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Abstract

Recent advances in our understanding of symmetry in quantum many-body
systems offer the possibility of a generalized Landau paradigm that encom-
passes all equilibrium phases of matter. This is a brief and elementary review
of some of these developments.
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1. EXTENDING THE LANDAU PARADIGM

If you have been to a condensed matter talk in the past few decades, you have seen the beating that
Landau has been taking. The speaker begins by saying that Landau told us that states of matter are
classified by the symmetries they break. After showing a picture of a donut, the speaker explains
that in #his talk, in contrast, they will discuss a state of matter that goes beyond Landau’s limited
conception of the world.

Having given such talks myself, I think it is extremely interesting that, in fact, with modern
generalizations of our understanding of symmetry, it may be possible to incorporate all known
equilibrium phases of matter into a suitably extended version of the Landau paradigm. Let me
attempt to paraphrase the Landau paradigm:

1. Phases of matter should be labeled by how they represent their symmetries, in particular
whether they are spontaneously broken or not.
2. The degrees of freedom at a critical point are the fluctuations of the order parameter.

A significant corollary of assertion 1 is that gapless degrees of freedom, or ground state degeneracy,
in a phase, should be swept out by a symmetry. That is, they should arise as Goldstone modes for
some spontaneously broken symmetry.

Beyond its conceptual utility, this perspective has a weaponization, in the form of Landau—
Ginzburg theory, in terms of which we may find representative states, understand gross phase
structure, and, when suitably augmented by the renormalization group (RG), even quantitatively
describe phase transitions.

Indeed there are many apparent exceptions to the Landau paradigm. Let us focus first on
apparent exceptions to assertion 1. As a preview, exceptions that are only apparent include the
following:

m Topologically ordered states. These are phases of matter distinguished from the trivial
phase by something other than a local order parameter (1, 2). Symptoms include a ground
state degeneracy that depends on the topology of space, and anyons, excitations that cannot
be created by any local operator. Real examples found so far include fractional quantum Hall
states, as well as gapped spin liquids.

m Other deconfined states of gauge theory. This category includes gapless spin liquids such
as spinon Fermi surface or Dirac spin liquids (most candidate spin liquid materials are gap-
less). Another very visible manifestation of such a state is the photon phase of quantum
electrodynamics (QED) in which our vacuum lives.

m Fracton phases. Gapped fracton phases are a special case of topological order, where there
are excitations that can be neither created nor moved by any local operator.

m Topological insulators. Here, we can include both free-fermion states with topolog-
ically nontrivial band structure and interacting symmetry-protected topological (SPT)
phases.

m Landau Fermi liquid.

1.1. Conventions

L is the linear system size. D = d + 1 is the number of spacetime dimensions. I denote the dimen-
sion of a manifold or the degree of a form by a subscript or superscript. I also use fancy uppercase
letters (like A,,) for background gauge fields and lowercase letters (like #,) for dynamical gauge
fields. I sometimes use G® to denote a p-form symmetry with group G.
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(@) A schematic illustration of the definition of gapped phases of matter. Two distinct phases are separated in the space of local
Hamiltonians by a wall of gap-closing, the codimension-one locus where the gap closes. Here, Hy >~ Hy . (b)) The ground-state
degeneracy, Ngs, as swept out by a spontaneously broken global symmetry, is an example of a topological invariant that can label a phase.

1.2. Brief Nonsymmetry-Based Accounting of Gapped Phases

A useful definition of a gapped phase of matter is an equivalence class of gapped ground states of
local Hamiltonians, in the thermodynamic limit.! Two ground states are considered equivalent if
they are related by adiabatic evolution (for a time of order L°) combined with inclusion or removal
of product states. That is, there is a path between the two Hamiltonians along which the gap does
not close (see Figure 1a).

This definition poses a difficulty for checking that two Hamiltonians represent distinct phases:
We cannot check all possible paths between them. A crucial role is therefore played by universal
properties of a phase—quantities, such as integers, that cannot change smoothly within a phase
and, therefore, can only vary across phase boundaries. A good example of such a topological
invariant is the ground state degeneracy, which is certainly an integer. A phase of matter that
spontaneously breaks a discrete symmetry G has a ground state degeneracy |G|, the order of the
group (see Figure 15). This is a topological distinction from the trivial paramagnetic phase, which
has a unique ground state and a representative that is a product state with no entanglement at all.
In this sense, even spontaneous symmetry breaking (SSB) is a topological phenomenon.

Nontrivial phases can be divided into two classes: those with topological order and those with-
out. One way to define topological order (1) is a phase with localized excitations that cannot be
created by any local operator. In 2 + 1 dimensions, such particle excitations are called anyons;
they can be created in pairs by an open-string operator. On a space with a noncontractible curve
C, new ground states can be made by acting with the operator that transports an anyon around C.

These ground states are locally indistinguishable, in the following sense. If | E} ) and |§ )

1We should pause to comment on the meaning of “gapped.” We allow for a stable ground state subspace, which
becomes degenerate in the thermodynamic limit. “Stable” means that the degeneracy persists under arbitrary
small perturbations of the Hamiltonian and requires that the ground states are not related by the action of
local operators. In d spatial dimensions, the logarithm of the number of such states can grow as quickly as L4~
(3) in fracton models.
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are two such ground states, then

ol 1.

for all local operators O,. (The picture in the kets is a cartoon of two of the ground states on the

two-torus.) A final symptom is the existence of long-range entanglement in the ground state; a
review focusing on this aspect is Reference 4.

An interesting special case of topologically ordered states is fracton phases (5, 6). A fracton
phase has excitations that cannot be moved by any local operator (perhaps only in some directions
of space). This is a strictly stronger condition than topological order, because an excitation can
effectively be moved by annihilating it and creating it again elsewhere. Such phases (with a gap)
exist in 3 + 1 dimensions (and higher). A consequence of the defining property is a ground state
degeneracy whose logarithm grows linearly with system size and a subleading linear term in the
scaling of the entanglement entropy of a region with the size of the region.

Even without topological order, there can be phases distinct from the trivial phase. One way in
which they can be distinguished is by what happens if we put them on a space with boundary, so
that there is a spatial interface with the trivial phase. A very rough (and not entirely correct) idea is
that if the gap must close along the path to the trivial phase, then the coupling must pass through
the wall of gap-closing at the edge of the sample. Phases that are distinguished in this way include
integer quantum Hall states, topological insulators, and, more generally, SPT phases such as the
Haldane phase of the spin-one chain or polyacetylene.

It seems that all of these examples transcend the Landau paradigm. My goal here is not to use
the Landau paradigm as a straw man but rather to pursue it in earnest. The idea is that by suitably
refining and generalizing our notions of symmetry, we can incorporate all of these “beyond-
Landau” examples into a Generalized Landau Paradigm. There are two crucial ingredients, which
work in concert: anomalies and generalized symmetries.

In this article, I speak of actual symmetries of physical systems, sometimes called “global sym-
metries.” They act on the Hilbert space and take one state to another. In contrast, there is no such
thing as gauge symmetry. In a gauge theory, the gauge invariance is a redundancy of a particular
description of the system and is not preserved by relabeling degrees of freedom. For example, du-
alities (equivalences of physical observables at low energies) often relate a gauge theory with one
gauge group to a gauge theory with a distinct gauge group. A familiar example in condensed mat-
ter physics is the duality between the XY model and the abelian Higgs model in 2 + 1 dimensions
(7, 8), but there are many others, e.g., Reference 9. This complaint about terminology hides an
abyss of human ignorance: If someone hands you a piece of rock and asks whether its low-energy
physics is described by some phase of a gauge theory, how will you tell? It is certainly true that
phases realizable by gauge theory go beyond other constructions with only short-ranged entan-
glement; this begs for a characterization of these phases that transcends a description in terms of
redundancies. Higher-form symmetries offer such a characterization for some such phases.

