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Abstract

Quantum circuits—built from local unitary gates and local measurements—
are a new playground for quantummany-body physics and a tractable setting
to explore universal collective phenomena far from equilibrium.Thesemod-
els have shed light on longstanding questions about thermalization and
chaos, and on the underlying universal dynamics of quantum information
and entanglement. In addition, such models generate new sets of questions
and give rise to phenomena with no traditional analog, such as dynamical
phase transitions in quantum systems that are monitored by an external ob-
server. Quantum circuit dynamics is also topical in view of experimental
progress in building digital quantum simulators that allow control of pre-
cisely these ingredients. Randomness in the circuit elements allows a high
level of theoretical control, with a key theme being mappings between real-
time quantum dynamics and effective classical lattice models or dynamical
processes. Many of the universal phenomena that can be identified in this
tractable setting apply to much wider classes of more structured many-body
dynamics.
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1. INTRODUCTION

Quantum dynamical phenomena, such as the transport of conserved quantities, correlation and
response functions of local observables, or dynamics of low-lying excitations, have traditionally
been used to probe the universal properties of quantum condensed matter at low temperatures
and near equilibrium. In contrast, because quantum coherence is easily destroyed at high tem-
peratures, it might seem that quantum matter evolved far from its ground-state would fail to
exhibit universal dynamics that is distinctively quantum. However, efforts to understand out-of-
equilibrium dynamics in lattice models (1–18), quantum field theories (19–22), and black holes
(23–27) have shown that universal structures can emerge in quantum correlations and in the pat-
terns of quantum entanglement of a many-body system.These structures underlie thermalization,
when it occurs, as well as novel forms of nonthermalizing dynamics (1, 2).

The search for universal phenomena in the out-of-equilibrium dynamics of quantum many-
body systems has been intensified by efforts at the interface of quantum information science and
condensed matter physics to build quantum simulators (28), systems of hundreds of qubits that
can realize interesting many-body phases. Analog quantum simulators, such as ultracold atom
platforms (29–31), arrays of atoms with long-range interactions that are tuned by excitation into
Rydberg states (32), and trapped atomic ions (33, 34), exert control over constituent degrees of
freedom by tuning the Hamiltonian governing their interactions. The possibility of highly coher-
ent and controllable Hamiltonian dynamics has led to important questions about universality in
the approach to thermal equilibrium (1, 35) and situations in which quenched disorder can arrest
thermalization entirely via the phenomenon of many-body localization (MBL; 2, 3, 36).

Recently developed digital quantum simulators afford an even greater degree of control. The
native mode of operation of these platforms, such as those formed of superconducting qubits (37,
38), involves the discrete time evolution of constituent qubits through the application of unitary
operations,measurements, and feedback.Harnessing these ingredients to control quantummany-
body systems is a new goal of quantum condensed matter physics. Successful implementation of
these operations is also a stepping stone toward the separate goal of eventually building a fault-
tolerant quantum computer (39). The advent of digital quantum simulators has thus led to an
important question for condensed matter physics: What collective quantum phenomena, or dy-
namical phases of matter, can emerge using operations—such as unitary gates, measurements, and
feedback—that are native to quantum simulators?

This article is an introduction to simple discrete time models for many-body dynamics that
have allowed progress on some of these questions. In thesemodels, a lattice of spins (qubits) evolves
through the application of local unitary gates and measurements. This discrete time structure—
a so-called quantum circuit (40)—is reminiscent of the “Trotterization” of a continuous-time
Hamiltonian evolution, though the time step here is not assumed to be infinitesimal, as each local
operation is generally not close to the identity (which also means that energy is not conserved).

A minimally structured unitary quantum circuit that lacks any symmetries or other special
properties rapidly brings the system into a steady state that is locally completely disordered, in the
sense that local observables reproduce an infinite-temperature statistical ensemble. The search
for universal phenomena in this setting thus requires going beyond traditional probes of quan-
tum condensed matter involving correlations between specially chosen local operators. Instead,
interesting universal features of the evolving state can be usefully quantified with information-
theoretic quantities such as the entanglement entropy and the quantummutual information; these
are measures of correlations that are nonlinear in the reduced density matrix for a subsystem.
These observables are also natural in the minimal circuit setting because they are independent
of the local choice of basis while remaining sensitive to basic structural features of the dynamics
such as locality and unitarity. What universal structures govern the behavior of such observables
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in a minimal quantum circuit dynamics? What additional universal phenomena emerge in the
presence of further structure and symmetries?

Focusing on these abstract measures of correlation is not an esoteric exercise; measures of
entanglement are of particular importance in light of recent developments in condensed mat-
ter physics and quantum information science. First, closed quantum systems can reach a local,
thermal equilibrium under purely unitary evolution, and understanding the locally irreversible
nature of this process of thermalization (41–43) requires studying the production of quantum
many-body entanglement. Second, just as patterns of entanglement in equilibriummatter contain
universal structures that are characteristic of phases and phase transitions (20, 44–46), entangle-
ment is also an organizing principle for out-of-equilibrium quantum matter. It is interesting to
compare universal patterns of entanglement that emerge in this setting with what we know to
be possible in equilibrium. Finally, validating the performance of near-term quantum computers
requires understanding and executing tasks that we know to be quantifiably hard to perform on
a classical computer (47). Quantum information-theoretic quantities (e.g., measures of state and
operator entanglement) provide proxies for certain kinds of classical hardness, so that—in addi-
tion to shedding light on how to make classical algorithms more efficient—they can be used to
pinpoint dynamical regimes where quantum simulation has a genuine advantage.

Significant theoretical progress is possible by incorporating randomness in the allowed local
operations that form a quantum circuit. Ensembles of random quantum circuits provide a the-
oretically tractable setting in which to understand universal out-of-equilibrium phenomena that
also occur in more structured quantum many-body dynamics. This is similar in spirit to the role
of randomness in, for example, applications of random matrix theory (RMT) to level statistics
or mesoscopic transport (48, 49). Loosely speaking, randomness in a quantum circuit allows for a
classical description of the evolving entanglement structure in a typical realization of the quantum
many-body dynamics (17, 50–52). This result can be heuristically understood by noting that basic
observables (both simple correlation functions and entanglement quantities that are nonlinear in
the density matrix) are related to probability amplitudes for evolving several copies of the origi-
nal quantum many-body system into a particular final state. Randomness allows one to show that
this evolution is quantum mechanically incoherent. The resulting classical statistical ensemble of
Feynman trajectories of the multicopy system exhibits universal properties that reflect quantum
correlations in the original system of interest. A key approach taken in this article is to investigate
the universal structures that emerge in these classical descriptions and to use these as a foothold
for understanding more structured quantum many-body evolution.

We discuss both unitary circuit dynamics and monitored dynamics in which the system’s local
degrees of freedom are repeatedly measured by an external observer (a nonunitary operation).One
way to motivate unitary circuits is as models in which to get analytical control on questions about
out-of-equilibrium dynamics and chaos that are equally relevant to more conventional condensed
matter models.Monitored circuits, by contrast, show us that new dynamical universality classes are
possible (even for dynamics with very little structure) once we step outside the domain of unitary
evolution. In particular, we focus on a phase transition, from an entangled to a disentangled phase,
induced bymonitoring (53, 54).Unitary or weakly monitored dynamics generates complex, highly
entangled wave functions, but sufficiently frequent measurement can trap the evolving wave func-
tion close to the space of product states. The phases and transitions can again be fruitfully mapped
to an effective classical statistical mechanics model (55–58). Monitored many-body systems have
been the subject of much recent progress (55, 56, 58–92). We also direct the reader to a recent
review (18) on entanglement dynamics in circuits, which gives a useful treatment of many of the
same topics we discuss.
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This article is organized as follows. In Section 2, we review the fundamental building blocks of
quantum circuits along with the two broad classes of quantum circuit dynamics that we study, and
we outline some basic physical properties of the circuits. Section 3 focuses on the first class, quan-
tum circuits with local unitary gates. We review a universal description of entanglement growth
in this setting and elucidate the structure of correlation functions. We then explore circuits with
additional structure beyond locality and unitarity, such as charge-conserving circuits with a hy-
drodynamic mode, and Floquet circuits with discrete time-translation symmetry. In Section 4,
we explore a novel class of open quantum systems that are monitored by an observer who makes
repeated measurements. We describe hybrid quantum circuits with both unitary gates and mea-
surements, and a phase transition, driven by measurements, in the entanglement structure of the
quantum trajectories. We explore properties of the phases and phase transitions in such circuits
and also discuss the role of additional structure such as discrete or continuous symmetries. Sec-
tion 5 discusses some experimental implications, and Section 6 is a brief outlook of open questions
and future possible directions.

2. MODELS AND MOTIVATION

We start this section with a pedagogical introduction to the essential building blocks of a quantum
circuit at the level of one or two qubits, to develop some intuition for the effect of these ingredients
on correlations in a quantum many-body system.We also introduce basis-independent measures
of quantum correlations, the entanglement entropy and the bipartite mutual information, which
we use throughout this review. Then we define the 1+1-dimensional unitary (Section 2.3) and
monitored (Section 2.4) circuits that we consider. In Sections 2.5 and 2.6, we briefly sketch what
these circuits can be used to study and some of the structures allowing analytic calculations.

2.1. Circuit Building Blocks and Quantum Entanglement

Throughout this review,we study d-dimensional quantummany-body systems composed of qubits
(or more generally, q-level systems qudits) that are arranged in a spatially local fashion. The
discrete time evolution of such a quantum many-body system through the application of local op-
erations defines a quantum circuit. We restrict our attention to (a) quantum gates acting on a few
nearby qubits and, in the second part of this review, also (b) local projective measurements. Quan-
tum gates are unitary transformations acting on the qubits. Projective measurements are observa-
tions that leave the measured degrees of freedom in an eigenstate of the measured operator.Mea-
surements are inherently stochastic: Identical measurements performed on multiple copies of the
same wave function can yield different outcomes, which are distributed according to Born’s rule.

We make extensive use of the entanglement entropy (or rather entropies) to quantify correla-
tions in quantum states evolving under these ingredients. Consider a quantum many-body system
composed of N qubits and described by a wave function |9⟩, which is bipartitioned into a subset
of spins A, with Hilbert space dimension DA, and its complement Ā, with Hilbert space dimen-
sionDĀ. The entanglement entropy is a measure of the entanglement between A and Ā and also a
basis-independent measure of the correlations between these regions. It can be expressed in terms
of the reduced density matrix ρA, which encodes all expectation values of operators solely within
region A. This is given by tracing over the complementary subsystem Ā: ρA ≡ TrĀ |9⟩ ⟨9|. The
eigenvalues {λi} of ρA are nonnegative and sum to unity,

∑
iλi = 1, and as we recall below, the num-

ber of nonzero eigenvalues is also the number of terms required to write |9⟩ as a superposition of
unentangled (product) states.

The von Neumann entanglement entropy is defined as

SA ≡ −Tr (ρA ln ρA ) . 1.
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We often consider the nth Rényi entropy S(n)
A ≡ ln

(
TrρnA

)
/(1− n) as another measure of quantum

entanglement, with the von Neumann entropy given by the limit n→ 1.
The entanglement entropy can also be used to define a basis-independent measure of correla-

tions between subsystems A and B whose union is not necessarily the entire system. This quantity,
the mutual information, is defined as

IAB = SA + SB − SA∪B. 2.

The Rényi and von Neumann entropies enjoy a number of important properties:

1. S(n)
A is insensitive to unitary transformations that act separately within A or Ā, such as local

changes of basis in the quantum many-body system, because these leave the eigenvalues of
the reduced density matrix unchanged.

2. 0 ≤ S(n)
A ≤ lnD, where D = min(DA,DĀ ). S

(n)
A is zero if subsystem A is pure and may be

described by a single wave function ρA = |ϕ⟩⟨ϕ| and is maximized if the reduced density
matrix for the smaller of the two subsystems is ID/D, where ID is the D × D identity matrix
(in this case we say that this subsystem is in a maximally mixed state). In the former case, we
say that the two subsystems are disentangled.

3. Writing ρA =
∑

i pi|ϕi⟩⟨ϕi| as a probabilistic mixture of orthonormal pure states (see be-
low), with probabilities pi = λi, the von Neumann entropy SA = −

∑
i pi ln pi is the classical

Shannon entropy of this distribution.

The von Neumann entropy is often preferred to other Rényi entropies as a measure of entan-
glement because it satisfies additional properties, such as subadditivity, strong subadditivity, and
concavity, which are natural if we wish to give SA an information-theoretic interpretation (40).1

Heuristically, the entanglement entropy between complementary sets of spins A and Ā
quantifies (the logarithm of ) the number of terms required to write the pure state |ψ⟩ as a su-
perposition of product states between A and Ā. Formally, |ψ⟩ may be written in the Schmidt
form |ψ⟩ =∑

i

√
λi |ϕi⟩A |χi⟩Ā, where |ϕi⟩A and |χi⟩Ā are orthonormal sets of states in the two sub-

systems, and i runs over at most min(DA,DĀ ) values. The distinct Rényi entropies correspond to
distinct counts of the Schmidt values that discount smaller values of λi to a greater or lesser extent.

A key point is that low-entanglement states can be expressed (or approximated) by keeping
a number of Schmidt states that is much smaller than D. A generalization of this idea to matrix
product states (MPSs) for 1D chains means that there is a direct relationship between the entan-
glement of a 1D quantum state and the cost of storing it as an MPS (94). Related ideas apply also
to matrix product operator (MPO) representations of quantum operators.

2.2. Quantum Gates and Measurements: A Two-Qubit Example

To illustrate the effect of the basic building blocks of quantum circuits (quantum gates and mea-
surements) on a quantum state and its entanglement, we consider examples involving only one or
two qubits.

Starting with a single qubit, recall that any Hermitian operator acting on the qubit may be
written as a linear combination of the three Pauli matrices and the identity operator,

X =
[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
, I =

[
1 0
0 1

]
, 3.

1Subadditivity means that if a region A is decomposed into regions A1 and A2, then SA ≤ SA1 + SA2 . Heuris-
tically, there is less “uncertainty” in ρA than in the combination of reduced states ρA1 and ρA2 , because these
are fully determined by ρA (93).
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in the form O =∑
S∈{I,X ,Y ,Z} cSS = cII + cXX + cYY + cZZ, where the coefficients in this expan-

sion are given by cS = 1
2Tr(SO), with the trace taken over the 2D Hilbert space of the qubit. A

unitary acting on the qubit can be written as u = exp(−i∑S∈{I,X ,Y ,Z} hSS ), where the coefficients
hS are real. For a pair of qubits, any Hermitian operator O may be written as a sum of tensor
products of these operators acting on the two qubits. (We write X1 = X � I, etc.)

Consider dynamics of a single spin that interleaves unitary gates and measurements. If the
spin is in a pure state, this state is a point on the Bloch sphere, defined by the polarization vector
(⟨X⟩, ⟨Y⟩, ⟨Z⟩). Unitary transformations rotate the state on the Bloch sphere. A measurement,
say of Z, causes a stochastic jump to the North or the South Pole, depending on the random
measurement outcome (see below for an example in the two-qubit setting). As a result of this
randomness, an arbitrary sequence of unitaries and measurements gives a kind of random walk on
the Bloch sphere.

