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Abstract

We review aspects of the evolution from Bardeen–Cooper–Schrieffer (BCS)
to Bose–Einstein condensation (BEC) in two dimensions, which have now
become relevant in systems with low densities, such as gated superconduc-
tors LixZrNCl, magic-angle twisted trilayer graphene, FeSe, FeSe1−xSx, and
ultracold Fermi superfluids. We emphasize the important role played by
chemical potentials in determining crossovers or topological quantum phase
transitions during the BCS–BEC evolution in one-band and two-band su-
perfluids and superconductors. We highlight that crossovers from BCS to
BEC occur for pairing in nonnodal s-wave channels, whereas topological
quantum phase transitions, in which the order parameter symmetry does not
change, arise for pairing in any nodal higher angular momentum channels,
such as d-wave. We conclude by discussing a few open questions regard-
ing the BCS-to-BEC evolution in 2D, including modulus fluctuations of
the order parameter, tighter upper bounds on critical temperatures, and the
exploration of lattice effects in two-band superconductors and superfluids.
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1. INTRODUCTION

There has been an explosion of experimental work addressing the evolution from Bardeen–
Cooper–Schrieffer (BCS) to Bose–Einstein condensation (BEC) in two dimensions (2D), as a
function of carrier density in condensed matter (1–9) and as a function of interaction strength
in ultracold Fermi superfluids (10, 11). To understand the importance of these experimen-
tal developments and their connection to theoretical efforts, we review below some aspects of
superconductivity and superfluidity.

The first successful microscopic theory of superconductivity was proposed by Bardeen,Cooper
& Schrieffer (12) in 1957, and it was based on the idea of pairing electrons of opposite spin in mo-
mentum space. BCS proposed a variational many-body wave function with pairing correlations
that was able to explain weakly interacting and sufficiently high density s-wave superconductors
in three dimensions (3D). Earlier, in 1957, a competing theory was proposed by Schafroth, Butler
& Blatt (SBB) (13), based on the idea that correlated tightly bound pairs of electrons could be-
come superconducting via BEC of these molecular pairs. SBB suggested a mechanism similar to
what happens in 4He,where BEC provides a condensate fraction and interactions between bosons
ensure their superfluidity.

As discussed in John Markus Blatt’s book, Theory of Superconductivity (14), Max Schafroth pro-
posed an antisymmetrized real space wave function involving products of two-electron states to
describe real space pairs of electrons in 3D. Even though the SBB theory was published slightly
earlier, fate would favor the BCS theory because of its remarkable success in explaining the ex-
perimental results of the time. In the BCS paper (12), it was clearly emphasized that their pairing
theory did not lead to BEC! This was described in their famous quote (12, p. 1177):

Our picture differs from that of Schafroth, Butler, and Blatt,Helv. Phys. Acta 30, 93 (1957), who suggest
that pseudomolecules of pairs of electrons of opposite spin are formed. They show if the size of the
pseudomolecules is less than the average distance between them, and if other conditions are fulfilled,
the system has properties similar to that of a charged Bose–Einstein gas, including a Meissner effect
and a critical temperature of condensation. Our pairs are not localized in this sense, and our transition
is not analogous to a Bose–Einstein condensation.

Surprisingly, it took several years to realize that Schafroth’s and BCS’s wave functions were
the opposite limits of the same theory: in one, pairing occurs in real space, and in the other, it
occurs in momentum space. This was first recognized by Leggett (15, 16), who used Schafroth’s
wave function to describe the connection between the BEC and BCS regimes at zero temperature
(T = 0) as interaction strength is changed for a system with fixed particle density in 3D. Leggett’s
work was generalized to finite temperatures by Nozières & Schmitt-Rink (NSR) (17) using a dia-
grammatic approach. A few years later, Sá de Melo and colleagues (18, 19) developed a functional
integral approach that recovers both Leggett’s and NSR results while providing insights into the
fluctuations around the critical temperature, the nature of the collective modes, and the funda-
mental difference between the correlation length and the pair size associated with Cooper pairing.
For several more years, these theoretical developments were merely of academic interest, because
there were no experiments that could change either the interactions from weak to strong at fixed
particle density or the particle density from low to high at fixed interaction strength. Therefore,
the BCS to BEC evolution remained unexplored experimentally until the early 2000s.

With the ability to trap and cool Fermi atoms, such as 6Li (20–25) and 40K (26, 27), to very
low temperatures, it was found that Feshbach–Fano (28, 29) resonances existed in both types of
atoms. This opened the door for tuning 6Li–6Li or 40K–40K interactions at fixed density with
the help of external magnetic fields. Both s- and p-wave interactions were tunable in these two

110 Sá de Melo • Van Loon



CO15_Art06_SaDeMelo ARjats.cls February 20, 2024 10:31

EVOLUTION FROM BCS TO BEC OR FROM BCS TO BOSE SUPERFLUIDITY AND
SUPERCONDUCTIVITY?

Although the terminology evolution from BCS to BEC is accurate in 3D, it is not strictly correct in 2D because
there is no BEC in dimensions lower than three. Thus, a more appropriate nomenclature in 2D is evolution from
BCS to Bose superfluidity or superconductivity. However, we use the language BCS to BEC throughout the review for
the mere convenience of having a single jargon applied to three-dimensional or two-dimensional superfluids and
superconductors. The terminology also seems to be preferred in the existing literature and should facilitate online
searches about this evolution in 3D and 2D.

systems. However, most of the experimental work that followed investigated s-wave systems,
because the lifetime of paired fermions in this channel was sufficiently long to detect super-
fluidity (20, 23, 24, 26). Unfortunately, the corresponding lifetime in the p-wave channel was
much shorter than the timescale required to observe superfluidity (30, 31). After an initial ex-
ploration of three-dimensional superfluids in harmonic traps, theoretical and experimental efforts
expanded to include two-dimensional systems, either by tight harmonic confinement along one
direction (32–35) or by creating highly anisotropic optical lattices (36–40).Until recently, all cold-
atom experiments exhibited some degree of inhomogeneity caused by the harmonic confinement
or the harmonic envelope of optical lattices. Therefore, theorists had to rely on the local density
approximation to make direct comparison to experiments, often leading to unreliable findings (41,
42). Fortunately, with the development of high-quality digital mirror devices, the creation of ho-
mogeneous three- and two-dimensional optical box potentials was recently made possible (43–47).
This tremendously facilitates comparisons to theoretical work in the continuum and in uniform
optical lattices (34, 48–50). (See the sidebar titled Evolution from BCS to BEC or from BCS to
Bose Superfluidity and Superconductivity.)

The use of optical box potentials to trap ultracold fermions has allowed for the exploration of
homogeneous two-dimensional superfluids from the BCS to BEC regime,where particle density is
fixed, but interactions are changed (44, 51). This effort now also has a parallel in two-dimensional
superconductors, where gating and doping techniques have permitted the investigation of two-
dimensional superconductors from the BCS to BEC regime, where the interactions are fixed,
but carrier densities are changed. In particular, two-dimensional materials such as Lithium-doped
nitrides (LixZrNCl) (1, 2), magic-angle twisted trilayer graphene (3–5), FeSe (6, 7), and FeSe1−xSx
(8, 9), are now considered prime candidates to study BCS–BEC crossovers and quantum phase
transitions.

In this review, we discuss fundamental concepts involving the evolution from BCS to BEC su-
perfluidity and superconductivity in 2D, emphasizing the role of chemical potentials in describing
crossovers and quantumphase transitions.We analyze the cases of one-band and two-band systems
with s-wave or higher angular momentum pairing (e.g., d-wave) and emphasize that the BCS–BEC
evolution is a crossover for nonnodal s-wave systems but exhibits topological quantum phase tran-
sitions for nodal higher wave pairing. Whenever applicable, connections and comparisons are
made to experiments in ultracold atomic superfluids and condensed matter superconductors.

