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Abstract

Magnetoelectric multiferroics, which display both ferroelectric and mag-
netic orders, are appealing because of their rich fundamental physics and
promising technological applications. The revival of multiferroics since
2003 led to a comprehensive understanding of the mechanisms that facil-
itate the coexistence of electric and magnetic orders and conceptually new
design strategies for device architectures, which brought us an important
step closer to multiferroic-based technology. In the past thirty years, first-
principles calculations based on the laws of quantum mechanics played a
crucial role in understanding the electronic, magnetic, and structural prop-
erties of multiferroics and guided the design of new multiferroics with
improved properties. In this review, we provide a comprehensive overview
of first-principles approaches to magnetoelectric multiferroics, especially in
low-dimensional forms. In particular, we discuss methods to build an ef-
fective Hamiltonian from first principles for magnets, ferroelectrics, and
multiferroics. The recently developed machine learning potential approach
for multiferroics is also outlined. Furthermore, we present the unified model
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for spin-induced ferroelectricity and methods for computing the linear magnetoelectric coupling
tensor. Finally, recent progress in multiferroic systems and the applications of first-principles
approaches to these systems are reviewed.

1. INTRODUCTION

In 1994, Schmid proposed the concept of multiferroic materials (1), which refers to single-phase
compounds that exhibit two or more primary ferroic properties (ferromagnetism, ferroelectricity,
ferroelasticity, or ferrotoroidicity). Among them, magnetoelectric (ME) multiferroics display a
coupling between their electric and magnetic properties. Later, the initial concept of coexisting
orders was expanded beyond just primary ferroic states to also include, e.g., antiferromagnetism,
antiferroelectricity (2), and composite materials (3). In this review, we follow this modern
definition when referring to multiferroics. Multiferroic materials have gained considerable
attention due to their potential applications in next-generation electronic, data storage, and
sensing technologies (4–10). The coupling between magnetic and electric properties of the
same material is highly desirable for developing energy-efficient devices, such as magnetic
memories that can be written electrically, and sensors that can detect magnetic fields with high
sensitivity.

According to the microscopic sources of ferroelectricity, Khomskii suggested classifying mul-
tiferroic materials into two types (11). Type-I multiferroics refer to those materials in which
ferroelectricity and magnetism originate from different ions and may couple to each through the
lattice. Examples are perovskite BiFeO3 (12) and hexagonal YMnO3 (13). In the type-II multi-
ferroics, the ferroelectricity is induced by certain magnetic orders that break the spatial inversion
symmetry, implying a strong direct coupling between the two. For example, a spiral magnetic or-
dering appears below 28 K in TbMnO3 (14), which simultaneously gives rise to a nonzero electric
polarization.

In the field of multiferroics, first-principles methods [especially density functional theory
(DFT)] have become crucial for understanding the fundamental mechanisms of multiferroic be-
havior and to guide experimental efforts to synthesize and characterize multiferroics. In 2000,
Spaldin (then Hill) elaborated on the basis of first-principles calculations why, in classic per-
ovskites, displacive ferroelectricity and magnetic order are working against each other (15). Later,
the large electric polarization observed in thin films of BiFeO3 (12), which appeared to be at
odds with previous bulk single-crystal measurements, was reconciled by a DFT study (16) show-
ing that bulk BiFeO3 should indeed display a large spontaneous polarization of ∼95 µC/cm2.
First-principles calculations showed that ferroelectricity in YMnO3 results from an interplay be-
tween a polar 0-point mode and a nonpolar Brillouin zone–boundary mode that leads to a unit
cell tripling (17). Ab initio calculations were also performed for type-II multiferroics, first on
collinear antiferromagnets such as TbMn2O5 (18) and HoMnO3 (19). Within the type-II mul-
tiferroics with noncollinear spin order, Li–Copper-based oxides were the first compounds to be
studied from first principles (20). Shortly after, the prototypical case of TbMnO3 was studied with
first-principles methods by two groups (21, 22). It was shown that the purely electronic contri-
bution was much smaller than the ionic contribution, and the magnitude and direction of the
calculated polarization was found to be in excellent agreement with experiments (14). In terms
of multiferroic composites, Duan et al. showed theoretically that a change in bonding at the
ferroelectric–ferromagnet interface would alter the interface magnetization when the electric po-
larization reverses (23). Although multiferroics are nonmetallic by the original definition, it was

86 Xu et al.



CO15_Art05_Xiang ARjats.cls February 20, 2024 10:23

Multiferroics

Magnets
 (S, B)

 (S, u, η, E, B)

Ferroelectrics
 (u, η, E)

DFT
Large-scale
simulations

e�

ML

Figure 1

Multiferroics combine and couple the properties of magnets and ferroelectrics. The first-principles methods,
involving many degrees of freedom, generate accurate total energy and electronic properties, but only for
small systems (around or less than a hundred atoms) at zero temperature. By contrast, the effective
Hamiltonian Heff and Hamiltonian made with machine learning potentials HML, which can be constructed
from first-principles results and considers only limited degrees of freedom, enable large-scale thermal and
dynamic simulations. A major difference between Heff and HML is that the former has explicit forms of
interactions, whereas the latter adopts implicit interactions. Abbreviation: DFT, density functional theory.

suggested (24) that a two-dimensional metallic system with an out-of-plane polarization may host
ferromagnetic–ferroelectric multiferroicity.

This review aims at introducing the commonly used first-principles and first-principles-based
methods in multiferroics. The calculations of magnetic, electric, and ME properties are discussed
(see Figure 1 for the scope of this review). Recent progress in multiferroics, especially those in
two-dimensional forms, is also reviewed.

2. FIRST-PRINCIPLES TECHNIQUES RELATED TO MULTIFERROICS

First-principles calculations have significantly contributed to the progress in multiferroics by elu-
cidating different mechanisms for multiferroicity, computing essential physical properties, and
rationally designing high-performance multiferroics. Because the Hamiltonian (defined to be the
sum of the kinetic and potential energies) of a system determines the thermodynamic proper-
ties and the kinetic behavior (even under external electric and/or magnetic fields), in this review
we mainly focus on the construction of a Hamiltonian for multiferroics based on first-principles
calculations and the use of a Hamiltonian to investigate the coupling between the magnetic and
electric degrees of freedom.We describe in detail the effective Hamiltonian approach, which in-
volves constructing a simplifiedHamiltonian that captures the essential physics of the systemwhile
neglecting the details of the microscopic interactions that are not relevant to the phenomena of
interest. Furthermore, we also briefly introduce the machine learning (ML) approach for con-
structing an atomistic Hamiltonian for multiferroics, which is expected to play a more important
role in the theoretical studies on multiferroics in the near future.
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2.1. Magnets

The magnetic properties of a material are determined by the exchange interactions between mag-
netic moments, which originate from the overlapping of magnetic ion orbitals, with or without
intermediate nonmagnetic ions. Such exchange interactions can be captured by the Hubbard
model (25) for electrons on a lattice site. A more convenient way is to adopt the effective spin
Hamiltonian, which results from downfolding the Hubbard model and contains only spin degrees
of freedoms. In this subsection, we first introduce the common forms of spin Hamiltonians and
then discuss the first-principles methods for constructing such Hamiltonians.

