be defined by plunger gates in additional semicon-
ductor wires without epitaxial superconductor. Assuming that the quantum dot has one relevant
energy level in the vicinity of the Fermi energy, the energy of this level will be shifted by the cou-
pling to the hexon and the resulting shift depends in general on Z, = ia.a,. Thus, the energy shift
can be used to measure Z,.

To understand this, we consider the energy shift Ac of the dot level in second-order pertur-
bation theory. Assuming that the quantum dot level is occupied, the basic process changing its
energy involves an electron tunneling into the hexon and back. The virtual intermediate state is
an excited charge state so that it has a nonzero energy denominator AE. Within the low-energy
subspace, the tunnel coupling takes the form

Hr =d'(ta, + tyay) +h.c., 12.

where d' adds an electron to the quantum dot level. We then find for the energy shift
Ae—i{h‘ P& + |t,)2d® + t*t,a.a, + ttaya,)
T AR Ul e yl @y T L by@ally 7 Ly Loyl
1
= S (Il + 11 + 2ImGn)Z,), 13.
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which depends explicitly on the Pauli-Z operator Z, of the lower hexon qubit. Although the two
tunnel contacts to the hexon can be closely spaced in real space, this is not a local measurement
as the two contacts are effectively at two far ends of the system.

Several ways have been proposed to measure the energy shift of the quantum dot (11). An
alternative readout scheme is based on conductance measurements (10). In this interference mea-
surement, the amplitude for a current path through the hexon passing both 4, and #, depends on
Z,. This can be read out by measuring the interference contribution to the conductance with an
additional reference arm.

An interesting feature of these measurement schemes is that they read out the qubit strictly
along the z axis if overlaps between the Majoranas can be neglected within the hexon. Deviations
from the 2z axis would necessarily involve Majoranas other than #, and 4,, whose contributions
are exponentially suppressed for the same reason that makes the ground-state degeneracy expo-
nentally precise. As long as these measurements are projective, they can also be used for qubit
initialization. Furthermore, such projective measurements are also a prerequisite for the imple-
mentation of several quantum gate operations described further below.

Another very useful aspect of these proposed measurement schemes is that they can be imple-
mented for all three Pauli bases with equal ease and equal precision. Measuring the Pauli operators
X, or ¥, instead of Z, simply requires contacts to different pairs of Majorana operators. For hex-
ons, all these Majoranas are in close proximity in real space. Similar schemes have been proposed
for tetrons (10, 11), but they require additional topological quantum wires that act as coherent
links.

3.4. Braiding Protocols in Coulomb-Blockaded Majorana Systems

Their nonabelian statistics is a coveted property of Majorana zero modes. Braiding Majoranas y;
and y; implements the unitary transformation B = exp {my,y;/4} in the ground-state manifold
(3-5, 24, 28, 62, 63). Charging physics can be helpful in designing corresponding experimental
tests. The most immediate test of braiding in semiconductor quantum wires relies on explicitly
moving Majorana zero modes in a T-junction structure (62). Alternatively, in a closely related
procedure, braiding can be implemented by judicious hybridization protocols of Majorana zero
modes (28, 64). Coulomb charging provides a possible means of implementing this coupling. A
Coulomb-assisted braiding scheme was discussed in Reference 31. This scheme exploits that the
charging effects can be tuned with exponential accuracy by adjusting magnetic fluxes in Josephson
junctions. A purely electric scheme for Coulomb-assisted braiding in a T-junction was proposed
in Reference 32.

A closely related but potentially simpler experiment exploits the possibility of measuring a
hexon in the Pauli X, ¥, and Z bases (65). After initializing the qubit by a measurement in the
Z = ia,a, basis, measuring in the ¥ = iz, basis will give both measurement outcomes with equal
probability. Because B},ZBy; =7, this is essentially equivalent to an experiment in which one
measures a second time in the Z basis after braiding 4, and 4., which also yields both measurement
outcomes with equal probability.

4. MAJORANA-BASED TOPOLOGICAL QUANTUM COMPUTATION
4.1. Universal Quantum Computation

A quantum computer performs arbitrary unitary operations on a set of N qubits that are all ini-
tialized in the |0) state and read out in the computational basis at the end of the computation. The
unitary operations are implemented by composing them from simpler operations that act only on
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single qubits (single-qubit gates) or pairs of qubits (two-qubit gates). A popular (but certainly not
unique) set of gates that allows for the implementation of arbitrary unitary evolutions on all N
qubits consists of three single-qubit gates and one two-qubit gate:

m Phase gate S: The S = e7%/* gate effects a 7 /2 rotation of a single qubit about the z axis.

m Hadamard H: The Hadamard transformation, H = (Z + X)/~/2, exchanges the Pauli Z and
X axes of a qubit.

m T gate: The T = ¢="%/8 gate effects a 7 /4 rotation about the z axis.

m Controlled-not gate (CNOT): The CNOT bit-flips a target qubit if a control qubit is in
the state |1), and leaves the target qubit unchanged if the control qubit is in the |0) state.