I want to highlight early attempts to understand topological order (10, 11), and the gapless-
ness of the photon (12) as consequences of generalized symmetry, as well as early appearances of
generalized symmetries in the string theory literature (13-15). Other papers that have explicitly
advocated for the utility of a Generalized Landau Paradigm include References 16-20.

2. HIGHER-FORM SYMMETRIES

The concept of higher-form symmetry that I review here was explained in References 16 and 21.
It is easiest to introduce using a relativistic notation, so indices u and v run over space and time.
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Figure 2

(@) In the case of an ordinary zero-form symmetry, the charge is integrated over a codimension-one slice of
spacetime X p_, often a slice of constant time. All the particle worldlines (b/ue curves) must pass through this
hypersurface. (5) The charge of a one-form symmetry is integrated over a codimension-two locus of
spacetime Y p_ (a string in the case of D = 2 + 1). This surface intersects the worldsheets of strings (blue
sheet).

Let’s begin by considering the familiar case of a continuous zero-form symmetry. Noether’s
theorem guarantees a conserved current J,, satisfying 0*J, = 0. In the useful language of differ-
ential forms, thisis 4% J = 0, where * is the Hodge duality operation.? This continuity equation has
the consequence that the charge Qs = fED_n *J is independent of the choice of time slice X. (X
here is a closed d-dimensional surface, of codimension one in spacetime.) Notice that this is a
topological condition. Qs commutes with the Hamiltonian, the generator of time translations,
and therefore so does the unitary operator U, = ¢?, which we call the symmetry operator.?

If the charge is carried by particles, Qs counts the number of particle worldlines piercing the
surface ¥ (as in Figure 24), and the conservation law Q = 0 says that charged particle worldlines
cannot end except on charged operators. If instead of a U(1) symmetry we only had a discrete Z,
symmetry, we could simply restrict o € {0, 27 /p, 47 /p.. .(p — 1)27 /p} in the symmetry operator
U, . In that case, particles can disappear in groups of p.

Objects charged under a zero-form symmetry are created by local operators. Local operators
transform under the symmetry by O(x) — U,Ox)US = ¢7*O(x), da = 0, where ¢ is the charge
of the operator. The infinitesimal version is §O(x) = i[Q, O(x)] = igO(x).

Now let us consider a continuous one-form symmetry. This means that there is a conserved
current that has two indices and is completely antisymmetric:

Ty = =Ty, with9"J,,, = 0. 2.

We can regard J as a two-form and write the conservation law Equation 2 as dxJ = 0, where d
is the exterior derivative. As a consequence, for any closed codimension-two locus in spacetime
p-2, the quantity Qs = fEDiz *J depends only on the topological class of £. The analog of the

?The Hodge dual of a p-form w, on a D-dimensional space with metric g, has components (*@)1; -ju;,._ , =

D pi1 o . . . . .
1/detgém“.#Dwﬁ,D PP where indices are raised with the inverse metric g#’, and €uypp is the
antisymmetric Levi-Civita symbol.

3Throughout, I assume that the normalization is such that Q € Z, so that o =  + 277.
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Equation 4 shows the expression for the transformation as U(X)W(C)Ut(Z). This operator ordering is
obtained by placing the support of these operators on successive time slices. Because U is topological, from a
spacetime point of view, the same result is obtained if instead we deform the surfaces ¥ and —X to a single
surface S in spacetime that surrounds the locus C, as illustrated here in cross-section. The variation of the
operator then depends on the linking number of S and C in spacetime.

symmetry operator is the unitary operator
U, (2) = ¢, 3.

Notice that reversing the orientation of ¥ produces the adjoint of U : U, (—X) = Ul(Z).

The charge Qs in the one-form case counts the number of charged string worldsheets inter-
secting the surface X (as in Figure 25). The conservation law Equation 2 then says that charged
string worldsheets cannot end except on charged operators. The objects charged under a one-
form symmetry are loop operators, W(C). Fixing a constant-time slice Mp_1, such a loop operator
transforms as

W(C) — U (E)W(CUN(E) = * == W(C), dlg =0. 4.
Here, £p_; C Mp_; is any closed (D—2)-manifold, and I's is its Poincaré dual in Mp_j, in the
sense that /N[D—l nPD ATy = /2072 n®=2 for all n; dT'y = 0 because = has no boundary. The
infinitesimal version of this transformation law is

SW(C) = i[Qsz, W(C)] = ig# (X, C) W(C), 5.

where #(X, C) is the intersection number in M (see also Figure 3).

In the case of a discrete one-form symmetry, there is no current, but the symmetry operator
U, (%) is still topological. If the one-form symmetry group is Z,, strings can disappear or end only
in groups of p.

For general integer p > —1, a p-form symmetry means the existence of topological
operators U,(Xp_,—;) labeled by a group element « and a closed codimension-(p + 1) sub-
manifold of spacetime.* For coincident submanifolds, these operators satisfy the “fusion rule”
Uy, (2)Up(E) = Uy 4 p(2). The operators charged under a p-form symmetry are supported on
p-dimensional loci and create p-brane excitations. The conservation law asserts that the (p +
1)-dimensional worldvolume of these excitations will not have boundaries.

For p > 1, the symmetry operators commute with each other—higher-form symmetries are
abelian (16). To see this, consider a path integral representation of an expectation value with two
symmetry operators U(X;) and U(X,) inserted on the same time slice . The ordering of the
operators can be specified in the path integral by shifting the left one to a slightly later time # + €.
If p > 1, then T , have codimensions larger than one, and their locations can be continuously
deformed to reverse their order.

2.1. Physics Examples of Higher-Form Symmetries

m Maxwell theory in D = 3 + 1 with electric charges but no magnetic charges has a contin-

uous one-form symmetry with current Jj,) = LemwrrF,, = 5L (dA)". The statement that

*For discussion of p = —1, see Reference 22.
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this current is conserved V,.J,, = 0 is the Bianchi identity expressing the absence of mag-

netic charge. The symmetry operator is U™ (Z) = e% =¥ The fact that the charge operator

J5 F depends only on the topological class of ¥ is the magnetic Gauss law—when X is

contractible, it counts the number of magnetic monopoles inside. This symmetry shifts

the dual gauge field A by a flat connection; the charged line operator is the ’t Hooft line,

W®[C] = eifcA,

In free Maxwell theory without electric charges, there is a second one-form current,

Jiy = F,whose charged operator is the Wegner—Wilson line W ©[C] = elfc4. The symmetry

operator for this “electric” one-form symmetry is U (Z,) = i St
commutators) shifts the gauge field 4 by a flat connection.

m Pure SU(V) gauge theory or Zy gauge theory or U(1) gauge theory with charge-N matter
has a Zy one-form symmetry, called the center symmetry. The charged line operator is the
Wegner-Wilson line in the minimal irrep, W [C] = trPelfc4,

m When we spontaneously break a zero-form U(1) symmetry in d = 2, there is an emergent

, which (by canonical

one-form U(1) symmetry whose charge counts the winding number of the phase vari-
able ¢ around an arbitrary closed loop C, Q[C] = $.0¢. In d spatial dimensions, this is a
(d—1)-form symmetry. The charged operator creates a vortex (in d = 2, or a vortex line or
sheetin d > 2). Unlike the examples above, this symmetry is generally not an exact symmetry
of a microscopic Hamiltonian for a superfluid; it is explicitly broken by the presence of vor-
tex configurations. This example and its consequences for superfluid physics are discussed
further in Section 3.2.

m There is a sense in which the 3D Ising model has a Z, one-form symmetry reflecting the in-
tegrity of domain walls between regions of up spins and regions of down spins. The charged
line operator is the Kadanoff-Ceva disorder line (23)—the boundary of a region along which
the sign of the Ising interaction is reversed (for a review, see Reference 24). But because a
domain wall is always the boundary of some region, no states are charged; relatedly, the dis-
order line is not a local string operator. If we gauge the Z, symmetry of the Ising model, the
disorder line becomes the Wegner-Wilson line of the resulting Z, gauge theory, and this
theory has a genuine one-form symmetry.