Let us start with a complete form of bilinear coupling, which reads as

Hbl =
∑
<i, j>

Si·Ji j·S j , 1.

where S(Sx,Sy,Sz ) is a spin vector, and J is a 3 × 3 tensor with its explicit form expressed as

J =

J xx J xy J xz

J yx J yy J yz

J zx J zy J zz

.
(a) In the simplest case, where the matrix J has no off-diagonal elements and all diagonal ele-

ments are the same, i.e., J = Jxx = Jyy = Jzz, the coupling becomes the isotropic Heisenberg
interaction with the form of JSi·S j .

(b) If the diagonal elements are not all the same, the coupling yields anisotropic exchange
coupling. For example, in a tetragonal system, it can be Jxx = Jyy ̸= Jzz. In a general
case, the isotropic J is an average of the diagonal elements of J , as J = 1

3 (J
xx + J yy + J zz ).

Another interesting example is the Kitaev interaction, for which the unique direction is
bond-dependent. For honeycomb lattice and the {XYZ} basis illustrated in Figure 2, the
J matrices for X-, Y-, and Z-bond have the forms ofJ + K 0 0

0 J 0
0 0 J


J 0 0
0 J + K 0
0 0 J


J 0 0
0 J 0
0 0 J + K

.
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Figure 2

Schematics of crystal structure and the Kitaev basis of a CrSiTe3 monolayer. The black parallelogram marks
the unit cell of the honeycomb lattice. The material basis of {xyz} is shown at bottom left. The Kitaev basis of
{XYZ} is indicated by red, green, and blue arrows. The X, Y, and Z directions are found to be very close to
the Cr-Te bonds but are perpendicular to each other. Figure adapted with permission from Reference 26;
copyright 2020 American Physical Society.
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(c) A more complex case is to further introduce off-diagonal elements to the J matrix in
the symmetric manner of Jxy = Jyx, Jxz = Jzx, and Jyz = Jzy. In such a case, the x, y, and
z directions are no longer representative, and the eigen directions can be determined by
diagonalization of the J matrix.

(d) Notably, the antisymmetric part of the J matrix, where Jxy = −Jyx, Jxz = −Jzx, and
Jyz = −Jzy, corresponds to the Dzyaloshinskii–Moriya interaction (DMI) (27, 28). If ex-
panding Equation 1 with an antisymmetric J , and comparing with the typical DMI
expressionHDM = D·(Si × S j ), one can find thatDx = 1

2 (J
yz − J zy ),Dy = 1

2 (J
zx − J xz ), and

Dz = 1
2 (J

xy − J yx ).

Note that all above forms other than the Heisenberg interaction are a consequence of the
spin–orbit coupling (SOC). Another SOC effect is the single-ion anisotropy (SIA), which can
be viewed as an exchange interaction between one site and itself. In the bilinear form, the SIA
reads as

HSIA =
∑
i

Si·Aii·Si, 2.

where A is a symmetric tensor. Note that only the energy difference among diagonal elements
matters. Interestingly, it was discovered theoretically (29, 30) that spin-half or effective spin-half
ions may have SIA in contrast to the usual belief (31), which agrees with a recent experiment
(32).

More complex couplings include higher-order interactions, such as the two-site biquadratic
interaction B(Si·S j )2 (33, 34), and many-body interactions, such as the four-site fourth-order in-
teractionC(Si·S j )(Sk·Sl ) (35–37). Such many-body and higher-order interactions can also involve
SOC effects and exhibit anisotropy (37).

In the following, we discuss the first-principles approaches (i.e., methods based on total energy
and methods based on perturbation) to determine the aforementioned spin Hamiltonian and the
coefficients therein.

2.1.1. Total energy–based methods. With a general form of Hamiltonian at hand, it is crucial
to obtain the coefficients of different terms. Here, we introduce the total energy–based methods,
which are straightforward and widely used.

2.1.1.1. Usual energy mapping method. The simplest method based on total energy for
computing exchange interactions is the so-called energy mapping method (38, 39). Within
this method, one adopts a predefined form of the spin Hamiltonian for a given material and
chooses specific magnetic configurations to perform DFT calculations. By comparing the spin
Hamiltonian energy expressions of these magnetic configurations with DFT total energies, one
can obtain the exchange interaction parameters of the spin Hamiltonian via solving the linear
equations.

Let us adopt the P4mm phase BiFeO3 as an example (see Figure 3a) to illustrate this method
in more detail (40). Consider the following Hamiltonian:

HBiFeO3 =
∑
<i, j>a

JaSi·S j +
∑
<i, j>c

JcSi·S j +
∑
<i, j>ac

JacSi·S j , 3.

where Ja and Jc are both the first-nearest-neighbor coupling but along in-plane and out-of-plane
directions, respectively, whereas Jac is the second-nearest-neighbor interaction. To solve such a
model, one needs a 2 × 2 × 2 supercell and to construct four different spin configurations, as
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Figure 3

Examples of spin state settings for total energy–based methods. (a) The crystal structure of tetragonal
BiFeO3 in P4mm phase, as well as four different magnetic states, each within a 2 × 2 × 2 supercell.
(b) Illustration of the four states of S1 and S2, which are used to calculate the Jxy component using the
four-state method. Note that, in the case of Jxy, spins other than S1 and S2 are set to be along the z direction,
with their configurations being as close as possible to the ground state. Panel a adapted with permission
from Reference 40; copyright 2012 American Physical Society. Abbreviations: A-AFM, A-type
antiferromagnetism; C-AFM, C-type antiferromagnetism; FM, ferromagnetism; G-AFM, G-type
antiferromagnetism.

shown in Figure 3a. Then, the energies of the four configurations can be expressed as

EF = E0 + 2Ja + Jc + 4Jac
EA = E0 + 2Ja − Jc − 4Jac
EC = E0 − 2Ja + Jc − 4Jac
EG = E0 − 2Ja − Jc + 4Jac,

4.

where energies on the left side can be obtained fromDFT calculations, and E0 is the energy that is
not related to magnetism.Note that E0 does not appear in Equation 3, as the nonmagnetic energy
contribution is excluded in the spin Hamiltonian. By solving the linear equations in Equation 4,
the Ja, Jb, and Jac coefficients of Equation 3 can be determined.

In principle, the energymapping approach can be generally adopted to estimate othermagnetic
interacting parameters (e.g., theDMI strength) (41, 42) besides the isotropic exchange parameters.
However, the disadvantage of this approach is that for complicated magnetic systems it is hard to
choose beforehand a plausible spin Hamiltonian and select appropriate magnetic configurations.

2.1.1.2. Four-state method. To resolve the deficiency of the usual energy mapping method,
Xiang et al. proposed the four-state method (43, 44) to compute all the magnetic interacting pa-
rameters of any bilinear spin Hamiltonians. Consider the bilinear spin interaction between site 1
and site 2, which are located in a large magnetic system with other spins. The spin Hamiltonian
of such a system can be written as

H = E0 +
∑
<i, j>

Si·Ji j·S j . 5.