For a single spin, all points on the Bloch sphere are equivalent (in the absence of a preferred
local basis). But once we have more than one spin, we can distinguish wave functions according
to their entanglement. As an illustration, consider a simple process of generation and destruction
of entanglement with two qubits. Begin with a state in which both spins are aligned in the Pauli
X basis |ψ⟩ = | →→⟩, so that X1|ψ⟩ = |ψ⟩ and X2|ψ⟩ = |ψ⟩, where Xi denotes the Pauli operator
X acting on the ith qubit. This state is disentangled because it may be written as a tensor product
of the wave function of each spin. We now apply the “controlled–Z” gate acting on both qubits,
CZ ≡ exp[i π4 (1− Z1 )(1− Z2 )], so that the new wave function of the two-spin system is

|ϕ⟩ ≡ CZ |ψ⟩ = 1
2

[
|→→⟩ + |→←⟩ + |←→⟩ − |←←⟩

]
, 4.

where |←⟩ is an eigenstate of the PauliX operator withX|←⟩ =−|←⟩. It is easily checked that the
reduced densitymatrix for either spin is nowmaximallymixed,ρ1,2 = I/2, so that the entanglement
entropy for each spin is ln 2.

For most of this review, we discuss generic local unitary gates. The CZ unitary gate that we
applied above is in fact nongeneric in two ways. First, it is diagonal in the Pauli Z basis and there-
fore cannot generate quantum entanglement when acting on product states in this basis. A generic
two-qubit quantum gate produces entanglement when acting on any product state of the qubits
(though not in general maximal entanglement). The second property is that CZ is a Clifford gate,
meaning that it has a simple action on Pauli matrices as we illustrate below. Although the generic
gates that we discuss do not have this special property, we describe it here briefly because circuits
made of Clifford gates have the important property of being classically simulable (Section 3.3.4).

The initial state |ψ⟩ was stabilized by (invariant under) the Pauli operators X1 and X2. An
equivalent way to specify the evolved state |ϕ⟩ is via the evolution of these operators under the
action of the gate, which is given by CZX1CZ† = X1Z2 and CZX2CZ† = Z1X2. These evolved
stabilizers uniquely specify the two-qubit wave function, because they satisfy

X1Z2 |ϕ⟩ = |ϕ⟩ Z1X2 |ϕ⟩ = |ϕ⟩. 5.

Here, the Clifford property of CZ has ensured that the evolved stabilizers are simple products
of Pauli operators. In contrast, a generic quantum gate evolves a Pauli operator into a sum of
products of Pauli operators, as we discuss in Section 3.2.

Finally, a projective measurement of a spin disentangles the measured spin. Starting from
the entangled state |ϕ⟩, a measurement of X1 yields the outcomes X1 = ±1 with the respective
probabilities

p± = ⟨ϕ|P± |ϕ⟩ = 1
2
, P± ≡ 1± X1

2
, 6.

340 Fisher et al.



CO14CH15_Vijay ARjats.cls February 17, 2023 10:32

Figure 1

A space–time diagram of the two classes of quantum circuits considered in this review, with either (a) a brickwork structure of two-site
unitary gates or (b) unitary gates interspersed with local projective measurements. A pure-state trajectory corresponding to a particular
sequence of measurement outcomes is shown, though the inherently probabilistic nature of the measurement outcomes could yield
other trajectories, which are shown schematically in panel b.

according to Born’s rule. After an observation of the outcome X1 = +1, the subsequent wave
function of the two-qubit system will be given by

|ϕ+⟩ ≡ P+ |ϕ⟩√
p+
= 1√

2
[|→→⟩ + |→←⟩] = |→↑⟩, 7.

where Z|↑⟩ = |↑⟩, so that the two qubits are now completely disentangled. Similarly, an obser-
vation of the outcome X1 = −1 would have yielded the state |ϕ−⟩ = |←↓⟩. As a result, after the
observation of any one outcome of the measurement, the two-qubit system remains in a pure
state in which the constituent qubits are disentangled from each other. In contrast, the statistical
mixture of pure states obtained by averaging over both measurement outcomes with their Born
probabilities,

ρ = 1
2
|ϕ+⟩ ⟨ϕ+| + 1

2
|ϕ−⟩ ⟨ϕ−| 8.

—which could describe the density matrix of the two-qubit system after an appropriate unitary
interaction with an external bath—is a mixed state with entropy−Trρlog ρ = ln 2, and the reduced
state of each spin is maximally mixed owing to the uncertainty in the measurement outcomes.

2.3. Brickwork Random Unitary Circuit

We now turn to unitary dynamics for a chain of L qubits. In the traditional many-body setting,
the starting point would be a Hamiltonian specifying evolution in continuous time. Quantum
circuits (used extensively in quantum information; 40) abstract away from this and instead specify
evolution in discrete time t ∈ Z. For each time step there is a unitary evolution operator Ut =
U(t; t − 1), under which a pure state (in the 2L-dimensional many-body Hilbert space) evolves as
|ψ(t)⟩ = Ut|ψ(t − 1)⟩.Ut is taken to be a tensor product of local unitary gates that act on pairs of
spins, with the alternating structure shown in Figure 1:

U (t; 0) =Ut . . .U2U1, 9.

Uτ =
{
⊗x∈odd bonds uτ ,x if τ is odd,
⊗x∈even bonds uτ ,x if τ is even.

10.
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We have labeled bonds of the lattice by integers x. We leave the boundary conditions unspecified
for now. Here, uτ ,x is a local gate, acting on the 4 × 4 Hilbert space for a pair of spins, which is
applied (in time step τ ) to the two spins connected by bond x.

Figure 1a can be thought of in several ways. First, it is a space–time diagram specifying which
local interactions are switched on during which time steps. Second, it is also a tensor network,
specifying how to build the full many-body unitary U(t; 0) from four-legged tensors uτ ,x by con-
tracting spin indices on all of the bonds. This contraction means summing over ↑ and ↓ on each
bond (if we use, say, the Z basis). Performing this contraction, with the spin indices at the top and
bottom of the circuit fixed to {a1. . . aL} and {b1. . . bL}, respectively, yields the amplitude ⟨a1. . . aL|
U(t; 0)|b1. . . bL⟩ to propagate between given initial and final states. Physically, the index sums make
up the sum over Feynman histories of the spin chain, so, with appropriate boundary conditions at
the initial and final times, a final way of viewing the circuit is as a discrete real-time path integral.

The model generalizes immediately to the case in which the local degrees of freedom are
“quqits” with local Hilbert space dimension q ≥ 2, and the local gates lie in the unitary group
U(q2). We start with minimally structured circuits, in which every local gate ux,τ is drawn ran-
domly and independently of all the others from the uniform distribution on the unitary group
U(q2). This uniform (Haar) distribution is defined by the invariance of all averages involving the
random unitary ux,τ under both left and right unitary rotations, ux,τ → vux,τw, for any choices of
U(q2) matrices v and w. We discuss these averages (95, 96) in Section 3.

Random circuits can be used to model many kinds of dynamical process, and in many situations
we choose to imposemore structure or symmetry than that in themodel above. (We note that even
the minimal brickwork circuit above possesses one basic structure, which is spatial locality of the
interactions—all-to-all-coupled circuits, in which spatial locality is relaxed, are natural in quantum
information, and as toy models for black holes (23, 97–99), and we also touch on them later in the
monitored setting.) In Sections 3.3.1 and 3.3.2, we review the incorporation of global symmetries
(100, 101) or time-translation symmetry (102, 103) into the random circuit. Alternative choices
are also possible for the distribution of unitaries or for the geometry of the circuit (in Section 3.1.2,
we consider the case in which the regular brickwork of Figure 1 is replaced with a random space–
time structure). For the moment, however, we view the dynamics in a given realization of the
circuit—i.e., with particular choices of the random gates uτ ,x—as an example of a chaotic quantum
evolution and compare it with more conventional nonintegrable many-body systems.

The circuit has no conservation laws (not even energy conservation). But the usual lore of local
equilibration still applies. Under the evolution, an arbitrary initial state (pure or mixed) eventually
equilibrates locally to the Gibbs state (2). As there are no conserved quantities here, this is simply
the featureless infinite temperature state (104–106), whose entropy density seq = ln q is set by the
local Hilbert space dimension. The reduced density matrix of a subregion of a pure state obtains
this entropy in the form of entanglement with the rest of the system, as we review in Section 3.1.

There is no notion of a ground state or of elementary excitations above a ground state. Indeed,
because the circuit does not even have a discrete time-translation symmetry (except on average),
the eigenstates of U(t; 0) are time dependent and unlikely to be a useful starting point for com-
puting observables. This is quite different from standard many-body systems (e.g., Fermi liquids)
at asymptotically low temperature, when elementary excitations become long lived and provide a
useful description of the dynamics. But the random circuits in Equation 9 (and more structured
extensions of them) have proven to be useful models for various phenomena in nonintegrable dy-
namics at higher temperature, when the relevant timescales are much longer than the timescale
for nonintegrable scattering of quasiparticles (so that quasiparticles stop being a useful language).
We discuss what we can hope to study using these models in Sections 2.5 and 3.
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2.4. Measurements and Trajectories

We now review some points about measurements that reappear when we discuss monitored cir-
cuits in Section 4. Measurements affect the state, and if the number of local measurements is
extensive in the space–time volume, they fundamentally alter the dynamics (Section 4). The cir-
cuit is a simple setting for studying how this happens and for exploring how we should define
dynamical phases and dynamical universality classes in monitored many-body systems. A basic
concept is the quantum trajectory.

Imagine that an experimentalist makes a sequence of M ≥ 1 local measurements, at various
locations and times, during the circuit evolution of a pure state |ψ⟩. For concreteness, let these
be projective measurements of individual spins in the σz basis. If spin i is measured, the state
undergoes the stochastic evolution,

|ψ⟩ →
{
Pi↑ |ψ⟩ /√pi↑ with probability pi↑ = ⟨ψ |Pi↑|ψ⟩
Pi↓ |ψ⟩ /√pi↓ with probability pi↓ = ⟨ψ |Pi↓|ψ⟩,

(Born’s rule), where Pim projects spin i onto Zi = m.
In a given run of this experiment, the experimentalist obtains a random sequence m =

(m1, . . . , mM) of measurement outcomes, with mα =↑, ↓. Note that this stochasticity should not
be confused with the randomness in the unitaries. For example, we can imagine that the sequence
of unitaries {ux,t} has been fixed in advance, and the experiment is repeated several times using the
same unitaries. Distinct runs still yield distinct m in general.

A given measurement record m, and the associated evolving state |ψm(t)⟩, defines a trajectory,
as shown schematically in Figure 1. Note that, so long as our imagined experimentalist keeps a
record of the measurement outcomes m, the measurement events do not introduce any classical
uncertainty about the state—it remains pure. This is unlike the interaction of an open system
with a bath, where information loss to the bath forces us to work with a mixed state. [But there
are formal connections between the two settings (107–109) that we discuss in Section 4.1.1.]

Another basic point is that the repeated measurements do not simply read out a preexisting
unitary dynamics: They yield a new dynamics, which is a kind of random walk through Hilbert
space. If our system was only a single spin, this would be a trajectory on the Bloch sphere, with
measurements causing quantum jumps (107–112) to the North or South Pole (Section 2.2). In the
many-body case, the problem is richer, because having local degrees of freedommeans that not all
points in Hilbert space are equivalent: States can be distinguished by their entanglement structure
and their complexity. A local measurement disentangles spin i from all of the others. This effect
competes with the spreading of correlations by the unitaries, leading to a phase transition that we
review in Section 4 (53, 54, 59).

We focus on the case in which the measurements occur at a finite rate per degree of freedom. A
simple choice is to let each spin be measured with probability p in a given time step, i.e., to scatter
measurement events through space–time with probability p. This gives us a tuning parameter p
for the strength of monitoring.

Let us formalize the monitored evolution over a time interval [0, t] as a circuit. Without mea-
surements, we would have a unitary circuit U = U(t; 0). With measurements, we can define a
nonunitary circuit, Km, for any given sequence of outcomes m. This circuit is obtained from
U by introducing projection operators, on bonds of the tensor network, at the space–time lo-
cations of the measurements. Repeatedly applying Born’s rule shows that the probability of a
trajectorym is pm =

⟨
ψ (0)

∣∣K†
mKm

∣∣ψ (0)
⟩
, and the final state is

∣∣ψm(t )
⟩ = Km

∣∣ψ (0)
⟩
/
√
pm. It is also

enlightening to study the evolution of mixed states (62): The outcome sequencem has probability
pm = TrKmρ(0)K†

m and gives the final state ρm(t ) = Kmρ(0)K†
m/pm.
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This measurement process may appear abstract. But it is a step into a rich landscape of mon-
itored many-body quantum systems, with a wide range of different phases and phase transitions
that are beginning to be explored (53, 58, 60, 61, 67, 70, 72–75, 78, 82–88, 113). The model also
reveals a phase transition in the computational complexity, for a classical computer, of simulating
various kinds of open or monitored quantum dynamics. Finally, it may be a toy model for certain
processes in quantum information processing or encoding (57, 62, 114–117). We discuss these
topics further in Section 4.

2.5. What Can We Hope to Do with These Models?

One use of the 1+1D circuits without measurements is as tractable models for nonequilibrium
dynamics, thermalization, and entanglement generation in local many-body systems (17, 50, 51,
118–121). All-to-all random circuits (in which there is no notion of distance and any qubit can
interact with any other) have also been used as models for scrambling in black holes (23, 97–99).
In these contexts, randomness is a tool to promote solvability. Studying a specific nonintegrable
model is hard. But in the random circuit it is often possible to obtain exact results for averages over
the ensemble (or for typical instances). This is in the general spirit of other uses of randomness
such as RMT [122; or even coding theory (123), or more recent models like the Sachdev–Ye–
Kitaev model (124, 125)].

Even in the absence of conservation laws (so that there are no hydrodynamic slow modes)
there are long-timescale dynamics associated with the spreading of quantum information that can
be studied using the minimal random circuits above. Having a solvable model may allow us to
identify coarse-grained structures that govern a broader universality class of systems.We describe
examples of emergent structures in the following sections. The solvable setting also gives hints as
to how to do quantitative computations in more realistic models.

If the additional symmetry of time-translation invariance is added to the circuits (102, 126),
then traditional diagnostics of quantum chaos, using the eigenvalue spectrum of the time evolution
operator, may be studied (Section 3.3.2). Conservation laws can be added, in order to explore
the emergence of hydrodynamics (100, 101). The circuit architecture also allows structures that
are not available with a fixed Hamiltonian: One can, for example, impose a duality between the
space and time directions (127; Section 3.3.3) or restrict the set of allowed unitary gates so that
the dynamics is classically simulable (D. Gottesman, unpublished; Section 3.3.4).

The circuits are a natural setting for adding further ingredients to the dynamics, potentially in-
fluenced by ideas from quantum computing or noisy intermediate-scale quantum devices.There is
a lot of space to explore between traditional models of many-body systems (which are left to evolve
with a fixed Hamiltonian) and the highly structured evolutions, with unitaries and measurements,
relevant to quantum information. Random circuits are also important in quantum information as
ingredients of proofs or algorithms (128) and for benchmarking (nonrandom) quantum circuits
(129, 130). Because sampling the output of a sufficiently deep, random quantum circuit is believed
to be prohibitively difficult for a classical computer (131), an ensemble of random circuits has re-
cently been implemented experimentally in an attempt to demonstrate quantum supremacy (132),
leading to further interest in the complexity-theoretic aspects of random circuit dynamics (129,
131, 133).