The remainder of this review is organized as follows. In Section 2, we discuss the funda-
mental role that the chemical potential plays in the evolution from BCS to BEC in 3D and 2D,
with initial focus on one-band superfluids and superconductors. In Section 3, we analyze the
BCS–BEC crossover in two-dimensional homogeneous s-wave systems covering ultracold Fermi
superfluids and condensed matter superconductors. In Section 4, we consider higher angular
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momentum (e.g., d-wave) pairing with nodal structures and identify the existence of topological
quantum phase transitions as the chemical potential crosses a critical value in 2D. In the following
sections, we generalize these concepts to two-band systems. In Section 5, we discuss the role
played by chemical potentials in two-band superfluids and superconductors. In Section 6, we
explain the BCS–BEC crossover in two-band systems and make connections to FeSe, FeSe1−xSx,
and LixZrNCl. In Section 7, we examine the existence of topological quantum phase transitions
for higher angular momentum pairing as chemical potentials are changed by either fixing inter-
actions and changing density or fixing density and changing interactions. A possible connection
to magic-angle twisted trilayer graphene is discussed. In Section 8, we summarize the main points
of the review, and in Section 9, we briefly discuss a few open questions and provide an outlook
for further investigations.

2. THE FUNDAMENTAL ROLE OF THE CHEMICAL POTENTIAL

Irrespective of dimensionality, and whether a crossover or a quantum phase transition occurs, the
chemical potentialµ plays a fundamental role in the evolution from the BCS to the BEC regime in
superconductors and superfluids (52, 53). In one-band systems, the quasiparticle energy spectrum
of singlet superconductors and superfluids is quite generally

Ek =
√
ξ 2k + |1k|2 1.

in any theory that invokes pairing. Here, k is the momentum; ξk = ϵk − µ is the independent
particle energy ϵk with respect to the chemical potential µ; and 1k = |1|0k is the order param-
eter, where 0k contains the pairing symmetry and interaction range. Within pairing theories, the
discussion below is universal, provided that |1| ̸= 0 and that no competing phases have lower free
energy than the superfluid or superconducting state.

Without specifying density or interactions, consider first the parabolic dispersion ϵk = ℏ2k2/

2m, wherem is the mass of the fermion.When1k is characterized by a single angular momentum
channel ℓ ̸= 0 and time-reversal symmetry is not broken, it is guaranteed that1k has nodes along
specific directions, defined by the angular momentum quantum numbers ℓ and m in 3D and by
ℓ in 2D. For singlet pairing, the order parameters can be 1k = |1|γ 3D

|k| Fℓm(θ ,ϕ) in 3D or 1k =
|1|γ 2D

|k| Gℓ(ϕ) in 2D. Here, the function Fℓm(θ , ϕ) is Y00(θ ,ϕ) = 1/
√
4π for s-wave (ℓ = 0), and

d3z2−r2 , dx2−y2 , dxy, dyz, or dxz for d-wave (ℓ = 2), whereas Gℓ(ϕ) = 1 for s-wave and Gℓ(ϕ) = cos 2ϕ
for d-wave. The functions γ 3D

|k| and γ 2D
|k| depend only on the modulus |k| and contain information

about the interaction range.
When the chemical potential µ lies above the bottom of the band ϵk, that is, µ > 0, there is a

set of momenta (loci) kµ where ξkµ = 0, leading to ℏ|kµ| = √
2mµ. In this case, min[Ek] = |1kµ |,

meaning that if the order parameter is nodeless (e.g., s-wave), then there is a gap in Ek at kµ.
However, if the order parameter has nodes (e.g., d-wave), then Ek is gapless, which is a charac-
teristic of all nodal order parameters for ℓ ̸= 0. In contrast, when µ lies below the bottom of the
band ϵk, that is, µ < 0, there are no momentum loci where ξk = 0, thus min[ξk] = |µ| occurs
at k = 0 and min[Ek] =

√
µ2 + |1k=0|2. In this situation, there is always a full gap in Ek for

order parameters without nodes (e.g., s-wave) or with nodes (e.g., d-wave). Either in 2D or 3D,
γ |k| ∼ |k|ℓ vanishes as |k| → 0 for ℓ ̸= 0, in which case min[Ek] = |µ| depends solely on µ. For
ℓ = 0, the qualitative change in Ek from indirectly gapped at kµ, when µ > 0, to directly gapped
at k = 0, when µ < 0, is a key point in understanding the crossover from BCS to BEC. For
ℓ ̸= 0, correspondingly, the qualitative change in Ek from gapless at kµ, when µ > 0, to directly
gapped at k = 0, when µ < 0, is fundamental in identifying a quantum phase transition in
the evolution from BCS to BEC. In Figure 1, schematic plots reveal the qualitative difference
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Figure 1

(a) Phase diagram showing the BCS (µ > 0) and BEC (µ < 0) regions for a continuum particle-like parabolic dispersion ϵk = ℏ2k2/2m.
For nodal order parameters, the point µ = 0 indicates a quantum phase transition. (b) The crossover from BCS (µ > 0) to BEC (µ < 0)
for ℓ = 0 (s-wave), where Ek is always gapped. (c) The quantum phase transition from BCS (µ > 0) to BEC (µ < 0) for ℓ = 2 (d-wave),
where Ek changes from gapless to gapped. Abbreviations: BCS, Bardeen–Cooper–Schrieffer; BEC, Bose–Einstein condensation.

between ℓ = 0 and ℓ = 2. In Figure 1a, the phase diagram indicating the BCS and BEC regions
as µ changes from positive to negative is shown. The quasiparticle energy Ek for ℓ = 0 is
drawn in Figure 1b, where a crossover occurs (15). The behavior of Ek for ℓ = 2 is plotted in
Figure 1c, where a quantum phase transition emerges (53–55). This quantum phase transition
occurs without changing the symmetry of the order parameter, and thus cannot be understood in
the Landau framework of symmetry-based phase transitions, but rather has a topological nature
that produces thermodynamic signatures of a second- or higher-order phase transition according
to the Ehrenfest classification (53).

There is another fundamental difference between ℓ = 0 and ℓ ̸= 0 pairing in 2D, with respect
to the existence of two-body bound states. For s-wave, there is always a two-body bound state
for arbitrarily small interactions, meaning that the crossover line µ = 0, in the density versus
interaction plane, can always be traversed by either fixing interactions and changing density or
vice-versa (53, 56). However, for d-wave, there is a critical interaction for the emergence of two-
body bound states, meaning that the quantum phase transition line µ= 0 can always be crossed by
fixing density and changing interactions, but not necessarily by fixing interactions and changing
density (53, 56)

A similar situation also arises in lattices, where the independent particle dispersion ϵk is no
longer parabolic. Let us mention two simple examples. A single uncorrelated tight-binding band
may have ϵk = −2t

∑
icos kia, where i � {x, y} in 2D (square lattice) or i � {x, y, z} in 3D (cubic

lattice). A single correlated tight-binding band may have ϵk = −2t
∑

i cos kia+ ε
(co)
k , where ε(co)k

are due to correlations emerging from Hartree–Fock theories, for example. Provided that the
uncorrelated or correlated bands are parity even and have particle–hole symmetry with respect to
ϵc = (max[ϵk]−min[ϵk])/2, a few general statements can be made with respect to the quasiparticle
excitation spectrum Ek, displayed in Equation 1. For min[ϵk] ≤ µ ≤ max[ϵk], there are always
loci kµ in momentum space where ξkµ = 0, which requires ϵkµ = µ. If the order parameter is
nodeless, then min[Ek] = |1kµ | corresponds to a gap in Ek. However, if the order parameter has
nodes, then min[Ek] = 0 along the nodal directions of the order parameter. In contrast, for µ ≤
min[ϵk] or µ≥ max[ϵk], there are no loci in momentum space where ξk = 0, leading to min[Ek] =√
(min[ϵk] − µ)2 + |1kmin |2 when µ ≤ min[ϵk] or to min[Ek] = √