We can further separate the energy terms related to spins 1 and 2:

H = S1·J12·S2 + S1·K1 + S2·K2 + Hother, 6.

where the first term is the targeted interaction between site 1 and site 2, the second (third) term is
the interactions between site 1 (2) and other spins, and the fourth term covers all the interactions
among other spins.To calculate, e.g., the Jxy component of J12, four spin states (see Figure 3b) are
considered for the {S1,S2} pair: {(S 0 0), (0 S 0)}, {(S 0 0), (0−S 0)}, {(−S 0 0), (0 S 0)}, and {(−S 0 0),
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(0−S 0)}; whereas other spins are perpendicular to both S1 and S2 (e.g., along the z direction).The
Jxy can then be obtained with the energies fromDFT calculations using the following equations:

E1 = +J xyS2 + S1K1 + S2K2 + Eother + E0,
E2 = −J xyS2 + S1K1 − S2K2 + Eother + E0,
E3 = −J xyS2 − S1K1 + S2K2 + Eother + E0,
E4 = +J xyS2 − S1K1 − S2K2 + Eother + E0,
J xy = (E1 − E2 − E3 + E4 )/4S2,

7.

where Eother denotes the energy of spin interactions among spins other than S1 and S2. In a similar
way, all the other elements ofJ can be obtained by performing DFT calculations on four specially
designated magnetic states.

To correctly/better perform the four-state method, one needs to be careful with several aspects.
(a) The four-state method is based on the scenario that S1 and S2 are isolated in a large system. To
fulfill such a scenario in DFT calculations, a large enough supercell is required to prevent the cou-
pling between targeted spins and their images in the periodically repeated supercells. (b) To obtain
the J matrix, SOC should be turned on.Meanwhile, directions of all spins should be constrained,
in case they deviate from the designed directions. If only the isotropic Heisenberg J parameter
is needed, one can turn off SOC and noncollinear setting and simply consider the four states of
{S, S}, {S, −S}, {−S, S}, and {−S, −S}. (c) According to the previous definition of DMI, one needs
two elements to obtain a component of D vector, as Dα = 1

2 (J
βγ − J γβ ). The approximation of

Dα = Jβγ can be used only when one is sure that the anisotropic symmetric elements of J are
negligible. One example is that both DMI and Kitaev interactions are large in a Cr(I,Br)3 Janus
monolayer and similar systems (45). (d) Crystal symmetry analyses can reduce the amount of cal-
culations. For example, the presence of an inversion center between site 1 and site 2 leads to
vanishing DMI, and C4v symmetry results in Jxx = Jyy. (e) The calculations of SIA matrix A also
rely on four spin states, but with a formula that is different than Equation 7. See the appendix of
Reference 44 for details.

Notably, it is very convenient to apply the four-state method to obtain the derivatives of ex-
change parameters with respect to atomic displacements (43) and strain (46). For this purpose, we
take derivatives of the total energy expression,

∂E
∂ukα

= ∂E0

∂ukα
+

∑
<i, j>

∂Ji j
∂ukα

Si·S j , 8.

where ukα is the displacement of the kth atom along the α direction. Note that here we only
consider isotropic exchange interactions for simplicity. Taking the four states used in Equation 7,
one can easily have

∂J12
∂ukα

= 1
4S2

(
∂E1

∂ukα
− ∂E2

∂ukα
− ∂E3

∂ukα
+ ∂E4

∂ukα

)
, 9.

where − ∂Ei
∂ukα

, (i = 1, . . . , 4) is the force acting on the atom k along the α direction. The force can
be computed using the Hellmann–Feynman theorem and is readily available in standard DFT
schemes. Thus, the derivatives of ∂J

∂ukα
can be immediately obtained from the forces from stan-

dard four-state calculations without any further computations. A similar procedure can be used to
obtain the derivatives of exchange parameters with respect to strain (46).The second-order deriva-
tives of exchange parameters with respect to atomic displacements in two-dimensional magnets
were computed by combining the finite difference method and four-state method (47).

Although the four-state method was originally proposed to compute bilinear exchange in-
teracting parameters, it was recently extended (39) to extract the coefficient B of fourth-order
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biquadratic interaction B(Si·S j )2. In this case, another set of four states should be chosen. The
four-state method can also be used to compute ME coupling strength, as we discuss below.

2.1.1.3. Symmetry-adapted cluster expansion method. The previous energy mapping methods
can well handle Hamiltonians with only second-order interactions, whereas they may become in-
adequate when higher-order and many-body interactions are important. In such cases, the cluster
expansion method is a good option (33, 37, 48, 49).

The symmetry-adapted cluster expansion method expresses spin interactions as polynomials
made of spin components (Sα , α = x, y, and z, and S= 1 are adopted here) that are invariant under
all crystal symmetry operations, as well as the time-reversal symmetry (which excludes odd orders
of interactions). Specifically, one can start with the Hamiltonian

H = E0 +
∑
N

Hspin
N , 10.

where E0 is the nonmagnetic part, whereasHspin
N is theNth-order spin-related term. If we take the

second- and the fourth-order interactions as examples, before applying symmetry,Hspin
2 andHspin

4
can be written as

Hspin
2 =

∑
⟨i, j⟩

∑
α,β

cαβi j SiαS jβ ,

Hspin
4 =

∑
⟨i, j,k,l⟩

∑
α,β,γ ,δ

cαβγ δi jkl SiαS jβSkγSlδ ,
11.

where the sums run over all possible combinations of spin components; ⟨ ⟩ denotes a cluster of
magnetic sites; i, j, k, and l are site indices that are chosen from the set of {1, 2, . . . ,M} for anM-
body cluster; and α, β, γ , and δ are Cartesian components of the spins. Let us now apply crystal
symmetries to the above forms, which results in

Hspin
2 =

∑
n

Jn
∑
m

cnmSimαmS jmβm ,

Hspin
4 =

∑
n

Kn
∑
m

cnmSimαmS jmβmSkmγmSlmδm ,
12.

where the sums over n run through all invariants, and the sums overm collect all the terms within
each invariant. Note that, besides biquadratic couplings and some specific fourth-order interac-
tions, such methodology in principle covers all the possible forms of interactions. The interacting
parameters Jn and Kn can be extracted by combining DFT calculations and a fitting procedure. If
the number of parameters is small, one can adopt the simple linear least squares approach, which
however fails in the case of complicated models. In this case, one can adopt a ML method (50) to
find out the significant interacting terms of the Hamiltonian in which one not only tries to add
terms but also tries to delete and substitute terms from the temporary model during searching for
the important terms.

2.1.2. Perturbation-based methods. As an alternative to the total energy–based approaches,
one can use analytical perturbation theory to express Heisenberg parameters in terms of Green’s
functions (51) or linear response functions (52, 53) that may be calculated directly from the mag-
netic ground state itself. The idea is to compare the change of energy between the Heisenberg
model and DFT calculations under arbitrarily small variations of the spin configuration around
the ground state. The key to these calculations is to use a converged charge density of a reference
setup and then to estimate the change of the energy of a modified setup. So instead of perform-
ing full self-consistent DFT calculations for all setups, one needs to perform one self-consistent
calculation for a single setup only. The success of these methods is due to the magnetic force
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theorem (MFT), which states that the total energy variation δE coincides with the sum of one-
particle energy changes for the occupied states at the fixed ground state potential in the first order
on the perturbations of the charge and spin densities:

δE =
∫ EF

−∞
dϵϵδn(ϵ ), 13.

