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Abstract

We review recent progress in the study of photogalvanic effects and op-
tical second-harmonic generation in topological and noncentrosymmetric
metals.
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1. INTRODUCTION

The explosion of research into the topological properties of materials has led to the realization
that nontrivial phases are not at all rare, but rather ubiquitous. Rapid progress in classification of
topological phases is leading to rational strategies for discovery of new topological materials (1).
Furthermore, the existence of topological features in band structures, such as band-crossing points
and Fermi arc surface states, has been conclusively demonstrated by angle-resolved photoemis-
sion (2-4).

An important goal of future research is to use topology to shape responses to external pertur-
bations. A key step is to identify those effects in which band structure geometry potentially plays
a key role. One class of such responses are the photogalvanic effects (PGEs), a name given to
rectified photocurrents that arise in media that lack inversion symmetry (5, 6). This distinguishes
PGE:s from photoconductive or photovoltaic effects, where inversion symmetry is broken by the
application of an external electric field or inhomogeneous chemical doping. A further distinction
is that PGE-driven currents typically depend on the polarization state of the photoexcitation in a
way that reflects the point-group symmetry of the medium.

Directed photocurrents in the absence of an applied electric field were first observed in the late
1960s and early 1970s (6). Controversy began early as to their origin, with a distinction emerging
between intrinsic and extrinsic mechanisms. Intrinsic PGE response functions can in principle be
calculated directly from the electron energies and wave functions. Whereas the standard perturba-
tion theory treatment of intrinsic PGE mechanisms is generally valid, the emergence of geometric
quantities such as the Berry curvature of Bloch states gives new insights into the source of these
effects and features such as approximate quantization. However, extrinsic sources of PGEs involve
electron and phonon scattering processes that are beyond the scope of band structure calculations.
In many ways the problem of separating intrinsic versus extrinsic contributions to PGEs mirrors
the analogous problem regarding the anomalous Hall effect (AHE), which took many decades
to resolve (7). As the purpose of this review is to present PGEs as a probe of topological phases
and interfaces, we focus mainly on intrinsic mechanisms. However, we hope that it also serves to
motivate studies of PGEs as a function of temperature and disorder, as such research played a key
role in resolving the long-running controversy as to the origin of the AHE.

A nonlinear response that is closely related to PGEs is optical second-harmonic generation
(SHG), a frequency doubling of light through interaction with media that lack inversion sym-
metry (8). Although the manifestations of band topology are not as direct in SHG as they are in
PGEs, the former plays a key role in understanding the nature of noncentrosymmetric metals,
the systems in which most topological band structures are found. The very existence of noncen-
trosymmetric metals is counterintuitive because itinerant electrons tend to screen local electric
dipole moments and inhibit their cooperative ordering. Indeed, the vast majority of known met-
als have centrosymmetric structures. The possibility of stabilizing such materials by decoupling
itinerant electrons from an inversion breaking structural mode was theoretically proposed over
50 years ago by Anderson & Blount (9), but uncovering the microscopic pathways that lead to
this phenomenon remains a subject of intensive study (10-12). The noncentrosymmetric metallic
compounds at the heart of present topological materials studies already lack inversion symmetry
under ambient conditions. We describe how the SHG responses of a rare class of spontaneous
noncentrosymmetric metals, which break inversion only upon cooling, can lend insight into this
problem and potentially lead to new pathways for discovering topological materials.

The outline of this review is as follows. The introduction gives a brief guide to the classification
of PGEs and how the response tensors are influenced by the crystal symmetry. Sections 1 and 2
describe the theory of intrinsic PGEs in the intra- and interband regimes. Sections 3 and 4 present
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an overview of relevant experiments in these two regimes. Section 5 discusses the principles and
applications of SHG for studying spontaneous noncentrosymmetric metals. Finally, we conclude
with a short perspective on future directions.

1.1. Taxonomy of Effects

Associated with PGEs are a large and sometimes redundant set of descriptors, classifying them
according to pump wavelength, polarizations, and underlying mechanisms. Below we provide a
brief guide to the naming schemes found in the PGE literature.

1.1.1. Linear photogalvanic effect versus circular photogalvanic effect. Categorizing PGEs
begins with the polarization state of the photons that induce the current. The linear photogalvanic
effect (LPGE) is observed with linearly polarized light, whereas the circular photogalvanic effect
(CPGE) refers to the difference in photocurrent observed when the polarization state of the pump
field is switched between left and right circular polarization.

Although both effects require inversion breaking, the origins of the CPGE and LPGE are fun-
damentally different, as anticipated from the fact that circular photoexcitation breaks time reversal
in the same sense as an applied magnetic field. The inverse Faraday effect, in which circularly po-
larized light generates a magnetization by selectively pumping one direction of angular momen-
tum, is an intuitive example of this similarity between circularly polarized light and a magnetic

field (13).

1.1.2. Intrinsic versus extrinsic. A second distinction is between photocurrent associated with
photogeneration of electron-hole pairs, as opposed to their subsequent scattering and recom-
bination. The photogeneration mechanism is intrinsic in the sense that the photocurrent can, in
principle, be calculated directly from electron energy eigenstates, without reference to kinetic fac-
tors such as electron-phonon or electron-impurity scattering rates. Once created, the scattering
and recombination of photogenerated electron-hole pairs can induce an additional contribution
to the photocurrent, which we refer to as extrinsic.

Extrinsic PGE arises from the violation of detailed balance that emerges when either inver-
sion or time-reversal symmetries are broken. Detailed balance is the presumed equality of transi-
tion probabilities for forward and reverse transitions between two states. In the context of crystal
physics the relevant states are eigenstates of momenta, #; and k;, in which case detailed balance
corresponds to 'y, z, = 't These transition probabilities, I, are the squared moduli of ma-
trix elements, M, z,, which have the property that My, = MZZJ"I' However, the microscopic re-
versibility of matrix elements is not sufficient to ensure detailed balance. In fact, both time-reversal,
Mg, = Mikz,—kﬁ and inversion symmetry, My, = M_j, 4, are required to ensure Ty z, = Tz,
In a crystal in which either inversion or time reversal is broken, the rate of scattering directly
from k to —k is not equal to the rate from —k to k. As a result, a nonequilibrium distribution of
electron—hole pairs can acquire a net current in the process of returning to equilibrium via scat-
tering and recombination. Indeed, as emphasized by Belinicher & Sturman (5), scattering- and
recombination-driven photocurrent must be present to ensure that the net photocurrent is zero
when the crystal is exposed to thermal radiation at its equilibrium temperature.

1.1.3. Interband versus intraband. The last distinction is between intraband and interband
contributions to PGEs. In the intraband case, which is specific to metallic phases, the photoexci-
tation frequency lies within the Drude absorption band. In the absence of scattering, the Drude
optical conductivity approaches a § function at zero frequency; intraband absorption for w > 0
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requires phonon, impurity, or electron—electron scattering on a lattice to conserve momentum.
As a result, the intraband PGE cannot be purely intrinsic; i.e., it cannot be predicted solely on
the basis of band structure geometry. However, treating the intraband regime using semiclassical
dynamics yields an elegant physical picture of PGEs arising from the interplay between finite
momentum lifetime and Berry curvature.

In contrast with intraband absorption, momentum conserving (vertical) transitions are allowed
in the absence of disorder. Consequently, a purely intrinsic mechanism exists, and the PGE am-
plitude and spectrum can in principle be calculated from the electron eigenfunctions, at least in
the noninteracting limit. In the case of the LPGE, the exact Kubo formula expression has been
interpreted in terms of a quantity called the shift vector, R(k) (14), which when averaged over
the Brillouin zone can be related to the relative polarization of the bands (15). The CPGE can
be directly related in some cases to the gauge-invariant Berry curvature of the bands involved in
the optical transition. In an idealized model of a Weyl semimetal, the CPGE is in fact quantized,
proportional only to the Berry monopole charge of the Weyl node and fundamental constants. Al-
though precise quantization is not protected with respect to disorder and interactions, the CPGE
in Weyl semimetals is perhaps the only example of a nearly universal topological quantity in metal-
lic phases and in nonlinear optics as well.