Although all three single-qubit operations involve commensurate angles, they enable arbitrary
rotations on the Bloch sphere. The reason is that a sequence of two 7 /4 rotations about the z
and x axes, effected by T and HTH, respectively, corresponds to a single rotation about a new
axis by an irrational angle. The Clifford gates {S, H, CNOT} map Pauli product operators on
the set of qubits to other Pauli product operators. It is for this reason that the phase gate S = T
was included above, even though it is in principle redundant. According to the Gottesman—Knill
theorem (66), quantum circuits involving only Clifford gates in addition to preparation and
readout in the computational basis can be efficiently simulated on a classical computer.

Majorana braiding can implement only two gates out of this universal gate set, namely, the
phase and Hadamard gates. Performing a phase gate on a tetron qubit would require one to braid
Majoranas y; and y,, i.e., S = By;. An implementation of the Hadamard gate requires a sequence
of three braids, H = iBy,B;3B,. Several schemes have been proposed to implement braiding of
Majoranas in quantum wire architectures, including explicitly moving Majoranas in T-junctions
(62), time-dependent protocols of Majorana couplings (64), or measurement-based schemes (11).
The latter two schemes have been explicitly developed in situations in which the quantum wires are
Coulomb blockaded (11, 32). Neither the 7 nor the CNOT gate can be implemented by braiding.
CNOT gates can be implemented using two-qubit parity measurements and an ancilla qubit in
addition to single-qubit Clifford gates (67). Figure 34 shows the corresponding equivalent circuit
involving an ancilla qubit initialized in a |+) = (|0) + [1))/ V2 state. The circuit relies on two-
qubit parity measurements of control and ancilla qubits (Z ® Z) as well as ancilla and target qubits
(X ® X). Subsequently, the ancilla is disentangled by reading it out in the computational basis and
corrective single-qubit operations on control and target depending on the measurement outcomes.
We discuss in Section 4.2 below how to perform the required two-qubit parity measurements
within a Majorana platform.

a b c
m [ ) [ ]
lo 4 z 7" I
[v) Tly) a N\
® n Sn | I [ ]
+— zZ H x - z |s P ® ° °
[ ) L
® |m) Z |n I
|f> X - Xm+s - () [ ]
Figure 3

Equivalent circuits for (#) controlled-not gate involving two-qubit parity measurements and
(b) implementations of the 7T-gate with magic states |7). (c) Readout of multiqubit parity.
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Several schemes for realizing T gates have been proposed. One option is to rely on magic states

(68),
) = 300) + &1D). 14,

If magic states exist as a resource, we can implement a 7" gate on qubits by implementing the
equivalent circuit shown in Figure 3b. The circuit relies on a CNOT gate applied between
the qubit and a magic-state ancilla, followed by disentangling the ancilla by reading it out in the
computational basis and a corrective operation depending on the measurement outcome.

Because |m) = T'|+), it may seem that preparing magic states already requires one to perform
T gates. Indeed, in a first step, one needs to be able to prepare approximate magic states with a
certain minimal accuracy, e.g., by implementing 7" gates in a topologically nonprotected manner.
In the simplest case, this could be achieved by inducing a finite energy splitting between the com-
putational states |0) and |1) for an appropriate time interval. These approximate magic states can
then be used to produce better magic states by magic-state distillation, a procedure that uses only
Clifford gates (68). In practice, many approximate magic states are distilled into a smaller num-
ber of better magic states. Multiple rounds of magic-state distillation can be performed until the
resulting magic states have the quality required for the actual quantum computation.

An alternative approach to achieve a rather accurate (although not topologically protected)
magic gate is based on geometric rather than dynamical phases and was proposed in References 69
and 70. Implementing a phase gate S by adiabatically braiding two Majorana zero modes can be
visualized as a path on the Bloch sphere that covers one octant of the entire sphere. This path is
associated with the accumulation of a 7 /4 Berry phase. The topological protection ensures that
the path is followed with exponential accuracy, resulting in a precise S operation. To induce the
T gate, one should enclose half of the octant. Generalizing echo and dynamical decoupling meth-
ods introduced to improve magnetic resonance measurements, Reference 69 suggests a protocol
in which a path covers half an octant by moving back and forth on the Bloch sphere in a judi-
cious manner. As in echo protocols, errors that are accumulated during the forward path tend
to cancel on the return. The method was further elaborated and improved in Reference 70 us-
ing a combination of projective measurements and nonadiabatic evolution that effectively cancels
smooth control errors when implementing phase gates in Majorana-based systems. This scheme
can be used either to implement 7" gates directly or to generate high-quality input states for
magic-state distillation. It is also useful for generating rotations by arbitrary angles about the
2 axis.