where EF is the Fermi level and n(ϵ) is the electronic density of states at energy ϵ.
The perturbation-based method for computing exchange parameters was first proposed within

the Green’s function framework in the seminal work of Liechtenstein, Katsnelson, Antropov, and
Gubanov (LKAG) (51, 54–58).Within tight-binding linear muffin-tin methods (59) the isotropic
exchange interactions between magnetic moments can be calculated using the Green’s function
technique (60),

Ji j = 1
2π

∫ EF

−∞
dϵIm

∑
m,m′ ,m′′ ,m′′′

1
m,m′
i Gm′m′′

i j↓ 1
m′′ ,m′′′
j Gm′′′m

ji↑ , 14.

where m, m′, m′′, and m′′′ are magnetic quantum numbers; 1i is the local exchange splitting on
site i; and G represents the intersite Green’s function. The Green’s function method allows deter-
mination of the Heisenberg magnetic interaction parameters from the ground-state solution of
the system, regardless of whether it is ferromagnetic or antiferromagnetic. This method also al-
lows access to a band-by-band decomposition of the different magnetic interactions. The method
was also extended to correlated systems in References 61 and 62. By taking into account relativis-
tic effects (SOC), the DMI (63) and the magnetic anisotropy can be calculated as well (61, 62).
Higher-order terms in the Hamiltonian, like the four-spin interaction or the biquadratic term,
were also calculated through this method (57, 64). Recently, He et al. (65) developed a Python
package (TB2J) to compute the isotropic exchange, the anisotropic exchanges, and the DMI us-
ing Wannier functions or a linear combination of atomic orbitals DFT results with the Green’s
function technique.

It was shown (53) that the full microscopic exchange tensor may be expressed in terms of the
static Kohn–Sham susceptibility tensor instead of the Green’s function. Consider second-order
change in the total energy related to the rotations of the magnetic moments appearing at sites
R+ τ and R′ + τ ′ of the lattice (here R are the lattice translations and τ are the atoms in the basis):
A linear response theory expresses the interatomic exchange constants in the form

Jαβ
τR,τ ′R′ =

∑
q

∑
k

j j′
f k j − f k+q j′

ϵk j − ϵk+q j′
⟨ψk j|[σ × Bτ ]α|ψk+q j′ ⟩ × ⟨ψk+q j′ |[σ × Bτ ′ ]β |ψk j⟩eiq(R−R′ ). 15.

Here, σ is the Pauli matrix,Bτ is the local magnetic field at atomic site τ , k and q are momentum,
and f is the Fermi–Dirac distribution function.Within usual DFT, ϵk j andψk j are one-electron en-
ergy and the Kohn–Sham wave function, respectively. If correlation effects are taken into account
(e.g., with the dynamical mean field theory) (66), the corresponding quasiparticle results should be
adopted. This method was recently (67) implemented within a plane wave projector augmented
wave (68) formalism. Compared to the total energy–based methods, the perturbation-based
methods for computing exchange parameters are especially useful for dealing with low-energy
excitations (such as magnon dispersion) but may not be accurate enough to describe the magnetic
properties as temperature is increased up to the magnetic critical temperature.

2.2. Ferroelectrics

Ferroelectricity refers to the phenomenon that certain materials exhibit a spontaneous electric
polarization,which can be reversed by the application of an external electric field.The polarization
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is defined as the electric dipole moment in unit volume P = D/� (� denotes the volume) or
on unit area P = D/S (S denotes the lateral area), where the latter is generally used for two-
dimensional ferroelectrics. Below, we introduce the applications of first-principles and related
methods in ferroelectrics, including modern theory of electric polarization, finite electric field
approach, and an effective Hamiltonian approach.

2.2.1. Modern theory of electric polarization. Although the calculation of electric dipole of
a finite system is straightforward using D = +rρ(r)dr [ρ(r) is the charge density], the calculation
of electric polarization in crystalline solids is tricky due to the periodic boundary condition. This
problem was resolved about three decades ago, when the modern theory of polarization was in-
troduced (69, 70). The theory shows that the electric polarization in a crystalline solid is a lattice
rather than a vector. The total polarization for a given crystalline structure is the sum of ionic and
electronic contributions:

P = Pion + Pel. 16.

Here, the ionic contribution comes from the nucleus and core electrons and is given by Pion =
e
�

∑
i Ziri, where � is the volume of the unit cell, ri is the ionic position in the unit cell and Zi is

the charge state of the ith ion. The electronic contribution is given as a Berry phase (71) term:

Pel = − ie
2π3

occ∑
σ ,n

∫
BZ
d3k

⟨
uσnk

∣∣∣∣∂uσnk∂k

⟩
, 17.

where uσnk = e−ikr9σ
nk(r) is the periodic part of the Bloch function.

2.2.2. Finite electric field approach. Many physical properties (such as dielectric constant,
Born effective charge, piezoelectric coefficient) of ferroelectrics can be expressed as derivatives of
the total energy of the solids with respect to a macroscopic field ε at ε = 0,which can be computed
with density functional perturbation theory (72, 73). Although for many applications such pertur-
bation approaches are adequate, in some cases (e.g., switching ferroelectric domains) it is essential
to perform calculations directly at finite fields. Souza et al. (74) and Umari & Pasquarello (75)
proposed a first-principles approach based on the minimization of an electric enthalpy functional
F with respect to Bloch-like functions under a given electric field ε, where F is composed of the
usual Kohn–Sham energy and a field coupling term:

F (ε, ν ) = EKS(ν ) −�P(ν ) · ε, 18.

where ν represents the internal (ionic and electronic) coordinates.The fixed electric field approach
is used to treat insulators under closed-circuit boundary conditions with a fixed voltage. To im-
pose the open-circuit electrical boundary conditions, a finite electric displacement approach was
proposed by Stengel et al. (76). In this technique, they introduced a new functional,

U (D, ν ) = EKS(ν ) + �

2ϵ0
[D − P(ν )]2, 19.

where ϵ0 is the vacuum permittivity. To obtain the state under a given electric displacement D,
the functional is minimized with respect to the electronic and/or ionic coordinates ν.

2.2.3. Effective Hamiltonian approach. Part of the fascination of ferroelectrics is related to
the fact that they undergo temperature-driven structural phase transitions and various functional
properties (e.g., dielectric and piezoelectric properties) are strongly temperature dependent, being
especially large or even divergent near the phase transition temperatures. The most straightfor-
ward way to account for the effects of temperature would be to perform ab initio DFT molecular
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dynamics (MD) simulations.However, this approach is so computationally intensive that currently
it is restricted to relatively small systems and timescales. For finite-temperature investigations, the
first-principles effective Hamiltonian approach was proposed (77). Besides the high efficiency, the
effective Hamiltonian approach is very helpful in clarifying the microscopic mechanisms respon-
sible for ferroelectricity. In this approach, one defines a reduced number of degrees of freedom
per unit cell and constructs a model Hamiltonian HFE with the internal energy written as

EFE = Eself (ui ) + Edpl(ui ) + Eshort(ui ) + Eelas(ηi ) + E int(ηi,ui ), 20.

where ui is the local soft-mode in unit cell i, η is the total strain tensor, Eself is the local mode
self-energy, Edpl characterizes the long-range interactions between local modes, Eshort mimics the
short-range interactions between local modes in the form, Eelas is the elastic energy, and E int rep-
resents the interactions between local modes and strains. By fitting the DFT results, one arrives at
an effective Hamiltonian model, typically containing 10–20 parameters, that can be subjected to
Monte Carlo (MC) or MD simulations in order to determine the finite-temperature properties of
the material. Different from the usual effective Hamiltonian approach, which only treats a subset
of relevant degrees of freedom, Ìniguez and his coworkers proposed (78) to create models that
describe the energetics of a material by Taylor expanding the potential energy surface around a
suitably chosen reference structure as a function of all the atomic degrees of freedom.