2.2. Spontaneous Symmetry Breaking

Anything we can do with ordinary (zero-form) symmetries, we can do with higher-form
symmetries. In particular, they can be spontaneously broken.

One way to characterize the unbroken phase of a zero-form symmetry is that correlations of
charged operators are short-ranged, meaning that they decay exponentially with the separation
between the operators

(O@OO) ~ e, 6.

In more general terms, we can regard the two points at which we insert a charged operator and
its conjugate as an S°, a zero-dimensional sphere, and the separation between the points as the
size of the sphere. The broken phase for zero-form symmetry can be diagnosed by long-range
correlations:

(0w'0©) = (0'@)(0) +- -, 7.

independent of the size of the S°.
For a p-form symmetry, the unbroken phase is also when correlations of charged operators are
short-ranged, which decay when the charged object grows. For a one-form symmetry, this is when
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the charged loop operator exhibits an area law:
(W(C)) ~ e 1A, 8.

where Area(C) is the area of the minimal surface bounded by the curve C. In the case of electricity
and magnetism, an area law for (IW#(C)) is the superconducting phase.

The broken phase for a p-form symmetry is signaled by a failure of the expectation value of
the charged operator to decay with size. For a one-form symmetry, this is when the charged loop
operator exhibits a perimeter law:

<W(C)) — e—T[,Perimeter(C) NI 9.

The coefficient 7, can be set to 0 by modifying the definition of #(C) by counterterms local to
C, so Equation 9 says that a large loop has an expectation value.

SSB of higher-form symmetry has been a fruitful idea. The fact that charged operators have
long-range correlations means that the generators of the symmetry act nontrivially on the ground
state. In the next two subsections, I illustrate the consequences in the cases of discrete and con-
tinuous symmetries, respectively. Supplemental Material Section A addresses the effects of
fluctuations on higher-form order.

2.3. Topological Order as Spontaneous Symmetry Breaking

One definition of topological order is the presence of a ground state subspace of locally indistin-
guishable states, as in Equation 1. This means that no local operator takes one ground state to
another; instead the operator that takes one ground state to another is necessarily an extended
operator. But this is equivalent to the spontaneous breaking of a higher-form symmetry (16, 25):
The generators of the broken part of the higher-form symmetry commute with the Hamiltonian
(at least at low energies) and act nontrivially on the ground states.

Let’s think about the example of Z, gauge theory (whose solvable limit is the toric code; 26) in
D spacetime dimensions. This is a system with Z, one-form symmetry with symmetry operators
UMp-_,), supported on a (D—2)-dimensional manifold, and charged operators V'(Cy), supported
on a curve. In terms of the toric code variables, we can be completely explicit. On each link we have
a p-state system on which act the Pauli operators Z = Y% _ o* | k) (k| and X = Y7, | b+ 1)(k|
(where @ = e27i/r and the arguments of the kets are understood mod p). Then V(C) = I1, ¢ ¢X,
and UM) = I1,,mZ,, where we regard M as a surface in the dual lattice, and £_LM indicates all
links crossed by the surface M. The algebra of these operators is

UnMP"(C) = & U v, 10.

where #(C, M) is the intersection number of the curve C with the surface M. This is the algebra
of electric strings and magnetic flux surfaces in Z, gauge theory. Deep in this gapped phase, H =
0, and there is a description in terms of topological field theory. A simple realization is BF theory
of a one-form potential # and (D—2)-form potential 4, with action

S[b,a] = % bpya A da, 1.
D

in terms of which
U"(M) = é"ulo=2 | 7(C) = ¢ e, 12.

The algebra Equation 10 follows from canonical commutation relations in this Gaussian theory.
Because J(C) has a perimeter law in the deconfined phase, the charged objects whose condensation
breaks the one-form symmetry are the lines of electric flux.
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Another example is the Laughlin fractional quantum Hall states. So far the symmetry operators
for a one-form symmetry with group 4 form a representation of 4 on the one-cycles of space,
Z,i.e., alinear map U: Z — U(1), where the representation operators commute UM)UM') =
UMI)UMM). This relation can be generalized to allow for phases—i.e., a projective representation.
Consider a system in D = 2 4 1 with a Z; one-form symmetry that is realized projectively in the
following sense:

Um(C)U(C) = L U U (), 13
where #(C, (") is the intersection number of the two curves C and C’ in space. Regarding U(C) as
the holonomy of a charged particle along the loop C, this is the statement that flux carries charge.
Representing this algebra nontrivially gives k ground states on 7°. This algebra, too, has a simple
realization via abelian Chern-Simons (CS) theory, S[4] = % [ a A da,with U”(C) = é"fce.

The algebra in Equation 13 is a further generalization of one-form symmetry, in that the group
law is only satisfied up to a phase. As I discuss in Section 3, it is an example of a one-form symmetry
anomaly.

The preceding discussion applies to abelian topological orders. In this context, abelian means
that the algebra of the line operators transporting the anyons forms a group, which must be abelian
by the argument above. In Section 5, we discuss the further generalization that incorporates
nonabelian topological orders.

2.4. Photon as Goldstone Boson

What protects the masslessness of the photon? The case of QED is the most visible version of this
question; the same question arises in condensed matter as, Why are there U(1) spin liquid phases,
with an emergent photon mode?

Higher-form symmetries provide a satisfying answer to this question (unlike appeals to gauge
invariance, which is an artifact of a particular description): The gaplessness of the photon can be
understood as being required by spontaneously broken U(1) one-form symmetry (12, 16, 17, 27),
as a generalization of the Goldstone phenomenon.

Here is a perspective on the zero-form version of the Goldstone theorem. Given a continuous
zero-form symmetry with current j,, we can couple it to a background gauge field A by adding
to the Lagrangian AL > j, A*. If the symmetry is spontaneously broken, the effective Lagrangian
will contain a Meissner term proportional to A%, But the effective action must be gauge invariant,
and this requires the presence of a field that transforms nonlinearly under the U(1) symmetry: ¢ —
¢ + A and A — A — dA; this is a global symmetry if d* = 0. Altogether, the effective Lagrangian
must contain a term of the form

1
4g=—zfm¢+Af, 14.
ng

[where by (w)? I mean w, A *w, = ﬁa)muw w""7]. The coefficient -1 is the superfluid stiffness.

The analog for a continuous one-form symmetry works as follows. The current is now a two-
form, so the background field must be a two-form gauge field 55,,, and the couplingis AL 5 J,,, B*".
The same logic implies that the effective action for the broken phase must contain a term,

1 2
ECff__E(dﬂ—’_B) s 15.

where the Goldstone mode # is a one-form that transforms nonlinearly, # — 2 + 1 and B —
B — dA; this is a global symmetry if dA = 0. Setting the background field B = 0, we recognize this
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as a Maxwell term for 4. The coupling strength g is determined by the analog of the superfluid
stiffness.

For p-form U(1) symmetry, we conclude by the same logic that there is a massless p-form field
a with canonical kinetic term

Syaxl2] = —% / da A xda. 16.