4.2. Two-Qubit Parity Measurements

CNOT gates can be performed with Majorana-based topological qubits by exploiting two-qubit
parity measurements of X; ® X or Z; ® Z;. (Here, the subscripts of the operators enumerate
the qubits involved in the measurement.) Furthermore, multiqubit parity measurements are an
important ingredient in topological quantum error correction that will be discussed in Section 6.
These kinds of operators can in principle be measured by a direct extension of the method used
for reading out individual tetron or hexon qubits (see Section 3.3; 10, 11, 65, 71, 72).

Consider the two-qubit parity operator Z; ® Z; involving qubits encoded in two neighbor-
ing hexons as shown in Figure 2¢. In Majorana representation, this operator is the product of
four Majorana operators, two from each hexon. Similar to the readout scheme for individual
qubits, gate-controlled semiconductor links introduce hybridizations between Majoranas of the
two qubits. This is done in such a way that the shortest nontrivial loop requires electrons to
pass through all four Majoranas exactly once. All shorter paths simply retrace themselves, with

www.annualreviews.org « Majorana Zero Modes in Cooper-Fairs Boxes

407



408

Majorana operators appearing twice and squaring to unity. When including quantum dots into
the semiconductor links, the self-retracing paths merely shift the energy of the quantum dot lev-
els by a state-independent constant, but the nontrivial loops cause a shift that depends on the
two-qubit parity.

This scheme can be generalized in several ways. First, it can be extended to measurements of
two-qubit parities with arbitrary Pauli operators. To this end, the semiconductor links are simply
implemented between the Majoranas appearing in the Pauli operators.

Second, it can be extended to multiqubit parities (71, 72). As an example, consider a set of four
tetrons with Majorana hybridizations as shown in Figure 3¢. The shortest nontrivial loop involves
eight Majoranas, two from each tetron, and thus corresponds to a four-qubit parity such as Z; ®
Z, ® Z; ® Z4.

Just as for the qubit readout, these measurements are protected as long as Majorana overlaps
within each qubit are exponentially suppressed.

4.3. Tracking Clifford Gates

The operations of a Majorana-based quantum computer can be simplified by exploiting the
Gottesman—Knill theorem (66). Instead of explicitly performing Clifford gates, these operations
are tracked on a classical computer and subsequent operations are appropriately adapted (11, 65,
73). Tetron- and hexon-based Majorana hardware is well suited for this purpose because it does
not prefer one of the three Pauli bases.

The single-qubit Clifford gates S and H rotate the qubit’s Pauli basis. The Hadamard gate H
maps Z - X, X — Z,and ¥ — —Y. Similarly, the S gate effects X - ¥,V — —X,and Z — Z
Instead of physically performing these gates by braiding operations, we can adapt later operations
to the new Pauli basis, assigning new pairs of Majoranas to the X, ¥, and Z operators.

As a simple example, consider a minimal gate circuit involving a single qubit, on which we per-
form a Hadamard gate H, followed by readout in the computational (Z) basis. Instead of actively
implementing the Hadamard gate by braiding, we can equivalently remember that the Hadamard
gate exchanges the Pauli X and Z operators and read out the qubit in the X basis without perform-
ing the Hadamard transformation. This illustrates that for the purpose of quantum computing
applications, the nonabelian statistics of Majoranas is essentially equivalent to the ability to read
out Majorana qubits in all three Pauli bases with equal ease and precision.

In addition to single-qubit Clifford gates, it is also possible to track CNOT gates (65). A single
CNOT gate transforms 1 ® Z > Z® Z,Z®1 > Z® 1,18 X > 1® X,andX® 1 > X® X
Consequently, tracking a Clifford circuit including CNOTS transforms a single-qubit Pauli oper-
ator into a nonlocal Pauli product operator suchas X ® Y@ X ® Z® 1 ® ... ® X spanning many
qubits. Such operators must then be measured not only during readout but also when implement-
ing T gates using magic states. Instead of entangling qubits using CNOT gates, entanglement is
generated through these nonlocal measurements.

Such highly nonlocal operators can be measured using only local two-qubit parity measure-
ments involving neighboring qubits (65). This is based on initializing a GHZ (Greenberger-
Horne—Zeilinger) state |GHZ) = (|0)®” + [1)®")/ V2 on a set of 7 ancilla qubits. (This requires
initialization of all ancillas in the X basis and subsequent measurements of the two-qubit parities
Z ® Z between neighboring qubits.) Although the product ®/_;X; = 1 for a GHZ state, mea-
surements of any individual X; are completely undetermined. Nonlocal Pauli products on the
data qubits can therefore be measured by pairing each data qubit with a neighboring ancilla qubit
and measuring P ® Xj on these pairs, where P is the Pauli operator involved in the nonlocal Pauli
product for this data qubit. Though no information is gained about individual data qubits, the
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Pauli product can be extracted from the product of all these measurements. By performing the
measurements in parallel, the time required for these procedures is independent of the number of
qubits involved in the Pauli product.