2.3. Multiferroics

Multiferroicity refers to the coexistence of two or more ferroic orders in one material. Here, we
focus on the MEmultiferroics, which possess both magnetism and ferroelectricity. The main goal
is to reveal the mechanisms of ME couplings and to enhance such couplings. In the following,
we introduce the first-principles related methods that deal with spin–lattice interactions, spin-
induced ferroelectricity and linear ME effect. Such methods are used to study ME couplings or
to build the models with coupled spin and structural freedoms.

2.3.1. Spin–Lattice Hamiltonians. One of the important ME couplings is the spin-lattice in-
teraction, which involves the couplings of spin moments with atomic displacements and strains.
Here, we introduce two methods to obtain spin-lattice Hamiltonians, the general effective
Hamiltonian approach and the machine learning potentials method.

2.3.1.1. General effective Hamiltonian approach. The effectiveHamiltonian approach initially
proposed for ferroelectrics was generalized to multiferroics recently. For instance, in the per-
ovskite multiferroic BiFeO3, themagnetic degree of freedom (i.e., themagnetic moment on the Fe
sites) was incorporated (79) in the effective Hamiltonian to describe the magnetic interactions and
spin–lattice interactions. The symmetry-adapted cluster expansion method was further extended
to deal with multiferroics with any symmetry (48). To describe the interplay between different de-
grees of freedom in multiferroics, in general, the effective HamiltonianHsl should consist of three
parts: the magnetic effective Hamiltonian Hspin, the effective Hamiltonian for ferroelectrics HFE,
and a spin–lattice coupling term Hc(Si,u j , η), which describes the couplings between spin and
structural modes (including the local soft mode and other antiferroelectric degrees of freedom uj
and strain η). Similar to the spin Hamiltonian case, one adopts the group theory to find out the
Hamiltonian form of the lattice partHFE and the spin–lattice coupling partHc. Then the param-
eters of the full Hamiltonian can be determined by combining a parameter selection procedure
(e.g., the so-called ML approaches for constructing effective Hamiltonians) (50) and DFT calcu-
lations. In order to obtain the dynamic behavior of the multiferroic system, one needs to perform
spin–lattice dynamics simulations (48, 80) with the general effective Hamiltonians. This general
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effective Hamiltonian approach and the corresponding MC and spin–lattice dynamics methods
were implemented in the property analysis and simulation package (PASP) for materials (48).

2.3.1.2. Machine learning potentials. Machine learning interatomic potentials (MLIPs) have
become a significant asset to the field of computational condensed matter physics by providing a
powerful tool for accurately simulating materials (81–84). MLIP models are trained using a data
set of atomic configurations and their respective total energies or forces, which allows them to
learn the underlying potential energy surface of a system. By using this learned potential energy
surface, it is possible to investigate behaviors under different conditions, such as temperature, pres-
sure, or deformation for studying large, complex materials systems over extended periods.MLIPs
are advantageous over the effective Hamiltonian method in capturing complex potential functions
for structures with large perturbations (85). Graph neural networks (GNNs) and equivariant neu-
ral networks (ENNs) are recent developments in MLIPs that allow for accurate predictions of
the properties of complex systems with millions of atoms with near-first-principles accuracy (86,
87).While message passing neural networks perform exceptionally well in training potential, their
parallelism limits their use for large-scale simulations. Strictly local equivariant deep neural net-
works, such as Allegro (88), address this challenge and enable accurate and scalable predictions of
complex systems.

Despitemaking significant progress in expanding the range of systems and physical phenomena
that can be studied usingMLIPs, their inability to account for various spin configurations and their
associated magnetic interactions remain a drawback (89, 90). Ideal MLIP models for magnetic
materials have to meet several requirements, including the abilities to describe both collinear and
noncollinearmagnetic moment states; take into account the effect of SOC if needed; and adhere to
the symmetry principles of inversion, translation, and rotation, as well as time-reversal symmetry,
which is also referred to as spin inversion symmetry (91). Most MLIPs are designed without the
freedomdegrees of atomicmagneticmoments,making it challenging forMLIPmodels to describe
the spin–lattice coupling in magnetic materials.

Several MLIPs considering magnetic moments based on atomic descriptors have been devel-
oped (89, 92–96). Novikov et al. (96) proposed magnetic moment tensor potentials (mMTPs),
which adds the contributions of collinear magnetic moments on moment tensor potentials
(MTPs) to include collinear magnetic degrees of freedom in MLIPs. The mMTP was adopted to
perform phonon calculations and MD simulations for the prototype magnetic system bcc (body-
centered cubic) iron. However, the mMTP method does not explicitly consider spin-inversion
symmetry. Additionally, Eckhoff & Behler (89) developed magnetic high-dimensional neural net-
work potentials (mHDNNPs), which modify the atomic cluster surface functionals (ACSFs) to
spin-dependent ACSFs (sACSFs). Like mMTPs, mHDNNPs can only deal with collinear mag-
netic moments, preventing their usage in studying noncollinear magnetic states such as spirals,
skyrmions, and bimerons. Meanwhile, Yu et al. (90) developed spin descriptors to construct the
complex neural network spin Hamiltonian. Furthermore, Nikolov et al. (95) proposed magnetoe-
lastic ML-IAP, which use the spectral neighbor analysis potential (SNAP) (97) and an effective
spin–lattice Hamiltonian considering Heisenberg and biquadratic terms. Chapman & Ma (92)
developed a machine-learned spin–lattice interatomic potential (MSLP) for iron with the non-
magnetic term, the Heisenberg–Landau term, and a remaining neural network term using the
local atomic and magnetic descriptors. Domina et al. (93) introduced an invariant power spec-
trum representation for vectorial fields and developed spin SNAP based on the SNAP descriptor
(97). Note that all these descriptors-based magnetic MLIPs do not take into account the SOC.

Because of the high flexibility and accuracy provided by GNNs, magnetic MLIPs based
on GNNs were developed very recently (91, 98). Yu et al. have proposed SpinGNN (98) and
SpinGNN++ (91), which integrate the spin configuration into the GNN framework shown in
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Figure 4

Illustration of building a general neural network potential for multiferroics with a SpinGNN++ framework.
It includes the MSENN and TENN. (a) Utilization of the updated edge feature of an ENN to predict the
J matrix, SIA matrix, and the biquadratic coefficient to build a magnetic potential. (b) Adoption of the
TENN to build a high-order general magnetic potential, where the node and edge are initialized with the
spin vector. Abbreviations: ENN, equivariant neural network; GNN, graph neural network; MSENN,
multitask spin equivariant neural network; SIA, single-ion anisotropy; SOC, spin–orbit coupling; TENN,
time-reversal equivariant neural network.