Returning to QED, we see that the familiar Coulomb phase is the SSB phase for the U(1) one-
form symmetry. The unbroken phase is the superconducting phase of QED, where the photon
has short-ranged correlations. (In an ordinary superconductor, where the Cooper pair has charge
two, a Z, subgroup of the one-form symmetry remains broken.)

As in the case of zero-form SSB, the broken phase can be understood via the condensation
of charged objects; when the electric one-form symmetry is broken, the charged objects are the
strings of electric flux (28, 29). Notice that the presence of charged matter, on which these strings
can end, and which therefore explicitly breaks this symmetry, does not necessarily destroy the
phase. We’ll comment on this robustness more in Section 2.5. In fact, because of electromagnetic
duality, the Coulomb phase is the broken phase for either the electric one-form symmetry or the
magnetic one-form symmetry (16).

2.5. Robustness of Higher-Form Symmetries

We are used to the idea that consequences of emergent (aka accidental) symmetries are only ap-
proximate: explicitly breaking a spontaneously broken continuous zero-form symmetry gives a
mass to the Goldstone boson.

This raises a natural question. The existence of magnetic monopoles with 72 = M ,onopole €X-

q g p D
. . . . ! .

plicitly breaks the one-form symmetry of electrodynamics: 8"],‘2U = 7y ""P”¢ If the photon is a
Goldstone mode for this symmetry, does this mean the photon gets a mass? Perhaps surprisingly,
the answer is no. This is a way in which zero-form and higher-form symmetries are quite distinct.

The explanation of this statement is the subject of Supplemental Material Section B.

2.6. Mean Field Theory

Landau-Ginzburg mean field theory is our zeroth-order tool for understanding symmetry-
breaking phases and their neighbors. It is therefore natural to ask whether it has an analog for
higher-form symmetries (30). We focus on the simplest case of a U(1) one-form symmetry.

It is worthwhile to review the logic that produces this weapon. If we take the Landau paradigm
seriously, then the only low-energy modes we require are those swept out by the symmetry. The
key idea is to introduce a degree of freedom ¢(x) at each point in space that transforms linearly
under the symmetry. ¢ should be regarded as a coarse-grained object, and this is an effective long-
wavelength description. In the example of a magnet, ¢(x) can be the magnetization averaged over
a small cell at x. Now, because there are no other light degrees of freedom (by assertion 1), the
effective action for ¢ should be given by an analytic functional of ¢ that is local in spacetime. This
functional can therefore be expanded in a series consisting of all symmetric local functionals of ¢,
organized in a derivative expansion of terms of decreasing relevance. The length scale suppressing
higher derivates is the short distance over which we averaged in constructing ¢(x).

The one-form analog of the order parameter field ¢(x) (which is a function from the space of
points into a linear representation of G) is a functional, ¥ [C], from the space of loops into a linear
representation of G, a “string field.” Although ¢(x) transforms under the zero-form symmetry as
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P(x) — p(x)eie, with da = 0, the one-form analog transforms like ¥ [C] — ¥[Clei%c ", with dT" =
0.

Writing an action for such a field requires the analog of a derivative, which compares its values
on nearby loops. Such an area derivative was discovered in the study of loop-space formulations of
gauge theory (31; see Supplemental Figure C.1, /ef?). The analog of integrating the action over
spacetime [dPx is integrating over the space of loops J[dC]. The most general action consistent
with the symmetries then takes the form

1 *[C C
Sly] = /[dC] (V(|¢[C]|2)+ LT ygdsig [(31 jgt[v(j) +> + Syl 17.
The last recombination term
Syl = /[d01,2,3]3[01 — (G + ) Y [GIV Gl Gl + be) + - - 18.

is not local in loop space, but is local in real space because it involves only a single integral over
the center of mass of the loops. Here, the delta function imposes the equality of loops regarded
as integration domains (see Supplemental Figure C.1, right). The - -- denote terms with more
derivatives or more powers of y. Models similar to this mean string field theory (MSFT) have
been considered before in various specific contexts (32-36).

The potential term V(| [C]*) = #|¢[C])* + u|y¥[C]|* + - -+ controls the low-energy behavior.
If » > 0, we find an unbroken phase, where ¥[C] ~ ¢~V When r < 0, the strings want to
condense. The fluctuations around nonzero || are all massive, except for the geometric mode
Y[C] = veilfe @2 O which describes a slowly varying one-form symmetry transformation and
in terms of which the action of Equation 17 reduces to the Maxwell action for 4, with coupling
-

Aszin the zero-form case, another application of this mean field theory is to classify topological
defects of the resulting ordered media. The conclusion for G = U(1) is that the only topological
defect is the codimension-three magnetic monopole. Further discussion of this MSFT, including
comments about phase transitions, is deferred to Supplemental Material Section C.

3. ANOMALIES

My motivation for including a discussion of anomalies here is twofold. One is that anomalies are
a necessary ingredient in a suitably Generalized Landau Paradigm that incorporates all phases,
in particular topological insulators and SPT phases. A second motivation is that, as reviewed
presently, the existence of anomalies makes symmetries much more useful for constraining the
dynamics of a physical system, and their generalization to higher-form symmetries is therefore an
essential step.

The historical, high-energy-physics perspective on anomalies starts from specifying a quantum
field theory (QFT) by a path integral,

7= / [D(fields)]etSthelds], 19.

An anomaly is a symmetry of the action S thatis not a symmetry of the path-integral measure. The
first example found was the chiral anomaly, the violation of the axial current of a charged Dirac
field (the symmetry that rotates left-handed and right-handed fermions with opposite phases),

2
Ofa=N 1;;2 €uvpo I FP, 20.

which controls the decay of the neutral pion into two photons.
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Figure 4

(@) Spectrum of a free-fermion tight-binding model in one dimension, near the bottom of the band at some small filling. Filled blue
circles indicate filled states. (5) The result of adiabatically applying an electric field. Ny, and NR indicate the number of left-moving and
right-moving excitations.

A more concrete perspective arises if we consider the same kind of system on the lattice, in one
dimension for simplicity: Consider a tight-binding model of fermions hopping on a chain, at some
small filling as in Figure 4. In this case, there is no chiral symmetry at all at the lattice scale. It is
an emergent symmetry, violated by the UV physics in a definite way. At low energies, the system
is approximately described by the neighborhood of the two boundaries of the Fermi sea, giving a
1D massless Dirac fermion with a chiral symmetry. But if we adiabatically apply an electric field
E., every fermion increases its momentum and the chiral charge changes by

AQs = AN = Nu) =25 /L /th @) = 7/% . 21.

The left hand side is AQ4 = [ 8" /<!, and so Equation 21 is the 2D version of the chiral anomaly:

8," = %G#UF’”. 22.

A reason for excitement about this phenomenon is that the coefficient N in Equation 20 is
an integer. This is the first hint that an anomaly is a topological phenomenon, a quantity that is
RG invariant (37). The idea is that the existence of the anomaly means that the partition function
varies by some particular phase under the anomalous symmetry, but an RG transformation must
preserve the partition function. Much of physics is about trying to match microscopic (UV) and
long-wavelength (IR) descriptions. That is, we are often faced with questions of the form, “What
could be a microscopic Hamiltonian that produces these phenomena?,” and “What does this mi-
croscopic Hamiltonian do at long wavelengths?” Anomalies are precious to us, because they are
RG-invariant information: Any anomaly in the UV description must be realized somehow in the
IR description.

Another useful perspective on anomaly is as an obstruction to gauging the symmetry. Gauging
a symmetry means creating a new system in which the symmetry is a redundancy of the description
by coupling to gauge fields. If the symmetry is not conserved in the presence of background gauge
fields, the resulting theory would be inconsistent.