5. TOPOLOGICALLY ORDERED SPIN MODELS AND THE
SUPERCONDUCTOR-INSULATOR TRANSITION

5.1. Networks of Cooper-Pair Boxes

In Section 3, we introduced tetrons and hexons as realizations of qubits. Protocols for quantum
computation largely rely on manipulations by measurement that actively generate entangled quan-
tum states. Alternatively, it is interesting to consider networks of Majorana Cooper-pair boxes that
are coupled by hybridizing pairs of Majoranas both within and between boxes.

When the hybridization amplitude ¢ between the boxes is much larger than the charging energy
Ec, the system will be in a (possibly topological) superconducting phase, but as E¢/t increases,
there will be a transition to an insulator. In the absence of topological superconductivity, this
superconductor-insulator transition has been extensively studied for Josephson junction arrays
built from Cooper-pair boxes (see Reference 74 for a review).

For Cooper-pair boxes involving topological superconductors, the Majorana zero modes in-
troduce internal degrees of freedom within each Cooper-pair box. This is because tetrons and
hexons can alternatively be viewed as spin-1/2 degrees of freedom. Remarkably, this allows for
nontrivial insulating phases. Unlike the topological superconducting phase, the insulating phases
can be topologically ordered with ground-state degeneracy on a torus and fractionalized excita-
tions having nontrivial commutation relations. Here we review how arrays of Cooper-pair boxes
in one, two, or three dimensions can be used to engineer various topologically ordered phases. In-
terestingly, this is not limited to implementing spin models on the basis of Majorana Cooper-pair
boxes. It is also possible (75) to directly implement interesting field theories of interacting bosonic
and fermionic fields.

Spin models realized as arrays of tetrons are extensively explored in References 76 and 77,
which discuss various representative cases. Here, we emphasize networks of hexons. These are
not only more economical as six Majoranas suffice for two spins (instead of eight in the case of
tetrons) but also turn out to be more flexible for coupling and tuning the effective spin mod-
els. We only consider models that can be engineered through local tunneling and local interac-
tions and which do not require long-range capacitive interactions or tunneling between Majo-
ranas that are not in close spatial proximity. (Models outside this scope were recently reviewed in
Reference 19.)

We restrict our analysis to the regime deep in the insulating phase, #/E¢ < 1. In this limit, there
is only virtual tunneling between Cooper-pair boxes, and the fluctuations of the phase difference
between adjacent superconductors, which drive the superconductor—insulator transition, do not
play a significant role.

Although certain insulating phases are equivalent to spin models, there is no general recipe
for engineering arbitrary spin models. The physical constraints of local interactions and local
tunneling limit the kinds of spin interactions that can be realized.

Several spin models can be solved by introducing Majorana representations for the spins, with
Kitaev’s honeycomb model (12) being the most prominent example. The constructions in this
section can be viewed as the reverse. We employ the mapping between interacting Majorana zero
mode and spin models in order to understand the physics of the resulting insulating phases. Specif-
ically, Majorana Cooper-pair boxes turn out to be particularly convenient for realizing spin models
with anisotropic exchange interactions.

www.annualreviews.org « Majorana Zero Modes in Cooper-Fairs Boxes

409



a b g])',a Sj+2,h

ax bX

a, [ ] L ] b), L
hX

o|® °|b. ¢

Figure 4

Coupled Majorana Cooper-pair boxes. (#) Basic hexon building block. Its Majorana zero modes represent two spin-1/2 degrees of
freedom. (b) Arrays of coupled hexons effectively model spin chains with nontrivial insulating phases. Various insulating phases can be
realized by tuning the hybridizations # and 4 by means of local gate potentials. In addition to spin models, such constructions can also be
used to directly implement quantum field theories. Figure adapted from Reference 80.
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5.2. Spin Interactions from Hexons

When viewing tetrons and hexons as spin-1/2 degrees of freedom, their spin operator S is related
to the Pauli operators defined in Sections 3.1 and 3.2 in the usual way: §* = X/2, 87 = ¥/2, and
S# = Z/2.The Zeeman field and the interactions between the spins can be tuned by gate potentials
controlling the tunneling amplitude between the Majoranas within each Cooper-pair box and
between the boxes.

Translating the results of Section 3.2 to spin language, the hybridization #, of Majoranas
ay and b, of a single wire (see Figure 4) effectively introduces exchange interactions J, 5,5,
between the two spins encoded by the hexon . This intrahexon exchange coupling J, is lin-
ear in the hybridization #, and allows for tuning the sign of J,. Indeed, the overlap #, between
Majorana zero modes generically changes sign as a function of gate voltage or magnetic field (see
Section 2.2).

A different set of terms is generated by coupling Majorana zero modes of the same type (# with
a and b with b), e.g., by changing the distance between wires. These terms generate the effective
Zeeman coupling,

i) tow (@atter + babo) =Y By (S +S7), 15.

aa’ a

with an effective Zeeman field B, o €44, 14, .