Figure 4. They constructed Spin-DimeNet++ and Spin-Allegro based on SpinGNN,which suc-
cessfully describes several effective spin–lattice Hamiltonian models and the multiferroic BiFeO3.
Additionally, they extended ENN to time-reversal ENN (TENN), which incorporates time-
reversal symmetry (91) besides the translation, inversion, and rotation symmetries considered in
the usual ENN. With TENN, Yu et al. built a general spin–lattice model for magnetic materi-
als that meets the requirements of an ideal magnetic neural network potential. This model of a
multiferroic contains three parts:

EMF(S,u) = ENN
0 (u) +

∑
<i, j>

Si·J NN
i j (u)·S j +

∑
<i>

Si·ANN
i (u)·Si +

∑
<i, j>

Ki j (u)(Si·Sj )2 + ENN
high-order(S,u),

21.
where the first part ENN

0 (u) (u represents the atomic structural information) is the contribution
unrelated to spins, the second and third parts are the bilinear spin interaction, the fourth part
is the biquadratic term, and the fifth part is the high-order spin–lattice interacting term, respec-
tively. This model can serve as a general potential for multiferroic materials and can be used for
performing large-scale spin–lattice dynamics and MC simulations.

2.3.2. Unified model for spin-induced ferroelectricity. From the perspective of symmetry,
ferroelectricity breaks spatial inversion symmetry. If the crystal structure itself satisfies spatial
inversion symmetry, but its magnetic structure does not, then the magnetic order may induce
ferroelectric polarization. Since 2005, Nagaosa, Dagotto, and others have proposed several mi-
croscopic models (99–103) that partially explain the phenomenon of magnetic order–induced
ferroelectricity. For example, Nagaosa and colleagues (101) proposed a spin current model to ex-
plain the ferroelectricity induced by the noncollinear spiral order: P ∝ ∑

i, jeij × (Si × Sj), where
eij is the distance vector from spin i to spin j. Unfortunately, as these models were derived for
special cases, they are not general and have some limitations.
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Since 2011, Xiang and colleagues have proposed a unified polarization model for describing
spin-order-induced ferroelectricity (104–107). The model considers that the spin-order-induced
electric polarization contains two parts:

Pt = Pe(Si,u j = 0, ηl = 0) + Pion−latt(u j (S), ηl (S)), 22.

where Si represents the spin of the magnetic ion, uj represents the displacement of the ion rela-
tive to the reference structure (generally a high-temperature centrosymmetric structure), and ηl
represents the l component of the strain relative to the reference structure. The pure electronic
part Pe describes the polarization induced by the charge redistribution caused by spin ordering,
whereas the ion–lattice part Pion−latt describes the polarization induced by ion displacement and
lattice distortion caused by spin–lattice coupling. As the electric polarization is invariant with re-
spect to the time-reversal symmetry, the pure electronic part Pe can be expressed as an even-order
function (usually second order is enough) of the spins

Pe =
∑
i,α,β

Pα,βi Si,αSi,β +
∑
i, j,α,β

Pα,βi j Si,αS j,β , 23.

where the first term is the intrasite term related to a single spin, determined by the polarization
parametermatrixPα,βi , and the second term is the intersite term related to spin pairs determined by
the polarization parameter matrix Pα,βi j . To obtain the ion–lattice contribution to the polarization,
it is necessary to calculate the polar ion displacement and lattice distortion caused by spin ordering.
Given the spin–lattice effective Hamiltonian Hsl, one can obtain the ion displacement uj(S) and
strain ηl(S) induced by the spin order by solving

∂Hsl(Si,u j , ηl )
∂u j

= 0, 24.

∂Hsl(Si,u j , ηl )
∂ηl

= 0. 25.

Then, using the Born effective charge Zj,αβ and the piezoelectric coefficient eα,l, the ion–lattice
displacement contribution to polarization can be obtained:

Pion−latt,α =
∑
j,β

Z j,αβu jβ (S) +
∑
l

eα,lηl (S). 26.

All parameters involved in the unified model can be obtained by combining DFT calculations and
four-state method.

2.3.3. Linear magnetoelectric effects. In insulating materials in which both spatial inversion
and time-reversal symmetries are broken, there exists a linearME effect (108); i.e., a magnetic field
B can induce a first-order electric polarization P, and conversely an electric field E can induce a
first-order magnetization M. Note that all electromagnetic multiferroics display the linear ME
effects, but a material (e.g., Cr2O3) that displays the linear ME effect may not be a multiferroic.
This linear ME effect is described by the susceptibility tensor,

αME
i j = ∂Pi

∂B j

∣∣∣
B=0

= ∂M j

∂εi

∣∣∣
ε=0

, 27.

where indices label spatial directions. The linear ME effect is caused by, for example, an electric
field changing the angles and distances, and hence the magnetic exchange interactions, between
magnetic ions, or a magnetic field reorienting spin magnetic moments, causing a change in the
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electronic charge density via the SOC. This ME tensor can be divided into a frozen-ion contri-
bution that occurs even when the ionic coordinates are fixed, and a lattice-mediated contribution
corresponding to the remainder. Each of these two contributions can be decomposed further ac-
cording to whether the magnetic interaction is associated with spins or orbital currents, giving
four contributions to αME in total.

Let us first focus on the linear ME effect related to electron spins. The first DFT-based study
(109) extracted the ionic spin contribution to αME, by calculating the change in spin canting caused
by freezing in an electric field–induced polar distortion of the ions without additionally explicitly
coupling ε to the electrons, and the lattice contribution can be written as a product of the Born
effective charge, the force-constant inverse, and the dynamical magnetic charge (110). For the
electronic spin component of αME (111), one can calculate the electric polarization induced by
an applied Zeeman H field coupled only to the spin component of the magnetization. Here, the
electronic spin response is obtained by clamping the ions during the calculation; relaxing the ionic
positions in response to the H field yields the sum of the ionic and electronic spin components.
If the lattice constant is also allowed to relax, an additional strain-mediated ionic response can be
extracted. It was realized recently (112) that the unified model for spin-induced ferroelectricity
can be adopted to compute both electronic and ionic spin contributions to αME. First, one can
compute the ionic displacement ui and strain ηj induced by a small external electric field with a
method similar to that adopted by Ìniguez (109). Then, one can estimate the change of the spin
interactions due to the applied external electric field. Finally, the change of spin magnetization can
be obtained by finding themagnetic ground state of the systemwith themodified spin interactions.
The key quantity in this approach is the total derivative of the spin interaction strength of a given
spin pair with respect to ε,

dJαβ

dε
= ∂Jαβ

∂ε
+

∑
i

∂Jαβ

∂ui
· ∂ui
∂ε

+
∑
j

∂Jαβ

∂η j

∂η j

∂ε
, 28.

where the first part can be regarded as the electron contribution; ∂Jαβ

∂ε
and the other two parts

related to ∂Jαβ

∂ui
and ∂Jαβ

∂η j
are lattice contributions.Note that all the three types of partial derivatives

of J α,β can be computed with the four-state method. The advantage of this approach to αME is
that no external field is required, and the individual contribution to the spin contribution of αME

from each spin pair can be easily identified. An equivalent way to compute αME is to find the new
magnetic configuration under a Zeeman magnetic field and then compute the induced electric
polarization with the unified model. In principle, the nonlinear ME effect can be treated in the
same way.