1.2. Symmetry Considerations

To linear order, time-varying optical electric fields induce time-varying currents at the same fre-
quencies. New frequencies, corresponding to the sum and difference of the driving frequencies,
appear at second order in the applied field. In its most general form, the second-order current is
expressed in terms of a third-rank tensor, o j;:

Ji(w1 £ w2) = o1 £ w23 w1, )[Ej(w1) + Ej(—on)][Er(w2) + Ex(—w2)]. L.

As J is odd under spatial inversion, whereas E? is even, all second-order responses vanish in cen-
trosymmetric media.

For PGEs, we consider monochromatic excitation at frequency  such that difference fre-
quency generation yields a zero-frequency current, J4.. The PGE current is proportional to
E(w)Ex(—w), or equivalently E;(w)E; (w), and therefore o and o, are independent tensor ele-
ments if k£ # j. This contrasts with SHG, which denotes a current at twice the excitation frequency,
J20- Because the SHG current is proportional to E;(w)E(w), the response tensor exhibits intrinsic
permutation symmetry, such that o is equivalent to ¢ ;. As a consequence, unlike the PGE, SHG
cannot sense chirality of the crystal structure.

Unlike the second-harmonic current, the PGE amplitude in the formalism must be a real vec-
tor, as it corresponds to a zero-frequency response. If we separate the PGE components with j =
kandj # k, we can write

Ji(0) = 03/ |E;I* + 0iuE;Ef + i Ey, 2.

from which it follows that the reality of J; implies that the o; are real and that o;; = oj; - To
clarify the role of crystal symmetry, it is useful to separate the real and imaginary terms in the
conductivity tensor like so:

Ji(0) = 0,/ E;|* + Re{oy} (B, B + E;Ex) + iB;(E x EY);, 3.

where B; = €0 1. The terms proportional to 8; are odd under the transformation @ — —w or
equivalently t — —#, whereas the other terms are even.
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The current that corresponds to the real and imaginary components of o are distinguished
by their response to polarized light. For linear polarization, the helicity vector E x E* is equal to
zero; the photocurrent corresponding to the first two nonzero terms in Equation 3 is known as
the LPGE. Conversely, for circular polarization only the last term is nonzero and the resulting
current is the CPGE. Note that the CPGE current reverses sign under complex conjugation of
the electric field, which is equivalent to changing polarization from left to right circular.

The LPGE and CPGE tensors that describe the bulk crystal response follow in general from
the point-group symmetry of the crystal. The real components of o transform as a symmetric
polar rank-three tensor, whereas 8 is an axial rank-two tensor. The CPGE tensor 8, has the same
structure as the gyromagnetic tensor «; that relates current to applied magnetic field through the
gyromagnetic effect, J; = a;;B;. That this connection should exist is clear from the fact that E x E*
is an axial vector having the same symmetry properties as B. Note that both the GME and CPGE
tensors vanish in the limit that  — 0.

2. INTRABAND MECHANISMS RELATED TO BAND
STRUCTURE GEOMETRY

Historically, the first physical picture for intrinsic CPGE was based on the phenomenon of optical
spin orientation (16). Near high-symmetry points in the Brillouin zone electron eigenstates can be
approximate eigenfunctions of total angular momentum J. Breaking of inversion symmetry leads
to linear in k spin-momentum coupling terms and nondegenerate spin—split bands. In the case
of intraband excitation of quantum wells, circularly polarized light can generate a net electrical
current through spin-selective virtual transitions involving states in different 2D subbands (17).
The picture described above relies on the existence of electron subbands with well-defined
spin and strong spin-momentum coupling. However, it was subsequently found that CPGE with
comparable magnitude can also be found in Si metal-oxide—semiconductor field-effect transistor
(MOSFET) structures (18). Because the spin-momentum coupling in Si is negligible, the pic-
ture of virtual transitions between spin-split subbands is not applicable. Thus, these observations
suggest a more general underlying physical picture for the origin of intrinsic intraband CPGE.

2.1. Berry Curvature

Berry curvature provides a physical basis for CPGE in the intraband regime that includes spin
orientation and virtual interband transitions as a special case. In this picture, PGEs result from the
anomalous velocity induced by Berry curvature (19). To see the origin of this effect, we first define
Berry curvature in the context of crystal band structure. The curvature of an electron band in
momentum space is related to how Bloch functions vary with infinitesimal changes in momentum.
Although one might imagine the curvature would be related to the overlap of Bloch functions at
nearby points in momentum space, this is not quite right, as (u(ko)|u(k;)) is not gauge invariant.

However, the product of such overlaps around a closed contour C in momentum space is gauge
invariant (20). The phase accumulated in the limit of infinitesimal step size is the Berry phase, yg,
which can be written as

yp=o = / (k) - dS, 4.
s

where S denotes the surface encircled by C and dS denotes the surface element. This defines
Berry curvature, 2(k). The Berry curvature thus defined in the momentum space is analogous to
the magnetic field in electromagnetic theory (21). We collect the basic Berry phase quantities in
the sidebar titled Berry Phase Expressions for ready reference.
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BERRY PHASE EXPRESSIONS

Many properties of solids are governed at low energies by certain geometrical objects that capture how the periodic
part z(k) of Bloch wave functions evolves with crystal momentum k. The Berry connection

a(k) = i(u(k)|du(k))

forms the integrand of the Berry phase yg, the geometric phase acquired when the wave function evolves around a
closed-loop C in momentum space:

¥B = ia(k) - dk.

The Berry connection is not invariant under a change of phase |u(k)) — ¢*®|u(k)), but changes by the gradient

of the phase x, much like the vector potential in electromagnetism. But an invariant object is the Berry curvature,
defined as the momentum-space curl of the Berry connection,

k) = Vi x ak),

and numerous physical properties are now understood to depend on (k).

252

2.2. Anomalous Velocity

In the semiclassical regime, the band structure geometry acts through the Berry curvature to gen-
erate a transverse motion of an accelerating electron wave packet, which is known as the anoma-
lous velocity, v,,. A physical picture (22) of v,, is presented in Figure 1, which illustrates the
propagation of a slice of an electron wave packet in the presence of an electric field in the x di-
rection. Viewed in momentum space (Figure 1a), k. advances by ¢E.8t/F in time interval z. The
change in the phase of the wave function around a contour defined by the small patch of dimension
dk, x dk, is given by the flux of the Berry curvature,

E,

dyp = [Qz(k)e “dt] dk,. 5.
h

The relationship between phase and displacement for wave packet propagation, dy = dyg/dk,,

leads to a velocity transverse to the electric field given by y = ¢E, €2, (k)/h which is depicted in real

space in Figure 15.

a
Q(k)
dk, Eo R < A< <>]
S o =
dk, = eEst/h
Figure 1

Physical picture of anomalous velocity related to Berry curvature. (#) Infinitesimal area in momentum space
whose contour is defined by the electric-field-induced increase in &, in time §¢ and an element of transverse
momentum, d,. () Corresponding wave packet propagation in real space.
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2.3. Berry Curvature and Intrinsic Nonlinearity

The conditions for nonzero Berry curvature follow from its properties under time-reversal and
inversion symmetry (21):

Inversion symmetry: 2(k) = 2(-k)
Time-reversal symmetry: Q@k) = —2(-k) 6.

It follows from Equation 6 that breaking either time-reversal or inversion symmetry is a necessary
condition for nonzero Berry curvature, (k). In 7 breaking systems, 2(k) is an even function of
momentum; consequently the anomalous velocity averaged over an equilibrium distribution of
occupied states is nonzero. As a result, the effects of time-reversal breaking are manifest in linear
response functions such as the AHE and the quantized spin Hall effect in Chern insulators. In
particular, the AHE is proportional to the flux of €(k) through the equilibrium Fermi surface
(FS). By contrast, the Berry curvature is odd in momentum in systems that break inversion but
preserve time-reversal symmetry. Here, 7' symmetry ensures that the average anomalous velocity,
or equivalently, the flux of Berry curvature through any iso-energy contour is zero in equilibrium.