An example of an anomaly of a continuous symmetry is described above. Discrete symmetries
can also be anomalous.
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Anomaly is actually a more basic notion than phase of matter: The anomaly is a property of
the degrees of freedom (of the Hilbert space) and how the symmetry acts on them, independent
of a choice of Hamiltonian. Multiple phases of matter can carry the same anomaly.

3.1. Symmetry-Protected Topological Phases and Anomalies

The definition of gapped phases can be refined by studying only the space of Hamiltonians pre-
serving some particular symmetry group G. Two phases that are distinct in this smaller space may
nevertheless be connected by a gapped path in the larger space of nonsymmetric Hamiltonians.

One way to define (38) an SPT phase is as a nontrivial phase of matter (with some symmetry
G) without topological order (for a review, see Reference 39). SPT phases can be characterized
by their edge states. The idea is that the edge theory has to represent an anomaly of the sym-
metry G. It is really this anomaly that labels the bulk phase. This phenomenon is called anomaly
inflow.

As a simple example, consider an effective field theory for the integer quantum Hall effect,
regarded as an SPT for charge conservation symmetry.’ The charge conservation symmetry is
associated, by Noether’s theorem, with a conserved current j*, with 0,7* = 0. In D = 2 + 1, this
equation can be solved by writing j* = "7 0,4, /(27), in terms of a one-form gauge field 4., with
redundancy # — # + do. The leading effective action for such a field, in the absence of parity
symmetry, is a CS term (40, 41):

Sionla, Al = 4% /M € (a,0,a, + 2.A,0,a,), 23.
where A is a background field for the charge conservation symmetry. Under A — A+ d3,
8Siqu = [,y & fi7>- This is the contribution to the chiral anomaly from a single right-moving
edge mode.

In terms of the definition of the anomaly as a variation of the partition function of the edge
theory in the presence of background fields, the variation of the bulk action cancels the anomaly
of the edge theory, so that the whole system is G symmetric. The edge theory cannot be trivial,
because it has to cancel the variation of the bulk under the symmetry transformation: It has to be
one of the following (42):

m gapless,
m symmetry-broken, or
m topologically ordered.

In particular, there cannot be a trivial gapped ground state. These are the same conditions arising
from the Lieb—Schultz—Mattis—Oshikawa—Hastings (LSMOH) theorem (43, 44; for more recent
developments, see, e.g., Reference 45), and we can call this an LSMOH constraint.

A perhaps simpler example is the free fermion topological insulator in D = 3 + 1, protected
by charge conservation and time-reversal symmetry. In this case, the bulk effective action gov-
erns a single massive Dirac fermion; a boundary is an interface where the mass changes sign, at
which a single Dirac cone arises. A single Dirac cone in D = 2 + 1 realizes the so-called parity
anomaly. The fact that anomaly transcends a phase of matter is illustrated by the fact that, in the
presence of interactions or disorder, there are other possible edge theories for the topological
insulator.

S Actually, the integer quantum Hall phase is more robust and survives explicit breaking of the charge con-
servation symmetry. It is protected by the gravitational anomaly manifested in the nonzero chiral central
charge.
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There is by now a sophisticated (still conjectural) mathematical classification of SPTs for var-
ious G in various dimensions (46, 47) about which I will not say more here. My point is that we
are still labeling these phases by their realization of symmetries!

3.2. Anomalies of Higher-Form Symmetries

Let’s return to the example from Section 2.1 of the (d—1)-form symmetry that arises in any super-
fluid phase (17, 18, 48). The current can be written as (xJ),, = 0,¢. However, in the presence of
a background gauge field A for the U(1) symmetry, the gauge-invariant current is instead

*J), = Do, 24,
where D, = 0,9 — g4, is the covariant derivative. But this current is not conserved:
dxJ=—¢F, 25.

with F = dA. This equation has a simple interpretation: Applying an electric field leads to a
supercurrent that increases linearly in time.

The symmetry violation in Equation 25 is an example of a mixed anomaly between a zero-
form symmetry and a (d—1)-form symmetry that arises automatically from SSB. Reference 18
shows a converse statement: Any system with U(1)® x U(1)P~? symmetry with an anomaly of the
form in Equation 25 contains a Goldstone boson in its spectrum. Because no long-range order is
assumed, this is a more general statement than Goldstone’s theorem—it applies even in D = 2. This
perspective can be used to demonstrate the existence of equilibrium states with nondissipating
current (48).

A direct one-form generalization of Oshikawa’s argument (43) appears in Reference 49. This is
an example of a mixed anomaly between a one-form symmetry and lattice translation symmetry.

We should give an example of an anomaly of a higher-form symmetry that does not involve
zero-form symmetries. An example is provided by the theory of abelian anyons in D =2 + 1 and
is best understood by regarding an anomaly as an obstruction to gauging. Gauging a continuous
one-form symmetry means coupling the conserved current J** to a dynamical two-form gauge
field, 4,,, by a term like &,,J*". That is, gauging a symmetry means summing over all possible
background fields. In the discrete case, this is the same as summing over the insertions of all
possible symmetry operators. (In the continuous case, it also requires summing over connections
that are not flat.)

Thus, gauging a one-form symmetry in 2 + 1 dimensions means proliferating the worldlines of
the associated anyons (16, 50); this is anyon condensation (51). But it only makes sense to condense
particles with bosonic self-statistics: Condensation means essentially that the many-particle wave
function is a constant, which has bosonic statistics. Therefore, a subgroup of a one-form symmetry
generated by line operators with nontrivial statistics cannot be gauged. We conclude that,in 2 4 1
dimensions, the 't Hooft anomaly of a one-form symmetry is encoded in the self-statistics of the
line operators, i.e., of the anyons. Thus, the algebra Equation 13 is an example of a one-form
symmetry with an t Hooft anomaly. Notice that from this point of view, nontrivial mutual statistics
of a pair of anyon types # and & is a mixed 't Hooft anomaly: It does not stop us from gauging
(i.e., condensing) , but we cannot condense both simultaneously, because in the presence of the #
condensate, 4 is confined. The algebra for discrete gauge theory (Equation 10) can also be regarded
an example of an anomaly for higher-form symmetry because the charged operators 1, are also
topological; so this is a one-form symmetry and a (D—2)-form symmetry with a mixed anomaly.
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3.3. Symmetry-Protected Topological Phases of Higher-Form Symmetries

We can combine the ingredients of the above discussions and consider SPT phases that are pro-
tected by higher-form symmetries (21). This is a slightly awkward subject because higher-form
symmetries tend to be emergent, and it therefore might be artificial to restrict ourselves to the
subspace of Hamiltonians with exact higher-form symmetry.

In D =2 + 1, an "t Hooft anomaly for a one-form symmetry is diagnosed by the self-statistics
of the line operators. So the edge of a one-form G SPT in D = 3 + 1 just needs to have G
topological order with quasiparticles that aren’t bosons. Lattice models for higher-form SPTs have
been written down in References 52 and 53, and effective theories were studied in Reference 54.

4. SUBSYSTEM SYMMETRIES AND FRACTON PHASES

Above we have discussed p-form symmetries, described by symmetry operators acting on
codimension-(p + 1) submanifolds of spacetime. These operators were deformable, in the sense
that their correlations only depend on their deformation class in spacetime (avoiding any charged
operator insertions).

A distinct generalization of the notion of symmetry arises by defining symmetry operators
acting independently on rigid subspaces of the space on which the system is defined. That is,
we can imagine that there is a different symmetry operator for each subspace, even in the same
homology class, so that the symmetry operators are not topological, but still commute with the
Hamiltonian. This is sometimes called a “faithful” symmetry (55) or subsystem symmetry. This
generalization is not compatible with Lorentz invariance.