Usually, the spin contribution to αME will dominate with respect to the orbital one, because
orbital moments are usually strongly quenched by crystal fields. Under certain circumstances, the
orbital contribution might become important. For example, Z2-odd topological insulators may
display a large, quantized orbital ME response. It was established (113, 114) that the orbital ME
response of a generic insulator at zero field comprises three contributions that were denoted as
local circulation, itinerant circulation, and Chern–Simons. Among them, the former two (Kubo)
terms contribute to αME in conventional MEs, whereas the Chern–Simons term is responsible for
the topological ME effect. Full ME response of Cr2O3 was computed from first-principles (115),
showing that in the case of the longitudinal response, orbital contributions to αME dominate over
spin contributions. Scaramucci et al. (116) proposed an alternative way for computing ionic orbital
contribution to αME by considering the dependence of orbital magnetic moments on the polar
distortions induced by an applied electric field.
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3. RECENT PROGRESS IN MULTIFERROICS

Although multiferroics are of great importance for both fundamental study and practical applica-
tions, they are known to be rare in conventional materials. This is due to the fact that the partially
occupied d orbitals of transitionmetal ions associated withmagnetism reduce the tendency for off-
center ferroelectric distortion (15). The emergence of two-dimensional materials, which exhibit
diverse properties and novel mechanisms, provides a new avenue for realizing multiferroicity. Be-
low, we summarize recent developments of two-dimensional multiferroics, where first-principles
approaches play an important role.

3.1. Type-I Multiferroics

Type-I multiferroicity indicates that the ferroelectricity and magnetism of the system arise from
different origins. For example, in BiFeO3, the 6s2 lone pair of bismuth contributes to the polariza-
tion, whereas the 3d electrons of iron lead to magnetism. Here, we introduce recently proposed
and observed type-I multiferroics.

3.1.1. VOI2 type. VOI2 belongs to the family of van der Waals layered multiferroics VOX2

(X=Cl, Br, I) (117–119). As shown in Figure 5a, VOX2 are made up of VO2X4 octahedra.Neigh-
boring V atoms share a corner O along one direction and an edge X2 along the other direction.
The paraelectric phase crystalizes in a Pmmm space group, whereas the ferroelectric phase con-
denses to Pmm2 symmetry.The in-plane polarization arises from the off-center displacement of V
atom towardO atom.Themagnetism originates fromV 4+ (3d 1) cation. It is predicted that VOCl2
and VOBr2 exhibit antiferromagnetism. Such properties indicate that the VOX2 compounds be-
long to type-II multiferroics, which is similar to many perovskites. Interestingly, the emergence
of ferroelectricity in VOX2 is against the d 0 rule as V 4+ exhibits 3d 1 configuration. Such novel
behavior is explained by the fact that the occupied d orbital of V 4+ lies in the VX4 plane and thus
does not hinder V 4+ moving toward oxygen.

Particularly, VOI2 was predicted to possess ferromagnetic couplings (124), and strong DMI
was proposed to exist in its ferroelectric phase (120). The DMI, which leads to spin spirals and
bimeron state, originates from the off-center displacement of the V atom and the strong SOC
of I atoms. Furthermore, the sign of the DMI changes when the polarization switches directions,
which further leads to a reversal of the topological charge of the bimeron (120, 125). Such elec-
tromagnetic coupling between polarization and magnetic topological charge, mediated by DMI,
implies a new route toward electric control of magnetism.

3.1.2. CuCrS2 type. Bulk CuCrX2 (X = S, Se) crystalize in an R3m space group. Although they
are not van derWaals layered, first-principles calculations indicate that two-dimensionally formed
CuCrX2 are multiferroics (121). As shown in Figure 5b, each two-dimensional multiferroic unit
contains two layers of CrX2 and one layer of intercalating Cu. In the ferroelectric phase, the Cu
atom is vertically aligned with the Cr atom in the upper layer and the X atom in the lower layer,
where the asymmetry leads to the polarization. The polarization is reversed if Cu is vertically
alignedwith theX atom in the upper layer and theCr in the lower layer.The intrinsicmagnetism is
associated with the CrX2 layers, making CuCrS2 and CuCrSe2 type-I multiferroics.Notably, two-
dimensional AgCrS2, which is isostructured with CuCrX2, is recently prepared from its bulk form
(126). Furthermore, reversible DMI, as well as topological defects, is predicted in two-dimensional
Ag(CrSe2)2 (127), the mechanism of which is in line with that of VOI2.

3.1.3. Free-standing perovskite thin films. In 2018, Lu et al. (128) theoretically investigated
the properties of free-standing two-dimensional ferroelectric perovskite oxide thin films. They
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Figure 5

A collection of two-dimensional type-I multiferroics. (a) The EPDQ mechanism, which indicates that applying electric field (E) can
reverse the polarization (P) and the DMI (D) vector, and further changes the sign of the magnetic topological charge (Q), is proposed
to be realized in VOI2. The blue, red, and green balls represent V, O, and I atoms, respectively. (b) The transition path from positive to
negative polarization states of CuCrS2. (c) The possible octahedra rotation modes in B-site-ordered double-perovskite bilayer. (d) The
energy and polarization distribution of 60°-rotated bilayer CrI3. Panel a adapted from Reference 120. Panel b adapted from
Reference 121. Panel c adapted from Reference 122. Panel d adapted from Reference 123. Abbreviation: DMI, Dzyaloshinskii–Moriya
interaction.

found that there exist three kinds of in-plane ferroelectric states that originate from different mi-
croscopic mechanisms: (a) a proper ferroelectric polarization due to the second-order Jahn–Teller
effect related to the B ion with empty d-orbitals; (b) a polarization induced by the surface ef-
fect; and (c) a hybrid improper ferroelectric state induced by the trilinear coupling between two
rotational modes and the A-site displacement. Interestingly, the latter two ferroelectric mecha-
nisms are compatible with magnetism because their stability does not depend on the occupation
state of the d-orbitals of the B ion. These two novel two-dimensional ferroelectric mechanisms
provide new avenues to design two-dimensional multiferroics, as they demonstrated in Sr-V-O
and Ca-Fe-O thin films. Subsequently, Zhang et al. (122) theoretically examined ferromagnetic
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B-site-ordered double-perovskite bilayers and found two coupling mechanisms between polar-
ization and magnetization that enable the reversal of the in-plane magnetization by ferroelectric
switching (see Figure 5c). The spin-induced ferroelectricity and its coexistence and coupling with
ferromagnetism or ferrimagnetism were predicted in even-layer double-perovskite systems (129).
The coexistence of and coupling between ferroelectricity and ferromagnetism were also demon-
strated in designed A-site-ordered perovskite oxide monolayers (130). On the experimental side,
Ji et al. (131) synthesized freestanding crystalline perovskite oxide thin films down to the mono-
layer limit in 2019. They further found that freestanding BiFeO3 films exhibit unexpected giant
tetragonality and polarization when approaching the two-dimensional limit.