Although not exhibiting an AHE, the antisymmetric Berry curvature in broken inversion sys-
tems is a gauge-invariant quantity that should be observable. The signature response of systems
that break inversion symmetry is the appearance of current proportional to E2, and this suggests
there is a link between the second-order nonlinear conductivity and the antisymmetric (k). This
link was demonstrated in References 23-25, where it was shown that, indeed, o reveals the pres-
ence of a hidden Berry curvature that cannot be seen in linear response.

To see how this comes about, consider a two-dimensional crystal with a single mirror plane
M, that maps x — —ux. As the symmetry y — —y is broken, the structure lacks inversion symme-
try. For the z component of the Berry curvature, time-reversal symmetry enforces ;(k,, k,) =
—Q.(—k,, —k,), whereas the mirror symmetry enforces Q;(k,, k) = —Q.(—k,, k). Thus Q. must
be an even function of k, and an odd function of k.. As we have stated previously, the flux through
the equilibrium FS is zero, as is the AHE. However, if the FS is displaced in the direction of &,
by an electric field, then the flux will be nonzero. For purposes of illustration we assume that the
curvature is small such that Q,(k,) = Bk, is a good approximation.

Consider circular polarization E(¢) = Ey(xcoswt £ ysinwt) and assume the low frequency
limit of intraband transport in which @ < 1/7, where 7 is the momentum relaxation time. In
this limit, the displacement of the FS is parallel to the instantaneous electric field. The net flux
@ () through the displaced FS is time dependent and is proportional to BEytcos wt. The nonzero
flux drives an anomalous current, J = 8k(¢) x ®(¢)z, where the instantaneous acceleration is given
by 8k(t) = eEwt /h(—xsin wt + y cos wt).

Substituting the acceleration into the expression for the anomalous current yields a DC current
in the x direction proportional to the second power of the applied electric field. The direction of
the current reverses with reversal of the sense of circular polarization of the excitation field,

3
Jae = ix%wrzE(Z), 7.
corresponding to the CPGE.

Sodemann & Fu (24) generalized this idea to arbitrary antisymmetric 2(k) and higher dimen-
sions. For example, in three dimensions, the anomalous current is given by

J=ck x / Lk fK)QK), 8.
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where f(k) is the fermion occupation function and k = ¢E// is the instantaneous acceleration.
Because the Berry curvature is odd in momentum, the integral in Equation 8 is proportional to
the steady state displacement of the FS as a result of the applied field 8k,

J = (¢/2h)E x / kY f(K) - 5k Q(K). 9.

If we include the effect of finite frequency in the relaxation time approximation, then 8k =
(eEt/h)/(1 + iwt). To see how Equation 9 translates to the second-order conductivity tensor, we
can evaluate, for example, the z-directed current resulting from an electric field in the x direction,
which is given by the o, component. Substitution of E = Ex into Equation 9 yields

St /2R an e 3t/2R?

—_— 10.
(1 +iwt) ok, (1 + iwT)

Ozpx =

where the second equality follows from integration by parts and f; is the equilibrium occupation
function. Sodemann & Fu (24) showed that the full nonlinear response tensor can be written in
the form,

St /2R
abe = . avD ’ 1.
Oaby (1+ZU)T)EJ bd

where Dj; was termed the Berry curvature dipole (BCD) and given by

12.

ij =
k

The BCD compactly expresses the intrinsic semiclassical response in terms of an axial tensor of
rank 3 — d, where d is the dimensionality of the system. In two dimensions, where the Berry
curvature becomes a pseudoscalar and the BCD is an axial vector, D, the photogalvanic current
takes an especially simple form,

et/2R

J= (1 +iwT)

Z2x E*D-E). 13.
Equation 13 reproduces the results derived previously in Reference 23, where a Berry curvature
that is linear in wave vector was chosen for illustrative purposes.

Note that the current is purely transverse to the applied electric field as a consequence of its
origin in the anomalous velocity. Furthermore, Equation 13 describes both LPGE and CPGE
currents. If we take D to be parallel to the x axis, then, the magnitude of the LPGE current as the
direction of linear polarization sweeps through an angle 6 is given by,

33 D
pw|l=F— 0. 14.
| JupGE] 2(1 o) cos’ 4
If instead the current is generated by circular polarization, then the CPGE current flows parallel
to D and is given by,
372
=D 15.
Jerar 20+ o))
The CPGE current in the limit that @ > 1/t approaches an intrinsic value that depends only on
the band structure geometry as embodied in the BCD. In the opposite limit, CPGE vanishes as
expected because the distinction between left and right circular is a property of time-dependent
fields. In contrast, LPGE approaches a nonzero value as w — 0, and this dc response is referred
to as the nonlinear Hall effect (NHE).
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3. QUANTUM DYNAMICS: TOPOLOGICAL NONLINEAR PHOTONICS
AND THE QUANTIZED PHOTOGALVANIC EFFECT

In this section, we overview nonlinear optical effects in which the photon energy is above the band
gap and the light irradiation leads to photoexcitation of electron-hole pairs. As the semiclassical
picture relates Berry curvature to the anomalous velocity of a single band, it might seem unlikely
that Berry physics plays a role when interband transitions are involved. However, it has been
revealed in the past decades that important nonlinear optical effects including shift currents and
injection currents are probes of the band structure geometry (26-31). Below, we give a brief review
of theories on geometric nonlinear optical effects in the interband regime.

3.1. Formalism of Second-Order Nonlinear Optical Effects
in the Interband Regime

A general formalism for LPGE and CPGE has been established by Sipe & Shkrebtii (26). The
nonlinear conductivity, 0,%(0; w, —w), for the dc current response can be decomposed into two
pieces: () shift current and () injection current. In the presence of time-reversal symmetry, shift
current corresponds to LPGE and injection current to CPGE. Physically, shift current is asso-
ciated with a change in the position of the electron wave packet upon photoexcitation from the
valence to conduction band. The momentum-resolved change in an intracell coordinate is de-
scribed by shift vector R(k), which is the difference in the gauge-covariant derivative of the Bloch
functions of the two bands. The shift current arising in ferroelectrics such as BaTiO; has been
studied by using first-principle calculations (27, 28, 32).

The relationship between LPGE and band structure geometry is somewhat tenuous, as
the physically observable nonlinear conductivity involves an integral of R(k) over momentum,
weighted by dipole matrix elements. Below, we focus on injection current, or CPGE, where the
relationship to band structure geometry and topology is more direct. The injection current is
induced by free motion of photoexcited electrons and holes according to their group velocities
and, in the absence of momentum relaxation, grows linearly 0 in time under continuous light
irradiation.

An expression for the CPGE current, J; = §; ;(E x E*);, can be obtained directly from Fermi’s
golden rule (26, 33),

'81'.7' 6]161/ dk Zf;“” nm nm mna(m Em”)’ 16

where € is the antisymmetric tensor, [dk] = dk/(2n)?, fum = fo — fn with Fermi distribution
function f, for the band #, 7/, = i(n|d|m) is the interband Berry connection for the bands # and
1, By = E,, — E,, with the band dispersion E, for the band 7,and A?, | = 0%, Eum/ 1. The 8 function
specifies the % points, where energy conserving transitions take place from the band 7 to 7. The
transition rates are given by matrix elements |(* &£ ##),,,|* for left and right circular polarization.
The difference of transition rates, which leads to the CPGE amplitude, is the cross term €7%,,77, .
The photoexcited electrons and holes carry net current proportional to the difference of their
group velocities, A’ . Combining these terms and integrating over the Brillouin zone, we obtain
the formula Equation 16.