An object charged under such a subsystem symmetry cannot leave the locus on which the sym-
metry is defined. This sort of restricted mobility of excitations is a defining property of fracton
phases (5, 6). A fracton phase can be identified as one that spontaneously breaks such a faithful
higher-form symmetry (55-57). Foliated fracton phases (58) like the X-cube model (59) spon-
taneously break a “foliated one-form symmetry” acting independently on each plane of a lattice
(59).

A closely related concept is that of multipole symmetries (e.g., 60—-65). A multipole symmetry
is one in which the continuity equation involves extra derivatives, like 09J° + 0,0,J; = 0 (a dipole
symmetry). Such a conservation law produces conserved charges that need not be integrated over
all of space and act independently of each other. [For example (62), consider the continuity equa-
tion 0¢J° + 0,0,J =0in D =2 + 1; then Q.(x) = [dyJ°(x, y) is conserved for each x.] The simplest
example is that conservation of dipole moment implies that charges are immobile (60).

Models with such symmetries have been studied for a long time in the condensed matter
literature (66). Efforts to understand how the rules of ordinary field theory must be relaxed to
accommodate such systems and their symmetries have been vigorous (see, e.g., 58, 62-64, 67-71,
and references therein and thereto). Attempts have been made to classify subsystem-symmetry-
protected topological phases (72) and their anomalies (73), and to understand subsystem-
symmetry-enriched topological order (74). A subsystem-symmetry-based understanding of Haah’s
code (75) appears in Reference 76.

An importantissue is the robustness of such phases, especially in the gapless case, upon breaking
the large symmetry group. At least in examples, the scaling dimensions of operators charged under
the subsystem symmetry is large, and in fact diverges in the continuum limit (62-64, 66, 70; see,
in particular, Reference 66, their equation 121). This shows that there is at least a small open set
in the space of subsystem-symmetry-breaking couplings in which such phases persist.

The subsystem on which a symmetry acts can be more interesting than just a line or a plane.
For example, it can be a fractal (77, 78). The Newman-Moore model (79) is a simple example of
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Figure 5

An example of the support of a fractal symmetry operator in the Newman—Moore model. If we flip only the
red spins, it preserves the Hamiltonian Equation 26. That is, every up-triangle has an even number of red
dots. There are many ways to accomplish this.

a model with a symmetry operator supported on a fractal subset of space. Put qubits on the sites 7
of the triangular lattice and consider,

H=Y ZZ;Zi+gy X, 26.
ijked i
where the sum is only over up-pointing triangles. To see that this has a fractal symmetry, pick a spin
to flip, say, the circled spin in Figure 5. Moving outward from that starting point and demanding
that each up-triangle contains an even number of flipped spins, there are many possible self-similar
subsets of the lattice we can choose to flip. In fact, there is an extensive number.

This transverse-field Newman-Moore model (Equation 26) has a number of interesting prop-
erties. It has a self-duality mapping ¢ — 1/g, obtained by defining dual spins X » = [],c ZiZ;Z
on a new lattice with sites corresponding to the up-pointing triangles. The exotic critical point at
g = 1° (81) separates a gapped paramagnetic phase from a gapless phase in which the fractal Z,
symmetry is spontaneously broken. Other models with such fractal symmetry have been studied
in Reference 82.

SEarlier work (77, 80) found indications of a first-order transition.
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5. CATEGORICAL SYMMETRIES

Our understanding of what is a symmetry of a quantum many-body system or QFT has evolved
quite a bit. The above discussion shows that the presence of a symmetry means the existence of
topological defect operators.” (I believe the word ‘defect’ in this name just refers to the fact that
these operators have positive codimension.) In the case of an ordinary symmetry, these are the
symmetry operators, U,(X,), that we discussed above; they are labeled by a group element g €
G, and supported on a codimension-one (e.g., fixed-time) slice ¥,, and they are topological in
the sense that their correlation functions do not change under continuous deformations. These
operators satisfy a fusion rule in the sense that for two symmetry operators associated with the
same time slice, lim._.o+ Uy(t + €)U,(¢) = Uy (t). When a local operator crosses such a U, it gets
acted on by the transformation g.

If the surface ¥, is not a fixed-time slice, such an operator implements a modification of the
Hamiltonian, such as a change of boundary conditions. A good example to keep in mind is
the defect operator U_;(X) in the classical Ising model. It is an instruction to flip the sign of
the coupling along any bond crossing the codimension-one locus £. This operator is topological:
Deforming ¥ through a region R is accomplished by redefining all the spins in R by 0 — —o.
This shows that the charged operator is the spin.

A useful perspective is to reverse the logic and regard the existence of topological defect op-
erators as the definition of a symmetry. One of the advantages of this perspective is that it treats
continuous and discrete symmetries uniformly; it also makes no reference to transformations of
fields, and so treats Noether symmetries and topological symmetries uniformly. And from this
perspective it is easy to see some generalizations. The first generalization is that a p-form sym-
metry is associated with (unitary) topological operators whose support has codimension p + 1.
In the low-energy theory describing an abelian topological order in D = 2 + 1, these opera-
tors U are the holonomies of anyon worldlines. For two operators on the same submanifold,
U.Mp_p-1)Us(Mp_p—1) = Uq 4 s(Mp_p_1), where for p > 1 the order does not matter, and we
adopt an additive notation.

The preceding discussion suggests a further generalization, which we need in order to describe
nonabelian topological order as SSB: What about the worldlines of nonabelian anyons? This is a
dramatic step because the algebra of topological operators T, that transport nonabelian anyons is
no longer a group. Rather, they satisfy the fusion algebra:

T,T, = NiT. 27.

By definition, a topological order is nonabelian if there is more than one term on the right-hand
side of this equation for some choice of # and . Whereas multiplication of two elements of a group
always produces a unique third element, here we produce a superposition of elements, weighted
by fusion multiplicities N’,. Furthermore, there is some tension between the fusion algebra
(Equation 27) and unitarity of the operators 7,. The trivial anyon corresponds to the identity
operator, 77 = 1. Each type of anyon # has an antiparticle 7. Because 7; corresponds to trans-
porting « in the opposite direction, we expect that T; = T, and therefore Equation 27 says, in
particular,

T,T) =) NT. 28.

7 A sufficient condition for this conclusion is Lorentz symmetry. In its absence, we have already seen examples
of systems with subsystem symmetries, where there are operators that commute with the Hamiltonian that
are not fully topological.
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If the right-hand side here has a term other than N}, then 7}, is not unitary. As an example, consider
the Ising topological order, with three anyon types {1, ¥, o} and the fusion rules

T,T,=1+T,, T,T,=T,T, =T,, T,T,=T,. 29.

Note that ¢ is its own antiparticle. Equation 29 implies that the topological line operator T,
cannot be unitary and, furthermore, cannot be inverted by any linear combination of 7. Such
symmetries are called categorical symmetries or fusion category symmetries.

More generally, any algebra of topological operators acting on a physical system can be re-
garded as encoding some kind of generalized symmetry. At the moment, condensed matter
applications of the idea of fusion category symmetries remain in the realm of relatively formal
developments, as opposed to active phenomenology of real materials. One application is to un-
derstand nonabelian topological order as SSB.® A concrete example of a model with noninvertible
symmetries is G CS theory, with nonabelian gauge group G at level £ > 1. The noninvertible
symmetry operators are the Wegner-Wilson lines. The specific example of SU(2), CS theory can
describe the Ising topological order and is possibly realized as part of the effective low-energy
description of v = 3 quantum Hall states.

More generally, any topological field theory for nonabelian topological order enjoys such a
noninvertible symmetry. A nice example of the application of this perspective on anyon worldlines
as symmetry operators is in Reference 85, which provides a condition on the anyon data required
for a general (2 + 1)D topological order to admit a gapped boundary condition, beyond vanishing
chiral central charge.