3.1.4. Bilayer CrI3 and VS2. Recently, the emergence of two-dimensional magnets and slid-
ing ferroelectricity has opened up a new approach toward multiferroicity. Sliding ferroelectricity
was initially proposed in bilayer BN, where different stackings can result in opposite polarizations
(132). Recent work based on group theory analysis covers all symmetries and provides all possi-
ble cases for stacking ferroelectricity (123). Therefore, it is straightforward to construct bilayer
multiferroics with two-dimensional magnets. Due to the different sources of magnetism and fer-
roelectricity, such bilayer systems are considered to be type-I multiferroics.One example is bilayer
CrI3, for which the two monolayers rotate 60° with respect to each other (77, 133). Interestingly,
group theory predicts that the 60°-rotated bilayer CrI3 has both in-plane and out-of-plane com-
ponents of polarization, which enables tuning of ferroelectricity and magnetism via electric fields
(see Figure 5d). Another example is the bilayer VS2 (134), which exhibits ferroelectricity and
antiferromagnetism, as well as ferrovalley (135).

3.2. Type-II Multiferroic

Type-II multiferroicity refers to the phenomenon that ferroelectricity is induced by magnetism,
where the latter plays the role of breaking inversion symmetry. Type-II multiferroicity usually
leads to strong ME coupling.

3.2.1. NiI2 Type. Recent experiments with optical second-harmonic generation technique
demonstrate that a few layers and even a monolayer of NiI2 are possible two-dimensional
multiferroics (136, 137).

The bulk form of NiI2 has been known as a type-II multiferroic since 2013 (138). It is a van
der Waals layered material, with each layer of NiI2 being made of a triangular lattice of Ni2+

(3d 8, S = 1) ions (see Figure 6a). The magnetic ground state of bulk NiI2 possesses a helical
structure propagating along q ≈ (0.138, 0, 1.457), which corresponds to the equivalent ⟨11̄0⟩
directions. Notably, the spins rotate in a plane that forms an angle of 55° with the out-of-plane
direction (141). Such spin pattern breaks the crystal inversion symmetry and induces an in-plane
polarization along ⟨110⟩ directions, which is perpendicular to the magnetic propagation direction,
yielding a type-II multiferroic.

The helical magnetic structure of NiI2 results from the competition of Heisenberg interac-
tions (142), where competition among the first-, second-, and third-nearest neighbors determines
the propagation direction. It was believed that the ⟨11̄0⟩ is due to competing ferromagnetic J1
and antiferromagnetic J2 (136, 142). However, this contradicts with models extracted from DFT,
which predict ⟨110⟩ propagation as J2 is usually negligibly small (34, 143–145). Furthermore, the
tight-binding model predicts Kitaev interaction in NiI2, and this was soon confirmed by DFT cal-
culations with the four-state method (144). It is further demonstrated that the Kitaev interaction
not only prefers the ⟨11̄0⟩ propagation but also dominantly determines the 55° canting of the spin
rotation plane (33).
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Figure 6

Examples of two-dimensional type-II multiferroics (a,b) and multiferroic heterostructures (c). (a) The canted
proper screw spin state shown in a single layer of NiI2. The lightly shaded planes indicate the rotation plane
of spins, and the Kitaev basis of {XYZ} is shown with red, green, and blue arrows. (b) Multiferroic MXene of
Hf2VC2F2, the structure, noncollinear magnetic state, and induced polarization. (c) The multiferroic
heterostructure of Fe4GeTe2/In2Se3/Fe3GeTe2. Panel a adapted with permission from Reference 33.
Panel b adapted from Reference 139. Panel c adapted from Reference 140. Abbreviation: Y-AFM, Y-type
antiferromagnetism.

The triangular lattice and competing J1 − J2 − J3 mechanism, as well as the novel Kitaev in-
teraction, represents many similar multiferroics. Examples include NiBr2, MnI2, and CoI2, where
polarizations are induced by different helical spin textures (138, 146, 147). Such compounds are
all van der Waals layered and, thus, in principle can be made into two-dimensional multiferroics.

3.2.2. Hf2VC2F2. The MXenes come into play as a brand new type of multiferroics. MXenes
can be easily exfoliated from their three-dimensional parent compounds called MAX, which show
good flexibility in their chemical composition. Recently, the MXene of Hf2VC2F2 is predicted by
first-principles calculations to be a type-II multiferroic, where ferroelectricity originates directly
from its magnetism (139). The noncollinear 120° Y-type spin order generates a polarization per-
pendicular to the spin helical plane. Remarkably, the multiferroic transition is estimated to occur
above room temperature (see Figure 6b). Considering the diversity of MXenes, it is legitimate to
expect more multiferroics out of this type.

3.3. Multiferroic Heterostructures

Besides the aforementioned homostructures, heterostructures made of 2D ferromagnets and fer-
roelectrics lead to more possibilities of multiferroics. As an established 2D ferroelectric, In2Se3 is
a popular choice for constructing such heterostructures. For example, as shown in Figure 6c,
multiferroic tunnel junctions of FemGeTe2/In2Se3/FenGeTe2 (m, n = 3, 4, 5; m ̸= n) exhibit
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multiple nonvolatile resistance states associated with different polarization orientations of the
ferroelectric In2Se3 layers andmagnetization alignment of the two ferromagnetic FenGeTe2 layers
(140). The bilayer made of CrGeTe3 and In2Se3 is predicted to exhibit in-plane versus out-of-
plane anisotropy in its magnetism at different polarization states. In another bilayer made of
MnSTe/In2Se3, the creation and annihilation of the topological magnetic phase can be achieved
when the polarization is switched. MXenes with polar structures, such as Ti2NC2 or Sc2CO2, are
also used as the ferroelectric layer. For example, a trilayer made of monolayer Sc2CO2 and bilayer
CrI3 is predicted to exhibit ferromagnetism versus antiferromagnetism when the polarization is
switched (148).

4. CONCLUSION AND PERSPECTIVE

We have conducted a review of first-principles and first-principles-based techniques and their
applications in the areas of magnets, ferroelectrics, and multiferroics. These approaches offer
computational means to determine various ferroic properties such as the amplitudes and signs of
magnetic interactions, electric polarization values, and ME coupling forms and strengths. Addi-
tionally, these methods facilitate the construction of models incorporating spin and lattice degrees
of freedom, allowing for extensiveMC and dynamic simulations.Our review also highlights the re-
cent advancements in the field of two-dimensional multiferroics, wherein first-principles methods
play a crucial role.

Despite the tremendous progress made in the field of multiferroics, there are still two ma-
jor challenges to be overcome before the full potential of these materials can be realized. One
challenge is to identify and develop materials with strong coupling between their magnetic and
ferroelectric properties at room temperature. Another challenge is the development of robust, ef-
ficient, and high-speed methods for controlling and manipulating the magnetic and ferroelectric
domains of these materials. To this end, new powerful first-principles-based approaches have to
be developed. In order to accelerate the discovery of new multiferroic materials, one promising
way is to perform screenings that combine the use of a materials database and a high-throughput
approach. Another way is to use ML models trained with DFT results to predict the properties
of a material much more efficiently or to intentionally design high-performance multiferroics. To
investigate the dynamics of multiferroics, the development of first-principles approaches that can
simulate the time-resolved behaviors, such as a more reliable and more efficient real-time time-
dependent DFT (149), could be valuable. As defects can create local electric dipoles or modify
the magnetic interactions and thus affect the switching of ferroelectric or magnetic domains, it
is crucial to examine the effects of defects (such as vacancies, interstitials, and impurities) on the
properties of multiferroics as well. However, treating defects in multiferroics with current first-
principles approaches is difficult due to the large unit cells needed and the fact that the electric
polarization of a defect system may be ill defined within the Berry phase theory.
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