The CPGE has a direct relationship to Berry curvature in two band systems, which is given by
Q° = i€y 1%, where v and c indicate the valence and conduction bands, respectively. Using this

ve' ev?
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equation, we can rewrite Equation 16 as

inel ,

By =5 | 1dkI0,B.Q/8(ho — Eo), 17.
which shows that CPGE is governed by the Berry curvature in the two band limit. We note that
the presence of momentum relaxation gives a cutoff for the growth of current response in time.
In the steady state, the current is given by J; = ;;7(E x E*); with the relaxation time 7.

The relationship between Berry curvature and interband CPGE was first pointed out by Hosur
for the surface Dirac states of topological insulators (34). The surface of topological insulators
such as Bi,Se; hosts massless Dirac fermions with hexagonal warping that support nonzero Berry
curvature. However, the threefold symmetry of Bi,Se; forbids in-plane current at the normal
incidence, and the C; symmetry must be broken by an external perturbation such as magnetic
field or strain to observe CPGE from the 2D surface states of topological insulators.

3.2. Quantized Circular Photogalvanic Effect in Weyl Semimetals

The topological nature of CPGE has a more direct manifestation in 3D Weyl semimetals (33),
potentially allowing direct access to the topological charge of Weyl fermions through an optical
probe. Figure 2a4,b illustrates the origin of CPGE for an idealized Weyl node, characterized by a
linear and isotropic dispersion. The sphere surrounding the Weyl cone in Figure 24 is a surface
constant energy, with arrows representing both the local pseudospin and Berry curvature direction.
For this simplified model, the locus of points in & space connected by vertical transitions at some
energy N is also a sphere centered on the Weyl node, as shown in Figure 2b. Such transitions
take place between states with opposite pseudospin. As is clear from the schematic, the sense of
circular polarization that flips a pseudospin from down to up preferentially induces transitions in
the “Northern Hemisphere,” generating a net current in the direction of the “North Pole” (and
vice versa for light of opposite helicity).

With this physical picture in mind, we can return to mathematics to derive quantization of the
CPGE current. The trace of B;;, derived from Equation 17, can be rewritten in terms of the Berry
flux,

¢
tr[ﬁ] zlﬁv/‘sﬂ ds, 18.

where the surface S is the locus of energy conserving transitions in momentum space and dS
denotes an element of that surface. In this situation, f; € - dS becomes nothing but the topological
charge of the Weyl fermion, and CPGE exhibits quantization corresponding to the Weyl charge
Cas

83

w[B] =in h—ZC. 19.
Note that the linear, isotropic dispersion that we used to illustrate the physical origin of CPGE is
not necessary for quantization, which requires only that S be a closed surface encircling the Weyl
point.

Although each Weyl node contributes a quantum of CPGE, this direct signature of topological
charge can be hidden. The Nielsen—Ninomiya no-go theorem requires the total monopole charge
in the Brillouin zone to be zero (37). In systems that retain mirror symmetry, nodes of opposite
charge are degenerate in energy, leading to an exact cancellation of the trace of 8;. Despite this,
off-diagonal terms of B;; can be nonzero in mirror symmetric Weyl semimetals such as TaAs as
a consequence of tilting of the Weyl cones (38). However, in such systems the CPGE amplitude
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Quantized CPGE. (#) Illustration of Weyl dispersion, showing a surface of constant energy and the direction of electron pseudospin
and Berry curvature. (b)) Sphere in momentum space indicating the locus of k-points for energy-conserving optical transitions. Arrows
indicate the pseudospin vectors of occupied (blue) and unoccupied (red) states; transitions between them are generated by circularly
polarized light, depicted as vertical arrows. (¢) Locations of Weyl nodes with opposite Berry monopole charge in RhSi band structure.
Panel adapted from Reference 35. (d) Evolution of the surface of allowed transitions with photon energy, showing the transition from
Chern number four to zero as the Pauli blocking energy is exceeded. (¢) Prediction of quantized CPGE in RhSi, showing a plateau in
CPGE amplitude and a cutoff at the Pauli blocking energy. Panel adapted from Reference 36. Abbreviations: CPGE, circular

photogalvanic effect; SOC, spin-orbit coupling.

is not a topological property directly related to the Berry monopole charge through fundamental
constants.

The properties of chiral Weyl semimetals, in which all mirror symmetries are broken, are qual-
itatively different from mirror preserving materials such as TaAs. In chiral Weyl semimetals, nodes
with opposite topological charge need not be degenerate in energy. Thus, it is possible for one
node to lie near the Fermi energy, Er, while its oppositely charged partner is below. Transitions
near the node below Er are Pauli blocked at sufficiently low photon energy, and a quantized CPGE
(QCPGE) arising from the Weyl node near Er emerges (33).

RhSi and closely related isostructural chiral compounds have been proposed as ideal candi-
dates to exhibit a QCPGE (35, 39). These are multifold-fermion, rather than Weyl, semimetals,
as their theoretical band structure exhibits gapless excitations with greater than twofold degen-
eracy at band-crossing points. Their low-energy excitations can be described by a Hamiltonian
H = vgk - S with S being a higher spin representation of SUQ2) with S = 1, 3/2, 2,.... Like
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Weyl nodes, multifold gapless points behave as sinks and sources of Berry flux, leading to quan-
tization of CPGE in the same manner (39), but with higher Chern number. The prediction of
multifold-fermion dispersion and exotic Fermi arcs (35, 40) was confirmed recently by ARPES
(angle-resolved photoemission spectroscopy) measurements in RhSi and CoSi (41-43).

As shown in Figure 2¢, density functional theory (DFT) applied to RhSi predicts a large energy
difference between Weyl points of opposite charge at I' and R, such that the regime of Pauli
blocking extends to fiw ~ 0.65 eV. Figure 24 illustrates the evolution of the surface, S, in k
space defined by the optical transitions at energy fiw. For sufficiently small fiw, S,, is a single
surface enclosing the I' point, and the total Berry flux is equal to the topological charge at T,
which is 4. For fiw > E¢ a surface surrounding the R point appears such that S,, now encloses two
nodes of opposite chirality, driving the net Berry flux, and consequently the CPGE, to zero. The
CPGE spectrum calculated from DFT wave functions indeed exhibits an abrupt drop from the
C = 4 quantization (modified at low energy by spin—orbit interaction) to nearly zero at this energy
(Figure 2¢; 39).

Finally, a word about corrections to quantization. The expressions leading to CPGE quantiza-
tion were derived assuming noninteracting Weyl fermions and a two-band Hamiltonian. Correc-
tions arising from non-Weyl bands are proportional to (hw/E;)* (where E, is the energy separation
of a non-Weyl band) and vanish as optical transitions approach the Weyl points (33). It has been
recently pointed out that interactions also lead to corrections to quantization (44) of order « =
e? /47 eghvr, which is the fine-structure constant with the group velocity, vy, replacing the speed of
light. This interaction effect is analogous to corrections to quantization in the optical absorption
of graphene (45).

4. PHOTOGALVANIC EFFECT EXPERIMENTS

Experimental approaches for measuring PGEs may be categorized by detection techniques. The
earliest measurements were conducted using leads deposited directly onto the sample to measure
the current generated from a continuous-wave laser source. This approach is required for observ-
ing intraband effects driven by THz (terahertz) and mid-IR laser systems, although interband ones
can also be observed upon excitation by near-IR and visible sources. Significantly, this technique
permits direct measurement of the photogalvanic coefficients provided that the effects of photon
drag, lead geometry, and thermally driven currents are properly accounted for.

Noncontact measurements can be performed with the use of short-pulse (i.e., picosecond and
femtosecond) laser systems. Here, photogenerated current pulses emit radiation primarily in the
0.1-10-THz frequency range, lending the name THz emission spectroscopy to the technique.
The radiation is detected using free-space electro-optic sampling. This technique avoids artifacts
from asymmetric electrical contacts and laser-induced heating that must be accounted for in lead-
based measurements. Relevant to studies in which crystalline symmetry is important, it also enables
continuous and precise determination of the direction of the current through measurement of the
polarization of the THz field.