(max[ϵk] − µ)2 + |1kmax |2 when
µ≥ max[ϵk]. In simple cases of particle-like ϵk, the values of min[ϵk] occur at k = 0, and the values
of max[ϵk] occur at the Brillouin zone boundaries. The situation is reversed for hole-like ϵk. In
Figure 2, we use the qualitative behavior of ϵk to identify BCS-like versus BEC-like behavior as
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(a) Particle-like lattice dispersion ϵk and phase diagram for µ with respect to energies min[ϵk], ϵc, and
max[ϵk]. Regions in the phase diagram are labeled as electron-like (particle-like) or hole-like: BECe, BCSe,
BCSh, and BECh. For nodal (nodeless) order parameters, the BCS/BEC boundaries correspond to quantum
phase transitions (crossovers). (b) Loci in momentum space, where ξk = 0, that is, ϵk = µ.

µ changes. As shown in Figure 2, four superconducting or superfluid regions, labeled as electron-
like (particle-like) or hole-like, exist: BECe, BCSe, BCSh, and BECh (49). Crossovers or quantum
phase transitions may occur during the evolution from the BCS to the BEC regime in 3D
and 2D.

3. ONE-BAND BCS–BEC IN 2D: CROSSOVERS

For s-wave systems, the evolution from the BCS to the BEC regime is just a crossover (15). To
establish how close the system is to the BEC regime, it is important to analyze a few properties of
the system to identify where the chemical potential µ lies. At zero temperature (T = 0), µ can be
changed by either tuning interactions at fixed particle density n in cold-atom superfluids (10, 11,
48) or adjusting the carrier density for fixed interactions in superconductors (1–5, 7, 53).

In cold-atom experiments, it is now possible to create two-dimensional box potentials using
digital micromirror devices (46), such that homogeneous two-dimensional Fermi gases can be
produced (10, 11, 44), which is a major advance in getting rid of the intrinsic inhomogeneity
of harmonic traps. This technical achievement allows for comparison to theoretical work that
describes the crossover from BCS to BEC in 2D (32), starting from a two-dimensional continuum
action,

S =
∫ ℏ/kBT

0
dτ

∑
ks

ψ†
ks(τ )(ℏ∂τ + ξk )ψks(τ ) +

∑
kk′q

Vkk′b†kq(τ )bkq(τ )

, 2.

where bkq(τ ) = ψ−k+ q
2 ↓(τ )ψk+ q

2 ↑(τ ) represent pairs of fermions with center of mass momentum
q and relative momentum 2k. The interaction Vkk′ can be expanded in its angular momentum
components (53); considering only the s-wave channel leads to the separable formVkk′ = λ0k0k′ ,
with 0k = (1 + |k|/k0)−1/2. Here, k0 = 2π/R, with R playing the role of the interaction range in
real space. In the case of ultracold fermions, the interaction range R → 0 (k0 → ∞), so it is more
convenient to express the interactions in terms of the two-body bound state energy Eb as

1
λ

=
∑
k

|0k|2
2ϵk − Eb

3.

or the two-dimensional scattering length a2D = 2k−1
F e−γE

√
2ϵF/|Eb|, with γ E ≈ 0.577 being the

Euler–Mascheroni constant (57). In 2D, contact s-wave interactions lead to a two-body bound
state for arbitrary small λ (48), in contrast to 3D, where a critical value of λ is required to produce
a two-body bound state (18, 19).
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Neglecting modulus fluctuations of the order parameter, superconductivity and superfluidity
emerge via the pairing field 1r = |1|eiθr , where r = (r, τ ); r = (x, y) is the real space position
and τ is the imaginary time. The modulus of the order parameter is |1| and θ r represents phase
fluctuations. In momentum space, the order parameter is1k = |1|0k and the phase-only effective
action is

Sfl = 1
2

∫
d3r

{
ρi j∂iθr∂ jθr + A [ℏ∂τ θr]2

}
, 4.

where the indices i and j cover the set {x, y}. The superfluid stiffness tensor ρ ij, with dimen-
sions of energy, and A, related to the isothermal compressibility, are functions of temperature
T, order parameter modulus |1|, and chemical potential µ. For isotropic systems, ρ ij = ρδij,
the Berezinskii–Kosterlitz–Thouless (BKT) temperature (58, 59) is given by the Nelson–
Kosterlitz (59, 60) relation kBTBKT = πρ/2, whereas for anisotropic systems, with ρ ij = ρ iiδij,
kBTBKT = π

√
ρxxρyy/2 (61, 62). It should be emphasized that TBKT is a function of µ, |1|, and

Eb (32) and of the source of the anisotropy in ρ ij, like spin–orbit coupling (61, 62). For a Galilean
invariant system, with ϵk = ℏ2k2/2m, the superfluid stiffness ρ is always bounded by ℏ2n/4m.
Using n = k2F/2π leads to an upper bound on the BKT temperature TBKT ≤ TF/8 = 0.125TF (48),
where TF = EF/kB and EF = ℏ2k2F/2m are the Fermi temperature and energy, respectively. The
same bound also applies to anisotropic ρ ij, caused, for example, by spin–orbit coupling, because
the action Sfl is conformally invariant. So, Equation 4 can be brought into its diagonal scalar
form by conformal transformations, rotation, and scaling of coordinates, producing the same
bound (61, 62). An example of the BKT temperature for zero-ranged (contact) interactions is
shown in Figure 3, together with the mean-field temperature, where |1| = 0.

Theories that invoke phase fluctuations only cannot describe the deeply bound regime where
|Eb|/EF ≫ 1 because they neglect modulus fluctuations of the order parameter. The inclusion
of Gaussian corrections from the modulus fluctuations are still not sufficient, because they just
renormalize the compressibility and leave the superfluid stiffness unchanged. It is still an open
question how to construct a microscopic theory that recovers the Fisher–Hohenberg logarithmic
corrections to the critical temperature Tc, coming from interactions between the bosonic degrees
of freedom (63) linked to deeply bound states.One can add phenomenologically or ad hoc the con-
tributions that produce the Fisher–Hohenberg logarithmic corrections, but that does not provide
a microscopic theory.
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Figure 3

(a) Chemical potential µ/EF versus binding energy |Eb|/EF and two-dimensional scattering length ln kFa2D
at the mean-field (MF) and BKT temperatures. (b) Mean-field (TMF) and BKT (TBKT) temperatures versus
|Eb|/EF. (c) TMF and TBKT versus ln kFa2D. The theoretical upper bound TF/8 is shown as a dotted gray line.
Figure adapted from Reference 32. Abbreviation: BKT, Berezinskii–Kosterlitz–Thouless.
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3.1. Superfluids in 2D: Ultracold Fermi Atoms in Box Potentials

In ultracold Fermi superfluids, there are several ways to probe the consequences of a BCS–BEC
crossover in 3D and 2D. In the past, quantitative comparisons between theory and experiment
were difficult, because most theoretical work was done in continuum homogeneous systems,
whereas experiments always had some degree of harmonic confinement, making the Fermi su-
perfluids inhomogeneous. Theories that include the effects of harmonic confinement (64, 65) rely
mostly on the local density approximation, leading tomixed results (41, 42), somaking contact with
experiments using harmonic traps (39, 40) may be unreliable.With the advent of two-dimensional
box potentials, it has become easier to compare experimental results with theoretical predictions.
For instance, an experiment with inhomogeneous two-dimensional systems has reported a critical
temperature Tc (39) that seems to exceed the known theoretical upper bound Tc = TF/8, based on
the BKTmechanism. If the measurement of Tc is correct, this would suggest that inhomogeneous
systems can have higher Tc than the upper bound for homogeneous systems. Conversely, this also
raises questions about having accurate thermometry, which has been an issue for cold-atom sys-
tems for a long time (66, 67). Box potentials in 2D (44, 46) and improved thermometry using
machine learning (68) may lead to an accurate determination of Tc as a function of the binding
energy Eb or scattering length a2D while providing a test bed for the applicability of the BKT
mechanism to two-dimensional Fermi superfluids.