2.6. Quantum-Classical Mappings

A theme of the following is mappings between real-time quantum dynamics and effective classical
statistical mechanics models. In simple limits (e.g., large local Hilbert space dimension q), some
observables reduce to classical geometrical properties of the circuit (related, for example, to its
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minimal cut structure or its light cone structure, as we discuss in later sections) and these limits
already give some insight. But it is possible to relate the discrete path integral defined by the circuit
U = U(t; 0) to effective classical ensembles much more generally.

More precisely, most physical observables are expressed as multisheet path integrals (20,
134, 135), or rather multilayer circuits. Even simple expectation values such as ⟨O(t )⟩ =⟨
ψ (0)

∣∣U (t, 0)†OU (t, 0)
∣∣ψ (0)

⟩
involve the circuit and its complex conjugate: These can be repre-

sented with a doubled circuit in which U and U∗ form two stacked layers. Entropies are nonlinear
in the density matrix and require larger numbers of layers. A key feature of the random circuits
is that these multilayer circuits simplify—only a drastically reduced set of space–time configura-
tions survive averaging, and in simple cases the resulting configuration sum can be mapped to an
effective classical partition function.

We touch on two structures. First, for small numbers of layers, circuit averages can be mapped
to classical Markov processes (50, 51, 100, 118–120, 136–138), describing the incoherent (de-
phased) evolution of quantum operators (Sections 3.2 and 3.3.1). Second, for a general number
of layers, it is possible to make a mapping to an effective classical lattice magnet, for degrees of
freedom labeling pairings between layers of the circuit (Sections 3.1.3 and 4.1.2). A key role is
played by domain walls in these effective magnets (50, 55, 56, 102, 103, 121, 139–143). In (1+1)-
dimensions these domain walls are paths, and many basic calculations of entropies and correlators
reduce to simple random walk problems. We also touch on how to generalize these ideas beyond
random circuits.

3. UNITARY CIRCUIT DYNAMICS

In this section, we focus on local unitary dynamics, starting with the minimally structured case
before moving on to circuits with additional symmetries or invariance properties: hydrodynamic
modes (Section 3.3.1), time-translation symmetry (Section 3.3.2), space–time rotation symmetry
(Section 3.3.3), or classical simulability (Section 3.3.3).

A useful way to quantify correlations in the minimally structured models of Section 2.3 is with
entanglement entropies of spatial regions (and mutual information between them), because these
information-theoretic quantities can be formulated without reference to any structure except lo-
cality.We start with the entanglement,which is useful for understanding the spreading of quantum
information on large length scales, before discussingmore conventional local correlation functions
(Section 3.2). At the same time, we introduce some of the key structures underlying the analytical
tractability of the circuits.

A basic point is that locality of the gates imposes a bound on the speed at which any information
can spread (144). The geometry of the circuit immediately implies an upper bound of unity for
this speed, but the characteristic “butterfly velocity” vB (145, 146) for spreading of operators is
typically below this geometric bound (Section 3.2). Similarly, the structure of the circuit imposes
a bound on entanglement growth that is discussed in Section 3.1.2.

3.1. The Entanglement Membrane and the Pairing Order Parameter

Unitary evolution generically transforms weakly entangled pure states, which are atypical in
Hilbert space (147–149), into volume-law states (12, 17, 19, 22, 150, 151). This entangling process
underlies pure state thermalization and sets limits on the power of MPS and MPO simulation
algorithms (94).

The entangling process is also a simple setting for introducing a basic structure underlying var-
ious calculations in random circuits, random Floquet circuits, and themonitored circuits discussed
later in this review, which involves an order parameter for pairing between Feynman trajectories
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in a path integral for multiple forward and backward paths (50, 52, 55, 56, 103). We discuss this
in Section 3.1.3.

We start by sketching the continuum picture for entanglement production that arises from the
lattice calculations (which we discuss subsequently). Random circuits lead to a coarse-grained de-
scription in which a cost is assigned to surfaces in space–time (17, 151). This theory has a broader
application to chaotic systems (52, 103, 152), including holographic field theories in which remark-
ably explicit computations are possible (152, 153). It is also possible to discuss the entanglement
of operators, as opposed to states, but we stick here to the example of entanglement generation in
a state.

3.1.1. Membrane picture. Consider the growth of von Neumann entanglement entropy SA(t)
of a spatial region A in an infinite d-dimensional system, after quenching from a product state.
We take A to have a finite boundary area (this includes the case of a semi-infinite region in one
dimension).

For generic local dynamics, entanglement is initially—i.e., on timescales that are small com-
pared to the size of the region, though large compared to microscopic timescales—generated at a
rate proportional to the area of the boundary of A (12, 20, 22, 136). If A is finite, then at asymp-
totically late times the thermalization of the reduced density matrix ρA implies that SA(t) saturates
to the thermal entropy: SA(∞) = seq|A|, where |A| is the volume of A.

In the membrane picture (and at leading order when length and timescales are large), SA is
given by minimizing an effective free energy, or entanglement cost, for a membrane. This mem-
brane is a d-dimensional surface lying within the d + 1-dimensional space–time slab t′ � [0, t]. At
the final time (top) surface t′ = t, this membrane is anchored to the boundary �A between region
A and its complement Ā, and the membrane separates these two regions of the top surface, in
the sense that any path from one to the other, passing through the bulk of the space–time, must
intersect the membrane. At least for small enough t, the membrane spans the full time interval
[0, t], so it has an effective free energy that grows with t. At early times this cost is proportional
to |�A| × t, so that the initial growth of SA is linear in t. This linear-in-time growth reflects the
generation of correlations over a ballistically growing length scale (12, 19, 22). If A is finite, then
at some time, proportional to the linear size of A, there is a discontinuous transition to an opti-
mal membrane configuration that closes off in the bulk, whose cost equals the late-time entropy
SA(∞) = seq|A|.

The key quantity that we need to know to perform this minimization is a model-dependent
“membrane tension” E (v). This tension depends on the local slope of the membrane with re-
spect to the time axis, which can be parameterized with a velocity v. E (v) is highly constrained by
causality and unitarity (note, for example, that we must reproduce the correct late-time entropy.)

The simplest case is the entanglement Sy(t) of a semi-infinite region (−∞, y] in an infinite 1D
chain. The membrane is then a trajectory xt ′ for t′ � [0, t], with xt = y, whereas x0 is free. For a
class of initial states,

Sy(t ) = seq min
[∫ t

0
dt ′E (ẋ)+ Sx0(0)

]
, 11.

where the minimization is over trajectories respecting the final-time boundary condition xt = y,
and seq is the equilibrium entropy density (ln q in the random circuit). This may also be written
as

∂tSy = seq 0
(
∂ySy

)
, 12.

where the entanglement production rate 0 is a Legendre transform of E .2

2We have assumed the dynamics to be homogeneous after coarse-graining as in the circuits discussed in Sec-
tion 2.3 and below.Otherwise, E and 0 may have explicit dependence on space or time: An example is a system
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Figure 2

Minimal cuts for (a) unitary dynamics with geometric randomness in the applied quantum gates and (b) monitored dynamics, with
randomly applied single-site projective measurements, which are discussed in Section 4. In panel b, the locations of the projective
measurements are indicated by bonds with an x, which do not contribute to the cost of a minimal cut. In both kinds of dynamics,
subpanel i shows the minimal cut corresponding to the growing entanglement of a subsystem,Whereas subpanel ii shows the cut
corresponding to the saturated entanglement of a finite subregion. In the unitary case, the minimal cut may be taken to be strictly
“causal” in the sense defined in Section 3.1.2. The transverse wandering of the minimal cut relative to its fixed endpoint(s) is governed
by the wandering exponent ζ = 2/3 of the directed polymer in a random environment (DPRE), as indicated in the relevant panels,
which is connected with universal fluctuations of the entanglement growth (see Section 3.1.2) as well as universal subleading
corrections to the entanglement entropy in the volume-law phase of the monitored dynamics (see Section 4.1.2).

For a parity-symmetric system E (v) is a convex function with its minimum at v = 0, so for a
product state quench the optimal path is straight and vertical (ẋ = 0).By definition,E (0) = vE gives
the entanglement growth rate in this setting: Sy(t) = seqvEt. The line tension E (v) also contains
information about the operator spreading velocity vB discussed in Section 3.2, though this is in
general distinct from vE: We may argue via causality that E (vB ) = vB and E ′(vB ) = 1 (151).

3.1.2. Minimal cut. The simplest version of the membrane appears in the limit q→∞, where
it can be related to the idea of a minimal cut. The minimal cut is a way of bounding entanglement
in any tensor network (157–161). We temporarily exchange the brickwork circuit of Section 2.3
for one with a random space–time structure: Gates are applied to bonds at random times, in a
Poisson fashion, at the rate of 1 per bond. The reason for this is mentioned below. A diagram of
the resulting circuit is shown in Figure 2a.

When q→∞, the entanglement Sy/seq is given exactly by the cost of a minimal directed cut
through this randomnetwork (17; seeFigure 2a).This cut ismade through the bonds of the tensor
network, and its cost is equal to the number of bonds cut. The cut separates the spin indices in A
(at the final time boundary) from those in Ā.

The cut is the solution to a nontrivial random optimization problem, so its exact cost depends
on the circuit realization. Nevertheless, it has a well-defined deterministic line tension at large
scales, telling us how many bonds we need to cut, per unit time, in order to bisect the circuit
at a given angle. This is E (v) = 1

2 (1+ v2 ) for |v| ≤ 1, and E (v) = |v| for |v| ≥ 1. As a result,
the entanglement growth rate in the quench from the product state is vE = E (0) = 1/2. The
operator spreading speed may be argued to be vB = 1 at large q (this is related to the average
growth rate of the light cone that appears in Figure 2a, subpanel ii), so the constraints above,

with spatial “weak links” (154). In general, E will also depend on any hydrodynamic densities that are present
and on a thermodynamic entropy current if conservation laws allow one (153, 155, 156).
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E (vB ) = vB and E ′(vB ) = 1, are satisfied. The entanglement production rate 0 in Equation 12 is
0(s) = 1

2 [1− (s/seq )2], so that �tS is largest when �xS is zero.
The line tension E (v) sets the leading, deterministic growth of Sy(t) at large t. This picture

also reveals subleading structure arising from randomness in the circuit. At the moment, this ran-
domness is the geometrical randomness in the circuit, but we see below that randomness in the
unitaries has a similar effect, even in the geometrically regular brickwork circuit, when q is finite.

Finding the optimal cut is a version of the directed polymer in a random environment (DPRE)
problem, with nontrivial critical exponents (162, 163). In the quench from the product state,
Sy(t) has the Kardar–Parisi–Zhang (KPZ) scaling Sy(t) = seq(vEt + bt1/3χ y,t). The exponent 1/3
of the subleading term is universal. χ y,t is a random variable, of order 1 size, that depends on the
realization (164–166).

These fluctuations may also be understood in the language of Equation 12, which, after in-
cluding subleading terms, including noise, and expanding 0 to quadratic order, becomes the KPZ
stochastic equation for the entropy profile Sy(t).

The minimal cut also describes the saturation of the entanglement entropy of a finite region
at late times. In (1+1)-dimensions, the entanglement of a region of finite width ℓ (in an infinite
system) grows until a time tÆ = ℓ/2vE, at which point the entanglement of the region reaches its
maximum value Sℓ(t > tÆ) = seqℓ. At times t < tÆ, the minimal cut for Sℓ(t) consists of two curves,
one for each endpoint of the region, which are vertical (oriented in the time direction). At times
t > tÆ, the minimal cut consists of a single curve connecting the two endpoints of the region that
intersects ℓ bonds of the circuit. This curve is not unique, but it can be chosen to be oriented
along the light cone of the quantum circuit as in Figure 2a. In the formalism of Section 3.1.3, the
analogous membrane has a definite coarse-grained V shape, made up of two segments that travel
at speed ±vB.

The minimal cut is an exact description of the entanglement entropy only when q =∞. How-
ever, many aspects of the phenomenology survive at finite q. Next, we discuss a more generic
approach to deriving the membrane.

3.1.3. The pairing order parameter. The Rényi entropies are examples of observables that
can be expressed in terms of multilayer circuits, built by stacking copies of U(t) and U(t)∗ and
attaching appropriate boundary conditions to the initial and final-time bonds: The nth Rényi
entropy involves n copies each of U(t) and U(t)∗, as discussed below for the example of S2.

Formally, such a stack describes unitary evolution going on in parallel in several copies of the
spin chain. This evolution may be formulated in terms of Feynman trajectories for each copy (the
sum over trajectories is equivalent to the contraction of the tensor network; see Section 2.3). A key
quantity in this setting is an order parameter labeling pairing between Feynman trajectories (50–
52, 103, 121, 142). Heuristically, phase cancellation is avoided if the trajectory for each forward
[i.e., U(t)] layer is locally similar to that for a paired backward [i.e., U(t)∗] layer, and there are
several ways to choose the pattern of pairing. This intuition can be made precise in the brickwork
circuit of Section 2.3.

The Rényi entropies are nonlinear functions of the density matrix; e.g., the second Rényi
entropy S2A is given by (Section 2.1)

exp[−S2A(t )] = TrA ρA(t )2, with ρA(t ) = TrB ρ(t ). 13.

Again, consider a quench from a product state. As a tensor network, the evolving state |ψ(t)⟩
is expressed using a single copy of the circuit (with product states attached to the bonds at the
bottom, and the bonds at the top being the wave function’s spin indices). The density matrix
ρ(t) = |ψ(t)⟩⟨ψ(t)| involves the bra and the ket, so it can be represented as a two-layer circuit,
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Figure 3

Performing an average over the Haar measure, for each local unitary gate in the brickwork quantum circuit, transforms TrρA(t)2 into
the partition function of a type of 2D classical Ising model, with a single Ising spin for each two-site quantum gate.

where the bra layer is complex conjugated. The quantity Tr ρA(t )2, known as the purity of region
A, is thus a four-layer circuit, with two backward (complex conjugated) and two forward layers. As
a result of the traces in Equation 13, these layers are sewn together at the final time boundary in
the manner shown in Figure 3. This is a discrete version of a path integral with two backward and
two forward trajectories. Let us label the forward layers 1 and 2 and the backward layers 1̄ and 2̄.

This structure describes time evolution going on in parallel in four “universes,” one for each
copy of the circuit. Correspondingly, there is now in total a q4-dimensional Hilbert space associ-
ated with each spatial position, and each physical gate yields a replicated gate u � u∗ � u � u∗ in
the multilayer circuit, where u∗ is complex-conjugated in the computational basis. However, if we
consider the average over random unitaries, Tr ρA(t )2, there is a remarkable simplification. The
average can be performed separately for each local gate u because these are independently ran-
dom. (In the following, we are schematic; see (50, 52) for more careful exposition of the effective
lattice model.)

For simplicity, consider a single-site rather than a two-site gate (this does not change the basic
point). The Haar average of u � u∗ � u � u∗ is a projection operator onto the subspace of the
q4-dimensional Hilbert space that is invariant under u � u∗ � u � u∗ for every u (167). This is
spanned by only two states, denoted ||+⟩⟩ and ||−⟩⟩. Schematically,

u⊗ u∗ ⊗ u⊗ u∗ = P+ + P− =
∑

σ=±Pσ . 14.