4.1. Experiments on Intraband Photogalvanic Effects

Intraband measurements have been conducted in a broad array of physical systems, including, e.g.,
topological materials (46) and quantum wells with (47) and without (48) magnetic field, as well as
various heterostructures and thin films. Experiments that have focused on the study of spin dy-
namics (18) and classical (49) and quantum (50) ratchet effects have provided insight on the relative
role of heating and inversion symmetry breaking in generating photocurrents in semiconductor
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Experimental results on PGEs. (#) Quadratic scaling of Hall voltage with longitudinal current. Panel adapted from Reference 52.

(b) Photocurrent as a function of polarization angle for BiyTe; and Sb,Tes. Left and right subpanels compare photocurrent with light
incident from above and below the sample. The absence of a sign flip shows that the current arises from LPGE rather than the photon
drag effect. Panel adapted from Reference 53. (¢) Optical selection rule for untilted and (d) tilted Weyl cones. Panel adapted from
Reference 54. Abbreviations: LPGE, linear photogalvanic effect; PGE, photogalvanic effect; RCP, right circular polarization.

systems. Intraband PGEs can also be used as probes of the symmetry of optically induced order,
as recently demonstrated by Xu et al. (51) in experiments on 1'T-TiSe,. Here, cooling through the
charge-density wave transition at Tcpw ~ 200 K in the presence of circularly polarized light was
observed to train chiral order, as detected by the onset of a CPGE photoresponse.

In the extreme low-frequency limit, the LPGE is manifest as an NHE (24). Recent experiments
on a bilayer sample of the type-II Weyl semimetal W, reveal the NHE through second har-
monics of the driving frequency in tandem with a transverse voltage that scaled quadratically with
applied current, as shown in Figure 34 (52). Through a careful analysis of the effect as a function
of applied voltage that tuned interlayer coupling, the authors were able to directly measure the
BCD.
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PGE studies at THz frequencies on epitaxially grown thin films of the bulk topological insula-
tors Sb,Te; and Bi, Te; revealed the linearly dispersing, spin-momentum-locked surface states that
are difficult to separate from the bulk using conventional transport techniques (53). As a second-
order optical response forbidden in bulk-centric media, the LPGE uniquely addresses these states
because the surface is a locus of inversion symmetry breaking. Experimental evidence that LPGE
probes surface transport is seen in Figure 34, which shows that the dependence of the photocur-
rent on the direction of the pump field matches the C3, surface point—group symmetry.

4.2. Experiments on Interband Excitation of Weyl Semimetals

Interband effects are accessed through resonant excitation by IR and visible lasers. As with intra-
band measurements, these experiments can reveal crystal symmetry (52) and spin dynamics (17),
and crucially, band structure topology (54). Below, we overview experiments first on mirror sym-
metric and then chiral systems.

4.2.1. Mirror symmetric Weyls. In the presence of a tilted Weyl dispersion, a circularly polar-
ized excitation field induces an injection current on one side of a Weyl node that is Pauli blocked
on the other, as depicted in Figure 3c. The direction, but not the sign, of the induced current
is determined by point—group symmetry. However, an analysis of the microscopic mechanism of
photocurrent generation revealed that the optical transition matrix elements depend upon the
chirality of the node, determining the sign of current flow (38). In experiments that used a CO,
laser source (fiw ~ 100 meV), Ma and coworkers determined the sign of the topological charge of
the W; Weyl nodes of TaAs (55). Further studies of the LPGE response in TaAs by Osterhoudt
et al. using the same source have shown that TaAs manifests a large second-order conductivity
Oue = 154 £ 17 pA V2 highlighting the potential of topological materials for applications in IR
sensing (56).

4.2.2. Chiral multifold fermions and the quantized circular photogalvanic effect. As em-
phasized in Section 3.2, the multifold-fermion system RhSi is an ideal candidate to exhibit a
QCPGE. Theoretically, the CPGE takes an especially simple form in the RhSi family of com-
pounds because 8; reduces to a scalar, 8, in the cubic space group, P2,3 (#198). The THz emission
spectrometer, shown schematically in Figure 44, enables contact-free detection of the LPGE and
CPGE currents flowing parallel to the surface of a sample. The inset to Figure 45 demonstrates
direct measurement of CPGE in RhSi (54), as it shows the sign flip of THz transients generated
by light of opposite helicity. The transients are time-resolution limited, indicating that even sub-
picosecond photoexcitation yields a quasi—steady state in which the photocurrent is proportional
to the product of B and the momentum relaxation time, t. Figure 45 shows the CPGE amplitude
(proportional to A7) in RhSi as a function of fiw in the range from 0.5 to 1.1 eV. The striking fea-
ture of the spectrum is the rapid drop in amplitude that occurs when fiw exceeds 0.65 eV. Above
this energy, Bt decays from its peak value by a factor of ~200 as fiw reaches 1.1 eV. The pho-
ton energy at which the CPGE response decreases agrees remarkably well with the theoretical
prediction (36) previously shown in Figure 2e.

5. OPTICAL SECOND-HARMONIC GENERATION
IN NONCENTROSYMMETRIC METALS

Although the magnitude of nonlinear optical responses such as the PGE and, to a limited extent,
SHG (57, 58) encode information about the band topology of a material, the structure of nonlinear
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(#) Terahertz emission spectrometer for measurement of CPGE in RhSi. The component of photogalvanic
current parallel to the surface of the RhSi crystal radiates a THz pulse that is collected, collimated, and
focused onto a Zn'Te crystal for time-resolved electro-optic sampling of the THz transient. ()) CPGE
spectrum of RhSi as a function of pump photon energy. Adapted from Reference 54. Abbreviations: CPGE,
circular photogalvanic effect; EOS, electro-optic sampling; OAP, off-axis paraboloid; S, sample; THz,
terahertz; TP, terahertz polarizer; WP, Wollaston prism.

optical susceptibility tensors encodes detailed symmetry information about a material owing to
their high rank. Measuring the tensor structure is therefore a highly sensitive means of refining
the crystallographic, electronic, and magnetic point-group symmetries of a solid. As discussed in a
number of reviews (59-62), this technique can be applied to study surfaces, buried interfaces, and
nanoscale devices, which are typically challenging for diffraction-based probes. The technique is
also increasingly being used to search for exotic order parameters, which are manifested through
subtle changes in point—group symmetries across a phase transition. In this section, we present
an overview of the technique in the context of SHG, followed by a selection of illustrative recent
experiments revealing spontaneous inversion symmetry breaking in metals.

5.1. Symmetry Refinement from Second-Harmonic Generation

The nonlinear optical susceptibility tensor is a central concept for the symmetry refinement of
a material via SHG. In this section, we describe the mathematical structure of the tensor, how it
arises from several different electromagnetic response channels, and how its structure can be used
to determine material point-group symmetries.

5.1.1. Second-harmonic optical responses. A material illuminated by an electromagnetic
wave may respond in several ways, including in general through an induced electric polarization,
P;; magnetization, M;; and electric quadrupole density, Q;. Each of these response channels will
subsequently act as a source for outgoing radiation via the associated induced current density, J;
(63):

P 30;:
=t iR ViMy = V; aQ;],

where g3, is the Levi-Civita symbol, and summation over repeated indices is implied. In the fre-

Ji 20.

quency domain, each material response can be expanded as a series in the applied electric (E;) and
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magnetic (H,) fields and their gradients (59):

Po=xSEy + xS Hy 4 xV B+ S E e + xS E e+ xS Vi + 21,
M= x2°E; + i Hy + x50V B + xS BB + xBEiHy + x5 By Vil + 22.
Qz/ - ]/eEk + Xz/k Hk + X,]}dvkEl + X, klEleEl + X, lal E/eI_Il + X,j/elmE/elem +- 23.