In cold-atom systems, it is possible to directly probe the energy spectrum using two-photon
Bragg spectroscopy (11). This technique uses two laser pulses to excite the atoms through absorp-
tion and stimulated emission of two photons. The energy and momentum that is transferred to
the gas can be chosen by selecting the specific frequency and relative position of the two lasers;
by measuring the response of the system, the dynamical structure factor can be inferred (11). The
dynamical structure factor is a measure of the density–density response of the superfluid, which
provides information about the many-particle energy spectrum. Specifically, it can probe the low-
energy collective modes that arise from the spontaneously broken U(1) symmetry. At energies
larger than twice the gap of the quasiparticles, it is energetically favorable to break pairs, such that
the dynamical structure factor explores the two-particle continuum. Interestingly, in 2D, the col-
lective modes exist for all wave numbers, in contrast to 3D, where higher-momentum modes can
get damped by breaking up in the two-particle continuum below a certain interaction strength (69,
70). This is a result of the presence of two-body bound states for all s-wave contact interactions in
2D (71). As more experiments are being done in homogeneous potentials (11, 51), the agreement
with the continuum theory is very good, improving our understanding of two-dimensional super-
fluids as they evolve from the BCS to BEC regime. In Figure 4, the low-energy collective modes
are shown for different values of µ (71). In the BCS regime, the dispersion is pushed down by the
two-particle continuum but never reaches it in 2D.

3.2. Superconductors in 2D: Lack of One-Band BCS–BEC
Crossover Experiments

Whereas ultracold atoms have provided clean experimental examples of the crossover from the
BCS to BEC regimes in 3D and 2D, such manifestations are still lacking for one-band super-
conductors due to technical difficulties. In ultracold atoms, such as 6Li and 40K, the densities can
be quite low, but the interactions can be changed with the help of Feshbach–Fano (28, 29) reso-
nances. The tuning of attractive interactions between Fermi atoms from weak to strong may force
the chemical potential to change from µ > 0 to µ < 0 and may induce a BCS–BEC crossover in
Fermi superfluids with ϵk = ℏ2k2/2m. This wide-range tuning of interactions is not currently
possible in superconductors, where often the type, strength, or range of the interactions that lead
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Collective mode dispersion ℏωk/EF versus |q|/kF for different values of µ/EF. In the BCS limit, when
µ/EF ≈ 1, the sound velocity is c ≈ vF/

√
2. In the BEC limit, where µ/EF ≈ −|Eb|/2EF, the sound velocity

is c ≈ vF/
√
8| ln kFa2D|. A comparison between theory (71) and experiments in 6Li (11) shows excellent

agreement. The binding energy and sound velocity in the different panels are: (a) Eb ≃ 0.2EF, c ≃ 0.55vF;
(b) Eb ≃ 0.8EF, c ≃ 0.46vF; (c) Eb ≃ 2.5EF, c ≃ 0.37vF.

to superconductivity are not known. So, the tuning of µ for one-band superconductors can only
be achieved by changing the carrier density, via either chemical doping or electrostatically with
gating techniques. Thus far, there are no clear experimental examples in which the crossover from
BCS to BEC occurs in one-band two-dimensional superconductors, in either the continuum or
the lattice. For instance, even the switch from BCSe to BCSh at half-filling shown in Figure 2a
may be absent because of competing phases, such as the antiferromagnetic insulator. The evo-
lution from BCSe to BECe or BCSh to BECh may not occur because carrier densities are not
sufficiently low or high and interactions may not be sufficiently strong to push µ below min[ϵk]
or above max[ϵk]. However, as we discuss in Sections 6 and 7, there are some promising two-band
and multiband materials for which experimental work suggests that the BCS–BEC evolution may
be within reach.

4. ONE-BAND BCS–BEC IN 2D: QUANTUM PHASE TRANSITIONS

Although crossovers are interesting, they are not as striking as quantum phase transitions, in which
dramatic physical signatures arise close to the transition point, line, or surface. For higher angular
momentum ℓ, the formal expressions for the action S, two-body bound state energy Eb, and phase-
only effective action Sfl are exactly the same as those in Equations 2–4, with the simple change
0k = γ 2D

|k| cos ℓϕ, where γ 2D
|k| = (|k|/k1 )ℓ/(1 + |k|/k0 )ℓ+1/2. The low-momentum scale is set by k1,

whereas the momentum range is set by k0 = 2π/R, leading to low and high momentum behavior
of Vkk′ compatible with a physically acceptable real space interaction (53). The momentum scale
k1 can always be absorbed into the strength λ of the interactions and into the modulus |1| of the
order parameter, so the choice k1 = k0 can be made without loss of generality.

As discussed in Section 2, interactions beyond s-wave (ℓ = 0) may lead to quantum phase tran-
sitions in superconductors and superfluids in which Ek is gapless in the BCS and gapped in the
BEC regimes. In Figure 5a, min[Ek] versus µ is shown for ℓ = 2 (d-wave), where min[Ek] = |µ|
for µ < 0 and min[Ek] = 0 for µ > 0. In Figure 5b, the nodal structure of the order parameter
1k = |1|γ 2D

|k| cos 2ϕ with dx2−y2 symmetry is displayed for µ > 0, revealing the Dirac points at
ϕ = π/4 + nπ/2 for n � {0, 1, 2, 3}. For ℓ = 2, the function γ 2D

|k| = (|k|/k1 )2/(1 + |k|/k0 )5/2 de-
fines the low and high momentum behavior and cos 2ϕ defines the nodal structure of the order
parameter. Even though time-reversal symmetry is not broken, the emerging Dirac fermions for
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(a) Sketch of min[Ek] versus µ for ℓ = 2 (d-wave): for µ > 0, Ek is gapless with min[Ek] = 0; for µ < 0, Ek is
gapped with min[Ek] = |µ|. (b) The nodal structure of 1k = 1γ 2D

|k| cos 2ϕ at kµ for µ > 0, showing the four
Dirac points at ϕ = π/4 + nπ/2 with n � {0, 1, 2, 3}.

µ > 0 are chiral and have winding numbers

Nw = 1
2π

∮
C
dℓẑ · m × dm

dℓ
, 5.

where m = (ξk, 1k)/Ek, and C is a counterclockwise path that encircles each individual Dirac
point. The winding numberNw alternates between −1 (ϕ = π/4, 5π/4) and +1 (ϕ = 3π/4, 7π/4).
Because there is no global chiral symmetry breaking, the net chirality of the system is always
zero. Nevertheless, the tuning of µ → 0 forces the annihilation of these chiral Dirac fermions,
producing a topological quantum phase transition in momentum space exactly at µ = 0. For
µ < 0, Ek is gapped, with min[Ek] = |µ| at |k| = 0, and Nw is always zero, because chiral Dirac
fermions no longer exist.