This decomposition involves nonorthogonal projectors onto ||+⟩⟩ and ||−⟩⟩.
The states ||+⟩⟩ and ||−⟩⟩ have a simple physical interpretation. Formally, they are obtained by

pairing up the four layers in one of two possible ways illustrated below, and forming a maximally
entangled state for each pair, in the following pattern:

15.

The states in Equation 15 generalize the simpler version for just two copies that we denote ||1⟩⟩
as

16.
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In components, 1ab = δab, and analogously for the states in Equation 15 with more layers. The
invariance (u⊗ u∗ ) ||1⟩⟩ = ||1⟩⟩ is easily checked to be a restatement of the unitarity of u.

The above is for a single gate acting on one site: When we perform a similar average over all
the gates in the circuit, we project the dynamics into the space spanned by locally paired states,
with the local choice of pairing possibly varying throughout space. In the language of Feynman
trajectories, paired trajectories survive the average because the layers within a pair contribute equal
and opposite phases to the path integral.

Concretely, Equation 14 means we can trade the unitary average for a sum over an Ising-like
degree of freedom σ = ±. Doing this for every gate in the brickwork circuit of Figure 3 maps
TrA ρA(t )2 to the partition function of a 2D classical Ising-like model, with one Ising spin for
each physical gate. The Boltzmann weight of this Ising model, for a given σ configuration, is
obtained by contracting a tensor network made up of two-site projection operators, which yields
local interactions for the σ spins. These interactions are anisotropic and encode hard constraints
on the spin configuration that ensure observables are consistent with the underlying unitarity of
the dynamics. For example, as we proceed downward, it is impossible to nucleate a domain of −
inside a uniform domain of +, and vice-versa.

Generalizations of these pairing of degrees of freedom are important for random unitary cir-
cuits (50, 121), random tensor networks (RTNs; 139, 141), random Floquet circuits (103), and
monitored circuits (55, 56, 58, 88) and can even be defined in nonrandom circuits (52). Here, the
structure imposed by unitarity radically simplifies the resulting Ising model. In the present setting,
taking A and Ā to be the two semi-infinite halves of the chain, e−S2A becomes a partition function
for Ising configurations with a single directed domain wall, as illustrated in Figure 3. This do-
main wall is reminiscent of the minimal cut discussed above, but in addition to an energy it has a
nontrivial entropy associated with thermal fluctuations in the effective model. If q→∞, then the
energy term dominates, and this reproduces the minimal cut result. For q <∞, both energy and
entropy contribute to a coarse-grained line tension E (v) that can be easily computed.3

The averaged purity is only a starting point. First, in the random circuit, we would really like to
compute S2A rather than e−S2A , because the exponential average can be dominated by rare realiza-
tions. Second, we would like to use the structure above as a guide to calculations in more general
models, perhaps without randomness.

In the random case, S2A can be obtained by extending the above calculation using the replica
trick (121) that also plays an important role in RTNs (141). Here, we give another viewpoint (52),
which also extends to circuits without any randomness.

Consider a particular circuit instance—e.g., a particular realization of the random unitaries.
Then, for a given gate u in the circuit, we may write the tautology,

u⊗ u∗ ⊗ u⊗ u∗ = P+ + P− + Ru⊥. 17.

Comparing to Equation 14, Ru⊥ is a remainder left over when u � u∗ � u � u∗ is projected to
the nonpaired subspace. Using this representation for every gate, e−S2A is formally equal to the
partition function of a generalized Ising model in which the spins take values +,−, ¥. (The spin
configurations are again constrained as a result of the underlying unitarity.)

3Note that in the brickwork circuit the shape of the minimal cut is highly degenerate. This is why we instead
used the randomly structured circuit to discuss the q = ∞ limit. The degeneracy in the brickwork circuit
corresponds to E (v) becoming a trivial v-independent constant (for |v| < 1) in the limit q→ ∞. However,
once q is finite,E (v) is nontrivial, so the degeneracy is resolved for the coarse-grained entanglementmembrane.
Dual-unitary circuits are a class of systems in which E (v) is flat even at finite q (52, 168).
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The weights of configuration with only + and − are the same as before, but local clusters
of ¥ spins have a nontrivial weight that depends on the local unitaries. At first sight this looks
complicated, but a simple picture is recovered after coarse-graining. We still have a domain wall
between + and −, but it is dressed on microscopic scales by insertions of ¥ along its length. This
is particularly simple at large but finite q, when ¥ spins can be shown to be very dilute. They can
be explicitly integrated out, giving a renormalization (of order q−2) of the local domain wall cost.

This renormalization has two effects. First, it slightly renormalizes themembrane tension E (v):
This reflects the difference between averaging S2 and averaging its exponential. Second, it means
that the local cost of the domain wall varies from place to place in the random circuit because
Ru⊥ in Equation 17 depends on the local random gate. This amounts to a random local potential
for the polymer. Although the microscopic picture is rather different from the minimal-cut-in-a-
random-environment in Section 3.1.2, we obtain the same universal physics at large length scales:
S2A maps to the free energy of a DPRE with its characteristic exponents.4

We may also consider the case in which the circuit is translationally invariant. Equation 17
allows a nonrandom system to be treated by a kind of perturbation theory around the random
circuit result, taking into account successively larger clusters of ¥ (52). This is a way to derive the
membrane beyond the random circuit context.

The pairing structure in Equations 14 and 15 generalizes to an arbitrary number of layers
and can be used to discuss the entanglement entropies with integer Rényi index n > 1 (or higher
moments of the purity, as required for the replica trick) and many other quantities.

In the general case with N layers each of U(t) and U(t)∗, the spin σ labeling different patterns
of pairing becomes an element of the permutation group, σ � SN (121, 139, 141). The effective
statistical mechanics problem has a symmetry that is in general (52, 121, 141, 169)

GN ≡ (SN × SN )⋊ Z2, 18.

where the two copies of SN (acting as σ → gFσg
−1
B for gF � SN, gB � SN) arise from symmetry under

permutations of the forward and backward layers, respectively, and the Z2 generator is associated
with exchange of forward with backward layers and acts as σ → σ−1.

Domain walls have an interesting combinatorial structure for N > 2: Each domain wall is
labeled by a permutation group element, and domain walls can split and recombine in accordance
with the rules for composing permutations (88, 103, 121, 141).5 We return to these domain walls
in Section 4.1.2.

Let us comment on the special case of the von Neumann entropy. In the approach sketched
around Equation 17, the entanglementmembrane has a clear meaning—as a domain wall in a well-
defined degree of freedom σ—for the Rényi entropies Sn with n > 1. The von Neumann entropy
S1 is more subtle, and in the current approach must be treated via an analytic continuation (e.g., of
Sn for n > 1). Because this continuation is difficult, and because S1 has a special status among the
Rényi entropies,6 it would be desirable to have a more direct construction of the entanglement

4The minimal cut problem is a zero temperature problem involving only energy minimization, whereas the
domain wall above is effectively at finite temperature. However, temperature is an irrelevant perturbation for
the DPRE, so this difference does not change the basic exponents.
5TheN-dependent domain wall structure means that distinct Rényi entropies have distinct line tensions En(v)
in general. At late times, it also explains the Page subleading correction to SnA in the case in which A contains
half the total number L of qubits, SnA = seq(L/2)− (n− 1)−1lnCn, where Cn is the nth Catalan number: In the
domain wall picture, lnCn is an entropic factor from counting the number of energetically equivalent domain
wall configurations.
6For example, the higher Rényi entropies can fail to be the most natural measures for entanglement in some
settings, such as many models with conservation laws (170–174), where Sn > 1 grows parametrically slower
than S1.
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membrane for S1. Apart from the limit of infinite qmentioned above, direct calculations of the von
Neumann entropy have so far been possible only for circuits with special structure such as dual
unitarity (168; Section 3.3.3) or Clifford (17, 51; Section 3.3.4). Exact computations of the von
Neumann entropy are possible in a completely different kind of large N limit, using holography
and the Hubeny–Ryu–Takayanagi (HRT) prescription for entanglement, in terms of a surface in a
higher-dimensional Anti–de Sitter space (22, 27, 150, 175). In the appropriate scaling limit, these
results are consistent with the membrane picture above (152, 153).

3.2. Spreading and Decay of Correlations

The evolution of local observables also exhibits universal structure, for example in the decay of
correlations and in the process of scrambling, where information that is initially stored locally
becomes delocalized (176–178). Circuits give an intuitive picture for these processes in terms of
Feynman trajectories of operators O(t ).

For an L-site spin-1/2 system evolved by the quantum circuit U(t) = UtUt − 1ÅÅÅU1, define the
evolution of a local Pauli operatorO(r, 0) asO(r, t ) =U (t )O(r, 0)U (t )†—for convenience, we use
the reverse of the usual Heisenberg picture convention here. Scrambling requires the increase in
complexity and spatial extent ofO(r, t ) with time: If, say, information is initially stored in the eigen-
value σ of the local operator,O(r, 0) |ψ⟩ = σ |ψ⟩, then at later times this information is stored via
the evolved operator,O(r, t )|ψ (t )⟩ = σ |ψ (t )⟩, which has become delocalized in its support.

This operator may be expanded as a superposition of strings S, each of which is a product of
Pauli matrices at distinct lattice sites, so that (13, 24)

O(r, t ) =
∑
S

aS (t )S. 19.

The string operators satisfy Tr(SS ′ ) = δSS ′ (the trace Tr is normalized so Tr1 = 1) and the Pauli
operator O obeys Tr[O(r, t )2] = 1. Therefore, the coefficients satisfy∑

S

aS (t )2 = 1, 20.

so that aS (t ) may be viewed as the amplitudes for an evolving, quantummechanical “operator wave
function” in a 4L-dimensional Hilbert space (each site can be 1—i.e., not part of the string—or X,
Y, or Z; 50, 51).

The evolutionO(r, t + 1) =Ut+1O(r, t )U †
t+1 is a linear, unitary evolution of this operator wave

function, aS (t + 1) =∑
S ′WSS ′ (t )aS ′ (t ), with the matrixWSS ′ (t ) ≡ Tr(Ut+1 SU †

t+1S ′ ). This oper-
ator dynamics simplifies for the circuit composed of Haar random unitary gates ux,t (Section 2.3).
In that case, taking the Haar average over the gates ux,t gives

WRR′ (t ) WSS ′ (t ) = δR,S δR′ ,S ′ TSS ′ (t ). 21.

The transfer matrix TSS ′ (t ) defines a Markov process on the space of basis operators, with local
updates of the strings and string probabilities a2S (50, 51, 118, 119, 136, 137):

aS (t + 1)2 =
∑
S ′
TSS ′ (t )aS ′ (t )2. 22.

For the initially local operator, this process can be mapped to a classical cluster growth process
with an effective stochastic dynamics for the boundaries of the operator (50, 51). The initial string
is supported on one site, e.g.,O(r, 0) = Zr . This site forms the seed for a cluster of Pauli operators
that grows with time (in order to exploit the entropy of the cluster in the classical model). The
boundaries undergo their own effective stochastic dynamics, which in (1+1)-dimensions is just
biased diffusion.
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Figure 4

The typical support of an initially local operator grows ballistically under Heisenberg evolution by a
minimally structured unitary quantum circuit, whereas (a) the width of the operator’s front broadens
diffusively in (1+1)-dimensions. Atypical operator Feynman trajectories contribute to time-ordered
correlations of local observables. (b,c) Two different classes of atypical trajectories can provide dominant
contributions to the mean-squared correlator.

In (1+1)-dimensions, the two boundaries of the cluster move outward ballistically with butter-
fly velocities,±vB; in the limit that the on-site Hilbert space dimension q→∞, vB approaches the
maximum (light cone) speed v = 1 of the quantum circuit, whereas vB < 1 when q is finite (e.g., for
spin-1/2 degrees of freedom). The growth of an initially local operator can be measured with the
out-of-time-order correlation (OTOC) function − 1

2Tr([O(r, t ),O(0, 0)]2 ) that saturates to 1 for
|r| ≲ vBt and is exponentially small for |r| − vBt k 1. The OTOC has been used to diagnose the
scrambling of locally accessible quantum information (176–178), and its growth in time provides
signatures of key properties of quantum many-body systems, including their chaotic (135, 179–
181), disordered (154, 182–187), or integrable (188–191) nature. OTOCs have been addressed in
a range of experiments (113, 192–195).

In (1+1)-dimensions, the Markov process on strings simplifies substantially, giving rise to a
Markov process for the left and right endpoints of an operator string, which perform biased
random walks. Their stochastic fluctuations set the scale on which the plateau in the OTOC is
rounded, so that the edge of the operator broadens diffusively as t1/2 in (1+1)-dimensions. In
(d+1)-dimensions with d > 1, operator growth is governed by a Markov process for a
d-dimensional cluster. In the simplest case, the stochastic growth of the edge of this cluster is in the
universality class of the KPZ equation for a (d−1)-dimensional interface, which grows ballistically
and broadens in time as tβ , where β = 1/3 in d = 2 spatial dimensions (163).

In (1+1)-dimensions, typical operator trajectories look like Figure 4a. By contrast, time-
ordered correlators such as G(r, t ) ≡ Tr[O(r, t )O(0, 0)] are determined by atypical operator
trajectories and look quite different (196). Instead of growing ballistically, the string is small at
the final time as in Figure 4b,c. The nonvanishing average G(r, t )2 defines a sum over space–time
paths taken by the operator endpoints, which start at the origin and end at position r at time t.
The atypical trajectories of the endpoints that are required by these boundary conditions give rise
to exponential relaxation, G(vt, t )2 ∼ exp[−r(v)t], as expected for a model without slow modes.
Physically, this demonstrates that local degrees of freedom are decohered on an order-1 timescale
by the other degrees of freedom, which act as a bath.

However, there is nontrivial structure in the decay rate r(v) (196). In the 1+1D Haar circuit,
the dominant contribution to the correlation function changes from trajectories of the endpoints,
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which are (a) bound together when v > vB to (b) unbound when v < vB. This unbinding phase
transition may be detected in a nonanalyticity of the decay rate r(v) as a function of velocity.

The fact that correlators are dominated by operator trajectories that aremore spatially compact
than the support of operator is generic. It can also be observed in dual-unitary circuits (197), and it
implies that numerical evaluation of such correlators using theHeisenberg picture ismore efficient
than ballistic operator growth would suggest (198, 199).

3.3. Structured Unitary Circuits

The preceding sections illustrate how minimally structured random circuits help to uncover uni-
versal properties of quantum dynamics that follow from unitarity and locality alone. However,
many physically relevant models (such as time-independent Hamiltonians) have additional struc-
tures that must enter a universal description of the dynamics, for instance, hydrodynamic modes
associated with conserved densities.We now discuss examples of more structured quantum circuits
that nevertheless retain analytic tractability.

3.3.1. Circuits with continuous symmetries. Random circuits can be enriched with continu-
ous global symmetries; for instance, they can be constrained to obey a U(1) conservation law for
total charge. Khemani et al. (100) and Rakovszky et al. (101) studied such a model and obtained
an emergent classical description of slow diffusive modes associated with the conserved densities.
These slow modes lead to power-law hydrodynamic late-time tails in both time-ordered and out-
of-time-ordered correlators. In addition, Khemani et al. (100) described the interplay between the
slowmodes and the other (fast) degrees of freedom to furnish a microscopic derivation of how (re-
versible) unitary dynamics can give rise to diffusive (dissipative) hydrodynamics. This addresses a
long-standing question in quantum statistical mechanics, namely of reconciling hydrodynamics—
which is a dissipative classical theory for a few coarse-grained degrees of freedom—with linear,
unitary quantum time evolution on an exponentially large Hilbert space.