Here, the x expansion coefficients are the various optical susceptibility tensors of the material.
The first letter in the superscript of a susceptibility represents the type of material response it
encodes [e for electric dipole (ED), m for magnetic dipole (MD), and q for electric quadrupole
(EQ)], whereas the remaining letters represent the types of field perturbations inducing the re-
sponse. Terms containing only one power of a field express the familiar linear electromagnetic

mm

response of a material. For example, x¢ and x™™ encode the dielectric function, € = ¢y + x*, and
magnetic permeability, u = po(l + x™™), respectively, and x“™ and x™¢ describe the linear mag-
netoelectric effect. Terms containing more than one power of the fields represent the nonlinear
optical response. (See the sidebar titled Quantum Mechanical Expressions.)

Series expansions of this sort, along with the multitude of possible response channels, lead
to a proliferation of expressions. Many ostensibly disparate terms, however, can be unified (65).
For example, an electromagnetic plane wave oscillating at frequency w has V x E = iopuH.
Thus, the MD response, P, = Xl.j.j;'“Eij, can be rewritten in the form of an EQ response: P, =
(XZ?“/LU E1mm/iw)E;V,,E,. In other words, the third-rank mixed polar-axial pseudotensor X;;“‘
can be converted into a fourth-rank pure polar tensor y;j, = x;;‘"u;lle;mﬂ /iw. This highlights
the fact that EQ and MD transitions occur at the same order, being the symmetric and an-
tisymmetric parts of the same electromagnetic perturbation. With conversions like these and
Equation 20, the numerous terms from the various source and response channels can be con-

solidated. In this section, we focus on SHG, and neglecting all terms except those containing two

QUANTUM MECHANICAL EXPRESSIONS

The optical response of a material can be described in the language of photons: The material absorbs one or more

photons (for linear and nonlinear responses, respectively) from the incident electromagnetic wave and emits a single

photon to the outgoing wave. Within this picture, perturbation theory can be used to derive expressions for the

various optical susceptibility tensors (64). For example, keeping only resonant terms, one obtains

X (@)= — Z <¢glpz|1/fn><¢,z|p]|1/fg>

P a)g—a)

lLoN (Wl pil V) (W | p 1 V) (W | | Wrg)

(wn’g - zw)(wng — )

eem (2 )

+ (<),

nn'

where N is the number density of electrons, p (1) is the electric (magnetic) dipole operator, # and 7’ label excited

states above the ground state g, w is the incident light frequency, and fw,, = E, — E, is the energy difference between

two levels. With these equations, the meaning of the superscripts on the susceptibility tensors is made clear: They

indicate the types of electronic transitions involved in the particular response channel, each of which is associated

with a perturbation operator matrix element in the numerator. Resonance conditions—matching incoming and

outgoing photon energies to the corresponding difference in energy levels participating in the transition—are often
utilized to enhance SHG yield.
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powers of the electromagnetic field, one obtains the central equation,

I Qo) = X E/(@)Ed@) + X Ei(@)ViEi() + O (V'E), 24.

where, in terms of the above susceptibility tensors,
2 .
X = —2ioxSs, 25.
2 : . -
Xz;/;l = 2g"]"’”’X:l]je/e + 416())(;};? - leX:;e(ll - zxieji;llumilz‘?ﬂkl’ 26
The first term, proportional to a third-rank tensor, represents leading-order ED SHG. The second
term, proportional to a fourth-rank tensor, represents combined MD and EQ SHG. For magnet-
ically ordered media, these SHG tensors can be further classified depending on whether they are
time-reversal even (7 type) or odd (¢ type). As has been extensively reviewed in References 59,
66, and 67, this makes SHG a sensitive probe of magnetic point—group symmetries and magnetic
domains in bulk crystals and nanoscale devices and at surfaces and interfaces.

5.1.2. Symmetry refinement procedure. The structure of a nonlinear optical susceptibility
tensor can be determined through rotational anisotropy experiments, whereby the nonlinear op-
tical response is measured as a function of the light polarization, scattering plane angle, and angle
of incidence (61). From these measurements, the nonzero and independent elements of the tensor
can be extracted in a straightforward way and compared with expectations from candidate point
groups. Recent technical advancements have made rotational anisotropy data collection precise
and rapid (68, 69).

Key to detecting symmetry-breaking orders is Neumann’s principle, which states that a prop-
erty tensor must respect all of the physical symmetries of a material. More explicitly, a particular
coordinate transformation that leaves a crystal invariant must also leave the susceptibility tensor
invariant. For example, if T} is a coordinate transformation matrix corresponding to some point—
group symmetry of the material, then for a polar tensor,

Xijk-w = 7—;[)7}77}67‘ s Xpgree 27.

"This imposes significant constraints on the tensor structure, dictating which tensor elements are
allowed to be nonzero and independent. As a particularly important example, if the material pos-
sesses inversion symmetry (7j; = —§;), then odd-rank polar tensors must vanish because x ...
= —Xjjk--.. This leads to the well-known result that leading-order ED SHG can only occur in
the bulk of noncentrosymmetric materials. Higher-order processes governed by odd-rank axial
tensors or even-rank polar tensors, such as MD and EQ responses, respectively, as well as ED re-
sponses from surfaces and interfaces (where inversion symmetry is necessarily lost), are nonethe-
less allowed in centrosymmetric materials. These processes, however, are generally much weaker
than the bulk ED response (59, 64). For this reason, SHG is ideally suited to detecting sponta-
neously broken inversion symmetry, where the leading-order bulk ED susceptibility x % becomes
nonzero at the phase transition and encodes information about the symmetries and magnitude of
the order parameter. In the next section, we present several illustrative examples of spontaneous
inversion symmetry-broken metals uncovered in this way. (See the sidebar titled Landau Theory in
Nonlinear Optics.)

5.2. Application to Polar and Piezoelectric Metals

Metals cannot sustain an internal electric field, and the long-range Coulomb interaction that sta-
bilizes ferroelectricity in dielectrics is effectively screened by mobile charge carriers in conducting
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LANDAU THEORY IN NONLINEAR OPTICS

Landau theory is the theoretical framework through which spontaneous symmetry breaking at phase transitions
may be understood. Within the theory, the free energy of a material is expanded as a Maclaurin series in the rele-
vant order parameters of the system. Each order parameter transforms according to an irreducible representation
of the symmetry group of the system, and each polynomial term allowed in the series must be invariant under every
element of the symmetry group. By including electric (polar vector representation) and magnetic (axial vector rep-
resentation) fields as external order parameters in addition to the internal order parameters of the material, one may
calculate various optical susceptibility tensors (70). For example, a hypothetical free-energy expansion respecting
inversion symmetry is

F:F()+§P2—E~P—b¢qu(Ey2—E§)+--~,

where E and P are the external electric field and internal electric polarization, respectively; ¢, represents an odd-
parity multipolar order parameter that condenses at some critical point due to terms in the free energy not shown;
and # and b are series expansion coefficients. The E - P term enters the free energy because the external electric field
is conjugate to the internal electric polarization. We emphasize here that symmetry alone dictates the form of the
term that couples ¢, to E and P. By minimizing the free energy with respect to P, (0F/0P, = 0), one obtains P, =
E./a+ b(j),l(Ey2 — E?)/a+ - - -, from which the linear and nonlinear optical susceptibilities, x<¢ = 1/ and Xy =
— X = bg,/a, may be easily extracted. The nonlinear susceptibility is directly proportional to the odd-parity order
parameter, ¢,, making it an experimental handle for both the magnitude and symmetries of that order. Automated

tools exist for computing all of the allowed invariant polynomials of a crystal (see, for example, Reference 71).

systems. Nevertheless, in 1965, Anderson & Blount proposed that ferroelectric-like structural

phase transitions can occur in what are now known as polar metals (9). They argued that although
free electrons completely screen the average internal electric field in a metal, they do not sup-

press transverse optical phonons and Lorentz local fields, which can support internal symmetry

changes similar to those occurring in conventional ferroelectrics. The modern consensus is that

metallic conduction and polar distortions are not fundamentally incompatible (12). More general

considerations apply to the broader class of rare piezoelectric metals, which break inversion

symmetry but do not necessarily have a unique polar axis. Metals can host a number of competing
electronic orders, such as charge density waves or superconductivity, and the interplay between

these Fermi liquid instabilities and inversion symmetry breaking is an active area of research.