The topological quantum phase transition caused by the annihilation of Dirac quasiparticles is
analogous to the Lifshitz transition in ordinary metals (72), as seen in Figure 6, where plots of the
quasiparticle/quasihole energies ±Ek are shown for three values of µ. The qualitative differences
in the excitation spectrum Ek have dramatic effects in the momentum distributions and density
of states (53, 55). Such changes in Ek produce a similar but stronger effect when compared to
the standard Lifshitz transition, where the Fermi surface of metals may change as a function of
pressure, with the breaking of a neck in the Fermi surface at a critical pressure. For instance, the
isothermal compressibility n2κT = dn/dµ|T of a d-wave superconductor or superfluid exhibits a

a   µ > 0 b   µ = 0 c   µ < 0

Figure 6

Quasiparticle (red) and quasihole (blue) energies ±Ek showing the annihilation of the Dirac points as µ
evolves from positive to negative. At µ = 0, the chiral Dirac fermions annihilate, and a topological quantum
phase transition occurs. Figure adapted from Reference 48.
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logarithmic singularity as µ → 0 (48, 53). This is in sharp contrast to the conventional Lifshitz
transition, where κT is continuous, but its derivative with respect to pressure has a square-root
divergence as the critical pressure is approached (53, 72).

For a lattice with particle-like dispersion ϵk = −2t(cos kxa + cos kya) and an order parameter
with d-wave symmetry 1k = |1|(cos kxa − cos kya), two topological quantum phase transitions
occur: one from BCSe to BECe when µ = min[ϵk] and the other from BCSh to BECh when
µ = max[ϵk]. In both cases, chiral Dirac fermions annihilate at the critical values of µ and are
responsible for the topological quantum phase transitions. Due to the d-wave (dx2−y2 ) nature of
the order parameter, when the BCS–BEC evolution occurs in these systems, it is inevitable that it
must encounter a topological quantum critical point at T = 0 and that it must sense the existence
of this topological quantum critical point at finite temperatures (48, 53). An important thermo-
dynamic signature of this topological quantum critical point is the logarithmic singularity of the
isothermal compressibility n2κT at the critical chemical potential µc, where the chiral Dirac quasi-
particles annihilate; that is,µc = min[ϵk] or µc = max[ϵk]. At T= 0, n2κT ≈ −αln [|µ− µc|/E0] +
β, where E0 = ℏ2k20/2m is the energy unit and α (β) is independent of (dependent on) the sign of
µ− µc (53). At nonzero T, the proximity to this topological quantum critical point manifests itself
as a maximum in n2κT at the corresponding values of µ(T ) = min[ϵk] or µ(T ) = max[ϵk]. Such a
topological quantum critical point was entirely missed in early work on the BCS–BEC evolution
in 2D (73), but it was identified accurately in later work (53–55, 74).

For the BCS–BEC evolution, the critical BKT temperatures have been calculated for nodal
order parameters (e.g., p- and d-wave) (56). Within a phase-only fluctuation theory, TBKT were
shown to increase as functions of interaction strength or particle density and to have the same
bound TBKT ≤ TF/8 as the s-wave case (48). More recently, these results were rediscovered and
extended (75), but they are all based on phase-only actions, which cannot recover the Fisher–
Hohenberg logarithmic corrections in Tc when the Bose regime is reached.

Although there are candidates for topological quantum phase transitions in one-band
two-dimensional superconductors and superfluids, its unquestionable experimental observation
remains elusive. In the context of superconductors, the high-critical-temperature cuprates are nat-
ural systems to explore, because they are essentially two-dimensional, are known to have d-wave
(dx2−y2 ) symmetry, and thus satisfy the higher angular momentum pairing requirement. They also
have preformed pairs at low doping, suggesting that the interaction strength could be sufficiently
strong to allow for the chemical potential to cross its critical value where the gapless d-wave ex-
citations become fully gapped. Even though it was recently suggested that there is a BCS–BEC
evolution in the cuprates (76), based on specific heat measurements near the critical temperature,
this argument has been countered (77) by the fact that similar experiments do not show signatures
of a quantum phase transition at low temperatures, like the logarithmic singularity in the com-
pressibility or the collapse of Dirac fermions in the momentum distribution (48, 53). There are
also possible topological quantum phase transitions in systems with higher angular momentum
pairing that break time-reversal symmetry, such as p-wave (px + ipy), when the chemical potential
falls below the bottom or rises above the top of the band in a lattice or falls below the bottom
of the band in the continuum (74). These systems are not gapless with chiral Dirac fermions in
the bulk; rather they are fully gapped with Majorana fermions at the sample boundaries in the
BCS regime, and their BEC phase is also gapped. These Majorana edge modes are the hallmark
of gapped topological superconductors. However, current experimental candidates in 2D, such as
interfaces between quantum Hall insulators and niobium, do not yet present undisputed evidence
of Majorana modes (78) or of the sought-after topological quantum phase transition.
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For ultracold atoms, BCS–BEC topological quantum phase transitions have been theoretically
suggested for two-dimensional p-wave systems with (px or py) or without nodes (px + ipy), where
time-reversal symmetry is preserved or broken (48, 79). However, the lifetimes of atom pairs are
experimentally too short, due to collisional losses and dissociation through the centrifugal bar-
rier (30), and superfluidity has never been observed in p-wave Fermi gases, such as 6Li or 40K, in
either 3D or 2D. However, there is hope that the lifetimes of these pairs can be substantially in-
creased by trapping p-wave fermions in either a box potential (46) or a lattice (80),where collisional
losses can be substantially reduced.

5. ROLE OF CHEMICAL POTENTIALS IN TWO-BAND SYSTEMS

In two-band systems, the chemical potential also plays a very important role in the evolution from
BCS to BEC superconductivity or superfluidity. Considering two particle-like bands ϵ1k = ϵ10 +
ℏ2k2/2m1 and ϵ2k = ϵ20 + ℏ2k2/2m2, attractive intraband interactions λ11 and λ22, and interband
interactions λ12 of the Josephson type leads to quasiparticle energy dispersions

E1k =
√
ξ 21k + |11k|2 and E2k =

√
ξ 22k + |12k|2. 6.

Here, ξ jk = ϵ jk − µj are the independent particle energies ϵ jk with respect to chemical potentials
µj, and 1jk = |1j|0jk are order parameters in band j, where 0jk contains the angular momentum
symmetry factor. Within pairing theories, the discussion below is general, provided that |1j| ̸=
0 and that no competing phases have lower free energy than the superfluid or superconducting
state. For conductors in standard condensed matter systems, only the total number of particles
can be fixed, thus µ1 = µ2 = µ. However, for cold atoms, the chemical potentials µ1 and µ2 can
be different, because the number of particles in each band may be fixed independently (81, 82).