Exchange couplings S;;,Sy, , between spins in adjacent boxes # and #’ can be generated by
connecting different hexons. Tunneling terms of the form ) g — .y s« sbanfan +1 change the
fermion parity of the hexons and therefore do not commute with the constraint (11). Under the
assumption that the charging energy Ec is the largest energy scale, higher-order processes that
preserve the parity generate interaction terms that commute with the constraint. These terms are
obtained from a Schrieffer—Wolff transformation (78) and take the form of exchange couplings
between spins in neighboring hexons,

DT SHSE 16.

a=x,),2 J

. Myrzgt!, . . . .
Here, the exchange coupling J/, %:‘"’ is second order in the tunneling amplitudes.
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5.3. One-Dimensional Superconductors and Spin Chains

WEe first consider one spatial dimension. Linear chains of coupled hexons can then implement a
variety of interesting spin models.

5.3.1. SU(2)-invariant spin chains. A chain of hexons as depicted in Figure 4 is equivalent to
an array of spins, which we label by S, ,,. Here, » enumerates the hexons and y = 4, b differentiates
between the two spins of each hexon.

When the distance between the wires is large, the Majoranas constituting a particular spin
degree of freedom are uncoupled and the effective Zeeman field vanishes. At low energies, neigh-
boring spins of the hexon chain are exchange coupled, both within hexons with strength J, and
between hexons with strength J/,. The model becomes SU(2) invariant when tuning the exchange
couplings such that J, =Jand J, = J".

For antiferromagnetic couplings J, J' > 0, the model has two distinct dimerized phases. When
J > J', we obtain a fully gapped dimerized phase in which the pair of spins in each hexon forms a
singlet state. In the opposite regime J' > J, the spin chain is again in a gapped dimerized phase,
now with adjacent spins from neighboring hexons forming singlet states (79). These two phases
are topologically distinct, with the second state supporting protected boundary spins at the two
ends of a finite chain. The critical point separating these phases occurs at J = J', where the model
becomes the spin-1/2 Heisenberg model. The latter is known to be dual to a gapless Luttinger
liquid model of interacting fermions.

Given that the charge degrees of freedom of the hexon chain are gapped, electronic transport
measurements do not provide experimental signatures of the intervening phase transition. An
alternative route relies on thermal conductance measurements. Although such measurements are
possible, they are typically difficult in practice. Reference 80 discusses how the critical state is
reflected in correlations between the effective spins that can be extracted experimentally from
charge polarization measurements.

5.3.2. Transverse field Ising model. The transverse field Ising model is constructed by imple-
menting anisotropic exchange couplings with J, = J, = Jand J, = J, = J, = J| = 0, both within
and between the hexons of the chain. Relative to the SU(2)-invariant case, this is done by only
turning on the couplings between 4” and #” within each hexon and only turning them off between
the hexons.! To generate the transverse field, the 4, couplings between the Majoranas represent-
ing a single spin are turned on. Varying J or 4., the system can be tuned through an Ising phase
transition with central charge ¢ = 1/2. Its critical exponents can be extracted from charge polar-
ization measurements. A phase transition in the same universality class can be realized by tuning
the couplings between the Majoranas such that there is J, exchange coupling between the spins
within a hexon and J| coupling between spins of neighboring hexons.

5.3.3. Supersymmetric tricritical Ising theory. A one-dimensional tricritical Ising model is
interesting from a theoretical point of view as the properties of its tricritical point are described
by a minimal supersymmetric conformal field theory with central charge ¢ = 7/10. As such, it may
open a route toward universal topological quantum computation. Indeed, in two spatial dimen-
sions a model that is gapped in the bulk but supports a chiral boundary mode with central charge

"Notice that J', = J)’ =0, and J’, # 0 can be implemented, but in general, the three couplings are not inde-
pendent owing to the cyclic relation J, o it /Ec, J < tt/Ec, and J, tyty/Ec so that not all spin models
are easily realized.
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¢ = 7/10 carries Fibonacci particles. Their braiding statistics allow for the implementation of a
computationally complete set of quantum gate operations and thus universal topological quantum
computation (24).

5.3.3.1. Blume-Capel model. This tricritical Ising transition is realized in the spin-1 Blume—
Capel model,

Hpc =Y aS] +8(S])* — JSISI*. 17.
j

Notice that here, the Sﬁ () are spin-1 operators along the z (x) axis at site j. It is known from
numerical studies that in this model, the tricritical point occurs for « ~ § (81). Reference 75
shows how to tune the couplings between the Majorana zero modes such that effective o and §
couplings are obtained and can be tuned to the tricritical point. In this construction, the effective
spin-1 degrees of freedom are obtained by tuning #, = #, = . such that a strong ferromagnetic
coupling is obtained between the two spin-1/2s within each hexon.

5.3.3.2. Supersymmetric field theory. The tricritical Ising transition is also analytically known
to be described by a supersymmetric field theory with one bosonic and one real fermionic field
(81). This field theory can be implemented directly in a system of three coupled Majorana chains,
circumventing a mapping to spins. Two chains are effectively used to realize a bosonic field (by
bosonization of the complex fermionic field), and the remaining chain realizes the real fermion.
Reference 75 shows how to tune the ¢ and 4 of Figure 4 as well as the charging energy Ec to re-
alize the couplings of the field theory. This implementation relies on treating the (large) charging
energy using a Villain transformation and the resulting sine-Gordon-like terms in a mean-field
approximation.