Part of the reason for the name “categorical symmetry” is that such a collection of symme-
try operators comes with some additional data. Besides putting two symmetry operators right
on top of each other, we can also consider symmetry operators associated with branched man-
ifolds, as in Figure 64. Once we allow such objects, we must also consider more complicated
objects related to the associativity of the product, as in Figure 6b, which relates the two ways of
resolving a four-valent junction of topological operators into two three-valent junctions. This as-
sociativity information (creatively called F-symbols) is part of the specification of the categorical
symmetry and must satisfy the pentagon identities (see, e.g., Reference 86, their figure 1). In the
case of one-form symmetry in (2 + 1) dimensions there is further information associated with
braiding.

a b

=
<

= S5,

Figure 6

(@) Fusion of symmetry operators: This junction is allowed if ND’; 6 # 0. (b) Associativity data of fusion of
symmetry operators (in the simpler case where the fusion coefficients N/ g are only 0 or 1).

8A related perspective appears via the “pulling-though” operators in the tensor network description of topo-
logical orders reviewed in Reference 83. For a study of categorical symmetries realized as matrix product
operators, see Reference 84.
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Figure 7

When a spin o moves through the duality wall V) it turns into a disorder operator 1, attached by a
topological line 7 to the duality wall. The right figure illustrates the fact that N}, # 0.

A good example of a noninvertible line operator appears in the critical Ising conformal field
theory (CFT) in D = 1 + 1, in the form of the duality wall (Figure 7). The definition of such
an object entails the following: When we pass through the wall, we act by the Kramers—Wannier
self-duality interchanging the spin and the disorder operator. The latter is not a local operator
but rather must be attached to a branch cut, across which the Z, symmetry acts. Moving a local
spin operator through such a duality wall then turns it into an operator attached by a topological
defect line to the duality wall. The fusion algebra of the duality wall operator N and the ordinary
Z, symmetry line operator n can be summarized as

m=1, Np=ngN =N, NN =1+n.

(These are a relabeling of the Ising fusion rules above.) The last, nonabelian, relation comes from
the fact that the Kramers—Wannier duality only keeps track of the locations of domain walls and
erases the information about the overall spin flip. In a theory with such a symmetry operator, RG
flows generated by a perturbation by a local operator can only generate operators that pass freely
through the wall (87, 88). Examples of duality walls in D = 3 4 1 were studied in References 89
and 90.

Categorical symmetries have been studied most extensively in (1 + 1)D QFTs (e.g., 86-88,
91-94), where they can be used to constrain RG flows. It was shown in Reference 87 that certain
noninvertible symmetries can forbid a trivial gapped ground state, as in the LSMOH theorem.
The idea is to consider the partition function on 72 with a symmetry line operator £ wrapping
one of the circles, and argue by contradiction. If there is a gap, we can evaluate this quantity in the
effective low-energy topological theory. Demanding modular invariance (i.e., that we get the same
answer whichever circle we regard as time) relates the trace over the Hilbert space with twisted
boundary conditions,

£ £ 2
try e PHE) = = =uLe 7, 30.

i x, t

to the ordinary trace with the insertion of the symmetry operator. In a topological field theory,
the former quantity is just try, 1, the number of states in the twisted sector. If there were fur-
thermore a unique ground state, then the latter quantity would be just (£). Because the former is
a nonnegative integer, we can conclude that if (£) is not a nonnegative integer, then there can-
not be a unique gapped ground state. For example, a certain perturbation of the tricritical Ising
model has a symmetry operator W with (Fibonacci) fusion algebra W2 = 1 + W. This algebra
implies that the eigenvalues of I are (1 ++/5)/2, and there must therefore be an even number
of vacua for its expectation value to be an integer. A related argument shows (95) that all irreps of
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G appear in the spectrum of a (1 + 1)D CFT with finite symmetry group G. An extension of this
modular-invariance argument to 3 + 1 dimensions can be found in Reference 89.

The edge theory of the G; CS theory is the G, Wess—Zumino-Witten (WZW) model; it in-
herits the topological symmetry from the Wegner-Wilson lines running parallel to the boundary.
These ingredients are used in Reference 88 to construct massless 2D quantum chromodynamics
(QCD) with adjoint fermions by coupling CS theory on an interval to 2D Yang-Mills theory;
the construction makes manifest some surprising noninvertible symmetries of the theory, which
guarantee deconfinement.

In Reference 86 and 96, the authors argue thata (1 4+ 1)D system with fusion category symmetry
can always be realized as a boundary condition of a gapped (2 + 1)D topological order with anyon
types carrying the associated labels of the topological operators. They wish to study anomalies
of the fusion category symmetry, to use them as RG invariants, and to label SPTS protected by
such a symmetry: They are thinking of the bulk as a realization of anomaly inflow. Gapped edge
theories are realized if the bulk theory admits gapped boundary conditions; such a bulk theory
has an exactly solvable description as a string-net model (28). Explicit lattice models for gapped
phases in D = 1 + 1 with fusion category symmetries appear in Reference 97.

Examples of systems with categorical symmetries include the anyon chain models studied
in Reference 98, which uses the categorical symmetry to explain the gaplessness of the model.
References 99-101 build classical lattice models whose defects realize a fusion category.

The terms categorical symmetry and noninvertible symmetry are not used in a unique way in
the literature. In References 20, 102, and 103, the terms are used in the context of gapped phases
in D = 2 + 1 with gapless boundaries; the idea is that such edge theories can have anomalies
that go beyond those associated with invertible phases, which are therefore called noninvert-
ible anomalies. The term algebraic higher symmetry is used in References 102 and 103 for the
concept I called categorical symmetry above. References 102-104 propose that the most general
notion of symmetry of a D-dimensional system is labeled by a topological order in one higher
dimension.

6. GAPLESS STATES
6.1. Critical Points

The second part of the Landau paradigm (assertion 2) says that at a critical point, the critical de-
grees of freedom are the fluctuations of an order parameter. Apparent exceptions to this statement
come in several varieties.

First, any transition out of a phase without a local order parameter presents an immediate
problem. Consider the case of Z, gauge theory in D = 2 + 1, which spontaneously breaks a Z,
one-form symmetry, with a charged loop operator W[C]. Can we understand the critical theory
in terms of such a string order parameter field? By Wegner’s duality (2), the local physics of the
critical theory is in the same universality class as the 3D Ising model. This is yet another point of
view from which the 3D Ising model should have a string theory dual (19, 105).

Second, there are direct transitions between states that break different symmetries, known as
deconfined quantum critical points (DQCP; Reference 106 has a useful summary and references).
Does this require a revision to assertion 2 of the Landau paradigm as stated above? There is a
sense in which the degrees of freedom of the critical theory are simply the order parameters of
both of the neighboring phases, coupled by a WZW term (107, 108). The presence of the WZW
term is required by a mixed anomaly between the two symmetries. It says that defects of the order
in one phase carry charge under the other (109). This perspective predicts a dramatic enlargement
of symmetry at the critical point, which is not obvious from other points of view, and is borne out
by numerical work. This symmetry-based description as a nonlinear sigma model has the serious
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shortcoming that it is strongly coupled, but so is the more-familiar description in terms of abelian
gauge theory.

Independent of the extended Landau paradigm, I should also mention that the study of order
parameters for higher-form symmetry at various critical points has been instructive (20, 20, 110,
111). In particular, this study has provided independent evidence that the (2 + 1)D DQCP between
the Néel and VBS (valence bond solid) phases is a weakly first-order transition (111).

6.2. Gapless Phases

Gapless phases are a wild frontier of our understanding, and we certainly do not have a symmetry-
based (or any other) understanding of all possibilities at the moment. I limit myself to remarks on
two illuminating examples.