In close analogy to the one-band case, we can immediately infer the BCS and BEC regions by
analyzing the chemical potentials µj with respect to the minima of ϵ jk as seen in Figure 7. For
particle-like parabolic bands ϵ1k = ϵ10 + ℏ2k2/2m1 and ϵ2k = ϵ20 + ℏ2k2/2m2, with ϵ10 ≥ ϵ20, the
energies ξ 1k = ϵ1k −µ1 and ξ 2k = ϵ1k −µ2 can be simply rewritten as ξ j k = ℏ2k2/2m j − µ̃ j , where
µ̃ j = µ j − min[ϵ j k] = µ j − ϵ j0. For band j, the regimes are BCSj for µ̃ j > 0 and BECj for µ̃ j < 0,
with crossovers from BCSj to BECj occurring around µ̃ j = 0 in the s-wave channel, and topolog-
ical quantum phase transitions occurring at µ̃ j = 0 in higher angular momentum channels (e.g.,
p-wave or d-wave). If µ̃1 and µ̃2 can be tuned independently, then there are four possible cases:
(a) BCS1-BCS2 for µ̃1 > 0 and µ̃2 > 0; (b) BEC1-BCS2 for µ̃1 < 0 and µ̃2 > 0; (c) BCS1-BEC2

for µ̃1 > 0 and µ̃2 < 0; and (d) BEC1-BEC2 for µ̃1 < 0 and µ̃2 < 0, as seen in Figure 7a. Analo-
gously, for a two-band system with one electron-like (particle-like) band ϵek = ϵbg/2 + ℏ2k2/2me

0
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Figure 7

(a) Parabolic particle-like bands ϵ1k and ϵ2k and phase diagram for µ̃1 and µ̃2. (b) Parabolic electron and hole
bands ϵek and ϵhk and phase diagram for µ̃e and µ̃h.
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and one hole-like band ϵhk = −ϵbg/2 − ℏ2k2/2mh, the energies ξ ek = ϵek − µe and ξ hk = ϵhk + µh

become ξek = ℏ2k2/2me − µ̃e and ξhk = −ℏ2k2/2mh + µ̃h, where the shifted chemical potentials
are µ̃e = µe − ϵbg/2 and µ̃h = µh − ϵbg/2. If µ̃e and µ̃h can be tuned independently, then there
are again four possible cases: (a) BCSe-BCSh for µ̃e > 0 and µ̃h > 0; (b) BECe-BCSh for µ̃e < 0
and µ̃h > 0; (c) BCSe-BECh for µ̃e > 0 and µ̃h < 0; and (d) BECe-BECh for µ̃e < 0 and µ̃h < 0,
as illustrated in Figure 7b. For order parameters that do not break time-reversal symmetry,
crossovers occur among these four different regions for nonnodal order parameters (e.g., s-wave),
whereas topological quantum phase transitions arise for nodal order parameters (e.g., d-wave). For
lattice energies ϵ jk, including two particle-like or one particle-like and one hole-like dispersions,
the situation is similar to the one-band case shown in Figure 2. See also Section 9, where an
outlook is discussed for two bands in lattices.

6. TWO-BAND BCS–BEC IN 2D: CROSSOVERS

A few experimental two-band or multiband systems in 2D are candidates for the BCS–BEC
crossover in the condensed matter setting. One example is multiband layered superconductors
such as FeSe (6, 7) and FeSe1−xSx (8, 9), where spectroscopic evidence exists from photoemission
experiments that one of the quasihole bands in the superconducting state changes from gapped
at nonzero momentum to gapped at zero momentum as a function of doping x (8), a hallmark of
the crossover from BCS to BEC. In addition to changing carrier concentration, chemical doping
can introduce other effects, such as disorder or structural phase transitions, which may mask the
evolution from BCS to BEC. Recently, however, it has been possible to use gating to change the
carrier density n in layered nitrides (1, 2), where disorder or structural phase transitions do not
seem to be important. Because n can vary from low to high values, it is crucial to consider the
effects of the interaction range R, as it can become comparable to or larger than typical interpar-
ticle spacings. Furthermore, it is necessary to verify that the carrier densities achieved by gating
are sufficiently low to force the chemical potential below the minimum of particle-like bands or
above the maximum of hole-like bands, otherwise BCS–BEC crossovers do not happen.

Starting from a two-dimensional continuum action with two bands

S2B =
∫ ℏ/kBT

0
dτ

∑
j ks

ψ†
j ks(τ )(ℏ∂τ + ξ j k )ψ j ks(τ ) +

∑
i j kk′q

V i j
kk′b†i kq(τ )b j kq(τ )

, 7.

where ξ jk = ϵ jk − µi is the kinetic energy ϵ jk with respect to µj, b j kq(τ ) = ψ j−k+ q
2 ↓(τ )ψ j k+ q

2 ↑(τ )
represent pairs of fermions at band jwith center of mass momentum q and relative momentum 2k,
and the interactionV i j

kk′ can be expanded in its angular momentum components (53). Considering
a single angular momentum channel leads to the separable form V i j

kk′ = λi j0i k0 j k′ . For s-wave
pairing, 0jk = (1 + |k|/k0)−1/2, where k0 = 2π/R, such that R plays the role of the interaction
range in real space. For any interaction range R, it is convenient to express the interactions in
terms of the two-body bound state energies Ej b as

1
λ j j

=
∑
k

|0 j k|2
2ϵ j k − E j b

. 8.

In 2D, s-wave interactions lead to a two-body bound state for arbitrarily small λjj (32), but a critical
value of λjj is required in the d-wave channel (53).

Considering the interband interaction λ12 to be Josephson-like, the phase-only fluctuation
action is

Sfl =
2∑
j=1

1
2

∫
d3r

[
ρ j j (∇θ jr )2 + A j (ℏ∂τ θ jr )2

]
+ 2g12

∫
d3r
L2

|11||12| cos(θ1r − θ2r ), 9.

www.annualreviews.org • Evolution from BCS to BEC in 2D 121



CO15_Art06_SaDeMelo ARjats.cls February 20, 2024 10:31

where the bare superfluid stiffness tensor ρ ij = ρ jjδij, which has dimensions of energy, is labeled by
the band indices {i, j}; Aj is related to the isothermal compressibility in band j; and g12 represents
the Josephson coupling between the order parameters11r = |11|eiθ1r and12r = |12|eiθ2r . For the
two-band case, there are at least two critical BKT temperatures: kBT1BKT = ρ11π/2 for vortex–
antivortex binding in θ1r only, and kBT2BKT = ρ22π/2 for vortex–antivortex binding in θ2r only.
More generally, the critical temperature is (83)

kBTBKT(n1, n2 ) = [
ρ11n21 + ρ22n22 + 2ρ12n1n2

] π
2
, 10.

where nj � {0, ±1} represents the vortex or antivortex topological charge associated with θ jr. For
instance,kBTBKT(±1, 0)= kBT1BKT = ρ11π/2,while kBTBKT(0,±1)= kBT2BKT = ρ22π/2.Yet, there
are additional possibilities, with simultaneous vortex–antivortex binding in θ1r and θ2r, depending
on the sign of ρ12, which originates from the Josephson coupling between the two bands. In this
case, kBTBKT(±1,±1)= kBT1BKT + kBT2BKT + ρ12π and kBTBKT(±1,∓1)= kBT1BKT + kBT2BKT −
ρ12π must both be lower than min[T1BKT,T2BKT], due to the additional vortex–antivortex binding
stabilized by ρ12 (83). If the latter condition is not satisfied, then the additional phases do not exist.
When the two bands have equivalent dispersions (ϵ1k = ϵ2k) and the intraband interactions are
the same (λ11 = λ22), then the conditions ρ11 = ρ22 = ρ and |ρ12| j ρ lead to only one critical
temperature: T1BKT = T2BKT = TBKT.

6.1. Two-Band Superconductors in 2D: The Case of LixZrNCl

The Li-doped nitride LixZrNCl has a two-dimensional hexagonal Brillouin zone with two
identical parabolic bands centered at points K and K′. The Li-doping concentration x can be
tuned through gate voltages. The effective mass of the carriers in each band is m, and the carrier
density per band is n = x/Acell, where Acell = a2sinπ/3 is the area of the unit cell of LixZrNCl.
The Li concentration x is connected to the Fermi energy EF = ℏ2k2F/2m via the relation
x = k2FAcell/2π = 2mEFAcell/2πℏ2. For high experimental values of x, the Li ions go deeper into
the sample, and the system becomes three-dimensional. In LixZrNCl there is only one critical
temperature measured (1, 2), and because the two-bands are degenerate, this signals that addi-
tional phases due to interband vortex–antivortex binding are absent. For different values of x, data
of the tunneling conductance dI/dV suggest that the moduli of the order parameters are identical
(|11| = |12| = |1|) in the two degenerate bands, because only two peaks are observed. Further-
more, the experimental data also imply that the order parameters are nodeless (s-wave), because
the dI/dV characteristics have typical U shapes with well-defined gaps for all values of x (1).