Quantum circuits, by definition, are discrete time evolutions and, hence, cannot conserve en-
ergy that requires continuous time-translation symmetry. Instead, the system can be made to
conserve a total charge, for instance, total Sztot =

∑
i Zi. Each gate conserves Sz locally and, so,

has a block-diagonal structure, with each block (acting within a particular charge sector) being
an independent Haar random unitary. The conservation law induces nonlinearities in the equa-
tions for the weights a2S (the analog of Equation 22) but analytical tractability is retained in a type
of large-q limit, in which each site hosts both the qubit whose z component is conserved and an
unconstrained large-q degree of freedom (100).

A local charge density operator at the origin, Z0(t ) =
∑

S aS (t )S, can again be expanded in
a basis of Pauli operators. In addition to the normalization constraint (Equation 20) on the 4L

weights aS (t )2, the conservation of Sztot requires normalization of the L amplitudes of the local
conserved densities, Zi, in the operator expansion of Z0(t):∑

i

aZi (t ) = 1, 23.

which follows from Tr[Z0(t )Sztot] =
∑

i aZi (t ) = Tr[Z0Sztot] = 1. After Haar averaging, the effect of
a gate acting on sites x and x + 1 is to spread charge uniformly between these sites7:

aZx (t + 1) = aZx+1 (t + 1) = aZx (t )+ aZx+1 (t )
2

. 24.

7Note that the amplitudes of conserved densities survive Haar averaging in a U(1) symmetric system, whereas
only the weights survive averaging in a Haar random circuit with no symmetries.
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Figure 5

The spreading of the local charge density Z0(t) by a quantum circuit that conserves Sztot ≡
∑

i Zi is shown
schematically in panel a. As described in Section 3.3.1, the region of support of this operator grows
ballistically while retaining a weight on a diffusive lump of conserved charges near the origin. A Floquet
circuit composed of Haar random unitary gates is shown in panel b. Averaging over this ensemble in the
calculation of the spectral form factor leads to a pairing degree of freedom for each unitary gate in a Floquet
period, which simplifies in the limit of large local Hilbert space dimension q→∞, as described in
Section 3.3.2. One of the possible pairings in this limit is indicated by the dashed lines in panel b.

Upon coarse-graining, Equation 24 becomes a diffusion equation for the conserved quantity aZi ,
with diffusion constant D = 1/2. This implies that the relaxation of the conserved density is
diffusive, as expected:

Tr[Z0(t )Zx] = aZx (t ) =
1√
2πt

e−
x2
2t .

The total operator weight
∑

S a
2
S = wc + wnc may be decomposed into a part wc supported

on the U(1) conserved densities Zx, and a part wnc supported on more general strings, with wc +
wnc = 1. Although the sum of conserved amplitudes is constant, the weight wc on the densities
decreases as a power law: wc(t ) = 1

2
√
πt . This is due to local conversion of conserved to noncon-

served operators, at a rate proportional to the square of the local conserved current. The emitted
nonconserved parts then grow at the butterfly speed, as before. This process can be described via
coupled hydrodynamic equations (100).

The spreading operator has a characteristic shape that can be detected with the OTOC. The
front remains ballistic, but the slow conversion of conserved to nonconserved operators leads to
a diffusing lump of local conserved charges near the origin, as shown schematically in Figure 5a,
and also to power-law tails behind the front: These are due to lagging fronts of nonconserved
operators that are emitted at later times during the operator’s evolution.

Physically, the emission of long strings allows physical observers to see a decay of correlations
and an increase in observable entropy even though, by unitarity, the von Neumann entropy of
the full system remains unchanged. This is really a decay of correlations detectable with simple
operators, due to the hiding of correlations in highly nonlocal operators.

The case of U(1) symmetric diffusive circuits has been generalized to more exotic variants.
For instance, higher-dimensional circuits with subsystem symmetries acting on lower-dimensional
submanifolds can lead to anomalous subdiffusive dynamics (200). A separate line of work studied
fractonic circuits that conserve both a U(1) charge,Q=∑

x qx, and its dipole moment,P=∑
x xqx

(201–205), or even highermultipolemoments (206).This is found to lead to a novel form of ergod-
icity breaking via the shattering of Hilbert space into exponentially many dynamically decoupled
sectors, with no dynamical path even between states with the same charge and dipole quantum
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numbers (203, 204)—which is a surprising result in light of the conventional belief that ergodicity
breaking requires extensively many conservation laws, as in integrable systems.

Before leaving this section, we comment briefly on implications of results derived for noisy
(random in time) quantum circuits for deterministic dynamics. The broad features discussed here,
for instance, regarding the behavior of OTOCs and entanglement in systems with and without
conservation laws, have numerically been verified to also hold more generally for deterministic
dynamics generated by thermalizing time-independent Hamiltonians or time-periodic Floquet
circuits. [A caveat is that in the presence of conservation laws, the higher Rényi entropies can
be anomalously affected by rare events in which the local charge is highly depleted, so that they
grow and spread more slowly than the von Neumann entropy (170–174).] One heuristic picture
is that thermalizing systems can act as their own bath and generate a noisy environment for
subsystems (207). Alternately, as discussed in Section 3.1.3, the effective degrees of freedom that
can be identified microscopically in the random circuit also emerge after coarse-graining in more
general models.

3.3.2. Floquet circuits. An important class of structured circuits possesses discrete time-
translation symmetry. If in the brickwork circuit (Section 2.3) the first two layers of gates are
repeated periodically, then U(2t; 0) = W t, where the evolution operator for one period is W =
U2U1. Any initial state can be expanded in the eigenbasis ofW, so that the spectrum ofW plays a
similar role to that of a time-independent Hamiltonian for continuous time evolution.

A large class of chaotic many-body Floquet systems without conservation laws thermalize to in-
finite temperature, like the fully random circuits discussed in Section 2.3. Although we focus here
on chaotic Floquet dynamics, it should be noted that randomFloquet circuits can also exhibitMBL
(102, 208–212). In particular, Reference 208 emphasized the quantum circuit language, construct-
ing a random Floquet circuit of Clifford gates (Section 3.3.4) that showed a solvable localization
transition, related to classical percolation of spatial puddles. For localized Floquet dynamics, the
system can avoid thermalizing to infinite temperature, allowing for novel dynamical phases such
as the Floquet time crystal phase, which spontaneously breaks discrete time-translation symmetry
(213, 214), and in two dimensions the anomalous Floquet insulator, with protected chiral edge
modes (215–217).

We turn now to a headline result in the study of chaotic Floquet quantum circuits, which is a
demonstration of the randommatrix spectral statistics that are often taken as a practical definition
of quantum chaos. There is a plethora of numerical evidence that spectral correlations in chaotic
many-body systems are universally described by RMT (1, 218), but an explicit derivation away
from a semiclassical single-particle limit has been a longstanding open problem. This has been
achieved in both Haar random brickwork Floquet circuits in the limit of large local Hilbert space
dimension q (below; 102, 103)—see also Reference 126 in a slightly different setting—and in cer-
tain dual-unitary Floquet circuits with no large parameters (219–221; see Section 3.3.3). Themes
discussed in previous sections, including the pairing of Feynman trajectories and the mapping of
circuits to effective classical statistical models, feature centrally in both results.

Within RMT, a standard probe of correlations between the eigenvalues {eiθn } of W is the
spectral form factor (SFF), which is defined as

K (t ) = ∣∣TrW t
∣∣2 =∑

m,n

ei(θn−θm )t . 25.

If W is a Haar random unitary acting on the full Hilbert space of L qudits, each with Hilbert
space dimension q, then the SFF averaged over this ensemble is KHaar(t ) = t for 1 ≤ t ≤ qL. This
linear growth (ramp) in the SFF characterizes the level repulsion between pairs of eigenvalues
across the entire eigenspectrum within RMT (222). Generalizations of the SFF (Equation 25)
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have also been introduced in order to uncover the precise sense in which RMT can describe the
far-from-equilibrium dynamics of a quantum many-body system (223, 224).

Turning to the case in which W describes a quantum circuit composed of local unitary gates,
K(t) becomes a two-layer circuit with periodic boundary conditions in the time direction and can
be written as a double sum over periodic Feynman trajectories, one in each layer. Terms in which
the forward and backward trajectories are equal up to a time translation are special, in that their
phases cancel and they give a positive contribution to the sum.Heuristically, the behavior K (t ) = t
arises from the fact that there are t ways in which the forward trajectory can be translated with
respect to the backward trajectory. Pairings of trajectories that are not related by a time translation
can contribute any phase to the SFF, and within a given Floquet dynamics, the large number of
such pairings can combine to provide a contribution to the SFF that is of the same order as the
ramp. As a result, the SFF is not a self-averaging quantity (225). Averaging the SFF over a time
window, or over an appropriate ensemble of Floquet dynamics, is required in order to eliminate
these contributions.

This understanding can be made concrete in random Floquet circuits in (1+1)-dimensions
(102, 103, 226). Averaging over the Haar random gates in this setting gives a sum over diagrams
involving pairings between the layers. In general these may be extremely complicated, but in the
limit q→∞ there is a great simplification. The diagrams can be represented as pairings between
the gates of the forward and backward layer, and only t diagrams survive (102, 103), which are
labeled by a time shift s � {0, . . . , t − 1}: A given unitary ux,τ in the forward layer is paired with
u∗x,τ+s in the backward layer. An example of such a pairing is shown in Figure 5b. For a fixed system
size L and at sufficiently long times, the pairing degrees of freedom for each Haar random unitary
gate inW are forced to be identical (103, 226, 227). Summation over the t possible choices recovers
the RMT behavior K (t ) = t.

A modified q→∞ model contains nontrivial finite-time corrections to the SFF (102). In this
model, the SFF maps to the partition sum for a 1D, classical t-state Potts model, where the Potts
degrees of freedom label a spatially varying, local choice of pairing (102).8 A disordered regime
of the Potts model (with domain walls between Potts states) arises at sufficiently short times t <
tTh, where tTh ∼ logL was termed a Thouless time. For t k tTh, the Potts model is ordered and
reproduces the ramp behavior expected from RMT.

3.3.3. Dual-unitary circuits. Dual-unitary circuits (127, 219, 228) are built up of certain classes
of special two-site unitary gates that look unitary in both space-like and time-like directions. A
two-qudit gate U o1o2

i1 i2
(unitarily mapping two inputs i1,2 to two outputs o1,2 according to arrow of

time t), could alternatively be viewed sideways, according to a rotated arrow of time t̃, mapping
input qubit states i1, o1 to output states i2, o2 as in Figure 6a. The resulting map, Ũ i2o2

i1o1
—called

the “spacetime-dual” or “spacetime-flipped” version of U—is in general not unitary (a fact that
is exploited in Section 4.2.1). However, circuits built from a special class of dual-unitary gates,
for which the space–time dual is unitary (Figure 6b), have come to exemplify a form of maximal
chaos. Various properties such as emergence of RMT spectral correlations in the SFF (220); the
dynamics of state and operator entanglement (228–233); unequal time correlation functions, both
time-ordered and out-of-time-ordered (127, 197); and the eigenstate thermalization hypothesis
(234, 235), etc., can be derived in such systems without any approximation and with no small
parameters.

A remarkable property of these circuits is their double causal structure. Unitarity and the lo-
cality of the gates forbid correlations between points displaced by a space–time vector (x, t) if

8Potts symmetry is an artifact of q→∞. In general, the symmetry is that of a clock model.
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Figure 6

A generic unitary gate acting in the time direction (a) can be viewed as a nonunitary transformation acting in
the spatial direction. A restricted class of dual-unitary gates act unitarily in both the space and time
directions, as shown schematically in panel b (see Section 3.3.3). Generic unitary circuits give rise to a
nonunitary evolution in the spatial direction (c), which can be thought of as unitary evolution interspersed
with postselected measurement outcomes. This gives rise to a protocol outline in panel d for overcoming the
postselection problem inherent in studying the entanglement properties of monitored pure-states, as
discussed in Sections 4 and 4.2.1.

|x| > |t|, i.e., if the two points lie outside each other’s (past or future) light cone. By the same
token, however, dual unitarity rules out correlations if |t| > |x|, so that nonzero correlations are
only possible on the ray |x| = |t|. This case with two arrows of time can be expanded to cases with
more arrows of time (236), which may allow for more exotic analytically tractable dynamics.9

As discussed in Section 3.1.3, unitarity implies a simple action of the multilayer circuit on
paired states.Dual unitarity implies that this also holds for the flipped evolution, and this property
underlies much of the tractability of dual-unitary circuits. Writing the SFF in terms of a transfer
matrix for spatial propagation, its unitarity implies the existence of t unit eigenvalues representing
paired states (in this case the pairing is between a single U layer and a single U∗ layer, with an
arbitrary time shift in the pairing analogous to that discussed above). After averaging over an
ensemble of chaotic dual-unitary circuits, these eigenvalues dominate in the limitL→∞,meaning
that in these models there is no longThouless time and the RMT result holds for finite t as L→∞
(127).The spatial transfer matrix has been investigated in more general settings in References 207,
211, 226 and 241–243.

3.3.4. Classically simulable circuits. We now consider special classes of quantum circuits that
are efficiently simulable on classical computers, with simulation times scaling only polynomially,
rather than exponentially, with the number of qubits. Clifford circuits, or stabilizer circuits, play
an important role in quantum information theory. Clifford circuits are composed of a restricted

9We note that tensors with any even number of legs that are unitary under any bipartitioning of the legs
(which includes dual-unitary gates as a subset) were introduced in Reference 237 as “block-perfect tensors”
in the context of holographic quantum error correcting codes, in Reference 238 as “perfect tangles” for mod-
ular tensor categories, and in Reference 239 as “planar maximally entangled states.” See Reference 240 for
discussion of construction of dual-unitary gates.
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set of quantum gates with the property that a Pauli string is mapped under Heisenberg evolution
onto another Pauli string, rather than a superposition of such strings. As a result, only a single
coefficient aS(t) is nonzero at each time in the expansion of the time-evolved Pauli operator in
Equation 19, and the operator entanglement entropy remains zero for all times.10 Clifford gates
form a discrete subgroup of the unitary group on qudits with prime dimension q ≥ 2. Here, we
restrict our attention to Clifford circuits on qubits (q = 2).

The Clifford property gives an efficient way of storing a class of states (244, 245; D.Gottesman,
unpublished). A stabilizer state |ψS⟩ on L qubits is defined by L-independent and commuting Pauli
string operators, the stabilizers {S1,S2 · · ·SL}, under which the state is invariant: Si|ψS⟩ = |ψS⟩.11
At any later time, |ψS(t)⟩ is specified by the time-evolved stabilizersSi(t ) =U (t )SiU (t )†.EachSi(t )
operator is a product of Pauli operators on at most L sites. Specifying the wave function through
the stabilizers {Si(t )} is efficient, requiring onlyO(L2) bits of information to store, even if the wave
function is highly entangled; this is in contrast to the O[exp (L)] cost of storing a generic, highly-
entangled state.12 It also allows expectation values and projective measurements of Pauli string
operators to be efficiently implemented and entanglement entropies to be efficiently computed
(the Rényi entropies Sn are n-independent for stabilizer states).