5.4. Kitaev Honeycomb Model and Yao-Kivelson Model in Two Dimensions

These examples illustrate that hexons are fruitful building blocks for realizing one-dimensional
spin chains. Reference 80 extends these ideas to two dimensions by constructing the Yao—Kivelson
model (82). This model realizes a topologically ordered state that is dual to the nonabelian Kitaev
spin-liquid state.

The underlying arrangement of the hexon network is shown in Figure 5a4,b. Notice that the
labels «, y, and z of the Majorana zero modes are alternating between hexons. In each hexon,
the Majoranas at the ends of the colored wire are hybridized, which induces exchange couplings
$2S¢. In addition, loop tunneling terms straddling neighboring hexons generate S%S?-type terms,
with o determined by geometry as illustrated in Figure 54. The inset of Figure 54 summarizes
the resulting dominant spin interactions. It is worthwhile to emphasize that it is the use of the
hexon building blocks that allows one to implement all interactions by local couplings between
the Majoranas only.

Connecting many such building blocks in a decorated honeycomb lattice geometry implements
the Yao-Kivelson Hamiltonian. This model is known to exhibit a nonabelian spin-liquid state
equivalent to the B-phase of the Kitaev honeycomb model (12). Unlike in the Kitaev case, the Yao—
Kivelson model breaks time reversal symmetry spontaneously. The abelian A-phase of the Kitaev
honeycomb model (represented by the toric code) can also be realized by making one type of the
intrahexon exchange couplings much larger than the other two. More direct implementations of
the toric code based on tetrons were presented in References 72 and 83, but these are restricted
to the A-phase only.
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Figure 5

Hexon construction for the Yao—Kivelson model. (#) Coupling of the basic hexon building blocks. (#) Two-dimensional spin network
resulting from the coupled hexon array. Colors and labels of the bonds indicate the direction of the exchange coupling. Figure adapted

from Reference 80.

5.5. String-Net Models and Fracton Codes

Majorana Cooper-pair boxes have also been proposed as building blocks to engineer more
involved topological phases. These efforts are driven by the quest to engineer phases with
computationally more powerful anyons and the lack of realistic systems that are described by some
of these intriguing Hamiltonians. Reference 84 describes a Majorana-based implementation of the
double semion model as the simplest string net model beyond the toric code.

Majorana Cooper-pair boxes can in principle also be used to engineer a variety of fracton phases
in three-dimensional spin models (85). Although fracton models usually involve complicated spin-
cluster interactions, these can be obtained from potentially more physical Majorana models in the
limit of strong local interactions (85, 86).

6. TOPOLOGICAL QUANTUM ERROR CORRECTION
IN MAJORANA-BASED ARCHITECTURES

6.1. Surface and Color Codes

Section 4 sketched a Majorana-based scheme for universal quantum computation. Within this
scheme, the length of quantum computations will be limited to the lifetime of the individual phys-
ical qubits. Although Majorana-based topological qubits may have a long lifetime (1, 87-90), this
may not suffice for some quantum computations. Majorana-based topological hardware would
then need to be combined with quantum error correction (16). The potential advantage of topo-
logical qubits over nontopological qubits would be their lower error rate. This may substantially
reduce the number of physical qubits required for the logical qubits underlying the quantum error
correction.

An important topological error correcting code with a high error threshold is the surface code
(91-93). The quantum information is stored in a square array of physical qubits, with the logical
subspace defined by fixing a set of stabilizer (generator) operators to unity. There is one stabilizer
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operator per plaquette of the lattice, alternating between X; ® X; ® X3 ® X3 and Z; ® Z; ®
Z3; ® Z4 in a checkerboard fashion. Each stabilizer involves the four qubits adjacent to the
plaquette, has eigenvalues equal to &1, and commutes with all other stabilizers.

When defined on a torus (toric code; 91, 94), the resulting state is fourfold degenerate, re-
flecting its Z, topological order. Logical qubit operators distinguish between the states in this
manifold and commute with all stabilizers. In keeping with the fourfold degeneracy, there are two
sets of logical Pauli operators. These take the form of string operators involving products of Pauli
operators around the two nontrivial loops of the torus. In a planar arrangement (surface code), log-
ical subspaces can be defined by “punching holes” in the surface code (95), i.e., by not measuring
certain stabilizers, or by appropriate boundary stabilizers of finite surface code patches (92).

Quantum information can be stored fault-tolerantly in these logical subspaces. Errors are de-
tected by stroboscopic measurements of all stabilizers. For a sufficiently small error rate, errors
can be actively corrected (or simply tracked, appropriately adapting subsequent measurements)
without compromising the encoded quantum information (91, 93).