A comparison to experimental results in the two-dimensional regime can be made using the
two-band theoretical framework reviewed above with 11k = 12k = |1|0k, where 0k = (1 +
|k|/k0)−1/2, and g12 = 0. In Figure 8, the experimental data, the standard Tc upper bound (TF/8),
and the Tc obtained for zero-ranged interactions are shown, as are curves for the best fit to the
data in the two-dimensional regime. The shaded regions show the values of x for which Li ions go
deeper into the sample, thus making the superconductor reach a three-dimensional regime. The
interaction range is k0 = 0.4339/a (R = 2.305a), where a is the lattice parameter, and the interac-
tion strength is λ = 0.7090D2D, where D2D = mL2/πℏ2 is the constant density of states per band
in 2D. This value of λ produces a binding energy of Eb/E0 = −0.008499, where E0 = ℏ2k20/2m is
the energy and T0 = E0/kB = 1,105 K is the temperature scale.

A measure of the crossover region around µ = 0 can be identified via the dimensionless pair
size kFξ pair. The crossover region from BCS to BEC pairing can be identified with the range
0.5 < kFξ pair < 5.0 (19), corresponding to either −0.7898 < µ/EF < 0.9995 or 6.197 × 10−5 <

x < 6.604 × 10−3 (84). The Li concentration and pair size at µ = 0 are x = 1.1169 × 10−4
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Figure 8

Comparison between experimental data (1) and theoretical calculations (84) for the BCS–BEC evolution in
LixZrNCl. (a) Chemical potential versus x at T = TBKT. (b) Temperature T (in Kelvin) versus x. The dotted
green line is the standard upper bound TF/8, the dashed blue line is Tc = TBKT for zero-ranged interactions,
and the solid red line is Tc = TBKT for finite-ranged interactions that produce the best fit to the
experimental data in open yellow circles. (c) Modulus of the order parameter |1| in millielectronvolts
versus x, showing the best theoretical fit (solid red line) to the experimental data (open yellow circles). The
three-dimensional regions are shown in beige; the BCS (BEC) regimes occur for higher (lower) values of x.
Figure adapted with permission from Reference 84.

and kFξ pair = 0.5969, respectively, whereas at the lowest experimental concentration achieved
xmin = 0.0048, kFξ pair = 3.803, and µ/EF = 0.9978, showing that the crossover region has just
been entered from the BCS side. The fact that Tc/TF is not too far from the standard upper
bound of 1/8 for the lowest concentrations is not a sufficient condition to demonstrate that
the BEC regime has been reached. See Figure 3a,b, where at |Eb|/EF = 0.30, Tc/TF is already
very close to 1/8 but the chemical potential is still around µ/EF = 0.8506 and, thus, is very far
from µ/EF = 0. If the lowest experimental value of xmin can be reduced by at least one order
of magnitude, then the crossover region can be explored, but reaching the BEC regime would
require a reduction in xmin by at least two orders of magnitude.

6.2. Superfluids in 2D: Lack of Two-Band BCS–BEC Crossover
in Ultracold Atoms

Although a few examples of experimental investigations of the crossover from BCS to BEC exist
for two-band superconductors in 2D (1, 2, 7–9), analogous cases have not yet been investigated
with ultracold atoms. In principle, two particle-like bands can be created for cold fermions by
using a tightly confining potential along a transverse z direction, producing two kinetically con-
fined states at different energies. The resulting parabolic dispersions along the xy plane would
correspond to the situation displayed in Figure 7a, with the advantage that the chemical po-
tentials µ̃1 and µ̃2 can be tuned independently. Thus far, only theoretical work exists covering
collective modes (85), elementary excitations, phase diagrams, and critical temperature (86), which
were revisited more recently (87–89). The possibility of creating two-band superfluids using op-
tical lattices also exists, but even creating one-band Fermi superfluids in optical lattices has been
difficult (90, 91).

7. TWO-BAND BCS–BEC IN 2D: QUANTUM PHASE TRANSITIONS

The two-band action S2B, the binding energies Ejb, and the phase-only effective Sfl in
Equations 7–9 can be used to investigate quantum phase transitions for the d-wave channel via the
simple substitution 0j k = γ 2D

j|k| cos 2ϕ, with γ
2D
j|k| = (|k|2/k21

)
/ (1 + |k|/k0 )5/2 . For two particle-like
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parabolic bands with nodal order parameters, the BCS or BEC characteristics of the supercon-
ducting and superfluid phases are controlled by the chemical potentials of the two bands with
respect to their minima: µ̃ j = µ j − min[ϵ j k], as seen in Section 5. Each band can separately
undergo a topological quantum phase transition of the Lifshitz type when each chemical potential
reaches the bottom of the band, as described in Section 4.The independent control of the densities
in bands 1 and 2 may be achieved in ultracold atomic fermions leading to two different chemi-
cal potentials µ̃1 and µ̃2, which can be tuned to visit different phases BCS1-BCS2, BCS1-BEC2,
BEC1-BCS2, and BEC1-BEC2. As discussed in Section 5, provided that the order parameters are
nonzero and have a nodal structure, the structure of the phase diagram with four phases is very
general, such that the phase boundaries are solely controlled by the effective chemical potentials
µ̃ j and are independent of the band masses and interaction potentials.

For superconductors with particle-like parabolic bands, only the total particle density can
be fixed, so there is solely one chemical potential µ leading to three accessible phases: BCS1-
BCS2 when µ > min[ϵ1k]; BEC1-BCS2 when min[ϵ2k] < µ < min[ϵ1k]; and BEC1-BEC2 when
µ < min[ϵ2k]. The theoretically expected topological quantum phase transitions in such systems
have not yet been observed experimentally. However, in materials with particle- and hole-like
bands, such as magic-angle twisted trilayer graphene (3–5), there is experimental evidence that
the BCS–BEC evolution is occurring via a topological quantum phase transition from gapless
to fully gapped d-wave superconductivity (3, 92, 93). The generic discussion encompassing
Equations 7 through 9, covering two bands with particle-like dispersions, also applies to two
bands with particle- and hole-like kinetic energies. Applying a particle–hole transformation to
band 2, mapping 1 → e and 2 → h, and using the energy dispersions ϵek = ϵbg/2 + ℏ2k2/2me and
ϵhk = −ϵbg/2 − ℏ2k2/2mh leads to the generic phase diagram shown in Figure 9a, where
µ̃e = µe − min[ϵek] and µ̃h = µh − max[ϵhk]. Using the shifted kinetic energies ξek = ϵek − µe =
ℏ2k2/2me − µ̃e and ξhk = ϵhk + µh = −ℏ2k2/2mh + µ̃h and the quasiparticle energies

Eek =
√
ξ 2ek + |1ek|2 and Ehk =

√
ξ 2hk + |1hk|2, 11.