Random unitary Clifford evolution of an initial product stabilizer state leads to ballistic growth
of entanglement entropy, as in the Haar circuit. In (1+1)-dimensions this can be understood in
terms of the growth of the stabilizer strings Si(t ) (17). The choice of stabilizers is not unique
(because if S and S ′ are stabilizers, so is SS ′), and the need to impose a convenient gauge turns
the evolution of the stabilizers (and their spatial footprints) into a collective stochastic process,
which has analogies to the asymmetric exclusion process for hopping particles on the line.

The time evolution operator for a Clifford circuit belongs to the Clifford group, which is a
discrete subgroup of the unitary group on the full Hilbert space. This group may be generated
by a small set of local Clifford gates: the two-site CNOT gate and the single-site Hadamard and
Phase gates:

CNOT = ei
π
4 (1−Z1 )(1−X2 ), H = (X + Z)/

√
2, P =

√
Z. 26.

Any multiqubit Clifford operation may be written as a product of these gates. Random Clifford
circuits can be built by drawing ux,τ from the set of one and two qubit Clifford gates (or from the
set of generators). The Clifford gates do not form a universal gate set (i.e., there exist unitary gates
that cannot be performed with Clifford operations).However, the Clifford group augmented with
any gate outside of the Clifford group forms a universal gate set (40); augmenting with a single-site
phase shift gate, T = Z1/4, is sufficient, for example.

Despite their nonuniversal nature, Clifford circuits have proven to be very useful for efficiently
simulating certain aspects of quantum dynamics. As an example, even though operator evolution is
very special under Clifford dynamics, averaging over the ensemble of uniformly random Clifford
circuits can exactly reproduce Haar averages for certain quantities such as OTOCs and right/left
endpoint densities of spreading operators (50, 51). This follows from the fact that the Clifford
group forms a unitary three-design (246, 247) and, hence, exactly reproduces averages involving
the first three moments of the unitary group. By contrast, fluctuations of these quantities within a
realization look very different between the two classes of circuits.There are other systems in which

10The operator entanglement entropy is computed by treating operators as states in a doubled Hilbert space,
for instance, O =∑

ab Oab|a⟩⟨b| →
∑

ab Oab|a⟩ � |b⟩.
11A simple example is a polarized state |↑, . . . , ↑⟩, for which we can take Si = Zi.
12The evolution of generic—nonstabilizer—states cannot be efficiently simulated even when the dynamics is
Clifford.
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Clifford dynamics fails to capture the essential aspects of the problem; for example, Clifford cir-
cuits with U(1) symmetry are highly restricted and only show diffusive spreading for all operators,
lacking the interplay between diffusive conserved densities and ballistic operator growth discussed
in Section 3.3.1.

It is worth noting that the Clifford structure relies crucially on discreteness of time. In the
random circuits we started with, discrete time also allowed a key simplification, that of using the
Haar measure for unitaries. However, random dynamics can also be formulated in the continuous
time limit. An example is the Brownian circuit (98, 99, 140, 196, 248, 249): This is a Hamiltonian
spin chain in which the couplings fluctuate like white noise. Operator spreading in continuous-
time noisy models (250) is qualitatively similar to what we have discussed in Section 3.2.

The continuous time limit is also natural for noisy models of free fermions. Gaussianity is
a second important structure that can be imposed on the dynamics and that leads to efficient
simulability.

The quantum symmetric simple exclusion process (251–253) is a model of complex fermions
hopping on the line, with noisy amplitudes, in which many quantities, for example, the moments
of Green’s functions in late-time nonequilibrium states, can be calculated exactly. The simplest
averages map to the classical symmetric exclusion process. However, higher-order moments diag-
nose quantum coherences, with a nontrivial combinatorial structure. It will be interesting to study
the crossover between the free fermion limit and the strongly interacting regime. (In the replica
language, this is the reduction of a continuous to a discrete replica symmetry.)

Finally, automaton circuits are classically simulable circuits obtained by promoting reversible
classical cellular automata to unitary quantum evolutions. In the computational basis of, say, Z
eigenstates {|n⟩}, the action of such a circuit isU |n⟩ = eiθn |π (n)⟩, where π ∈ S2N is a permutation
of the 2N basis states for N qubits. Although the time evolution of computational basis states is
classical, these circuits can generate volume-law entanglement when acting on product states that
are not computational basis states.

Automaton circuits provide a classically tractable setting in which to observe a range of inter-
esting dynamical phenomena. First, under evolution by an automaton circuit (for, say, spin-1/2
degrees of freedom), Pauli operators can evolve into sums of products of Pauli operators, un-
like in Clifford circuits. Nevertheless, the operator wave function evolves according to the same
automaton circuit in a rotated basis (254). As a result, operator growth is classically tractable to
study; out-of-time-ordered correlators in random, local automaton circuits, for example, (254),
have been shown to exhibit growth and broadening of the operator fronts. Automaton circuits
also provide a tractable setting to study subdiffusive hydrodynamics and kinetically constrained
dynamics (173, 254–257), a type ofmeasurement transition (258), and integrability (259–263). Flo-
quet automaton circuits have also been a starting point for constructing fully quantummechanical
Floquet models with exact, nonthermal (scarred) eigenstates (264–266). A notable example is the
integrable, Floquet circuit corresponding to the Rule 54 cellular automaton, which implements a
simple structured dynamics involving conserved left/right moving solitons. This model captures
many features of more complicated integrable systems but permits solutions of various quantities
including nonequilibrium steady states, operator and entanglement spreading, and generalized
hydrodynamics (259–261, 267, 268).

4. MONITORED DYNAMICS

As discussed in Section 3.1, a system of initially unentangled qubits, subjected to generic unitary
gates acting on pairs of qubits, rapidly entangles, and in the long-time steady state has volume-law
entanglement entropy with the maximal entropy density per qubit. At extremely long times, the
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evolving pure state wave function is essentially random—sometimes called a Page state. But when
such a system is monitored with repeated local measurements, this inexorable growth of entangle-
ment is counteracted. Indeed, a single-qubit projective measurement disentangles the measured
qubit. In this section, we consider the hybrid quantum circuits described in Section 2.4, in which
the brickwork of unitaries is decorated with single-site measurements, placed at each space–time
point with probability p. Such a structureless minimal circuit has three types of randomness: in
the two-qubit unitary gates, in the locations of the projective measurements, and (more funda-
mentally) in the intrinsically random outcomes of the measurements, as dictated by the Born
probability.

4.1. Measurement-Induced Entanglement Transition

A pure initial state, |ψ(0)⟩, evolving under a hybrid circuit, defines a set of (normalized) quantum
trajectories, labeled by the measurement outcomes m:

|ψm(t )⟩ = Km|ψ (0)⟩/√pm. 27.

The circuit Km, consisting of unitaries interleaved with projectors, was defined in Section 2.4.
The Born probability pm = ⟨ψ (0)|K†

mKm|ψ (0)⟩ of a trajectory depends on the state, so that the
monitored circuit dynamics is both nonlinear and nonunitary.

The idea of the measurement-induced transition (53, 54, 59) is that there is a qualitative change
in the nature of the typical trajectories in Equation 27 as a function of the measurement rate p.
When measurements are frequent, the stochastically evolving wave function is trapped by the
single-spin projections, within the subspace of area-law states. (The extreme limit of this case is
p= 1, where in each time step every qubit is measured simultaneously, giving a product state.) But
when p is reduced below a threshold pc, |ψ⟩ escapes into the volume-law part of Hilbert space. At
the transition itself, the evolving state has a random but scale-invariant entanglement structure.
Numerical evidence for this transition has by now been found in a wide range of microscopic
models (53–55, 59, 62, 63, 65–71). The efficient simulability of the Clifford circuits allows for
particularly precise results there (Section 4.1.4). The transition is not specific to one dimension,
and we can even consider all-to-all models without spatial locality (Sections 4.1.3 and 4.1.4).

The discrete space–time structure of the circuit lets us access a simple classical limit of the
transition, which gives some intuition for how measurements inhibit the propagation of quantum
correlations through space–time.We reach this classical limit by either taking q→∞ or consider-
ing the somewhat unphysical n→ 0 limit of the Rényi entropy Sn. In these limits, the computation
of entanglement reduces to the minimal cut (Section 3.1.2), and therefore to a classical geometri-
cal problem (53). This limit is nongeneric as far as the critical exponents (and the value of pc) are
concerned (18, 53, 67), but it captures crude features of the transition and phases.

Viewing Km as a tensor network, a projection operator breaks a bond (it is an operator with
trivial rank). For small enough p, enough bonds remain unbroken that the circuit is connected on
large scales. But computing entanglement with the minimal cut, the broken bonds reduce the cut’s
line tension.Therefore the volume-law coefficient seq/ln q in the steady state is reduced from unity
once p > 0. Increasing p, we eventually reach the percolation threshold in which the circuit falls
apart into finite disconnected pieces. Beyond this point, the disconnected structure of the tensor
network representation of |ψ⟩ immediately implies that |ψ⟩ cannot have long-range entanglement
(a point also used in Reference 269). It also means that the line tension, setting the volume-law
coefficient, has a critical vanishing at pclassicalc . At this transition, the entanglement of a subregion
scales logarithmically with subregion size, a consequence of scale invariance.

Below, we discuss the properties of the phases and the critical point further; a schematic phase
diagram along with the scaling of the von Neumann entanglement entropy in these phases and at
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Figure 7

Monitored dynamics in (1+1)-dimensions leads to a phase transition in the entanglement properties of the pure-state trajectories as a
function of the monitoring rate p, as summarized schematically on the left. The scaling of the von Neumann entanglement entropy in
the steady state of the monitored dynamics with subsystem size |A| in the two phases and at the entanglement phase transition is shown
on the right.

the critical point in (1+1)-dimensions is summarized in Figure 7. The area-law phase is relatively
simple: The states are product states dressed with short-range correlations.The volume-law states
at 0 < p < pc are nontrivial, and in particular are qualitatively different in their entanglement
structure from the Page-random states that are obtained at the long time for p = 0 (60, 115).

Indeed, neglecting this important difference would lead to the incorrect conclusion that the
volume-law phase is unstable for arbitrary small p: In a given time step, a regionA suffers an exten-
sive number of measurements (∝|A|), whereas only order |�A| unitaries act across the boundary
of A and so can increase SA. If we assumed that each measurement gave an O(1) decrease in SA—
which would be true for a Page state—we would conclude that measurements always win, and
the volume-law state is unstable. The failure of this argument lies in the fact that the volume-law
states for 0 < p < pc are dissimilar to Page states, in that the change in SA from measuring a qubit
deep inside A is typically very small. This can be seen in the language of the minimal cut or more
generally in terms of entanglement domain walls discussed below (Section 4.1.2).

4.1.1. Coherent trajectories versus dissipative information loss. Under the circuit dy-
namics, the density matrix ρ(0) evolves to ρm(t ) = Kmρ(0)K†

m/pm with probability pm =
Tr(K†

mKmρ(0)). It is important to distinguish the state ρm—which is obtained when givenmeasure-
ment outcomes m have been recorded, and which is a pure state if the initial state is pure—from
the trajectory-averaged mixed state ρ ≡∑

m pmρm. (To avoid confusion, note that here the over-
line denotes averaging over measurements rather than over unitaries, as in previous sections.13)
The latter density matrix would be the appropriate description of the system if there was classical
uncertainty about m—i.e., if instead of measurements (with a known outcome), we had deco-
herence due to interaction with an uncontrolled environment. For the dynamics we consider, ρ
always tends to the trivial, infinite temperature density matrix: The rich structure of correlations
in individual trajectories is washed out.

The entanglement entropy SmA of a subregion A, conditioned on the measurement out-
comes, quantifies its correlations with the outside and is a probe of the transition, as noted
above. This should be distinguished from the thermodynamic entropy of the region, defined as

13We imagine performing this average with the other parameters of the circuit—the choices of unitaries and
measurement locations—held fixed.
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Sth = −Tr ρ̄ ln ρ̄. This tends to the maximal value even in the area-law phase, because of the
additional classical uncertainty (ignorance of the measurement outcomes) implied in using ρ̄.

Similarly, correlators of the form ⟨OO′⟩m = Tr ρmOO′ may be nontrivial. But trajectory-
averaged correlators ⟨OO′⟩m = Tr ρOO′ are trivial at late times because of the triviality of ρ̄.
These statements are consistent because of cancellation between trajectories in which ⟨OO′⟩m
has opposite signs. This means that if we want to detect the transition using averaged correlators,
we need Edwards-Anderson-like (squared) correlators, ⟨OO′⟩2m (or other correlations involving
multiple copies of a single monitored trajectory; 270.) Like the entanglement measures, these are
nonlinear in the density matrix.

To measure these squared-type correlators, pairs of identical quantum trajectories (with the
same measurement outcomes m) are required, which will generally require postselection on
measurement outcomes. This is exponentially costly, requiring a number of runs exponential in
the circuit’s space–time volume (but see Section 4.2.1 below for an alternate type of monitored
dynamics in which this postselection barrier is parametrically improved.).

Above, we viewedm as a record of physical measurements conducted by a hypothetical exper-
imentalist. Quantum trajectories also arise in a quite different setting, as a formal tool for treating
open quantum systems that are in contact with a decohering environment (not monitored). As-
suming we do not have access to the quantum state of the environment, such a system must be
described by a mixed state ρopen(t). In a Markovian approximation for the environment, ρopen(t)
evolves via a quantum channel, ρopen(t) = 8t[ρopen(0)] (40). We can unravel this open system dy-
namics by writing ρopen(t) as an average over pure trajectories. In a simple case (details omitted),
this leads to an ensemble formally equivalent to that discussed above. Mathematically, this is a
rewriting of the channel in terms of Kraus operators Km,

ρopen(t ) =
∑
m

Kmρopen(0)K†
m, 28.

with
∑

m K
†
mKm = 1. In this setting, the trajectories are fictitious, but they may be useful for

simulating the dynamics (107–109, 271, 272). In this setting, the relevance of the measurement
transition is as an easy-to-hard transition for classical simulation of various kinds of quantum pro-
cesses, because the area-law states at p > pc can be efficiently represented using MPSs, whereas
the highly complex volume-law states at p < pc are, a priori, exponentially costly to store and sim-
ulate. In the case with true measurements, we can think of the transition into the hard phase as an
“epistemological phase transition” (58), where the wave function becomes effectively unknowable,
even with access to the measurement outcomes.

4.1.2. Entanglement domain walls and the stability of the volume-law phase. In (1+1)-
dimensions, the universal entanglement properties of the volume-law phase can be quantitatively
described by the classical statistical mechanics of a domain wall that is equivalent to a DPRE (88).
The most dramatic outcome of this correspondence is the presence of a universal subdominant
contribution to the entanglement entropy in the volume-law phase, with SA = s0|A| + b|A|β with
β = 1/3.