For many physical implementations of qubits, the stabilizer operators involving four spin op-
erators are difficult to measure directly, and one must resort to a quantum circuit involving an
additional ancilla qubit for every plaquette (95). This circuit involves four CNOT gates with the
plaquette qubits as controls and the ancilla as the target qubit, and a final readout measurement
of the ancilla.

A tetron-based Majorana hardware has the advantage that the stabilizer operators can be mea-
sured directly (65, 71, 72, 83). As reviewed in Section 4.2, this is achieved by employing closed
tunneling paths connecting the four qubits of a plaquette. Each Pauli operator is a product of two
Majoranas, and the plaquette operators involve the eight Majoranas adjacent to the plaquette.

It is in general nontrivial to perform quantum gates on logical qubits (93, 95). In particular,
there is frequently no relation between performing a quantum gate on the physical qubits and
performing the same quantum gate on the level of the logical qubit. Exceptions are referred to as
transversal gates. These gates can be performed at the level of the logical qubit by performing the
gate in parallel on all its physical qubits.

In the context of Majorana quantum computation, planar color codes have particularly inter-
esting transversal gates (96). Their transversal gates are just the Clifford gates (97, 98), including
the single-qubit Clifford gates that can be implemented by Majorana braiding. Logical qubits
based on planar color codes would therefore be compatible with implementing single-qubit
Clifford gates by Majorana braiding and therefore benefit from the corresponding topological
protection. A corresponding Majorana architecture was proposed in Reference 96.

At the same time, color codes require stabilizer measurements involving six-qubit operators, as
opposed to the four-qubit stabilizers of surface codes. Below, we review how quantum gates can
be performed for surface code patches in a closely analogous manner to the scheme for physical
tetron and hexon qubits in Section 4 above. In particular, this scheme is compatible with tracking

all Clifford gates (65, 99).

6.2. Majorana Surface Codes

Surface codes can be viewed as lattice models with qubits placed at the vertices of a square lattice
and stabilizer operators associated with every lattice plaquette. Then, the logical subspace is the
ground-state manifold of the Hamiltonian

H== " XuXpXpXp = Y ZpZpZyZp, 18.
light dark

Oreg « von Oppen



which is a sum over the mutually commuting stabilizer operators. It is important to understand,
however, that active error correction relies on performing stroboscopic stabilizer measurements
on otherwise uncoupled qubits instead of implementing stabilizers as Hamiltonian terms!

When implementing the qubits as tetrons, the plaquette operators can be written as products
over all Majoranas around the plaquette, independent of whether the operator is associated with a
light or a dark plaquette (72, 83). Furthermore, the implementation of the qubit by a tetron relies
itself on a parity constraint that involves the product over all of its four Majoranas. This implies
that we can alternatively interpret the surface code as a Majorana fermion code (100) in which the
commuting stabilizers involve all Majorana operators around the lattice plaquettes. To do so, we
split each vertex of the surface code lattice into four vertices, which host the Majoranas associated
with the tetron. The resulting tiling is illustrated in Figure 6.

Such Majorana fermion codes can be defined for tilings for which adjacent plaquettes share
an even number of vertices (100). In view of the anticommutation relations of Majoranas, this
ensures that the plaquette operators commute with one another. The surface code on a square
lattice corresponds to a 4.8.8 tiling, reflecting the number of sites of the plaquettes meeting at any
vertex.

There are two additional uniform tilings that support a Majorana fermion code (see Figure 6).
One such tiling is the honeycomb lattice (71). The corresponding 6.6.6 Majorana surface code
places Majoranas at the vertices of the honeycomb lattice. The stabilizer operators now involve
only six Majoranas, which is less than required for implementing the 4.8.8 code. This may be
advantageous if stabilizer measurements turn out to be challenging. Similar to the 4.8.8 code, a
physical implementation would rely on Coulomb-blockaded islands hosting six Majoranas each
for, say, the green plaquettes, and implementing the remaining stabilizers as measurements per-
formed by defining appropriate loops.

The third tiling derives from the toric code with qubits placed on the vertices of a Kagome
lattice (or, equivalently, the bonds of a honeycomb lattice) and replacing all qubits by tetrons.
This results in a 4.6.12 Majorana surface code (65). Additional Majorana fermion codes can be
generated based on nonuniform tilings (100) or on concatenation of codes (65, 100).

b

Figure 6

Majorana surface codes based on uniform tilings. (#) 4.8.8 code with Majoranas located at all vertices.
Stabilizers are associated with the product of Majoranas around each plaquette. When implementing blue
stabilizers as parity constraints of Coulomb-blockaded islands, this is just a bosonic surface code with tetron
qubits. (5) 6.6.6 code. () 4.6.12 code. Implementations would realize one type of plaquette as Majorana
Cooper-pair boxes and the remaining stabilizers by measurement. Figure adapted from Reference 65.
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6.3. Applications to Quantum Computing

The long coherence times of Majorana-based qubits may make it sufficient to rely on small
Majorana-based error correcting codes (101). Alternatively, Majorana surface codes provide a
highly flexible platform for which the code distance (i.e., the level of topological protection pro-
vided by the error correcting code) can be flexibly adapted to the underlying hardware. Majorana
surface codes exist with arbitrary code distance. The various codes differ in the number of physical
qubits required for a logical qubit of a given code distance as well as in the number of Majoranas
involved in a stabilizer measurement (65). A denser encoding requiring fewer Majoranas for a
given code distance typically comes with a larger number of Majoranas involved in a stabilizer
measurement. The optimal trade-off would ultimately depend on hardware specifics.