it is clear that s-wave pairing in both bands only leads to BCS–BEC crossovers, whereas higher
angular momentum pairing with nodes (e.g., d-wave with dx2−y2 symmetry) may have two topo-
logical quantum phase transitions during the BCS–BEC evolution, depending on the path taken
in the µ̃e versus µ̃h phase diagram shown in Figure 9a. For d-wave pairing with dx2−y2 symmetry,
in analogy to the one-band case, the order parameters are 1 j k = |1 j|γ 2D

j k cos 2ϕ.
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Figure 9

(a) Phase diagram in the µ̃h versus µ̃e plane showing superfluid or superconducting regions. (b) Qualitative
plots of the dI/dV characteristics along the path of the red, blue, and green dots.
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The observation of a V-shaped to U-shaped transition in the tunneling conductance (dI/dV )
data of magic-angle twisted trilayer graphene (3) and the existence of electron and hole bands
in the carrier density regime explored suggests the existence of nodal order parameters and of
a topological quantum phase transition analogous to those discussed above. This behavior is
illustrated in Figure 9b forme =mh, where the conditions for the order parameters |1ekµ̃e | ≫ |µ̃e|
and |1hkµ̃h

| ≫ |µ̃h|, with kµ̃ j being the loci of ξ jk = 0, produce only two peaks in the density of
states D(ϵ) represented by the dI/dV characteristics. This observation suggests that magic-angle
twisted trilayer graphene is in the low carrier density but strong-coupling regime, otherwise
more peaks in the density of states would emerge (93). However, for the V-shaped to U-shaped
transition observed in magic-angle twisted trilayer graphene (3), the gap never closes, as seen in
Figure 9b, indicating that the path taken in Figure 9a is not accessible, as the chemical potentials
µ̃e and µ̃h may not be adjusted accordingly in this system. There are four contributions to

D(ε) =U 2
ekδ(ε − Eek ) +V 2

ekδ(ε + Eek ) +U 2
hkδ(ε − Ehk ) +V 2

hkδ(ε + Ehk ), 12.

where the first (second) two terms are due to pairing in the electron (hole) band, and U j k =√
1 + ξ j k/E j k and Vj k = √

1 − ξ j k/E j k are the coherence factors (Bogoliubov coefficients) rep-
resenting the residues of the poles at ε = ±Ejk, with j � {e, h}. The breaking of particle–hole
symmetry (e.g., me ̸= mh or λee ̸= λhh) creates asymmetries in the density of states but does not
affect the topological nature of the quantum phase transition from V- to U-shaped exhibited by
the dI/dV characteristics. At low carrier densities and sufficiently strong coupling, the locations
of the van Hove singularities are determined by the chemical potentials µ̃e and µ̃h, resulting in
two distinct peaks in the density of states. Along the paths of the dots shown in Figure 9a there
are three distinct behaviors. At the first quadrant, the system is gapless, with µ̃e > 0 and µ̃h > 0,
with four Dirac points in each band, having V-shaped peaks in D(ε) at ε = −|µ̃e| and ε = +|µ̃h|.
At the origin, the system is gapless with µ̃e = 0 and µ̃h = 0, but the four Dirac points in each
band annihilate, producing a finiteD(ε) at ε = 0. At the third quadrant, the system is fully gapped,
with µ̃e < 0 and µ̃h < 0, without Dirac points, having U-shaped peaks in D(ε) at ε = +|µ̃e| and
ε = −|µ̃h|.

For the paths taken along the dots in Figure 9, the topological nature of this quantum phase
transition is essentially the same as visually shown in Figure 6. Time-reversal symmetry is not
broken, but, for µ̃ j > 0, the Dirac fermions that emerge in band j � {e, h} are chiral and have
winding numbers

N jw = 1
2π

∮
C
dℓẑ · m j ×

dm j

dℓ
, 13.

where mj = (ξ jk, 1jk)/Ejk, and the path C encircles each Dirac point separately. The topolog-
ical index Njw alternates between ∓1 (ϕ = π/4, 5π/4) and ±1 (ϕ = 3π/4, 7π/4) as the Dirac
points are circled counterclockwise, where the top (bottom) sign is for e (h). Because there is no
global chiral symmetry breaking, the net chirality of the system is zero. Nevertheless, the anni-
hilation of chiral Dirac quasiparticles at µ̃ j = 0 defines topological quantum phase transitions in
momentum space. For µ̃ j < 0, the spectra Ejk are fully gapped,withmin[E j k] = |µ̃i| at |k| = 0, and
Njw is always zero everywhere in momentum space, because chiral Dirac quasiparticles no longer
exist.

Similar to the one-band case, a thermodynamic signature of the topological quantum phase
transitions also arises in the isothermal compressibility n2κT = �n/�µ|T,V. For a system with two
parabolic bands and nodal d-wave order parameters, logarithmic singularities arise in κT each time
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a topological phase boundary is crossed (93). For example, in the case of one-particle and one-hole
parabolic bands, κT ≈ −αe ln |µ̃e|/E0 + βe near µ̃e = 0 or κT ≈ −αh ln |µ̃h|/E0 + βh near µ̃h = 0.
The coefficient αj (β j) is independent of (dependent on) the sign of µ̃ j . For order parameters with
nodal p-wave symmetry (e.g., px or py), the transition is less dramatic: κT displays a cusp when
µ̃ j = 0, meaning that its derivatives are not continuous (48, 79).

8. SUMMARY

We have reviewed a few conceptual ideas regarding the evolution from BCS to BEC superfluidity
and superconductivity in 2D.We discussed one-band and two-band continuum and lattice systems,
where crossovers and topological quantum phase transitions can occur as the chemical potentials
are changed.We emphasized the role played by chemical potentials in creating BCS- or BEC-like
phases.We remarked that in practice the tuning of chemical potentials can be achieved by chang-
ing either carrier density at fixed interactions for superconductors or interactions at fixed particle
density for ultracold Fermi superfluids.We highlighted that nonnodal s-wave pairing always leads
to crossovers, whereas higher angular momentum nodal pairing, such as d-wave, leads to topolog-
ical quantum phase transitions from gapless to fully gapped superconductors and superfluids.We
also reviewed connections between theory and experiments for one-band ultracold Fermi super-
fluids such as 6Li and for two-band superconductors such as LixZrNCl and magic-angle twisted
trilayer graphene, where the BCS–BEC evolution has been explored.

9. OUTLOOK

Most of this review covered BCS–BEC evolutions in 2D for one- and two-band superconduc-
tors or superfluids with parabolic bands. However, there are several open problems that require
theoretical attention, three of which are listed below.

An important open question is the development of a microscopic theory, beyond phase fluctu-
ations, that can recover the Fisher–Hohenberg logarithmic corrections to the critical temperature
Tc of two-dimensional superconductors and superfluids when the binding energy is very strong.
Fluctuations in the modulus of the order parameter, beyond Gaussian order, are necessary to
recover the boson–boson interactions responsible for the Fisher–Hohenberg corrections. The
development of such a microscopic theory is crucial for comparisons to experiments deep into the
BEC regime.

Another important issue is the existence of tight bounds on Tc of two-dimensional supercon-
ductors and superfluids. The standard upper bound for Tc in one-band systems, based on the bare
superfluid density, is always limited by the kinetic energy and thus is independent of interactions
and of the symmetry of the order parameter, either in the continuum (32) or in the lattice (94).
However, this upper bound is not generally tight (95), and thus not very useful. For one-band
systems, tighter upper bounds from the renormalized superfluid density exist (96), but attempts
to use the standard bound for multiband superconductors (94) have been criticized (97). This
leaves the question of the existence of tight upper bounds on Tc for two-band superconductors
and superfluids wide open.

The evolution from BCS to BEC in one-band lattices has been theoretically explored with
ultracold atoms, and topological quantum phase transitions have been identified (49) but not yet
experimentally observed (80). However, as illustrated in Figure 10, two-band systems offer a new
degree of complexity and richness of phases, as well as the possibility of connecting to experiments
in multiband superconductors like FeSe and FeSe1−xSx, where lattice effects may be important
(6–9).
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Phase diagrams for chemical potentials µ̃1 and µ̃2 and sketches of energy dispersions for lattices with two
particle-like bands are shown in panel a and for lattices with one particle-like and one hole-like bands are
shown in panel b.
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