The simplest limit of the DPRE is the minimal cut (Figure 2).14 More generally, the result can
be understood using the effective 2D statistical mechanical model for replicated spins σ (defined

14The figure illustrates that in the presence of measurements, the minimal cut is not required to be directed
on the microscopic scale. However, in the phase in which its line tension is nonzero, it is directed on large
scales for energetic reasons. The same is true of the domain walls discussed below.
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on the circuit’s space–time manifold, with one spin for each physical gate) that label patterns of
pairings between the different replicas of the circuit (55, 56). We have discussed these spins in
the unitary context in Section 3.1.3, but the nonunitary nature of the monitored dynamics alters
the effective statistical mechanical model. One point is that the wave function must be explic-
itly renormalized after each measurement when the dynamics is not unitary. More importantly,
nonunitarity relaxes local constraints on the σ configurations that would follow from unitarity. In
particular, the projective measurements can drive a disorder transition for σ (55, 56). We do not
give a detailed exposition of the Boltzmann weights for the effective model here, but summarize
some qualitative features, starting with the volume-law phase, where σ is ordered. In this phase,
the model is best viewed in terms of domain walls that are forced into the 2D space–time manifold
by the boundary conditions required to define the Rényi entropies (recall Figure 3).

Within the volume-law-entangled phase, the entanglement entropy in a subregion A can be
mapped to the free energy cost, FA, of changing the boundary conditions at the final time slice
of the circuit, within the ordered phase of the statistical mechanics model. This analytic descrip-
tion, and the associated replica limit that is necessary to obtain the von Neumann entanglement
entropy, is quantitatively similar to the replicated description of the DPRE and is thus conjec-
tured to describe the same universal physics (88). The line tension of the resulting entanglement
domain wall yields a volume-law scaling of the entanglement, FA = s0|A|, while the subdomi-
nant contribution comes from the universal fluctuations of the DPRE free energy with length,
with exponent β = 1/3. This exponent, believed to be a universal feature of the volume-law
phase in the presence of random unitary operators, is found numerically for the hybrid ran-
dom Clifford circuit. Universal scaling functions governing the saturation of the entanglement
entropy reveal the superdiffusive wandering exponent ζ = 2/3 of the directed polymer. Both
this exponent and the universal scaling functions extracted numerically from the DPRE are in
good agreement with the numerical results obtained from the random hybrid Clifford circuit
(88).

The stability of the volume-law phase against measurements is quantified by considering the
reduction δS(x) in the entanglement of a region A after performing a local measurement a dis-
tance x j |A| away from the boundary (115). Although δS(x) is always an O(1) constant for
a Page state, this quantity decays, on average, as a power law ⟨δS(x)⟩ ∼ x−1 in the volume-law
phase of the monitored circuit with a consistent exponent 1 ≈ 1.25 observed in both the hybrid
Clifford dynamics and the behavior of the corresponding observable in numerical simulations
of the DPRE. With 1 > 1, the total loss of entanglement after a sequence of measurements
∼∫ |A|

0 δS(x) dx is finite for large |A| and can be recovered with the application of the next layer
of unitaries, leading to a stable statistical steady state in the volume-law phase. We note that
the average behavior of δS(x) is dominated by rare events and that the scaling of the disorder-
averaged free energy of the DPRE provides the prediction that a typical realization of the hybrid
dynamics is significantly more robust, with this quantity decaying as a stretched exponential
δS(x) ∼ exp[−const × xβ ].

4.1.3. Mixed state purification transition. The transition between the volume- and area-law
phases can alternatively be understood as a dynamical purification transition (56, 62, 116). For
a maximally mixed initial density matrix, ρ(0) = 1/2L, measurements at rate p > pc are able to
purify the state at a system-size-independent rate (pure phase), whereas for p < pc the purification
time diverges exponentially with the system size (mixed phase). These two phases correspond to
the area- and volume-law phases of the circuit evolving with an initial pure state. In the mixed
phase, at times polynomial in the system size there is a residual nonvanishing entropy density,
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sQ.15 Heuristically, sQL is the amount of quantum information propagated from the initial to the
final time.

This entropy describes a dynamically evolving encoded subspace that is insensitive to future
measurements—quantum information is effectively protected from single qubit measurements.
For the hybrid random Clifford circuit, this corresponds to a stabilizer quantum error correcting
code, denoted as (L, k, d), with L being the number of physical qubits, k being the number of
encoded logical qubits, and d being the code distance—the size of the shortest logical operator.
Because k = sQL is given by the dimension of the encoded subspace, it grows linearly with L, and
the code rate, k/L ̸= 0, is finite for large L. The entanglement domain wall picture can be used to
extract the code distance, which varies as Lβ , coming from disorder fluctuations of the DPRE.The
code rate vanishes upon approaching the pure phase—the purification transition thus corresponds
to a transition in the encodability of the quantum code (57, 62, 115, 116). Although resembling a
quantum error correcting code, because an efficient decoder in the presence of additional qubit
errors is not known and in fact might not exist, these codes are not practical.

The purification picture also lends a natural local order parameter for the measurement tran-
sition (63). The initially maximally mixed state can be viewed as arising from tracing out a set
of reference ancilla qubits that are maximally entangled with the system qubits at t = 0 but do
not directly participate in the dynamics thereafter. The purification transition can then be probed
by measuring the entanglement entropy of the reference qubits—actually one reference qubit
suffices—at times L j t j eL, which is nonzero in the mixed phase but vanishes in the area-law
phase.

Purification is also a useful way to characterize the measurement transition for all-to-all-
coupled systems of qubits, where any qubit can interact with any other (58, 62, 78). For example,
the dynamics could consist of a random sequence of operations, each being (with probability p) a
measurement of a random qubit or (with probability 1− p) a gate applied to a random pair. In this
setting the volume of a subset A of spins scales the same way as its surface area (number of poten-
tial neighbors outside A), so that the volume-law coefficient SA/|A| in a pure state is not a useful
diagnostic. However, the code rate sQ above remains a valid order parameter for the transition.

4.1.4. The critical point. The entanglement transition between the area- and volume-law
phases is a continuous phase transition and can be explored both numerically and, in some in-
stances, analytically. Detailed large-scale numerical simulations are possible on hybrid random
Clifford circuits (with two-site unitaries drawn randomly from the Clifford group and single-
site Pauli measurements) and reveal the existence of a finite critical measurement rate, pc ≈ 0.17
in 1+1-dimensions (113), separating a volume-law entangled phase for p < pc from an area-law
phase when p > pc, as shown in Figure 7. The critical point has a dynamical exponent z = 1 and
in 1+1-dimensions exhibits a conformal symmetry (68, 71). Simulations with Haar random gates
or in general Hamiltonian models are restricted to much smaller sizes but are also consistent with
a continuous transition with z = 1 (67, 68).

When the qubits are extended to qudits, with dimension q→∞, analytic progress is possible,
because as discussed above the phase transition in this limit maps to the problem of a minimal
cut through a percolation configuration (18, 53). The critical exponents are then those of the
nonunitary conformal field theory for percolation.However, the percolation fixed point is unstable

15In the minimal cut/domain wall picture, this is related to the cost of a horizontal domain wall that separates
the initial from the final time (56–58) andwhichmeasures the “entanglement”between the initial and final time
boundaries of the nonunitary circuit. This shows that sQ is also equal to the pure state volume-law coefficient.
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for finite q, and the critical properties are in general analytically intractable, though expected still
to be conformal.

It is natural to ask for a Landau–Ginsburg-like field theory for the measurement transition.
This is closely connected to the problem of formulating a field theory for the entanglement tran-
sition in an RTN (141; an RTN,with virtual bonds in the bulk and physical bonds on the boundary,
can undergo an entanglement phase transition as a function of the distribution of local tensors)
though there is a key difference related to Born’s rule.

At first sight,wemight think that a field theory could be inferred immediately from the effective
lattice magnet,mentioned above, for the degree of freedom σ � SN. This formalism is powerful in
the ordered/entangling phase, where we can work with domain walls, and gives a useful magnetic
analogy for the critical point, but it is more challenging to coarse-grain σ to arrive at a continuum
theory near the critical point. This is because of the need for the replica trick16 (55, 56, 58, 141):
Disorder averages must be handled by analytically continuing the lattice magnet to unphysical
values ofN, where the target space SN for σ collapses to nothing17 (see Reference 18 for a review).

Effective lattice models can be formulated for both the measurement-induced phase transition
(MIPT) and the RTN (55, 56, 141). Each case has the GN layer-permutation symmetry that we
met in Section 3.1.3, but the required replica limits are N → 1 for the MIPT and N → 0 for
the RTN. This difference arises from the fact that averages for the MIPT, unlike the RTN, must
include the Born probability ⟨ψ |K†

mKm |ψ⟩. This factor involves one layer each of the circuit Km

and its conjugate K∗m (see Section 3.1.3), so it increases N by 1.
It is possible to view the models of interest, with GN symmetry, as symmetry-breaking pertur-

bations of a Potts model with Q = N! states (141). This means initially treating all the N! possible
values for σ as equivalent, giving a larger SN! symmetry.18 The Landau–Ginsburg theory for Potts
is well understood (274). However, reducing the symmetry to the physical symmetry, GN � SN!,
introduces an infinite number of relevant perturbations that are not related to each other by GN

symmetry. This means that it is not easy to control the RG flow away from the Potts fixed point.
The basic issue is that σ splits into an infinite number of distinct representations19 of GN, and

one must decide which should be retained as fundamental fields in a Lagrangian (58). An alter-
native approach is motivated by the picture of overlaps between Feynman trajectories discussed
in previous sections. We can introduce an Edwards-Anderson-like matrix order parameter, Xab,
which characterizes the strength of overlap between forward layer a and backward layer b (58).
(Different values of σ correspond to different ordered states for X.) X transforms simply under
GN, and using this one can write putative Landau–Ginsburg Lagrangians L(X ) for the MIPT and
RTN. It remains to be seen whether these conjectured theories describe the physical problems
of interest.

16In Section 3.1.3, we sketched a mapping of S2 to a domain wall free energy that avoided the replica trick.
This used the fact that clusters of “¥” spins were of finite typical size, rather than proliferating in space–time.
This approach continues to hold in the entangled phase in the presence of measurements (58), but not at the
critical point, where the typical size of ¥ clusters diverges.
17For heuristic motivation, recall a simpler use of the replica trick for averages in disordered systems. Let Z be
a partition function for a classical field, ϕ, with random couplings. The averaged free energy may be written as
lnZ = limN→0(ZN − 1)/N . On the right-hand side,ZN is a partition function forN copies of the field, which
we can arrange as a vector ϕ = (ϕ1, . . . , ϕN). The right-hand side requires us to take the limit of the vanishing
number of components.
18In the limits N→ 0 and N→ 1, this becomes a Q = 1 state Potts model (141), which is a representation of
percolation (273). However—confusingly—this percolation fixed point is distinct from the minimal cut limit
discussed above (it does not correspond to a physical limit of the original problem).
19Here, we regard σ as an element of the group algebra; i.e., we allow ourselves to take linear combinations
as is natural if we want to coarse-grain.
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Given these complications, it is natural to look for ways to simplify the transition.One is to get
rid of spatial locality (58, 62, 78). As noted above, there is no meaning to volume law versus area
law in all-to-all models, but purification (the amount of information propagated between initial
and final times) can be used to distinguish the phases.

In the limit q → ∞, the all-to-all model mentioned at the end of Section 4.1.3 maps to a
minimal cut problem in a classical graph with temporal, but not spatial, locality. This is solv-
able essentially by percolation mean-field theory (58, 62). A model with “instantaneous quantum
polynomial time” (275, p. 1415) gates (276) shows another transition, described by mean-field
percolation on a time slice (78).

At finite q, we can try to exploit the space–time geometry of the all-to-all quantum circuit.
This is locally tree-like: The only loops have a size that diverges in the thermodynamic limit (as in
many random graph ensembles; 277). This suggests that the MIPT coincides with the entangle-
ment transition of an ensemble of tree tensor networks (58, 87) with the same local structure. If,
as a simplification, the measurement outcomes in the parent circuit are fixed using postselection
(instead of sampled with Born’s rule), this tree transition is exactly solvable (58; as are a broader
class of entanglement transitions for tree tensor networks). The natural entanglement order pa-
rameter vanishes in a strongly nonmean-field fashion as exp(−c/√p− pc ). These all-to-all models
are perhaps the simplest incarnations of the MIPT and deserve further study.

4.2. Structured Monitored Circuits

There is a rich landscape of monitored dynamics beyond the minimally structured case of ran-
dom two-qubit unitary gates interspersed with single-site measurements. A simple extension is to
consider dynamics with only multisite measurements and no unitary gates. Monitored pure states
in measurement-only dynamics can also display phase transitions between volume- and area-law
scaling of the entanglement entropy (72). This is striking because there are no unitary gates in
these models to compete with the measurements; rather, the scrambling and unscrambling are
inextricably intertwined, and the principle driving the transition is the mutual incompatibility or
frustration of the measurement operators.

A further extension of unstructured, monitored dynamics is to consider symmetry-enriched
monitored dynamics, obtained by restricting the unitary gates and measurements to operations
that respect an on-site global symmetryG (72–74, 278). Such models can still display an entangle-
ment phase transition from area- to volume-law entangled steady state ensembles; however, the
symmetry structure of the replicated statistical mechanical description is enlarged by combining
the circuit symmetry G with the intrinsic dynamical symmetries of the problem (cf. Equation 18).
This permits novel types of dynamical orders that transcend the phase classifications obtained
in the more conventional setting of static (or even Floquet) Hamiltonians with the same sym-
metry G. One upshot is that we can obtain multiple varieties of both area- and volume-law
phases—for instance, distinguished by the presence or absence of different types of long-range
symmetry-breaking orders or symmetry-protected topological orders—with phase transitions be-
tween these occurring within the area- and volume-law entangled phases. Importantly, these
orders are only observable in nonlinear Edwards-Anderson-type order parameters that measure
fluctuations across trajectories, whereas simple averages remain featureless.

It is illustrative to discuss an example of a phase transition between area-law states in a sys-
tem with Ising symmetry G = Z2 (74); related to the measurement-only Majorana model in
Reference 64. This example is reminiscent of a ground-state phase transition from a paramag-
net to a symmetry-broken ferromagnet, although a closer analogy may be the eigenstate phase
transition between spin-glass ordered and paramagnetic states in many-body localized systems
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(279, 280).We consider measurement-only Clifford dynamics in a 1D spin-1/2 system. There are
no unitary gates, and measurements are drawn randomly in space–time from two sets of commut-
ing operators: with probability pZ from {ZiZi+1} and with probability pX = 1 − pZ from {Xi}. Each
operator in the ensemble commutes with the symmetry generator P =�i Xi, and we start with a
symmetric initial state such as a product state in the X basis.When pZ = 1, the dynamics measures
ZiZi + 1 on each bond, which projects onto Schrödinger cat states with long-range spin-glass order
and area-law entanglement. A particular trajectory leads to a random sequence of measurement
outcomes, mi = ±1, on each bond; there are two symmetry-broken product states in the Z basis
consistent with these outcomes (and related by the action of P), and the output state is a sym-
metric/antisymmetric cat superposition of these states, depending on the symmetry of the initial
state. For example, if mi ={+1, −1, +1} in a system of length L = 4, the output state is |ψm⟩ ∝
|↑↑↓↓⟩ ± |↓↓↑↑⟩. The order refers to the random orientation of spins (which generalizes the
aligned pattern of a conventional ferromagnet); the long-range order is diagnosed by an Edwards–
Anderson order parameter, χSG = limL→∞

∑
m pm 1

L2
∑

i j⟨ψm|ZiZ j|ψm⟩2 > 0. In contrast, when
pX = 1, we measure Xi on every site, and the output state is a paramagnetic product state in the X
basis with χSG→ 0. There is no volume-law phase in this model, and a dynamical phase transition
between the paramagnetic and ordered area-law states occurs at pZ = 0.5.