First, I mention a set of exotic gapless fractonic phases that can be constructed by assembling
layers of quantum Hall states. They can be described at low energies by an abelian CS theory
with a nearly diagonal K matrix whose size grows with the number of layers (112-114). For some
choices of K matrix, this represents a new class of gapped fracton phase, with irrational particle
statistics and a large-order fusion group. For other choices of K matrix, the spectrum is gapless.
Reference 115 shows that the gapless examples of such states can be understood in terms of weak
symmetry breaking (116). This means that the charged operator that condenses is not a local but
rather an extended operator, in this case extended along the direction of the stack of layers.

Second, among the list above of apparent exceptions to the Landau paradigm, it remains to
discuss the Landau Fermi liquid. Reference 117 gives something like a symmetry-based under-
standing of both Fermi liquids and a large class of non-Fermi liquids (for a review of the latter, see
Reference 118). First, we assume translation symmetry, so that we may speak about a well-defined
Fermi surface in momentum space. The key ingredient is an emergent symmetry representing in-
dependent particle number conservation at each point on the Fermi surface. In 2 4 1 dimensions,
where the simplest Fermi surface is a circle, this is a loop group symmetry; that is, the symme-
try transformation is a map from the circle to U(1). Such a loop-group symmetry emerges in the
Landau theory, as well as in a large class of non-Fermi liquids obtained by coupling a Fermi sur-
face to gapless modes. Reference 117 shows that a state with a fractional and continuously variable
filling must have such a large symmetry. From this starting point, the authors develop an under-
standing of Luttinger’s theorem as an anomaly of this loop symmetry. (A related anomaly-based
perspective on Luttinger’s theorem appears in Reference 119.) It shows that in a system with such
a loop group symmetry, a literal Fermi arc, i.e., a boundary of the Fermi surface, would imply a
violation of charge conservation: The Fermi surface must be the boundary of some region of the
Brillouin zone.

7. CONCLUDING REMARKS
7.1. Topological Local Operators

What about the case of (D—1)-form symmetries in D spacetime dimensions? This means that
there are local operators that are topological. This case is studied in References 13-15 and more
generally in References 88, 120, and 121. The conclusion is that the Hilbert space of such a system
is divided into superselection sectors with different values of the topological operators. An example
in which this arises is in gauge theory in D = 1 4 1 without minimally charged matter, where
sectors represent different values of the electric flux. Reference 121 considers what happens when
the action is perturbed by such operators, which are always relevant. The perturbation changes
the difference of the vacuum energies between different sectors.
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7.2. Higher Groups

The concept of higher groups can be regarded as a natural extension of higher-form symmetry
(see, e.g., Reference 122 for a broader mathematical perspective). For example, a two-group struc-
ture can be defined in a physical context as follows: it is a modification of the current algebra of a
one-form symmetry and a zero-form symmetry, so that the zero-form gauge transformation acts
nontrivially on the two-form background field B for the one-form symmetry:

A—->A+dr, B— B+ kAdA, 31.

where A is the background one-form field for the zero-form symmetry, and « can be regarded
as a structure constant. This construction is closely related to the Green—Schwarz mechanism of
anomaly cancellation: Suppose, for example, the effective action of a (1 + 1)D theory with the
above ingredients has an anomalous variation 6,5 = | K)»% under a zero-form gauge transfor-
mation. Then the modified action S — [ £ is invariant under the transformation in Equation 31.
Though it has not yet explicitly played a role in the condensed matter literature to my knowledge,
it appears in many places in QFT (e.g., 91, 123-125) and we can expect that it will be useful.

7.3. Other Applications

In the preceding discussion, we have focused on generalizations of notions of symmetry as ap-
plied to zero-temperature ground states of quantum matter. I should mention that these same
generalized symmetries have a number of other applications:

® A new organizing principle for magnetohydrodynamics (126-129). More generally, many
kinds of exotic hydrodynamics can be understood by applying the systematic logic of
hydrodynamics to a system with generalized symmetries (see, for example, Reference 130).

m Reference 131 provides a nice example using both anomalies and generalized symmetries to
understand the spectrum of Goldstone modes of the standard model in a magnetic field and
suggests a realization of the same physics in Dirac semimetals.

m More generally, more symmetry means more possible anomalies and, therefore, new
anomaly constraints on IR behavior of QFT. For example, a mixed anomaly between
time-reversal symmetry and a one-form symmetry implies an LSMOH constraint on the
ground state of Yang—Mills theory at 6 = 7 (132-135). Work in this direction includes
References 136-143 and many others (136-145).

7.4. Disorder

I have not spoken about systems with disorder. Even if we are generally interested in clean sys-
tems, it is important to ask about the stability of our statements to the introduction of disorder.
In the case of zero-form symmetries, the Imry—Ma argument for stability of SSB proceeds by
coupling the local order parameter to the disorder. Naively, the inability to write such a coupling
corroborates our expectation that higher-form SSB is even more robust (65).

7.5. Dynamics

I have focused entirely on equilibrium phases of matter. Dynamics of quantum matter is a current
frontier, in which, of course, symmetries continue to play a crucial role. A generalization of the
notion of symmetry that has appeared in this context is the phenomenon of Hilbert space frag-
mentation: This is what happens when the algebra of operators that commute with each term of
the Hamiltonian grows exponentially with system size (146; for systems with ordinary symmetries,
this algebra grows only polynomially with system size).
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7.6. Still Beyond Landau?

In this review, I've tried to motivate the following question: Does the enlarged Landau paradigm
(including all generalizations of symmetries, and their anomalies) incorporate all equilibrium
quantum phases of matter (and transitions between them) as consequences of symmetry? Even
if the answer is no, I think it has already been a fruitful question. I close by enumerating some
outstanding possible exceptions to even the most generous interpretation in hopes of encouraging
some further thought in this direction.

m Symmetries can forbid all relevant operators that would lift gapless modes that are not
Goldstones. An example is chiral symmetry in QCD, which forbids fermion masses. A
condensed matter example is the Dirac spin liquid—a phase described by a CFT with no
symmetric relevant operators.

m Above I argued that the DQCP between two distinct symmetry-breaking phases satisfies
assertion 2 of the Landau paradigm because it admits a description in terms of a nonlin-
ear sigma model whose fields are the order parameters of the two phases. Reference 147
generalizes this description to a sigma model on the Stiefel manifold, the coset space
SO(N +4)/SO(4). For N = 1 this is the DQCP; for N = 2, these authors give evidence
that this is a description of a Dirac spin liquid in terms of only gauge-invariant variables.
The case N = 2 is called Stiefel liquid, and Reference 147 provides a candidate microscopic
realization with the argument that it has no weakly coupled limit.

m An extremely interesting example of a claimed exception to assertion 2 of even the Gener-
alized Landau Paradigm is provided by phase transitions described by IR-free gauge theory
(148). The claim of Reference 148 is that SU(IN) gauge theory with adjoint fermions (take
N = 2) has a Z, symmetry and describes, as the fermion mass changes sign, a completely
novel critical theory for the transition from the trivial phase to the ordinary SSB phase.
The degrees of freedom of this theory certainly go beyond the fluctuations of the order pa-
rameter. Notice that for any nonzero mass there is an extra emergent one-form symmetry
associated with the center of the gauge group. A physical consequence of this symmetry (and
a mixed anomaly), were it exact, would be that a domain wall between the two Z,-breaking
vacua would satisfy an LSMOH constraint; that is, the domain walls of the ordered phase
would carry some extra degrees of freedom, and this would distinguish this phase from the
ordinary SSB phase. This symmetry is, however, explicitly broken by the massive charged
matter of the gauge theory.
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