Measuring the order parameter of a polar metal presents a unique challenge. The conven-

tional method to quantify the polarization P of a sample is via electrical means: measuring the

transfer of charge across a sample after reversing an applied voltage. Using a parallel plate ca-
pacitor geometry, P can be inferred using the relations P = Q/2A4 and Q = [I(¥)d¢, where I(?) is

the measured current flowing from one plate to the other, Q is the total charge transferred, and

A is the plate area. The factor of 2 arises from the reversal of the polarization direction in the

sample. This procedure is deeply rooted in the “modern theory of polarization,” which informs

that only changes in electric polarization are physically measurable (72, 73). This method fails for
conducting systems because the sample will electrically short the capacitor plates. It also fails for

nonpolar piezoelectric metals, where no macroscopic transfer of charge occurs in the material. By

contrast, optical SHG is an ideal experimental technique for measuring the magnitude of an odd-

parity order parameter—regardless of sample conductivity—through its proportionality with the

eee

nonlinear optical susceptibility, x7
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ferroelectrics (60), and below we present three exemplary piezoelectric or polar metals recently
investigated with the technique.

5.2.1. Multipolar electronic nematic order in Cd;Re;0O5. In recent years, nonlinear optics
has emerged as a powerful technique to uncover so-called hidden orders, defined as equilibrium
phases of matter that are invisible to conventional experimental probes (62). One common class
of examples is multipolar order that does not directly couple to any conjugate external field. The
nonlinear optical susceptibility tensor x?, however, encodes the total lattice, electronic, and mag-
netic point-group symmetries of a material and is sensitive to such order.

The superconducting pyrochlore, Cd;Re; Oy, is a strongly spin—orbit coupled metal with an
unusual inversion symmetry-breaking phase transition at 200 K. Early nonlinear optical experi-
ments discovered a tensor order parameter with E, symmetry associated with the freezing of a
soft phonon mode at the phase transition, consistent with a Landau theory analysis of phonon
instabilities (74, 75). Other experimental evidence, however, called into question the importance
of lattice degrees of freedom in the origin of the phase transition. In particular, though structural
changes at the phase transition are unusually small (atomic displacements less than ~0.01 A), dra-
matic changes in electronic properties such as electrical resistivity and magnetic susceptibility are
observed (76-79). Further puzzling is the absence of any magnetic or charge order in the material
(80).

Inspired by the theoretical prediction of novel parity-breaking Fermi liquid instabilities in cor-
related spin—orbit coupled metals (81), Harter et al. used SHG to reexamine the odd-parity order
parameters involved in the 200-K phase transition in Cd;Re;O; (82). Consistent with previous
studies, they detected a dominant structural order parameter with E, symmetry, but found an
unexpected linear temperature dependence (x1 — 7/7;) inconsistent with a primary order pa-
rameter driving the phase transition. Instead, they discovered an additional order parameter with
T>, symmetry and mean-field-like temperature dependence (o¢y/1 — 7'/7;) matching the prior
theoretical prediction of possible multipolar nematic Fermi liquid instabilities in spin—orbit cou-
pled metals (81). They concluded that the 75, order parameter was electronic in origin and drove
the phase transition, with the E, structural order parameter of a secondary nature, pulled along
by a coupling term in the Landau free energy. Their symmetry analysis necessitated the existence
of an additional primary order parameter with T}, even-parity symmetry. The resulting free en-
ergy took the form F = Ky + (T /T, — 1)(a,¢? + ag(p;) + 0y + b + - -, with ¢, and ¢, the
T, and T, primary orders, respectively, and ¥ the E, secondary structural order. A summary of
the experimental steps taken by Harter et al. is shown in Figure 5. This unusual phase transi-
tion was verified in a subsequent study, which used ultrafast coherent phonon spectroscopy and
time-resolved SHG to study the dynamics of the E, structural distortion (83). An explanation
for the Landau-violating nature of the phase transition in Cd;Re, Oy is still an open question, but
the phenomenology is remarkably similar to so-called improper ferroelectrics (84, 85). Magnetic
scenarios have been put forth to explain the observations (86), but there remains no evidence for
magnetic order in the material.

5.2.2. Polar metallicity in LiOsOs. In 2013, LiOsO; became the first metallic system con-
clusively determined to undergo a continuous phase transition associated with the formation of
a polar axis (87). Upon cooling below 140 K, the crystal symmetry of LiOsO; lowers from R3¢
to R3¢ as the Lit ions collectively shift off center along the cubic [111] direction. This behavior
is structurally identical to the ferroelectric transition in insulating LiNbOj. After this initial
discovery, Padmanabhan et al. employed SHG to better understand the role of metallicity in
the polar phase transition (88). They found that the magnitude of the nonlinear susceptibility
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Steps used to uncover multipolar electronic nematic order in Cd;Re; O7 with optical SHG. (#) At a pristine area of the sample surface,
low-temperature SHG microscopy is used to identify large domains. (4) SHG rotational anisotropy patterns are then collected within a
single domain. (¢) The patterns are decomposed into orthogonal symmetry channels, and () the amplitude of each irreducible
representation is extracted for a series of sample temperatures to produce (e,f) order parameter temperature dependence curves. The
temperature dependence is then fed into (g) a Landau free-energy model for the material, which subsequently sheds light on the
physical nature of the orders. Figure adapted from Reference 82. Abbreviation: SHG, second-harmonic generation.

in the polar direction was significantly weaker in LiOsOs than in the isostructural insulating
ferroelectrics LiNbOj; and LiTaOj;. This effect likely arises from the substantially smaller Os-O
acentric displacements in LiOsO; due to the weak coupling mechanism that stabilizes the
polar metallic phase (10), a picture confirmed by recent time-resolved optical experiments (89).
Temperature-dependent SHG experiments, together with complementary Raman spectroscopy
measurements of phonon mode lifetimes, showed that the polar phase transition in LiOsOs
is continuous and likely of an order-disorder nature. The Landau free energy at the phase
transition has the classic form F = Fy + a(T/ T, — )p*> + bp* + - - -, where p is an order parameter
transforming like the A,, irreducible representation of the 37 point group, corresponding to
a polarization along the cubic [111] direction. Aided by SHG microscopy, Padmanabhan et al.
uncovered 109° and 71° ferroelastic domain walls associated with the breaking of C4 symmetry.
No 180° polar domain walls were observed, however, which is consistent with the screening by
free electrons of depolarizing fields that otherwise prevent the formation of large single domains
in conventional ferroelectrics. After the initial discovery of polar metallicity in LiOsOs, other
polar metals have been investigated with SHG microscopy. The layered Ruddlesden—Popper
material, CazRu, Oy, for example, hosts a rich polar domain structure at room temperature (90).

5.2.3. Ferroelectric enhancement of superconductivity in strained SrTiO;. The per-
ovskite titanates have proven fruitful for creating polar metals. For example, a polar metal-
lic phase emerges upon electron doping of the canonical ferroelectric BaTiO; (91), and
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BaTiO;/SrTi0O;/LaTiO; thin film heterostructures host quasi-two-dimensional polar metallic
interfacial states (92). Bulk-insulating SrTiOs is known as a quantum paraelectric because an in-
cipient polar instability is avoided at low temperatures by quantum fluctuations of the material’s
ground state. In thin films, however, ferroelectricity can be stabilized through both tensile and
compressive epitaxial strain, giving rise to in-plane and out-of-plane polarization vectors, respec-
tively (93-95). Indeed, temperature-dependent SHG measurements confirm that a ferroelectric
phase transition occurs in compressively strained stoichiometric SrTiO; films (96, 97). When
lightly doped, SrTiO; becomes metallic and superconducts at low temperatures despite relatively
dilute carrier densities (~10?° cm~?). Furthermore, the superconducting critical temperature can
be enhanced by up to a factor of two through compressive strain (98). In this doping regime,
the Debye frequency exceeds the Fermi energy, invalidating the conventional Bardeen—Cooper—
Schrieffer theory of superconductivity and demanding a different, as-yet-unknown, Cooper pair-
ing mechanism.