When the discrete Ising symmetry is replaced by a continuous symmetry, such as a global U(1)
symmetry, the phase structure appears to be even richer (281). For a U(1) circuit with symmetry
respecting two-qubit unitary gates and single-site Zi measurements, the volume-law phase has
been predicted to break into two phases, a “charge-fuzzy” phase and a “charge-sharp” phase. In the
former, which occurs at small measurement rate p, an initial pure state that is a linear combination
of different charge sectors (for example, all spins pointing in the X direction) evolves into a charge
eigenstate on times that are linear in the number of qubits. By contrast, in the the charge-sharp
phase at higher p (but still in the volume-law phase), this charge sharpening occurs on times that
are of order one for large system size. One can also consider an ancilla coupled to two different
charge sectors, namely |9⟩ = |ψQ⟩|0⟩ + |ψQ−1⟩|1⟩, with |ψQ⟩ representing a state in the charge
Q sector (while |0⟩ and |1⟩ are states of the ancilla). In this case, the ancilla qubit purifies on
timescales of order one in the charge-sharp phase, but more slowly, of order L in the charge-fuzzy
phase. A proposed field theory predicts an infinite-order (Kosterlitz–Thouless) phase transition
between the charge-sharp and charge-fuzzy phases (282). Further explorations of circuits with
U(1) symmetry, or other non-Abelian symmetries, constitutes an exciting future direction.

Monitored dynamics can drive phase transitions between states with distinct topological quan-
tum orders (72, 75–77). As an example, measurements of the stabilizers of the toric code (283),
along with a weak rate of single-qubit measurements in the Pauli basis, can give rise to an area-
law entangled, topologically ordered phase in which the monitored pure states sustain long-range
entanglement that cannot be removed by a finite-depth unitary circuit, as quantified by a topo-
logical entanglement entropy (284, 285) of Stopo = 2 ln 2. Equivalently, in the purifying dynamics
of a maximally mixed initial state, the entanglement entropy of the system saturates to S = Stopo
in constant time, and the system fails to completely purify up to times that scale exponentially in
the linear dimension of the system.

Monitored dynamics is also interesting for dynamics with free fermion structure (58, 60, 61,
64, 66, 82, 91, 286–288), in which unitary evolution and measurements of fermion bilinears only
lead to the generation of two-body correlations. In contrast to a generic monitored dynamics,
free fermion–monitored evolution cannot sustain a volume-law-entangled phase for any nonzero
monitoring rate in any number of spatial dimensions (61). This is related to having a continu-
ous rather than discrete replica symmetry, which reduces the cost of entanglement domain walls
(58). Equivalently, it has been shown that the purification time for an N-fermion state is at most
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O(N 2), so that free-fermion monitored systems purify much faster than interaciting systems at
weak monitoring (58, 287).

Apart from area-law entangled steady states, however, both the continuous- and discrete-time
monitored dynamics of free fermions can give rise to superarea-law (logarithmic in 1D) entangled
phases and critical points separating these from area-law phases (64, 66, 82).

4.2.1. Hybrid dynamics from space–time duality. We now consider a special class of mon-
itored dynamics obtained via a space–time rotation of unitary dynamics (79–81). These afford
various benefits, both in the postselection cost of selecting quantum trajectories and in furnishing
a complementary analytic perspective relating monitored and unitary dynamics.

As discussed in Section 3.3.3, viewing a unitary quantum gateU o1o2
i1 i2

sideways generically results
in a nonunitary map,Ũ i2o2

i1o1
. This map implements a forced or postselected measurement: A specific

unitary gate yields a specific fixed measurement outcome with no Born randomness. For example,
ifU is a two-site identity gate, its dual 1̃ = 2

∣∣B+⟩ ⟨B+∣∣ is proportional to a projection onto a specific
Bell pair state

∣∣B+⟩ ≡ 1√
2
(|↑↑⟩ + |↓↓⟩).20 Performing this exchange in the roles of space and time

across the entire circuit associates to every unitary evolution a nonunitary partner. The input and
output states of the dual monitored evolution live on time-like slices and correspond to spatial
boundary conditions of the unitary evolution, as shown in Figure 6c.

Thus far, this seems to be a purely theoretical construction—after all, an experimentalist can-
not directly implement forced measurements like 1̃ (except by costly postselection). However, a
simple protocol described in Reference 80 uses a teleportation protocol to transfer the time-like
input/output states to conventional space-like slices at the cost of introducing additional ancilla
qubits and unitary SWAP gates; the system and ancilla qubits are then evolved with purely unitary
gates (which the experimentalist does have access to); following this evolution, a set of postselected
Bell measurements at the final time slice produces the desired output state corresponding to side-
ways hybrid evolution as shown in Figure 6d. Thus, though these circuits do not eliminate the
postselection problem, they parametrically improve the cost by only requiring postselection at the
final time rather than the entire space–time volume; this is also desirable for various near-term
experimental architectures that do not allow measurements in the middle of the circuit but only
at the end.

Separately, flipped circuits provide a useful analytic perspective on monitored circuits by boot-
strapping to the vast body of knowledge on temporal entanglement dynamics in unitary circuits.
To zeroth order, space–time duality exchanges the roles of space and time; hence, spatial scaling of
entanglement in the late-time states of flipped monitored circuits maps to the temporal scaling of
entanglement growth in the corresponding unitary circuit (80, 81). If the unitary circuit is chaotic
and displays ballistic entanglement growth S(t) ∼ vEt, this translates to a volume-law scaling for
steady states in the flipped circuits, with an entropy density set by vE, S̃A(t̃ →∞) ∼ vE|A|. Inter-
estingly, this also implies that the variety of temporal entanglement dynamics in unitary settings
(ranging from logarithmic to subballistic growth in time) translate to different spatial scalings in
the output states (ranging from logarithmic to fractal), leading to new classes of entanglement
phases in monitored dynamics.

Importantly, however, the interchanging of space and time is not the full story. The scaling
of subsystem entanglement in output states of monitored dynamics is mapped to the temporal

20In general, a polar decomposition yields Ũ = 2FW , whereW is a unitary gate, and F is positive semidefinite
and normalized to Tr(F2 ) = 1. Because F ≥ 0, we can interpret Ũ as an element of a positive operator-
valued measure (POVM): It corresponds to a forced weak measurement (i.e., deterministically postselecting a
particular outcome of a POVM).
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growth of entanglement in unitary circuits, but the unitary evolution is accompanied by boundary
decoherence, which allows information to escape the system and be radiated away from one of its
edges (80). This furnishes a connection between monitored and dissipative dynamics, which were
contrasted in Section 4.1.1. The presence of boundary dissipation furnishes universal subleading
corrections to the leading entanglement scaling that, for instance, characterize the nonthermal
nature of the volume-law phase. For example, the entropy of a mixed state evolving under Haar
random unitaries subject to boundary dissipation can be calculated using the domain wall pic-
ture described in Section 3.1.3, with the domain wall pinned to the boundary of the system at the
final time. The edge dissipation changes the random walk calculation discussed earlier by intro-
ducing a partially absorbing boundary condition. This analysis furnishes subleading corrections
to the temporal entanglement dynamics, coming from both the t1/3 KPZ corrections present in
the quenched average of entanglement and an additional 3/2log (t) piece from the partially ab-
sorbing boundary conditions. Upon dualizing, these give the same |A|1/3 spatial corrections to the
entanglement entropy of the volume-law states obtained via the DPRE picture in Section 4.1.2;
indeed, in this setting, one could think of the domain wall picture as a microscopic realization of
the (DPRE) effective description.

5. EXPERIMENTS

The subject of this review is topical in light of rapid experimental progress in building pro-
grammable digital quantum simulators. The ability to isolate quantum-coherent qubits; to couple
qubits via controlled unitary operations; and to make high-fidelity locally resolved measurements
for readout, control, and feedback all represent major engineering challenges. These challenges
are being actively pursued over several physical platforms ranging from superconducting junctions
to trapped ions. Although much of this effort is broadly motivated by the quest to build universal
programmable quantum computers—a goal that is still far in the future given current parame-
ters for noise rates and system sizes (39)—these platforms have already furnished impressive new
capabilities when viewed as experimental platforms for many-body physics. This dual view of a
computational device as an information-theoretic tool, on one hand, and a real experimental sys-
tem for many-body physics, on the other, is reflected in the broad interdisciplinary theoretical
interest in quantum circuits.

One of the first experimental breakthroughs in digital simulation was Google’s announcement
of “quantum supremacy” in a 53-qubit system (132, p. 505), signaling a leap from a decades-long
effort in designing and benchmarking individual quantum circuit elements to the arrival of gen-
uinely many-body coupled systems with vast Hilbert spaces. An abstract information-theoretic
task was chosen for the demonstration, that of sampling from the output distribution of a state
evolved under a random quantum circuit (131, 289–291); the task illustrates the utility of quantum
circuit dynamics for benchmarking near-term quantum devices.

From the point of view of many-body physics, it is particularly interesting to study phenomena
in the regimes opened up by the natural operational mode of these devices that is accessible in the
present-term, i.e., viewing them as quantum circuits executing nonequilibrium dynamics (292;
as opposed to universal simulators that may eventually shed light on long-standing equilibrium
problems in strongly correlated physics, such as the phase diagram of the 2D Hubbard model).
These platforms are also building remarkable capabilities to access the new types of information-
theoretic observables we have discussed in this review. Tomographic techniques, though strongly
limited to small system sizes, allow the full reconstruction of a densitymatrix—including quantum-
coherent off-diagonal terms—and thereby allow the computation of any nonlinear function of the
density matrix, including entanglement. A beautiful experiment on an (analog) Bose–Hubbard
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simulator (293, 294) computed the purity, ⟨Trρ2
A⟩ = Tr(SWAPAρ ⊗ ρ ), by making two identical

copies of a system and measuring a partial SWAP operator between the two copies (295, 296),
circumventing the need for tomography at the expense of needing to prepare multiple copies.
Novel ancilla-assisted measurement protocols (like the Hadamard test) can implement new types
of correlation functions.

These capabilities have been put to use in several notable recent works. We focus here on ex-
periments with quantum circuits, but note that these works followmany milestone papers probing
fundamental aspects of quantum dynamics, thermalization, and MBL on a wide variety of analog
simulator platforms (36, 294, 297–302). Reference 303 furnished a detailed experimental study
of information scrambling in a variety of chaotic quantum circuits by measuring out-of-time-
ordered commutators using ancilla-assisted methods. Reference 304 implemented a circuit to
prepare the ground state of the topologically ordered toric code, performed a measurement of
the topological entanglement entropy of the state, and simulated an anyon braiding operation on
the state. Reference 305 implemented anMBL Floquet circuit to simulate a time crystal and made
an ancilla-assisted measurement of a spectrum-averaged unequal space–time correlation function
closely related to the Edwards–Anderson correlator discussed previously; this correlator probes
the defining spatiotemporal order of the phase across the entire exponentially dense many-body
spectrum and contrasts with conventional correlators that vanish on taking an infinite temperature
average over the entire spectrum.

When considering monitored circuits with unitaries and measurements, we must reckon with
the prohibitive postselection barrier mentioned earlier. Here, the challenge of preparing multiple
copies of a given quantum state (i.e., a given trajectory associated with a specific set of measure-
ment outcomesm) is not merely an engineering one but a fundamental theoretical one stemming
from the randomness inherent to the measurement process. Reference 306 made a first exper-
imental attempt to probe this physics in a small 8-qubit trapped ion system by measuring the
late-time entanglement entropy of a reference qubit entangled with the system at t = 0, as dis-
cussed in Section 4.1.3. This method requires the existence of a decoder to correlate the basis in
which the reference qubit is measured with the measurement record on the system, which was
achieved in the experiment by using Clifford circuits whose classical simulability allows wrong
measurement outcomes to be corrected by a feed-forward action determining future unitary op-
erations. On small enough systems, individual trajectories can be reproduced by brute-force, as
was done in a recent experiment using IBM’s digital simulators (307). However, larger-scale ex-
perimental demonstrations of non-Clifford monitored evolutions will require fundamental new
approaches to address the postselection problem, for instance, by appealing to additional struc-
tures like space–time duality that can parametrically reduce postselection overhead as discussed
in Section 4.2.1.

6. OUTLOOK

We conclude by outlining some important topic areas and questions within quantum circuit dy-
namics that deserve further study. First, the effects of feedback in quantum dynamics—whereby
future unitary operations or measurements are conditioned on past measurement outcomes—
remain to be understood. How can feedback be harnessed to stabilize ordered phases of quantum
matter in quantum circuit dynamics, and how can these protocols be realized in digital quan-
tum simulators? How does feedback affect the generation of quantum many-body entanglement?
Quantum error-correction (40) provides one well-studied example of the powerful effects of feed-
back, which can allow an observer to recover an unknown quantum state encoded in an evolving
quantum system, though a more extensive exploration of this new area of interactive quantum
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dynamics is warranted.21 The out-of-equilibrium phases that can arise owing to the interplay of
monitored dynamics with open quantum system dynamics, which evolve the system of interest
into a mixed state, are beginning to be explored (83, 88, 308, 309) and also provide a fruitful area
of study.

In the study of monitored quantum circuits, probing the entanglement properties of moni-
tored pure states generally requires a large amount of postselection, as explained in Section 4.1.1,
which presents a barrier for observing the measurement-driven entanglement phase transition
experimentally. Are there classes of monitored dynamics, apart from Clifford dynamics and evo-
lution with a dual-unitary description (79), in which this postselection barrier can be avoided?
Can space–time rotations of unitary quantum circuits (80, 81) be used to overcome postselection
problems in the preparation of other interesting kinds of quantum states?

The entanglement phase transition in monitored dynamics remains to be fully characterized.
In the Clifford case, a quantitative understanding of the evolution of stabilizers (Section 3.3.4) in
monitored Clifford circuits might shed light on this transition. Progress in understanding the rel-
evant statistical mechanical descriptions of monitored systems with continuous symmetries would
also provide useful insight into phases that can arise in this setting. As we touched on in Section 4,
there are also interesting questions about coarse-graining the effective models for the case of
generic unitaries, with connections to fundamental concepts in the theory of disordered systems.
Separately, it would be interesting to have mathematically rigorous results for the phase diagram
of the measurement problem, for example, a rigorous proof of the stability of the volume-law
phase.

At the level of formalism there is also much still to understand about the structure of the effec-
tive latticemodels for both unitary and nonunitary dynamics, for example, about the combinatorial
structure underlying various replica-like limits. Although we have discussed here a limited number
of quantities, this formalism can be applied to almost any observable of interest in the circuit.

As we discussed at the outset, one way tomotivate the circuits is as simpler models for dynamics
in more conventional many-body systems with a fixed Hamiltonian, either on the lattice or in the
continuum. In Sections 3.1.3 and 3.3.2, we touched on some ways of extending ideas from the
random circuit to nonrandom systems, but there is much still to do here.

Finally, can monitored dynamics provide (a) new benchmarking tasks for near-term quantum
computers or (b) insights into quantum error-correcting codes? Time-periodic monitored dy-
namics have been recently used to construct dynamically evolving, fault-tolerant quantum codes
(310, 311), though it remains to be understood if other kinds of monitored evolution can produce
similarly useful codes in which decoding quantum information is practical and feasible.
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