Universal quantum computation can be implemented for all Majorana surface codes using the
same basic scheme (65). This scheme is closely analogous to the one for tetron and hexon qubits
discussed in Section 4. In fact, tetrons and hexons can be viewed as Majorana surface code patches
with the smallest code distance. Furthermore, surface code patches share important properties
with tetrons and hexons (65). The Pauli X and Z operators of a tetron are associated with the
two Majoranas along the horizontal and vertical edges, respectively. Similarly, the logical X and Z
operators of surface code patches are associated with its horizontal and vertical edges, and involve
a product over the X and Z operators of all physical qubits along these edges. In this sense, surface
code patches effectively behave as logical tetrons.

In these logical tetrons, horizontal and vertical edges are distinguished by whether the two-
qubit boundary stabilizers involve Pauli Z or X operators. By switching the boundary stabilizers
along the same edge, one can define surface code patches that are closely analogous to hexons and
encode two logical qubits (65, 99).

Logical hexons encode qubits for which the logical X and Z operators are both located on the
same side of the surface code patch. Just as for physical hexons, this provides the flexibility for
tracking Clifford gates (65). As we saw above, an essential requirement is the ability to measure
arbitrary two-qubit parities. This can be achieved for surface code patches by lattice surgery, which
introduces new boundary stabilizers that straddle the boundaries of the two participating qubits
(102). The two-qubit parity can then be extracted as a product of these boundary stabilizers.

The measurement of arbitrary combinations of Pauli operators can be implemented using
twist-based lattice surgery. In this scheme, the chain of interqubit stabilizers involves twist de-
fects of the surface code lattice (99). Such lattice surgery protocols can be defined for any of the
Majorana surface codes as well as Majorana color codes resulting from concatenating Majorana
surface codes with small Majorana codes. Thus, all these platforms for fault-tolerant quantum
computation are compatible with tracking all Clifford gates (65).

7. CONCLUSIONS AND FUTURE PERSPECTIVES

Majorana zero modes have captured the imagination of condensed matter physicists because of
their remarkable properties and their potential use in topological quantum computation. This
review focused on recent advances that demonstrate that Coulomb charging effects provide a
remarkably rich and promising addition to Majorana physics.

In the context of topological quantum computation, Coulomb charging can be exploited for
suppressing quasiparticle poisoning processes in topological qubits; for performing measurements
for qubit readout, initialization, or manipulation; and for implementing topological quantum
error correction in a Majorana-based hardware. The basic building blocks in these developments
are Majorana Cooper-pair boxes, also referred to as tetrons and hexons, which act as topological
qubits.
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In a closely related development, networks of coupled Majorana Cooper-pair boxes have been
proposed as platforms to engineer topologically ordered phases. Charging effects introduce inter-
actions among the Majoranas, which drive the underlying topological superconductors into non-
trivial insulating states. Examples of this have been proposed in one, two, and three dimensions.

Current experimental techniques using proximity-coupled semiconductor quantum wires or
two-dimensional electron systems as well as selective area growth already seem well adapted
for implementing such networks in one and two dimensions. As such networks come within
experimental reach, it will be increasingly interesting to study them for broader parameter ranges,
exploring their phase diagrams and their quantum phase transitions beyond the limit of strong
interactions that dominated much of the work done so far. Reducing the charging energy leads
to larger energy scales of the interaction between the spins and, thus, potentially larger gaps,
but it also introduces more involved spin interactions or even invalidates the mapping to spins
entirely.

It will also be important to study the effects of disorder in both the couplings and the charging
energies on the system properties. Although these may be detrimental, the topologically ordered
phases should exhibit some level of resilience against disorder by virtue of their excitation gap.
In principle, it is even conceivable that interesting topologically ordered phases can be supported
by appropriate granular superconductors.

Similarly, the success of Coulomb-charging-based protocols for Majorana-based quantum
computation will in practice also depend on various more microscopic aspects of these systems.
One of the important questions in this context is the accuracy and the timescales of measurements
on topological qubits.

Itis clear that there are still numerous possible extensions such as larger numbers of Majoranas
in a single Coulomb-blockaded island. Perhaps, it is possible to use some of these extensions to
realize topologically ordered phases that support a computationally complete set of nonabelian
anyons. For instance, the extension of the supersymmetric model discussed in Section 5.3.3 to
2 + 1 dimensions would support Fibonacci particles. Even though Majorana-based quantum
computation can be made universal, e.g., using magic-state distillation, it would be extremely
interesting to realize these phases.
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