To study the link between enhanced superconductivity and ferroelectricity in compressively
strained Sr'Ti0s films, Russell et al. used SHG to measure the doping and temperature dependence
of the ferroelectric-like order parameter (99). They found that the doping-dependent onset of
spontaneous polarization correlated perfectly with upturns in electrical resistivity. Such behavior
likely results from screening of polar charges, which causes carriers to localize at the film surface
and depletes them from the bulk. By developing a long-range mean-field Ising model of the order
parameter, they were able to quantitatively fit the temperature dependence of the SHG intensity.
The Landau free energy of their model takes the form F = Fy + a(T/T. — 1)p* + bp* —Ep + -+ -,
which is identical to the LiOsO; free energy but with the additional term —Ep, corresponding to
a weak extrinsic polarizing field E breaking the intrinsic £p symmetry of the polarization. This
field is due to the dissimilar vacuum and substrate interfaces sandwiching the film. The success of
their model—in particular, the quantitative agreement with an Ising-like polarization—strongly
supports the notion that the ferroelectric phase transition in compressively strained SrTiOs is of
an order—disorder nature, as in LiOsOs. This, together with the observation of enhanced super-
conductivity deep within the polar phase, places significant constraints on possible mechanisms of
superconductivity in Sr'TiOs, such as soft mode fluctuations.

5.2.4. Effect of short-range correlations on second-harmonic generation. The previous
examples illustrate how the emergence of a local parameter is manifested in SHG via the ap-
pearance of a new radiation process that becomes allowed upon symmetry lowering. Recently,
however, it has been shown that critical fluctuations preceding a phase transition can also be de-
tected by SHG. Because no symmetry reduction has yet occurred in this state, no new SHG radi-
ation processes or susceptibility tensor elements emerge. Rather, the fluctuations are manifested
through changes in the already existing symmetry-allowed tensor elements. To understand how
such changes arise, consider for simplicity local dipolar degrees of freedom S, in a crystal, which
could represent electric or magnetic dipoles, interacting via a nearest-neighbor Ising-type Hamil-
tonian Hine = 3 ;, J;;5;S;. In general, the coupling constants Jj; depend sensitively on the position
of atoms in the vicinity of sites 7 and j that mediate the interaction. In polar metals, for example,
short-range dipolar interactions are driven by the local bonding environment of cations in the
unit cell, making it sensitive to anion positioning. In magnetic insulators, superexchange interac-
tions are similarly sensitive to cation—anion—cation bond angles. The atomic positions minimize
the total energy of the system E7 = (Hin) + (H'), where ' includes all other interactions and the
angular brackets denote thermal expectation values. As the system approaches the phase boundary
from the disordered side, the dipole correlator (S;S;), and thus (Hin), increases while the order
parameter (S;) remains zero. In turn, atomic positions will shift to readjust the balance between
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(Hine) and (H') in order to minimize E7, which then alters the relative magnitudes of the existing
SHG tensor elements.

Ron et al. first demonstrated this approach on the layered ferromagnetic insulator CrSiTe; us-
ing high-sensitivity SHG rotational anisotropy measurements (100). They showed that the growth
of the intralayer and interlayer spin correlators ((S;S;) and (S;S;) . ) is accompanied by atomic dis-
placements along two different normal coordinates of the lattice that preserve overall symmetry,
which act to enhance the intralayer and interlayer superexchange and thereby increase (Hiy,). Be-
cause these two types of distortion couple to distinct subsets of Xij‘:; elements allowed under the
centrosymmetric point group of CrSiTes, Ron et al. were able to independently track the temper-

ature dependence of (S;S;); and (S;S;) . by measuring changes in different subsets of X;}:j elements
above the Curie temperature.

More recently, similar effects were also reported in LiOsOj; above its polar transition temper-
ature (7, = 140 K) (101). As discussed previously, all X5 tensor elements couple linearly to the
polar order parameter and dominate the SHG response below T.. However, there exists an ad-
ditional weaker EQ SHG response that is allowed even above T in the centrosymmetric phase,
whose magnitude varies as a function of the angle of incidence approximately like sin’6. There-
fore this contribution is nearly undetectable under normal incidence conditions (88), but can be
amplified by increasing 6. As shown in Figure 6, the EQ SHG response from LiOsOj; measured
with obliquely incident light starts to grow below around 230 K, in clear contrast to the normal
incidence data. The shapes of SHG rotational anisotropy patterns also change drastically between
;jlij elements taking place over this temper-
ature window. Such changes were attributed to symmetry preserving structural distortions that
occur in response to the growth of the electric dipole correlator, analogous to the situation in

CrSiTe;. Note that changes in the x ¢ tensor must be uniform because all elements are propor-

230 K and T, signifying nonuniform changes in the x

tional to the order parameter, which fixes the shape of the rotational anisotropy patterns below
T..

Simplified hyperpolarizable bond models (102, 103), which assume that SHG radiation arises
from the classical anharmonic motion of charges along different chemical bond directions, have

been successfully used to establish qualitative connections between specific structural distortions
eee
ik
quantitative information about distortion amplitudes from SHG intensity changes. Nonetheless,

and changes in specific x5 tensor elements. But more sophisticated models will be needed to draw
this technique extends the application of SHG to the study of short-range correlations in addi-
tion to symmetry-breaking phase transitions. It also highlights the importance of distinguishing
between multiple sources of SHG intensity change that can occur in quantum materials.

6. FUTURE DIRECTIONS

Progress in the detection and interpretation of nonlinear optical responses is creating new oppor-
tunities for revealing the topological structure of condensed matter systems. We cannot hope to
anticipate the most impactful directions, as it is notoriously difficult to make predictions, espe-
cially about the future. However, we anticipate that advances in SHG spectroscopy will continue
to improve our understanding of how materials that potentially support topological band struc-
tures are stabilized and how they can be identified and manipulated. Another path that is par-
ticularly promising exploits the natural synergy among PGEs, SHG, and optical microscopy in
both near- and far-field versions. Here, one measures the PGE current and/or second-harmonic
emission generated by a metallic tip or laser focal spot that scans across a sample. The resulting
image will report locations with local inversion breaking, in principle with nanometer resolution.
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Figure 6

SHG intensity from a [121]-oriented LiOsO3 crystal measured under normal and oblique incidence
geometries. The latter is sensitive to the electric quadrupole SHG contribution, which measures short-range
dipolar-correlation-induced structural distortions that onset well above T, = 140 K. SHG rotational
anisotropy patterns at select temperatures (right) show that nonuniform changes occur in the range of

T. < T < 230 K, where short-range correlations develop. These shape changes can be captured via the
simplified hyperpolarizable bond model illustrated in the inset. By changing the hyperpolarizability of the
bonds (y1, y2, y3), the data are well reproduced by the model (black lines). Figure adapted from

Reference 101. Abbreviation: SHG, second-harmonic generation.

Once identified, local spectroscopy of such regions becomes possible, with the potential to reveal
topologically protected and correlated states at domain boundaries where inversion breaking oc-
curs naturally. Another promising avenue is to explore changes in topology across spontaneous
inversion-breaking transitions in metals using PGEs and SHG, with an eye toward controlling
topological responses on demand. We hope that the promise of the PGE and SHG techniques
will drive future experimental innovation as well as theoretical research to understand the non-
linear optical response of inversion-breaking superconductors (104) and other correlated phases,
particularly in low-dimensional and interfacial structures.
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